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Abstract

High dose rate (HDR) brachytherapy is a form of close range radiotherapy whereby dose is

delivered by means of an internal radiation source. By doing so, a high level of dose con-

formity and accuracy can be achieved. However, due to the high source activity coupled

with the close proximity of radio-sensitive organs such as the rectum, bladder and urethra,

there exists the potential of incorrect dose delivery; the irradiation of these organs may con-

sequently lead to post-treatment complications. As a result, the need for accurate forms of

quality assurance methodology which can verify different aspects of the treatment delivery is

paramount. These methodologies must be able to perform real-time dose analysis to monitor

crucial organ exposure as well as accurately localise the HDR source within space to verify

its position according to the treatment plan.

An End-to-end Phantom was developed with anatomically correct Gel Prostate phantoms

to create an anthropomorphic representation of the clinical environment. This allowed the

testing of clinically relevant treatment plans on the MP987 detector system to test its source

localisation capabilities. It was shown that when comparing to the TPS defined dwell po-

sitions, the system was able to determine positions on average to within (3.69±0.14)mm,

(3.70±0.15)mm, (3.53±0.12)mm and (0.30±0.06)s for the x, y, z and t coordinates respec-

tively.

Preliminary tracking capabilities of the novel TRUSProbe Tracker were shown to achieve

limited levels of accuracy based upon which axis is being investigated. However, the probes

ability to perform in-vivo rectal dose measurements was shown to yield an overall difference



iii

of (-2.34±6.3)% compared to the TPS. The capability of real-time dose measurements was

shown to be plausible, with a catheter-by-catheter dose analysis producing a -2.4% difference.
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Chapter 1

Introduction

Among Australian males, prostate cancer remains one of the leading causes of death, with

an estimated 17,729 new cases and 3,500 deaths in 2018 [1]. Additionally, 1 in 31 males will

die from prostate cancer by the age of 85 [1]. This high level of occurrence can be seen on the

world scale, with an estimated 1.1 million new patients in 2015 and approximately 307,000

deaths which accounts for 6.6% of the total male deaths [2, 3]. Despite it’s severity, early

detection as well as an effective treatment course which factors in patient specific parameters

can aid in curing prostate cancers. Typically, treatment options for prostate cancer patients

include radical prostatectomy or a course of radiation treatment [3].

Brachytherapy (short range therapy) is a form of radiotherapy which involves the use of an

internal radiation source to achieve dose delivery. A therapeutic radionuclide seed, typically

192Ir, is placed within/close the treatment volume by means of a flexible steel rod connected

to a mechanically driven remote afterloader. This allows a radiation dose delivery directly

1
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to the targeted area. The precise positioning of the source allows clinicians to achieve high

level of dose conformity and accuracy, minimising exposure to healthy tissues. The breast,

prostate, cervix and skin are common organs in which brachytherapy is used to treat cancers.

Brachytherapy generally is delivered using two distinct methods; low dose rate (LDR) and

high dose rate (HDR). LDR Brachytherapy involves the implantation of low dose rate ra-

diation seeds into the treatment volume. The seeds remain permanently implanted in the

volume while delivering dose over an extended period of time. After the treatment is finished,

the seeds remain within the treatment volume [4]. HDR Brachytherapy employs catheters

which are temporarily inserted directly into the target volume. The positioning of these

catheters are accurately verified and a treatment plan is generated based on these positions.

Using these catheters, high dose rate radiation pellets are inserted. The positioning of the

seeds within the catheter and the time in which they are in position are all controlled by

computer guidance systems to accurately deliver precise dose treatment volumes [5].

The treatment of prostate tumours using HDR source involves a template being placed over

the area between the scrotum and anus. Catheters are inserted through this template into

the prostate. Their positioning is verified using a CT scan and a treatment plan is developed.

Using this treatment plan, the treatment seeds are inserted into the catheters and the dose

is delivered. The use of CT verification involves the movement of the patient out of dorsal

lithotomy. This movement can result in a shift in the catheters, which in turn will cause

uncertainty in the dose delivered to the patient [5].

In order to streamline the prostate brachytherapy treatment, Trans Rectal Ultra Sound

(TRUS) probes have been implemented for catheter localisation and treatment planning.
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By doing so, the patient can remain in the same position for the entirety of the treatment

which reduces the chances of catheter movement. One problem associated with real-time

brachytherapy is the difficulty associated with locating the catheters using the TRUS probe.

There is an inherent distortion when the catheters are reconstructed on the US image, which

in turn can result in an overestimation of the prescribed dose to the prostate and/or dose

delivery to healthy tissue (urethra, bladder, rectal wall).

There is a need to validate catheter position in the intraoperative environment

from start to finish of the procedure: End-to-End.

1.1 Project Aims

The aim of this thesis is to develop a system which can accurately verify each component of

a real-time HDR prostate brachytherapy procedure: in-vivo treatment verification (IVTV).

Included within the constraints of IVTV are the notions of in-vivo dosimetry as well as

accurate HDR source localisation. This thesis proposes to achieve this aim through the

following objectives:

• Review current literature surrounding current modalities of .

• Development of an anthropomorphic gel phantom to be used in clinically relevant end-

to-end studies.

• Evaluating the feasibility for the use of a 2D diode array in the use of source localisation
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in HDR pBT.

• The development and initial feasibility testing of a novel IVTV tool used for TRUS

based HDR pBT.



Chapter 2

Literature Review

The aim of the following chapter is to establish a comprehensive outline of HDR prostate

brachytherapy, whilst providing key context of prostate anatomy and treatment options for

prostate cancer. The uncertainties associated with HDR brachytherapy and will also be

examined and current QA procedures will be reviewed. Finally, real-time source identification

by means of different detection modalities will be unpacked and reviewed.

2.1 Prostate Anatomy

The prostate is an exocrine gland of the male reproductive system [6]. It’s location is directly

inferior to the bladder and anterior to the rectum, which can be seen in Figure 2.1.1 The

urethra passes through the prostate gland from the bladder to the penis.

The primary function of the prostate is to secrete fluid from the seminal vesicle to protect

5
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Figure 2.1.1: Sagittal view of the prostate gland within its local anatomy [6].

and enrich the volume of sperm.

2.1.1 Prostate Cancer

Prostate cancer is a form of malignancy in the prostate in which the development of atyp-

ical cells grow to form a tumour volume. These atypical cells may uncontrollably multiply

and ultimately result metastasis; the growth of secondary malignant sites which occur in a

different location from the primary cancer site via the lymphatic or circulatory systems.

The prevalence of prostate cancer can be seen on the world scale, with the most recent data

showing an estimated 1 276 000 new cases and 359 000 deaths in 2018 [7]. Furthermore, as a

result of growth and ageing of the population by 2040 the worldwide cancer burden will see

an expected 2.3 million new cases and over 740 000 fatalities [7].
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2.2 Comparison of treatment options for prostate can-

cer

A study conducted by the Prostate Cancer Results Study Group [8] provides an evaluation

of the prostate specific antigen free survival outcomes of low, intermediate and high risk

subjects. The study compares the effectiveness of different treatment options which include

surgery (radical prostatectomy), external beam radiotherapy (EBRT) and brachytherapy

(both low-dose rate and high-dose rate). In order to reach a comparative conclusion, the

study involved the analysis of retrospective studies conducted from 2000-2010 which criti-

cally evaluated the treatment of localised prostate cancer.

The study found that data from over 52000 patients showed that brachytherapy proved to be

more effective in stopping low-risk prostate cancers compared to other modalities. For the

intermediate risk patients it was found that brachytherapy alone showed similar effectives

compared to the combination of external beam radiotherapy and brachytherapy regimes.

Brachytherapy also proved to be more effective compared to surgery or external beam ra-

diotherapy alone. For high risk patients, a combination of brachytherapy and external beam

radiation treatments proved to be more effective compared to single modality treatments [8].
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2.3 High dose rate (HDR) brachytherapy

Brachytherapy (short range therapy) is a form of radiotherapy which involves the use of an

internal radiation source to allow dose delivery. A therapeutic radionuclide, usually Iridium-

192 (192Ir) is placed within/close to the treatment volume delivering a small dose directly to

the targeted area. The precise positioning of the source allows clinicians to achieve high level

of dose conformity and accuracy, minimising exposure to healthy tissues with results similar

to those obtained with surgery [9].

Figure 2.3.1: HDR Brachytherapy Treatment [5].

Brachytherapy generally is delivered using two distinct methods, low dose rate (LDR) and

high dose rate (HDR):

Low Dose Brachytherapy (LDR) involves the implantation of low dose rate radiation seeds

into the treatment volume. The seeds remain permanently implanted in the volume while de-
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livering dose over an extended period of time. After the treatment is finished, the seeds often

remain within the treatment volume [4]. The permanent implantation of the radiation seeds

have an inherent degree of uncertainty. Manual insertion of the seeds into the soft tissue,

which is prone to deformation, results in localising the final position and dose distribution

to the volume being difficult and unpredictable [9]. Once inserted, there is no way to alter

the seed’s position which also means that there may exists differences between the planned

treatment and the one delivered.

High Dose Rate Brachytherapy (HDR) employs hollow catheters which are temporarily in-

serted directly into the target volume. The positioning of these catheters are accurately

verified using CT images and a treatment plan is generated based on these positions. Us-

ing the catheters, high dose rate radiation pellets (192-Ir) are inserted. The positioning of

the pellets within the catheter and the time in which they are in position are all controlled

by computer guidance systems and a fixed grid template to accurately deliver precise dose

treatment volumes to within 1mm [4]. During the procedure, the computer guided system

positions the radioactive seed at pre-determined dwell positions inside of the catheter for a

designated amount of time before moving onto the next position. The times at each dwell po-

sition are determined based on tumour dose requirements and normal tissue dose constraints

[9]. This allows a controlled dose distribution.

Due to its ability to deliver a large biological effective dose whilst minimising dose to the

surrounding organs, high dose rate (HDR) brachytherapy (BT) has provided an efficient

treatment to prostate cancer [10]. The report produced by Kumo et all. 1997 of the

AAPM Radiation Therapy Committee qualitatively outlines the benefits associated with
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HDR Brachytherapy treatment. These include:

• A higher dose conformity to the treatment volume

• The time efficiency of the procedure

• Lower patient movement effect

• Lower dose to surrounding tissue.

The article fails to mention the low time benefits associated with the treatment [11]; there

is an increase in risk of healthy tissue dose with treatment time.

An eight year study was conducted by Demanes et al. which evaluates toxicity and tumour

control for patients which have low- and intermediate-risk prostate cancer. Between 1996

and 2005, the data from 298 patients with localised prostate cancer who were treated with

HDR brachytherapy was analysed [9]. Each patient received one of two hyper-fractionated

delivery protocols, both with biological equivalence. One protocol saw a delivery of 42 Gy

in six fractions using a computed tomography (CT) based treatment plan while the other

protocol delivered 38 Gy in four fractions based on transrectal ultrasound (TRUS) planning.

The dose delivered to radiosensitive organs (bladder, urethra and rectum) were similar across

all the procedures. It was found that after 8-year follow up, there was a 97% biochemical tu-

mour control, 99% local control, 99% distant metastasis-free survival and 99% cause specific

survival. It was also found that there was an overall 95% survival [9]. Based on these results,

there is a demonstrated low morbidity which indicates an affective overall treatment option

for prostate cancer. Despite the studies supporting evidence for effective means of tumour

control, the study fails to evaluate the long term survival trends to give a long term evaluation.
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2.3.1 HDR Radiation Source

A majority of clinical brachytherapy environments sees the employment of 192Ir as the primary

source of radioactive isotope. The production of the radioisotope is achieved through neutron

bombardment of stable 191Ir. This allows minimal wastage of unwanted isotopes during

production.

According to the National Nuclear Data Centre [12], 192Ir has a half life of 73.827 days, which

relates to approximately a 1% daily correction. It’s long half life, coupled with its high air

strength kerma (41mGy·m2·m-1), is a primary reason for its widespread use for brachytherapy

treatments.

192Ir decays via (95.13%) β- transitions to excited levels of 192Pt or (4.87%) electron capture

to 192Os [13, 5]. There is on average 2.2 photons with energy of 0.354 MeV produced by both

decay processes.

Data analysed by Strohmaier et al. [14] showed that the distance to the source in water has

a direct influence on photon energy; A maximum local dose difference of -14% was observed

at a 5cm depth from the 192Ir source in water.
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2.4 Uncertainties associated with high dose rate brachyther-

apy

Although HDR BT for prostate lesions provides an effective treatment, the technique still

hasn’t reached it’s full potential. According to Petereitet al, one reason that prostate

brachytherapy has low utilisation rates is due to the uncertainties associated with the pro-

cedure [15].

There exists a degree of uncertainty with the overall procedure of HDR brachytherapy. One

such uncertainty is associated with catheter localisation. Traditionally, BDR brachytherapy

utilised post-operative computed tomography (CT) imaging to generate treatment plans. In

order to obtain a CT image, the patient positioning is altered from dorsal lithotomy [16]. This

movement can result in catheter shift in the inferior direction. To reduce the uncertainties

associated with the use of CT scanning for treatment planning, Trans Rectal Ultra Sound

(TRUS) probes have been implemented for catheter localisation and treatment planning. By

using TRUS, the patient can remain in the same position for the entirety of the treatment

which reduces the chances of catheter movement. One problem associated with real-time

brachytherapy is the difficulty associated with locating the catheters using the TRUS probe.

There is an inherent distortion when the catheters are reconstructed on the US image, which

in turn can result in an overestimation of the prescribed dose to the prostate and/or dose

delivery to healthy tissue (urethra, bladder, rectal wall) [17]. Furthermore, localising the

catheters on the TRUS image can be time consuming and are subjective and operator de-
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pendant due to shadowing effects and calcifications [18].

As part of investigating the impact of catheter reconstruction using ultrasound image study,

20 patients with cancer classification of intermediate- or high-risk were treated with a single

fractionation 15 Gy boost. Three treatment planners with a history of experience in catheter

localisation were chosen to manually reconstruct catheter paths using 3D static transrectal

ultrasound images. Using these updated positions, new treatment plans were generated and

compared to the original patient study reference plan [17]. The difference between the two

plans, which subsequently result in a difference in dosimetric effect, was evaluated. Nicolae

et al. found that there was <3 mm variation for >98.9% of catheter localisation using TRUS

based images[17]. Furthermore, there was a significant decrease in planning target volume

which subsequently results in an increase in urethral dose maximum values. The study found

that there was a significant change in brachytherapy plan quality based on observer variabil-

ity. As a result, there may be an inadequate treatment volume coverage which subsequently

translates to excessive urethral or rectal dose.

Furthermore, literature from the International Commission on Radiological Protection (ICRP)

which evaluates HDR brachytherapy notes that there are a significant number of cases in

which human error and mechanical failure has played a role in uncertainties. These in-

clude incorrect data input into treatment planning systems, incorrect catheter placement

and organ movement/applicator movement from the treatment and imaging sequence. The

consequences for such errors have profound effects for the patient, with small deviations in

dose positioning and time resulting in significant errors in patient dose.
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2.5 Task Group 43 Protocol

In 1995, based on findings of the Interstitial Collaborative Working Group (ICWG), the

American Association of Physicists in Medicine (AAPM) formed Task Group No. 43 (and its

subsequent update TG43-U1) which devised new formalism for dose calculation [19, 20]. Prior

to this document, previous dose calculations did not account for source-to-source differences

of internal construction or encapsulations. TG-43 is able to account for these shortcomings

by employing dose-rate constants and specific source design parameters which are derived

directly from measurements or calculation for each HDR/LDR source.

Overall, the formation and introduction of the TG-43 findings has lead to significant improve-

ments in clinical implication of brachytherapy with the standardisation of dose-calculation

methodologies alongside dose rate distributions.

2.5.1 General 2D formalism

In all point dose calculations in brachytherapy, the geometry seen in Figure 2.5.1 is used.

The dose rate equation used to determine the dose at some point P is described as

Ḋ(r, θ) = SK · Λ ·
GL(r0, θ)

GL(r0, θ0)
· gL(r) · F (r, θ) (2.1)

where r is the distance in cm from the point of interest to the centre of the active source; r0

is the reference distance (1cm); θ is the polar angle specifying the point of interest; P(r,θ)

is the point of interest and θ0 defines the source transverse plane, specified to be 900. In a



15

Figure 2.5.1: Brachytherapy dosimetric coordinate system used for calculations[19]

clinical setting, radio-opaque markers are used to define source position and orientation.

2.5.2 Air Kerma Strength, (SK)

TG-43U1 further revises the definition of Air Kerma Strength to allow low-energy cutoff [20]:

SK = K̇δ(d) · d2 (2.2)

where K̇δ(d) defines the air-kerma rate in vacuum due to photons of energy which is greater

than δ at some distance d. The distance d is described as some distance from the source

centre to K̇δ(d) located on the transverse plane of the source. Typically, d is taken on the

order of 1 metre such that d is much larger relative to the source size to ensure that SK is

independent of d·K̇δ(d). The unit for Air Strength Kerma is µGy·m2 ·h-1.

The energy cutoff δ is introduced to eliminate low energy/contamination photons which arise

from photon interaction with surrounding media.
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2.5.3 Dose Rate Constant, (Λ)

The Dose Rate Constant (Λ) is defined as the ratio of the dose rate at the P(r0,θ0) and the

air kerma strength (SK) in water:

Λ =
Ḋ(r0, θ0)

SK

(2.3)

The value depends on both the radionuclide and the source model (internal design and

experimental methodology) and has units of cGy·h-1·U-1 which equates to cm-2.

2.5.4 Geometry Function, G(r,θ)

The geometry function allows an improvement to the accuracy of dose rate estimation by

means of interpolation from data tabulated at discrete points. The function provides a

correction which follows an inverse squared law based upon an approximate model of source

radioactivity distribution.

For point source model approximations, the geometry factor is

GP(r, θ) = r-2 (2.4)

For line source model approximations, the geometry factor is calculated in conjunction with

the following conditions

GL(r, θ) =


β

Lrsinθ
if θ 6= 00

(r2 − L2

4
)-1 if θ = 00

(2.5)
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where β is the subtended angle between both ends of the line source with respect to the point

of calculation P(r,θ); L is the length of the line source and θ is the angle of the source from

the point of calculation.

2.5.5 Radial Dose Function, gX(r)

The radial dose function, gX(r), allows for the dose fall-off on the transverse plane which

arises from scattering and attenuation to be accounted for. The function is calculated by

gX(r) =
Ḋ(r0, θ0)

Ḋ(r0, θ0)

GX(r0θ0)

GX(r0, θ0)
(2.6)

The subscript X allows the radial dose function to be determined for both a point source

”P” or a line source ”L”.

2.5.6 2D Anisotropy Function, F(r,θ)

The 2D Anisotropy Function(F(r,θ)) is defined as

F (r, θ) =
Ḋ(r0, θ0)

Ḋ(r0, θ0)

GL(r0θ0)

GL(r0, θ0)
(2.7)

The function describes the variation in dose with respect to the polar angle with the transverse

plane. The function returns a value of 1 along the transverse plane of the source.
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2.6 Task Group 186

In 2012, the AAPM formed Task Group 186 (TG-186) [21] in order to establish practice

uniformities by addressing the shortcomings of early model based calculation algorithms.

The accuracy of brachytherapy dose calculations is highly dependent on photon interaction.

Model based calculation algorithm dose values are correlated to the dose specific medium

which in turn results in energy-dependent differences between TG-43 calculations (water ge-

ometry based) and dose calculated in heterogeneous mediums. TG-43 calculation formalism

saw the introduction of pre-calculated dose distributions for a single source in a water envi-

ronment and superimposing it on patient plans. Despite being fast for clinical applications,

it fails to take into account tissue heterogeneities and patient dimensions or the influence of

scatter-dose. This is significant when using TG-43 formalism when calculating dose values

in mediums which are not the prostate, ie. rectum or detectors.

In order to account for the above shortcomings, TG-186 recommends to perform radiation

transport in the heterogeneous medium alongside TG-43 calculated doses. To achieve this, a

number of standardised materials should be used across institutions to maintain uniformity.

2.7 Task Group 59

The American Association of Physicists in Medicine (AAPM) Radiation Therapy Committee

Task Group no. 59 was established in December 1997 to examine the HDR delivery protocols

and to manifest a document to standardise safe HDR delivery practices [10]. The document
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provides extensive quality assurance procedures whilst also outlining training and emergency

procedures.

The main ideology behind the development of a standardised quality assurance document

was to minimise treatment delivery errors and other potential hazards. They believed that

this would be achieved through a carefully designed treatment delivery process with con-

tributing factors such as treatment accuracy, patient safety, physician convenience and cost

effectiveness kept in mind [10]. The AAPM group outlines the treatment delivery process as

the applicator selection and insertion, the planning of the implantation and dose evaluation.

Special emphasis is placed on the quality assurance being implemented throughout the pro-

cess of HDR procedure as opposed to a set of checks and activities which are separate.

The document outlines essential patient specific documentation, procedural check-lists and

forms and the recommendations to ensure that the chance for misinterpretation or incorrect

data input is minimised. The main purpose the documentation is to minimise miscommuni-

cation of verbal transfer. The key information that the documentation should outline as a

minimum are as follows[10]:

1. Detailed cross section diagram which documents catheter positions with appropriate

numbering with respect to the local anatomy should be provided. Any information

which will be used to compute procedural parameters shall be included.

2. Catheter-by-catheter information such as insertion depth, dwell position, dwell times

and distance between surrounding catheters shall be included for all implants. The

insertion depth is HDR afterloader specific, so this information is crucial in cases of

cross-department procedures.
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3. Information regarding active dwell positions and localisation of sources along the catheter

track. This information is manually obtained using radiographic means.

4. Isodose (Dose information at differing dose levels across the treatment volume) plots

for graphical representation of treatment plan.

5. Calculations of dose and strength of the source to verify computer-based calculations.

The document further outlines staff training such that potential errors in the treatment may

be noticed and avoided. There exists a balance between an appropriate number of staff and

the reduction of error risk; this is dependant on the complexity of the patient case and the

training and experience of the staff [10]. Furthermore, credentials and recommended training

for each member of staff are outlined.

The treatment specific quality assurance that Task Group no. 59 outlines involve appropriate

applicator preparation and insertion as well as implant localisation. One such area which

the document places considerate emphasis on is the evaluation of the implant location. Most

of these involve properties of the afterloader whilst additional information is obtained from

radiographs. Due to the heavy reliance on the afterloader, there is an importance placed

on a daily quality assurance protocol [10]. One such method is the use of a sequence of

radiographic distinct dummy seeds loaded inside the applicator. These dummy seeds are

cross referenced using orthogonal radiographs and the implant diagram to determine dwell

positions and time. This process in itself is prone to a certain degree of uncertainty. If the

process is performed incorrectly, the sequence of dwell positions and time will be incorrect.

It is recommended that at least two persons should be working in unison to cross check each
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step in the process.

One such problem with the AAPM Radiation Therapy Committee Task Group no. 59’s

document, despite it being over two decades old, is the focus of quality assurance for HDR

brachytherapy equipment. The document focuses heavily on the daily execution of QA pro-

tocol for the remote afterloader in order to accurately determine source dwell positions and

time. One such problem for a system which relies heavily on device-centric qual-

ity assurance is that it fails to give assurance for the entirety of the procedure.

2.8 Task Group 100

In 2016, Task Group no.100 of the AAPM was established. Traditional methods of quality

assurance have primarily focused on the monitoring of the functional performance of the

radiotherapy equipment. These traditional QA measures fail to recognise that many errors

which occur in radiation oncology stem from complications in work flow and process rather

than devices and software. The no.100 task group’s document outlines a structured method-

ology which allows analysis of clinical process and to develop clinic and site specific QA

measurement programs which will take into account workflow parameters [22].

The document examines two main shortcomings of traditional approaches to quality control

management:

A lacking in addressing the treatment process comprehensively. The device-specific
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quality assurance approach will result in errors associated with information flow and poor

training. An overall understanding in the interactions between all aspects of a procedure

including human users and devices is paramount and will see an overall improvement in effi-

ciency and reduction of error.

Delays in establishing accepted quality control procedures for changing technol-

ogy. The increase in the rate of radiation technology development has seen a challenge

to traditional quality assurance protocols. Device-centric quality assurance coupled with a

rapidly changing industry will inevitably lead to a time lag between the development of qual-

ity control measures and the implementation of new technologies.

Overall, the report finds that the only way to mitigate the risk of error associated with

radiotherapy is by careful consideration of all aspects of the planning and treatment; end-

to-end testing. The process-orientated quality assurance includes integrated dosimetric

and quantitative testing.

2.9 Current clinical quality assurance methods for high

dose rate brachytherapy procedures

The implementation of quality assurance (QA) programs in clinical brachytherapy environ-

ments is to ensure a level of consistency across all treatments whilst also maintaining a high
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level of safety to the patient and other individuals who may be exposed to radiation as a

result of the treatment. There are a series of performance checks carried out at fixed inter-

vals, documentation standards, measurements and training standards which form a typical

QA program [23].

In 2011, the Australasian College for Physical Scientists and Engineers in Medicine (ACPSEM)

Radiation Oncology Speciality Group (ROSG) formalised a series of QA recommendation pa-

pers to provide a guidance foundation for Australasian radiation oncology medical physics

practices. The proceedings are based upon the AAPM’s Task Group no.56 (Code of practice

for brachytherapy physics) [24] as well as other QA practices used in other countries [25].

The document serves more as a guideline for the frequency in which to perform the QA tests,

rather than providing in depth procedure. Each QA test is grouped based on the frequency

to which it must be conducted; tests frequencies are classified into daily, quarterly (or at

source replacement) or annual frequencies.

2.9.1 Real-Time source localisation

The known location of HDR sources during clinical procedure compared to planned positions

is paramount in ensuring correct dose delivery. ACPSEM’s Task Group no.56 [24] as well as

ESTRO Booklet 8 [26] recommends that the source position accuracy test is to be performed

daily. In order to determine the source position accuracy, the source can be exposed on

radiographic film and compared to external markings.
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Figure 2.9.1: Source accuracy check ruler which is used daily [27]
.

The typical tolerance for for most quality assurance protocols, as provided by the ACPSEM

recommendations, is 1mm with action to be taken after 2mm differences [23].

2.9.2 Dwell-Time

In order to determine the dwell time accuracy, the time in which the source is in its planned

position is compared to the designated time specified by the treatment planning system. The

typical tolerance range as specified by ACPSEM recommendations is 1% with action to be

taken with differences of over 2% [23].
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2.10 In-vivo Dosimetry and Treatment Delivery Veri-

fication

In vivo treatment verification (IVTV) is a mechanism through which the minimisation of risks

associated with the incorrect delivery of HDR PBT can be achieved. It allows verification of

treatment delivery by means of quantifying patient dose directly as well as determining source

dwell times and localising source positions; in-vivo dosimetry and in-vivo source tracking.

2.10.1 Different detector based in-vivo systems

In HDR brachytherapy, the use of IVD does not see typical clinical use due to its invasive

nature [28]. The typical organs surrounding the prostate, such as the rectum, urethra and

bladder, are often chosen as sites to monitor dose as non-invasive sites such as skin levels are

not a priority. Reaching these monitor sites often requires insertion of a probe or additional

interstitial catheters [28, 29].

Furthermore, the high dose gradient creates additional challenges. For a typical linear source,

at a distance of 4mm the dose gradient is ≈50% mm-1. At a distance of 20mm, the gradient

is ≈6% mm-1 [29]. The significance of the differences in dose gradients will consequently

result in small errors of detector positioning causing a large degree of dose error. A study

conducted by Waldhausl et al outlined the importance of these geometric considerations in

HDR brachytherapy. 55 patients with cervix carcinomas were evaluated; dose in the rectum

and bladder were measured using diodes and compared to the calculated values. If there
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was a difference of at least 10% between the two values, the diode’s position was moved and

evaluated. It was shown that shifts in patient detector probe position of 2.5mm for a rectal

probe and 3.5mm in a bladder probe resulted in dose differences exceeding 10% [29].

There are many studies in the literature which explore the use of different detector systems

for in-vivo dosimetry. The following review is based on different detector types.

Thermoluminescent dosimeter (TLD)

The thermoluminescent dosimeter’s (TLDs) ability to be shaped and manufactured by an

array of different materials have seen clinical studies of TLDs for HDR BT. Lithium fluoride

(LiF) TLD rods are able to fit easily within treatment catheters and so, are the most com-

mon form used. However, due to the invasive nature of the TLDs, fading correction factors

needed and due to the TLDs not being real time dosimeters, their use for daily clinical QA

is limited.

Anagnostopoulos et al [30] evaluated the potential use of TLDs to measure dose delivery ac-

curacy in vivo for HDR BT. 50 LiF TLD-100 were used for 18 fractions in 5 different patients

and compared to commercial TPS based on CT images. Fourteen individual dosimeters were

loaded into a 4F catheter for each treatment fraction and were placed either close to the

urethra or around the median posterior wall of the prostate. A maximum discrepancy be-

tween the planned and observed dose values was 8.56%±2.61% with the average difference

being 6.88%±4.93% across all patients. The findings provided a good correspondence to the

expected values within uncertainties.



27

By means of a similar method, Jaselske et al [31] proposed in vivo dose verification us-

ing TLD-100 dosimeters compared to theoretical dose values. A pre-implanted dosimetry

catheter filled with 6mm long TLD 100-H rods, adjusted using reconstructed CT scans, was

used for three head and neck and one breast patient during randomly selected treatment

fractions. For the head and neck patients, it was found that the average dose difference

varied from 4.02% to 12.93% and 7.17% to 8.63% for breast patients. These values fall below

the 20% recommended margin from the AAPM. One problem associated with the author’s

methodology was catheter reconstruction was only performed for the first treatment which

resulted in incorrect dosimeter positions due to organ moment. This different accounted for

an estimated 2-3% dose error.

Radiophotoluminescence glass dosimeter (RPLGD)

RPLGDs and TLDs operate under similar reading processes, with the main difference being

ultraviolet light is used to stimulate the detector rather than heat [32]. This leads to a direct

benefit over TLDs; RPLGDs can be annealed and reused.

The rational behind RPLGD IVD is explored by Takayuki Nose et al [33], where the largest

sample of patients for an interstitial brachytherapy in-vivo dosimetry was analysed to study

the limits of current treatment planning software. Sixty-six patients were treated with HDR

interstitial brachytherapy, twenty-six of which were prostate cases. A total of 1004 points

were measured by radiophotoluminescence glass dosimeter (RPLGD) and compared

with treatment planning software. The study concluded that there was a greater than 20%
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deviation in measured and calculated doses. This can be attributed to movements of organs

and the associated detector position uncertainty.

The accuracy of glass dosimeters was further explored by Moon et al [34]. A pelvic phantom

which mirrored typical patient anatomy was created and used in conjunction with an appli-

cator which housed the dosimeters to evaluate the accuracy of the dwell positions and time.

The arrangement of the dosimeter and the source was optimised for three different conditions

using doses of 10, 50, and 100 cGy. Once the optimal arrangement was found, phantoms

of solid water with different thicknesses were placed between the source and the dosimeter;

effectively changing the distance between the source and the centre of the glass dosimeters.

The measured values for each distance were compared to the TPS. The errors found between

the TPS and the obtained values were -6.25%, -2.1%, -4.18%, 6.31% and -0.39%, with a

mean of 3.85%. The author remarks that this error was acceptable when considering the

innate error of the glass dosimeter itself, being 3%, and that with further error calibration

this method could be clinically used.

Radiophotoluminescent glass dosimeter’s use to validate dose in prostate HDR-BT was also

examined by Shih-Ming et al [35]. The group set out to compare the accuracy of dose mea-

surements using RPLGDs to a typical clinical TPS and as a result, potentially identify factors

which hindered the accuracy of the measurements. The group used TLDs as a further com-

parison. Phantom in-vivo dose measurements were performed using both the RPLGDs and

TLDs with both single source dwell positions and multiple source dwell positions. Overall,

the difference between the measured dose and the TPS dose was less than 5%, which was

seen as a clinically acceptable accuracy.
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Optically stimulated luminescence dosimeters (OSLDs)

Optically stimulated luminescence dosimeters (OSLDs) are gradually replacing TLDs due

to their instantaneous readout and the permanent record of their irradiation signal. The

OSLS can be operated in both post irradiation readout using an external optical stimulation

(typically a LASER) or live readout during irradiation. The quality, as well as their small

size of sub millimetre, is appealing for IVD [28].

In 2009, Claus E. Anderson et al [36] developed a prototype which was to facilitate dose de-

livery error identification in remote afterloading brachytherapy. The system was constructed

of an OSLD made from aluminium oxide crystals which was coupled to optical fibre cables

which transported the light signals to the readout system. The detector system was able

to be placed inside of treatment catheters which allowed for direct online in vivo dosimetry

inside of the tumour volume. Using a water phantom and a Varian GammaMed Plus 192Ir

afterloader, the system was tested in the range of 0Gy to 4Gy. It was found that the cali-

brated system was linear within the tested dose range. Monte Carlo code was used calculate

the theoretical expectations for depth dose, which returned profiles which the author quoted

as ’agreeing well’ with the measured data. For source-to-probe distances of 2-50mm, the

energy dependence for the dosimeter probes (compared to water) was less than 6%. Despite

it feasibility, it was noted that the generated radioluminescent online signal could be greatly

affected from light generated in the optical fibre being irradiated. It was concluded that

OSLD were an adequate option for IVD.

Gustaco Kertzsher et al conducted a feasibility study for fibre-coupled carbon doped alu-
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minium oxide OSLDs [37]. The main goals of the study was to quantify the sensitivity of

the detector under clinically relevant imposed treatment errors while concurrently testing a

new statistical error decision criterion. Two gynecological and one prostate cancer phantom

studies were conducted which saw imposed treatment errors including source displacement

from 2mm to 20m being monitored by real-time OSLDs in the tumour region. The detection

of error capability was qualified based on dwell positions, source channel and faction. The

statistical error criterion allowed the incorporation of correlated source position uncertainties

as well as other sources of error. Out of 20 imposed errors, the system identified 17 based

on time-resolved analysis while 2 errors were found from a fraction level analysis. It was

also found that the minimum displacement that dwell position dose rate comparisons could

identify was 5mm. The study showed the capability of carbon-doped aluminium OSLD in

detection of clinical relevant errors as well as outlining the need for statistical error criterion

as opposed to constant error criterion.

Plastic scintillation detectors (PSD)

Another promising detector system for IVD is plastic scintillation detectors (PSD). Light is

emitted proportionally to incident dose upon the organic scintillation material. The crystals

are coupled to fibre-optics and are then incident upon a detector. PSDs are linear with dose,

have a high spatial resolution and are water (tissue) equivalent. The detectors can be cut

into specific sizes are shapes easily, making them desirable for catheter insertion. However,

at certain energy levels the detectors are prone to Cherenkov radiation which needs to be

accounted for [28].
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In 2011, Therriault-Proulx et al [38] evaluated the accuracy of a plastic scintillation detector

(PSD) for HDR brachytherapy IVD. To detect scintillation light, a red-green-blue photodiode

was built. A prostate brachytherapy treatment plan with clinical relevance was developed

using the TPS and performed in a water phantom. Two out of the thirteen catheters used for

the procedure were used for PSD dose measurements at the urethra and rectal wall; the re-

maining catheters were used for dose delivery using a 192Ir source. Furthermore, the removal

of Cherenkov radiation effects was evaluated. The ratio of detected dose compared to dose

calculated by the TPS was found to be 1.003±0.004 in the urethra and 1.043±0.003 for the

rectal dose. It was also shown that a 5mm positioning error of the source were able to be de-

tected, depending on the acceptable range chosen, from 78% to 100% of the time. The study

also showed the importance of the remove of Cherenkov radiation by showing the reduction

in false-error-detections. From the obtained results, the author emphasises the potential for

PSD for online dose verification during treatment delivery as well as the importance in the

removal of Cherenkov radiation effects. However, the main limitation of the study was the

inability to measure dwell times greater than 5 seconds and more than 10Hz measurements.

Metal oxide semiconductor field effect transistors (MOSFET)

It is desired for IVD to have immediate readout of dose information. Metal oxide semicon-

ductor field effect transistors (MOSFET) are an alternative to TLD detectors for IVD. The
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detectors can be produced as micro-MOSFETs which are suited for external and sensitive

volume BT applications. The small volume also allows steep dose gradient dosimetry as well

as the option of placement within treatment catheters. However, there are two disadvan-

tages associated with MOSFETs: (1) they have a limited lifetime and (2) they are not tissue

equivalent, which has implications on dose response based on radiation quality [28].

The feasibility of MOSFET dosimetry systems for IVD verification was investigated by Zhen-

Yu Qi et al [39]. The paper proposed to implement a new miniature MOSFET design which

allows pretreatment QA by means of insertion into a treatment catheter. Among others,

key MOSFET characteristics such as the energy dependence were measured. The dosimetric

accuracy of HDR brachytherapy treatments were then verified. It was found that the detector

has a good dose linearity up until the threshold voltage. When comparing the detector to

the TPS for CT based HDR BT for dose calculations, it was shown that the mean relative

deviation for dose points 1cm from the source was 2.2±0.1 % and 2.0±0.1 % for 2 cm away.

Overall, there was a percentage deviation for all measurements of less than 5%.

2.10.2 Current modalities for HDR source tracking

IVTV can also be attained through in-vivo source tracking, which verifies source position

and dwell times accurately track the position of the HDR source in three-dimensions.
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Point Detectors

One method of determining source position is derived from TG43 calculations using a mea-

sured dose rate at multiple positions and triangulation algorithms [19, 20]. Such methods

of source localisation can be seen within the literature [40, 41, 42, 43]. Wang et al ’s 2014

study demonstrated the use of GaN dosimetric probes for HDR seed position verification

[43]. Optical fibre connected to a photodetection module was used to detect any radiolu-

minescences from the GaN transducer. The dose rate readout from one transducer can be

used to determine the distance and angle to the source. By incorporating a second trans-

ducer at some distance d from the first, the seed detection range is increased. The study

returned a mean 1% deviation from the expected source locations, although the contribution

of Cerenkov radiation needs to be further investigated.

Pinhole Collimator

The principle of pinhole collimation in order to localise HDR source can be seen in past studies

[44, 45, 46]. Watanabe et al investigated the use of a charge-coupled device camera integrated

with a scintillator and a dual-pinhole collimator [44]. By using template matching from

successive images of scintillation light from, the system was able to detect source positions

every two seconds. The system was used in conjunction with a water phantom to test

its ability to source track within the context of cervical cancer. It was found that the

difference between the average measured source position compared to the reference values

was 1.5±0.7mm. One limiting factor of this study, as outlined by the author, is the timing
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resolution of 2 seconds; the current operating parameters limit it’s application in real-time

detection in a clinical setting.

The integration of collimator based source localisation and the TRUS Probe is investigated

further in section 2.12.2.

Electromagnetic Tracking

Electromagnetic tracking (EMT) is a system in which accurate positions within space can be

determined by means of an induced inhomogeneous magnetic field and sensors. The use of

EMT in the field of HDR tracking can be seen in the literature [47, 48, 49, 50]. Particularly,

EMT has had promising results when applied to catheter and applicator localisation, as

outlined by Poulin et al ’s 2015 study [50]. The study used ten catheters within a tissue

equivalent gel phantom, using EMT to reconstruct their locations and compared directly

to CT. The mean distance error in 3D space for the EMT measurements was found to be

0.66±0.33mm, compared to 1.08±0.72mm for CT. EMT tracking also has proven its ability

with some aspects of error detection. Bert et al outlines EMT’s role in successfully being able

in error detection in interstitial BT; the system can be used in afterloader source positioning

and dwell time pretreatment verification, intra- and interfraction organ/applicator movement

and any afterloader malfunctioning [47]. However, the one significant limitation of EMT is

it’s inability to be used for dose assessment.
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Flat Panel Detectors

The development of a EPID system which can be placed under the patient during treatment

has been driven in recent years by publications from RL Smith [51, 52, 53, 54, 55] and GP

Fonseca [56, 57, 58]. Foneseca et al ’s 2017 study aimed to provide real-time treatment verifi-

cation using a silicon electronic portal imaging device (EPID) and gynaecological applicator

which was verified using CT [57]. The systems performance in pre-treatment verification was

further demonstrated by introducing errors (such as catheter shift, incorrect dwell times and

changing afterloader connections). The overall source position standard deviation was 0.2mm

with an error of 0.2s for dwell time measurements. The system was also able to identify all

imposed errors.

Smith et al ’s latest study shows a clinical application of their treatment verification system

using a flat panel detector embedded directly into the BT treatment couch [55]. Monitor-

ing of the source position was performed throughout each treatment delivery and verified

directly against the treatment plan. The study returned a mean deviation for the planned

dwell positions of 1.9mm with a maximum of 4.9mm from 280 positions. The integrated

system proved its feasibility, with it currently in routine clinical use.

2.11 Magic Plate Detector System

The emergence of 2D electronic arrays used for measuring dose at multiple locations started

gaining traction in the clinical environment [55]. The 2D detector arrays allowed the ability
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to perform planar/fluence dose comparison as well as real time dose information feedback.

The Magic Plate (MP) detector system is a 2D array of 11 x 11 silicon epitaxial diodes

embedded in a 0.5mm Kapton substrate using “drop-in” mounting technology which was

developed at the Centre of Medical Radiation Physics (CMRP) as a dosimetric tool for

IMRT quality assurance. Radiation source position is determined from the generated signal

from a source by the interaction of photons and secondary electrons in the 2D array. Using a

proprietary algorithm, the 3D source location can be calculated as well as the dose deposited.

There have been several studies in the literature which show the development of the MP

detector system; from general characterisation to applications in quality assurance [59, 60,

61, 62, 63]. The following review is chronologically arranged except when related studies are

discussed and only considers BT studies.

2.11.1 General Characterisation

Prior to clinical application of the magic plate, a general characterisation to determine its

clinical suitability needed to be conducted. The test parameters which were investigated by

Wong et al were similar to that of tests carried out for previous clinical dosimeters; percentage

depth dose, energy dependence, field size and angular dependence, radiation damage effect,

beam perturbation effect and dose per pulse dependence [62].
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Percentage Depth Dose and Dose Linearity

In order to measure the percentage depth dose, a 6 MV photon beam was measured in a

solid water phantom at selected depths. For dose linearity, the plate was set at 100cm SSD

and measured with a dose range of 5 cGy to 1000 cGy.

When comparing the depth dose curve of the MP to a CC13 ion chamber, it was shown

that the MP exhibits a degree of over-responding for depths beyond dmax(1.74% maximum

at depth 10cm). This was determined to be a direct consequence of the dose rate response.

Once corrected for, the depth dose curve closely agreed with the CC13 curve within 0.7%.

The dose linearity, when measured for the dose range of 5-1000 cGy showed a high degree of

linearity.

Energy Dependence

Using both an orthovoltage machine and a linear accelerator, the energy response of the MP

was measured for energy ranges of 75-250 kV and 6/10MV respectively. Measurements were

normalised to 1 at the energy of 6MV and evaluated at 4 different geometries: face up - in

phantom, face down - in phantom, face up - in free air geometry and face down - in free air

geometry.

For the in phantom - face down configuration, the study showed that at 6MV there was

an enhanced response at lower energies up to 7.5 times and a maximum dose response at

75kV photon energy. This is primarily due to increased photo electric effect in the silicon at

lower energies. The study also demonstrated the effect of backscatter electron contribution
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to signal response, with the free air geometry showing a lower signal response. Further more

silicon is not tissue equivalent and thus, is sensitive to energy spectrum changes. The re-

sponse of the detector was also found to be heavily dependant on the orientation of the MP;

the face-up configuration yielded a lower response compared to the face-down configuration.

This result shows the impact of the 0.375 mm silicon substrate coupled with if the detector

is in free air or phantom geometry.

Radiation Damage Effect

The silicon lattice structure is sensitive to ionising radiation; point defects (gamma irradia-

tion) or cluster defects (fast neutron) become recombination sites for minority charge carriers

which in turn reduces their lifetime.

The plate was irradiated with 41.5kGy, delivered using 6MV photons from a LINAC and a

high dose rate cobolt-60 source.

After a dose of 41.5 kGy, the accumulated radiation in the Si-SiO2 layer results in a positive

charge build up which resulted in the increase of the detector by a factor of two. It was

also found that there was a 2.1% coefficient of variation for the detectors within the central

20%-80% region. As a result, it was shown that the diodes are suitable within reasonable un-

certainty for detector response comparisons. It was further shown that there was no radiation

damage observed in the kapton board.
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Angular Dependence

A fixed number of MU was delivered to the MP which was sandwiched between solid water

pieces at 100cm SDD. Gantry angles of 0o to 180 o in 15o intervals were used with the MP in

the face up configuration. Couch attenuation was taken into account when measuring angles

120o to 180o. EBT2 film was used as a comparison dosimeter. The angular coefficient (kai)

of the diodes is evaluated by the signal ratio of the MP over the EBT2 film for some ith

column. Thus, the angular response for any arbitrary angle θ is taken as the ratio of the MP

angular coefficient (kaθi) to the angular coefficient at 0o.

For gantry angles of 0o to 60o, the angular response of the MP diodes was <2.7% and 4.5%

for 75o (or 285o). For angles 90o to 270o, the mean angular response was 10.5%±0.7% and

10.8%±0.7% at an angle of 180o.

This indicated that due to the anisotropy of the silicon diodes the MP showed angular

dependency; the sensitive volume (50 µm) is surrounded by a non symmetrical passive silicon

volume (365µm).

Through the conduction of this study, Wong et al were able to determine the MPs general

characteristics and demonstrate its dosimetric potential.

2.11.2 Pretreatment quality assurance feasibility

In order to prove useful for quality assurance in BT, an ideal system needs to be able to

measure dwell and transit times, provide dose localisation information and compare these

parameters to the TPS. A preliminary study by A Espinoza et al explores the characterisa-
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tion of the MP with an emphasis on pretreatment QA [61]. Two solid water slabs of 1.5 cm

thickness are used to sandwich the MP with two rows of 10 catheter holes. In order to be

feasible in determining source location, the source to distance dose measurement as well as

the angular response of the detector needed to be characterised.

A subsequent 2015 study by Espinoza et al [60] saw the extension of prior work to include the

possibility of complete HDR pretreatment and afterloader verification. To do this, a Magic

Plate Phantom was developed - three slabs of PMMMA plastic of 1cm thickness with the

MP sandwiched inside with 13.5cm of water equivalent material surrounding the setup. The

layers directly above and below have ten channels each which allow the insertion of up to

20 HDR treatment catheters at a distance of 6mm from the detectors. To further test the

capabilities of the system, errors - including differing dwell times and positions and shifted

locations - were introduced to the treatment plans.

Dose measurements

The source-to-detector distance dose measurements are fundamental due to 192Ir’s

large dose gradient. In order to achieve accurate source localisation using a triangulation

method, the SSD dose response of the MP was determined. Espinoza et al ’s feasibility study

[61] included a stationary HDR source placed at the directly over the middle detector was

used with varying SSDs from 6 to 71mm in order to measure the response. At 15mm SDD

the diode was normalised to 100% and the radial dose function was calculated and compared
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to values obtained from the AAPM TG-43 protocol.

For source-to-detector distances over 15mm, there are deviations in detector response. For

measurements up to 30mm, the radial dose function followed the TG-43 calculations within

8% and 40% for measurements up to 70mm. One main source of differing response from the

MP is the contribution of low energy scattering.

In order to test the prescribed and measured doses, Espinoza et al ’s 2015 study saw the MP

software using TG-43U1 formalism to perform dose calculations [60]. In order to verify the

doses calculated by the MP software and the TPS, Gafchromic EBT3 film was used. Dose

maps were generated from the TPS and measured data. The EBT3 film was used to measure

the original treatment plan and generate another dose map - it was cut to match the MP

dimensions and was placed within the MP phantom. Further, an estimation of the transit

dose for the source positions was measured.

The MP software dose calculations compared to the TPS saw an agreement within ±0.76%.

The transit dose calculations saw a maximum value of 18cGy, which equates to a 4.8±2.3%

dose increase compared to only dwell measurements. A 95% pass rate was achieved when

considering a dose difference of 4% and a 3mm distance-to-agreement value. When taking

into account the transit dose, this pass rate reduced to 90%. The study quantitatively

demonstrated the MP’s ability to be an effective means of dose calculation by using dwell

position and time values.
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HDR Source Tracking

When measuring energy deposited, each detector element is measuring the energy deposited

by primary and secondary electrons emitted from a source without any information of source

direction. In order to gain some locational information, the radial SSD which can be

determined from the diode response. By using a minimum of 3 detectors, a triangulation

method can be used to determine the location of the source based on estimation and itera-

tion. In order to minimise uncertainty as a result of lower signals, the study only considered

the detector with the highest response and its immediate neighbours. The central diode of

the MP array was used for measuring a known activity 192Ir source at a distance of 10mm.

Once the diode with the highest response is found (D1), the inverse function of ri = f -1(Ri)

can be used to calculate the distance from the source to some detector i. Based on at least

3 detector derived distances ri, the first source location can be estimated S’(x’S,y’S,z’S). A

series of iterations based on this first location estimate is computed using the sum of the

squares and varying each respective x, y and z distance by ±5mm. A further correction is

applied as the relative angle of each detector to the source is calculated, followed by another

series of iterations.

In order to experimentally validate the MPs ability to determine the source position, the

feasibility study [61] used an afterloader to move the source at 2.5mm step sizes with dwell

time of 2s in the direction of the catheter, which was positioned directly above the central

column within a water equivalent phantom. This was carried out with a SSD of 10mm below
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the stepping plane. Once positions were determined for each step, they were compared to

the TPS input positions.

It was determined that approximately 75% of the measurements fell within 0.5mm of the pre-

scribed positions. Larger differences between measurements and prescribed positions were

determined to be a product of source in transit measurements. As a result, Espinoza et al

determined the validity of using the MP to accurately track a HDR source in real time.

The subsequent 2015 study conducted by A Espinoza et al saw the delivery of a 20 catheter

treatment plan to the Magic Plate Phantom [60]. Source position and dwell time for each

catheter was collected and a position-frequency histogram was generated. From this his-

togram, dwell position and uncertainty was determined and the dwell time was calculated

from the counts for each peak as the count timing was dependent on the sampling frequency.

These values were compared to the treatment plan data.

The source position and dwell time which was determined using the algorithm shows a strong

agreement for positions larger than 5mm with the pre-defined source locations on the treat-

ment plan. It was also shown that six dwell positions were less than 0.8mm differences with

the average difference being 0±0.63mm (2SD).For source locations close to the tip of the

catheter and edge of the MP FOV, there was a difference in true location compared to calcu-

lated. This is directly correlated to less neighbouring detectors close to the edge of the plate

being used to determine the source location.
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2.11.3 In-vivo source position verification

Prior to 2018, MP detector studies have focused on performing measurements on homoge-

neous media. In this state, the studies returned source localisation accuracy of less than

1mm [59, 61, 60, 62] and a 1ms temporal resolution. Subsequently, the MP has proven its

ability in real-time source localisation. However, the complications of patient heterogeneity

as well as the implications of ultrasound based treatments to the MP’s accuracy had not

been investigated.

Patient heterogeneities

Poder et al ’s 2018 study presents an initial assessment of the MP in its source position verifi-

cation with the influence of patient heterogeneities [63]. The study also further tests clinical

suitability by positioning the detector plate within the carbon fiber patient couch.

Monte Carlo simulations were performed using Geant4 - a Flexisource Ir-192 simulated inside

a heterogeneous voxelized patient geometry with the dose deposited within each detector’s

sensitive volume being evaluated. As a result, the distance from the simulated source po-

sition to the detector elements was determined. Subsequently using an iterative procedure,

the source position was determined.

Before source positioning verification simulations, the Flexisource model used was verified

using TG-43 simulation. Once validated, the source was simulated within the patient model.

The model is based upon a patient HDR BT treatment CT study, with the DICOM con-

verted into a native form for Geant4. The plans chosen for the study included 4 catheters,
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which each spanned the entire geometry of the prostate with 3mm step sizes. By doing

so, maximum and minimum clinical HDR treatment distances would be verified. For each

source position 20 simulations were conducted, each with 109 primary photons. Once these

20 simulations were completed, each of the voxel was replaced with water density and the

simulations were re-run to quantify the influence of inhomogeneities.

The study found between the MP source positions compared to the actual source positions

was found to be 2.1±0.8mm. It was also shown that the Z positioning showed a consistent

over estimation with an error of 1.9mm. When comparing to the water only environment, it

can be seen that source positioning improved to within 1mm. The introduction of inhomo-

geneities had significant influence on the Z direction location estimate, as its Z position is

determined using the absolute dose deposited. It was further concluded that the introduction

of a correction factor may increase the accuracy of the source locations.

Overall, the study emphasises the importance of the consideration of patient-related inho-

mogeneities in future in-vivo MP studies.

Ultrasound based HDR BT

The next progression in the goal of achieving clinical application of the MP detector system

is to determine the influence of the TRUS probe in source localisation for HDR prostate BT.

Poder et al ’s 2019 study investigated the in-vivo accuracy of the MP900 detector system

during TRUS based HDR prostate BT using Monte Carlo simulations [64].

Similarly to the 2018 study[63], Poder et al ’s study performs Monte Carlo simulations using

the Geant4 toolkit im order to simulate a Flexisource Ir-192 inside a heterogeneous voxelized



46

patient geometry with the dose deposited within each detector’s sensitive volume being eval-

uated. This was then used to evaluate each simulated source position to the MP900. The

location information was then compared to the source positions in the TPS. The simulations

were then performed with the presence of the TRUS probe and compared. Three individual

voxelised patients which were simulated and used in the study.

The study found that with the TRUS probe present, the average 3D error across all three

patients was 11.9±2.4mm compared to 1.5±0.3mm without the probe. In order to reduce

the effect of the TRUS probe on source tracking, a thresholding technique was applied to the

tracking algorithm; By doing so, the effect of the shadowed diodes can be reduced. It was

found that a 70% threshold was optimal, with an average source tracking error of 1.8±0.4mm

inside the rectum.

As a result of this study, it was concluded that the presence of the TRUS probe would intro-

duce incorrect source tracking data. Although, by introducing a post-correction factor, this

error could be reduced.

2.12 TRUS Based Measurements

Alongside the development of 2D electronic arrays for dose determination, there has been an

increase in research into the combination of in-vivo dosimetry with the trans-rectal ultrasound

probe. The coupling of the two different systems would see a single device which could provide

both a tool for imaging and for source tracking/dosimetry.

The following review will chronologically look at the development of a TRUS based detector
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system in the literature.

2.12.1 MOSkin integration for rectal wall dose

MoSkin detectors, developed by CMRP, are a type of MOSFET characterised by their ability

to operate effectively in steep dose gradient areas and skin dosimetry; The packaging used

to seal the sensitive volume incorporates a kapton layer which is sealed using with a water

equivalent thin film, providing a build-up layer and an effective depth of 70µm in tissue [65].

Tenconi et al ’s 2014 paper investigated the integration of MOSkin detectors with TRUS

probe in order to simultaneously performing imaging and dosimetry [66]. Two MOSkin de-

tectors were placed with their sensitive volume facing the target along the longitudinal axis

on the surface of a clinical TRUS probe. In order to quantify the systems ability to determine

rectal dose, a cylindrical gel phantom simulating the rectum was used. A template and six

interstitial needles were used to replicate treatment conditions. US images were acquired and

a plan was generated. The phantom was irradiated using an afterloader and the measured

doses were compared to the TPS expected values.The study showed excellent dose agreement;

The average discrepancy was -0.6% ±2.6%.

Building upon the work of Tenconi et al, Carrara et al ’s 2016 study uses the TRUS probe

with the two MOSkins directly for on-line treatment planning [67]. A total of 12 patients

across 18 treatment sessions were chosen for the study. By using a known reference structure

inside the prostate, the z position of the probe system was defined such that the longitudinal

position of each detector was known to within 1mm. In-vivo dose measurements were taken
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by the probe and compared directly to both the pre and post treatment image calculated

doses. When comparing the measured dose to the pre-treatment dose calculation, the differ-

ence was found to be -2.1%±8.3% while compared to the post-treatment measurement the

difference was found to be -0.6%±4.1%. This shows a close agreement with results obtained

in previous phantom measurements [66]. It was further shown that at higher delivered doses,

there exist a higher discrepancy between post and measured dose measurements as well as the

calibration of the detector systems was conducted in a different temperature environment.

Overall, the paper demonstrated the effectiveness of dose determination for the rectal wall

using the MOSkin TRUS system; The results showed closer agreement with the reconstructed

compared to the planned doses.

A subsequent 2017 study from Carrara et al further demonstrated the capabilities of TRUS-

coupled detector systems. The catheter positions within prostate geometry are susceptible

to movement from the time of implant, to image acquisition and finally to dose delivery. The

shift in these positions, particularly in the anterior-posterior direction towards the rectum,

results in a modification of dose to the surrounding organs. Fourteen HDR Prostate BT

patients were considered, with two MOSkin detectors placed longitudinally along the TRUS

probe used in the study [68]. Implant displacement was measured using barycenters of each

needle location on the pre-treatment images compared to post delivery. The TRUS-MOSkins

coupled detector system was able to determine the change in dose between measured and

calculated dose discrepancies, which ranged from -19.5% to a maximum of 15.8%. Ultimately,

the study was able to quantify the relationship between an increase in rectal wall dose and

any implant migration, further highlighting the prospect of TRUS based IVD.
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The next iteration for the MOSkin detector system undertaken by Poder et al ’s 2020 paper

[69]which sees the examination of the feasibility of catheter-by-catheter analysis for IVD of

the rectal wall as well as reproducing the results found previously [67, 68], within a differ-

ent clinical setting. The study utilised thirteen patients receiving a HDR pBT boost [in

conjunction with EBRT] in two fractions, with rectal IVD analysed retrospectively. Sim-

ilar MOSkin configuration to prior studies [67, 68, 66] with four dosimeters place along

the longitudinal axis of the TRUS probe was used. MOSkin rectal dose was compared to

the TPS predicted doses and a comparison was drawn based on their relative differences.

∆DDPvsTPS = (DDPP − DTPS/DTPS). Furthermore, the comparison of these two doses was

investigated on a catheter-by-catheter basis. The MOSkin dose deposition was determined

by the transit time of the source through the catheters. Overall, the study found the average

difference in rectal wall dose between the measured and the TPS predicted dose to be 0.3%

±11.6%, which agrees with previous results [68]. The catheter-to-catheter measurements

yielded promising results, with the average dose difference being 1.0%±15.7% when exclud-

ing small dose contributing catheters. Due to the high dose nature of some modern HDR BT

regimes, it is important to monitor the delivery of this dose.

2.12.2 Internal source tracking

BrachyView

In 2013, Petasecca et al investigated the feasibility of real-time in-vivo seed identification for

LDR pBT using a novel in-body imaging system consisting of a TRUS probe and gamma
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camera[45]. The design of the probe saw three Medipix2 detectors in conjunction with a

multipinhole lead collimator design. The collimator consists of 400µm lead plate which

allows the attenuation of 22-35 keV emitted photons from the 125I seeds with truncated-cone

shaped apertures with an angle of ±50.5o at 10mm distance. By using the centre of mass

of the Medipix2 detector image of the seeds and tracing lines to the pinhole, stereoscopic

back-projection can be used to determine the three-dimensional position of the seeds. A

PMMA prostate phantom with parallel horizontal channels(pitch of 10mm) which mirrored

the standard HDR brachytherapy grid to house the seeds was used. Four 124I seeds were

positioned within the phantom at different source-to-collimator distances SCD. Data was

acquired for 3s at 50 frames/s. The longitudinal accuracy of the system was determined to

be SCD dependent; 10mm SCD accuracy was ±0.2mm and ±6mm at 60mm SCD. It was

further shown that the 3D source localisation also decreased with SCD, with localisation

achievable within 3mm at 60mm SCD. Overall, the study demonstrated the feasibility of the

BrachyView system in determining seed positioning within 1mm for SCD of 20mm.

Alnaghy et al ’s 2017 study saw the application of BrachyView to LDR brachytherapy to

allow real-time source reconstruction within the prostate. Using a tissue equivalent prostate

phantom, a thirty seed LDR treatment plan was performed and imaged using both TRUS and

CT [46]. The BrachyView probe follows a similar design to prior generations [45], utilising

three cone pinholes and high-resolution silicon Timepix detectors. The study showed that

75% of the thirty seed positions imaged were reconstructed using BrachyView to within 1mm.

The maximum discrepancy of seed position found using CT was 1.78mm. Visualisation of

seed position within prostate anatomy was further demonstrated, fusing TRUS images with
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the reconstructed source positions.

Although proving its ability, there are some inherent shortcomings with the BrachyView

system. These include the difficulty in achieving the high degree of accuracy required for

the machined holes in the tungsten housing, the low flux of photons reaching the PCB,

orientation dependency and the small FOV.

Although the primary focus of Brachyview is LDR BT, its principals can be used concurrently

with HDR BT.

Summary

The need for a means of clinically accurate dose localisation and verification

which can be used as through the entire HDR prostate brachytherapy procedure

under TRUS guidance has become apparent.

An in-vivo source tracking system which is non-invasive, novel and practical

is desired for routine clinical use. The system must be easily integrated into

clinical use; a compatibility with US based treatment planning is necessary.



Chapter 3

Development of an anthropomorphic

prostate insert and a feasibility study

for end-to-end testing

This chapter serves as a preliminary study to establish the feasibility of the End-to-End phan-

tom and Gel Prostate insert to be used in conjunction in future end-to-end studies. Prior

to the application of clinically relevant HDR pBT plans on the E2E system, the following

suitability tests will be undertaken:

1. Gel Prostate insert behaviour when imaged under US image will be evaluated

2. Volumetric study to evaluate Gel Prostate insert characteristics as an anthropomorphic

phantom

52
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3. Gel Prostate insert will be validated using clinically relevant treatment plans

4. Validation of catheter reconstruction to establish uncertainties through the employment

of CT

Through the successful completion of the above steps, the Gel Prostate inserts potential in

clinically relevant end-to-end quality assurance will be verified. The anthropomorphic charac-

teristics of the phantom will be established and it’s response to clinically relevant conditions

will be noted. Ultimately by doing so, proceeding E2E system experiments can be carried

out with confidence.

3.1 Proposed Instrumentation

3.1.1 Gel Prostate Insert

In order to create an efficient end-to-end quality assurance based system which allows clini-

cians a similar clinical environment, an anatomically accurate and tissue equivalent prostate

phantom was developed. 3D CAD software was employed to develop an anatomically ac-

curate prostate, which included a urethra and ejaculatory duct. This detail can be seen in

Figure 3.1.1. The size of the human prostate varies, with the average range of size being from

23.8 - 143 cc [70]. And so, three gel prostates were constructed with sizes of 28cc, 60cc and

100cc. The varying prostate size also allows the possibility of multiple treatment catheter

number studies.
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(a) 28cc Gel Prostate insert.

Note the urethra and ejactula-

tory duct running from the base

to the apex.

(b) The raw .STL prostate file of mould.

Figure 3.1.1: The Gel Prostate insert and the raw CAD files showing the mould and prostate

In order to match the same radiobiological effectiveness as human tissue, as well as having

the ability to be imaged using ultrasound imaging techniques, the following method based

on a study published by RO Bude et al was used [71]. 80g of food-grade gelatin was added

to 250ml of boiling water and mixed thoroughly to ensure complete absorption. The solution

was filtered through a strainer to remove any undissolved gelatin and air bubbles to avoid

any potential US artefacts. A red food dye was added to the mixture to aid in localising

the prostate when in a gel environment. The mixture was injected into the mould using a

syringe and left to set in the refrigerator for a minimum of 2 hours. The finished phantom

can be seen in Figure 3.1.1.
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3.1.2 The ‘End-to-End Phantom’

The End-to-end phantom is a clear perspex cube constructed with dimensions of 20cm x

20cm x 20cm with a 2.5cm diameter cylinder running the length of the cube. The phantom

allows for a tissue equivalent environment as well as the potential for TRUS probe integration

with the use of the rectum analogous. In one of the walls of the phantom there is an opening

which allows for insertion of treatment catheters.

Figure 3.1.2: The End-to-End Phantom schematics. Note the template window on the front
face and the rectal cylinder which runs across the phantom.

3.2 Initial proof of concept

Before proceeding to volumetric and clinical relevant HDR BT plans, an initial proof of

concept was completed to establish the relationship between US imaging and the Gel Prostate

insert. This will elucidate if and how the US imaging will show the Gel Prostate insert under

conditions which emulate further E2E Phantom testing.
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Methods

To validate the use of US imaging for the Gel Prostate insert, the E2E phantom was used

in conjunction with a B&K Medical US system. Two Gel Prostate insert of sizes 60cc and

100cc were used. The E2E phantom was filled with water and the prostate was placed with

correct anatomical positioning on a platform within close proximity to the rectal cylinder.

The TRUS probe was placed in the stepper mount and inserted into the E2E phantom. A

series of images were acquired from the base of the prostate to the apex in 5mm steps. The

clarity of the image was qualified by the presence of a clear outline of the prostate.

The behaviour of the US image when interacting with an interface of two different gel densities

was also investigated. A single 28cc Gel Prostate insert was made and placed in a container

and surrounded by gelatin of different consistency. A cylinder of diameter equal to that of

the TRUS probe was inserted into the container to allow a channel for US imaging. The

stepper mount was used to image the prostate. The US’s ability to differentiate the two

different gel densities was evaluated by the system’s ability to clearly define the prostate at

the interface between the prostate and the surrounding gel.
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(a) Preliminary US testing. The
Gel Prostate insert can be clearly
seen in the E2E phantom sur-
rounded by water.

(b) Gel interface US testing. The
Gel Prostate insert can be seen
surrounded by a different density
gel.

Results

In order to evaluate the Gel Prostate inserts future use in TRUS guided studies, a B-KMedical

FlexFocus400 US system and a TRUS probe coupled with a stepper mount was employed

to image the phantom. The images collect in 5mm increments were printed and analysed.

From figures 3.2.0, it can be conclusively noted that the Gel Prostate insert can be seen in all

images. A distinct outline of the prostate at each step, with the general shape in agreement

with anatomy. It was also noted that the urethra and the ejaculatory duct were also present

in the images. The presence of these two anatomical landmarks further demonstrates the

Gel Prostate inserts feasibility to be used as an anthropomorphic phantom.
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(a) 60cc Gel Prostate insert Base (b) 60cc Gel Prostate insert Base +5mm

To further evaluate the Gel Prostate inserts use in E2E studies, the phantom was set within a

different density gel environment to investigate the behaviour of the US image with a gel-gel

interface. A similar method using the stepper mount was used to obtain a single image,

acquired midway through the prostate.

The images acquired shows a clear prostate outline, with the urethra present also. The

interface between the prostate and the surrounding gel is present and defined so as to have

the ability to volume the prostate.

Figure 3.2.1: Gel interface US acquired image. The outline of the Gel Prostate insert can be
clearly seen surrounded by a different density gel.
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(c) 60cc Gel Prostate insert Base +10mm (d) 60cc Gel Prostate insert Base +15mm

(e) 60cc Gel Prostate insert Base +20mm (f) 60cc Gel Prostate insert Base +25mm

(g) 60cc Gel Prostate insert Base 30mm (h) 60cc Gel Prostate insert Base +32.3mm
(Apex)

Figure 3.2.0: US images of 60cc Gel Prostate insert from base to apex. Note the urethra and
ejaculatory duct in images c) through g).
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3.3 Ultrasound Volumetric Study

In order for the Gel Prostate insert to be validated as an anthropomorphic phantom, a

volumetric study of the system needs to be conducted. By doing so, the use of the phantom

will be verified as suitable for future TRUS guided analysis of clinical pBT treatments.

Methods

The E2E Phantom was used in conjunction with a 28cc, 60cc and 100cc Gel Prostate insert

to create a system in which the TRUS probe could be used in a clinically similar manner to

scan and measure the volume of the prostates. The Gel Prostate insert were placed in the

E2E Phantom in clinically relevant proximity to the rectal cylinder and surrounded by tissue

equivalent gel with a gelatin concentration of 40g to 500ml of water.

The prepared phantom setup was secured on the patient couch in the same dorsal lithotomic

position as brachytherapy patients. The TRUS probe was placed in the stepper mount and

the US system was set up as per treatment protocol. The TRUS probe was inserted into the

E2E phantom using US transmission gel, ensuring a close contact to the perspex cylinder

to allow the best visibility. Each prostate was located on the US system and a radial scan

of 120◦ was acquired. Each prostate was contoured on the Nucletron Treatment Planning

System by outlining the prostate for each slice. Once a final prostate volume was defined,

the geometric volume was calculated.
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(a) Setup for volumetric study. From left
to right; TPS, US system, and TRUS Probe
and stepper mount with the E2E phantom
secured on the patient couch.

(b) TRUS probe coupled with stepper mount
inserted in E2E phantom.

(c) Close up of TRUS Probe inserted inside the E2E
Phantom. Note the presence of the prostates in red.

Figure 3.3.1: The experimental setup for the volumetric study of the 3 Gel Prostate insert.

Results

The 120◦ US acquisitions, after contouring, returned a geometric volume for each Gel Prostate

insert. This volume was compared to the volume determined from the original prostate mould

files, considering these values as the true volume.

The true volume from the 28cc .STL file was found to be 28.003ccs. The geometric volume

which was calculated from the TPS for the 28cc prostate mould was (33.89±3.4)ccs. This is

shown in figure 3.3.2.
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Figure 3.3.2: TPS output for the contoured 28cc Gel Prostate Mould. The axial, coronal
and sagittal planes with the outlined prostate can be seen.

The 60cc prostate .STL file returned a true volume of 59.99cc. The geometric volume found

from the TPS was calculated to be (66.65±6.7)ccs which can be seen in figure 3.3.3.

Figure 3.3.3: TPS output for the contoured 60cc Gel Prostate Mould. The axial, coronal
and sagittal planes with the outlined prostate can be seen.

Finally, the 100cc prostate .STL file returned a true volume of 100.01ccs. The TPS calculated
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geometric volume was shown to be (84.8±8.5)ccs. This is shown in figure 3.3.4.

Figure 3.3.4: TPS output for the contoured 100cc Gel Prostate Mould. The axial, coronal
and sagittal planes with the outlined prostate can be seen.

3.4 Insertion and ultrasound localisation of treatment

catheters

To further qualify the Gel Prostate insert and E2E Phantom systems use with clinically

relevant HDR pBT treatment plans, the systems behaviour when inserted with treatment

catheters needs to be evaluated.

Method

A 60cc Gel Prostate insert was used with the E2E Phantom. The prostate was surrounded

by a tissue equivalent mixture of 40g to 500ml of water. The prostate was then placed within

close proximity to the rectal cylinder to replicate human anatomy.
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(a) The E2E Phantom with a single

60cc Gel Prostate insert. The TRUS

probe and stepper mount can be seen

inserted into the phantom.

(b) The three treatment catheters

inserted into the Gel Prostate in-

sert.

(c) The experimental setup showing from left to right the

E2E phantom with Gel Prostate insert, TRUS Probe and

stepper mount, the Nucletron TPS and the US system.

Figure 3.4.1: The insertion and US localisation of treatment catheters in the E2E Phantom.

The system was secured on the treatment couch in the same dorsal lithotomic position as
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in previous studies. The TRUS probe from the BkMedical FlecFocus400 was placed in the

stepper mount and the Nucletron TPS was connected to the US system. To retain clinical

relevance, the standardised prostate HDR procedure was adopted. A pre-implant scan was

obtained with typical QA conducted. Firstly, the grid array for the TPS and US were tested

to ensure an overlay in agreement within error. The rotation and zero point of the stepper

mount were also tested by rotating through 180◦ and stepping the mount to a set distance

and then back.

Once certain that the setup was correct and did not display any signs of error, a pre-implant

scan following clinical protocol was obtained. The superior aspect (base) of the prostate was

located using the TRUS probe. Once found, this position was set as the zero point on the

stepper mount and DICOM. A sagittal acquisition was selected and the TRUS probe was

stepped through until the whole prostate was visible. A 120◦ scan was then obtained.

Using a technique similar to the section 3.2, the scan was contoured on the TPS and a geo-

metrical volume for the prostate was found.

Once the pre-implant scan was acquired and a volume was found, 3 treatment catheters

(Proguide 240mm) were manually inserted into the treatment volume in three different loca-

tions. The positions of the catheters were located on the TPS and another 120◦ radial scan

was acquired.
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Results

Three Proguide 240mm treatment catheters were manually inserted into a 60cc Gel Prostate

insert within a tissue equivalent gel environment inside the E2E phantom. A post-implant

radial acquisition was obtained using the TRUS probe and analyses on the TPS.

The three catheters were located on the US image which corresponds to the midpoint of the

prostate. The distances between each treatment catheter was then quantified.

Figure 3.4.2: US image of the E2E phantom with a 60cc Gel Prostate insert with 3 treatment
catheters inserted. A large degree of artefact can be seen around each catheter making
localising difficult.

Starting at the left side of the US image (referring to Figure 3.4.2) and moving in a clockwise

direction, the distance between catheter 1 and catheter 2 was found to be (32.05±5)mm, the

distance between catheter 2 and catheter 3 was found to be (28.96±5)mm and the distance
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between catheter 3 and catheter 1 was (22.50±5)mm.

3.5 CT verification of reconstructed catheters

For HDR Prostate Brachytherapy treatment, CT localisation of the catherers are considered

the gold standard. A CT acquisition of the phantom setup, as seen in Section 3.3 with

inserted treatment catheters, is used in order to quantify the uncertainties of the catheter

locations found on the US image.

Method

The E2E phantom with the inserted catheters was placed on the imaging bed and the inbuilt

lasers were used to align the setup at isocentre.

Due to CT’s inability to register the outline of the Gel Prostate insert, CT markers were

placed on the outside of the E2E Phantom at the midpoint of the prostate. Copper wires

were placed inside of the treatment catheters to allow ease of CT localisation. A 271.0mm

FOV image was acquired using prostate protocol 2mm iDose(4) at 120kV with 161mAs/slice.

The DICOM images were exported and analysed.

The distance between each catheter was calculated and noted. The diameter of the rectum

cylinder was also measured to ensure the accuracy of the results.
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Figure 3.5.1: Catheter localisation in the E2E phantom.

Results

The slice corresponding to the midpoint of the prostate was used to obtain the distance

between treatment catheters. This can be seen in figure 3.5.2.

Figure 3.5.2: CT image of the E2E phantom with a 60cc Gel Prostate insert with 3 treatment
catheters inserted. The CT markers can be seen on the outside of the E2E phantom indicating
the midpoint of the prostate. The urethra can also be seen anteriorly to the rectum cylinder.
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Using the defined catheter numbers as in Section 3.4, the distance between catheter 1 and

catheter 2 was found to be (31.02±2)mm, the distance between catheter 2 and catheter 3

(23.24±2)mm and between catheter 3 and catheter 1 to be (28.24±2)mm.

3.6 Discussion and Conclusion

This chapter provided a preliminary overview of clinical aspects of the E2E phantom and

Gel Prostate insert system. By doing so, the foundation of the system’s use in further HDR

studies was developed.

It was initially proven that the Gel Prostate insert could be imaged under US, with the

overall prostate outline as well as the presence of the urethra and ejaculatory ducts being

visible. By surrounding the Gel Prostate insert with tissue equivalent gel, it was further

demonstrated that US imaging could distinguish the prostate from the surrounding gel envi-

ronment. Despite being trivial, the experiments proved the possibility of further E2E testing.

TRUS guided analysis of the Gel Prostate insert was proven to be plausible through obtaining

the geometrical volumes from the TPS and comparing them to the actual volumes. The

geometrical volumes from the 28cc, 60cc and 100cc Gel Prostate insert were found to be

(33.89±3.4)cc, (66.65±6.7)cc and (84.80±8.5)cc respectively. For the 28cc prostate, the

difference between measured and actual volume is (5.89±3.4)cc, the 60cc prostate has a
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difference of (6.6±6.7)cc and the 100cc prostate has a difference of (15.21±8.5)cc.

The differences between measured volume and the actual volumes may be a result of both

inaccurate prostate contouring and US distortions. Contouring of the prostates on the TPS

will be different for different operators due to the user specificity of the task; each individual

will have different interpretations of the prostate ROI based on prior experience. In order to

account for this source of inaccuracy, the contouring of the prostate should be conducted by

3 separate clinicians.

Furthermore, the images obtained exhibit a degree of US distortions. The echo effect which

produces a halo around the outline of the prostate may be a result of the high density of

gelatin used in the prostate phantom. This can be accounted for by constructing the ROI

such that the halo is avoided.

The combination of TRUS guided, clinically relevant treatment plans and treatment catheters

with the Gel Prostate insert and E2E system was proven by measuring the distance between

three Proguide 240mm treatment catheters. The distance between catheter 1 and catheter

2 was (32.05±5)mm, between catheter 2 and catheter 3 was (28.96±5)mm and between

catheter 3 and catheter 1 was (22.5±5)mm.

The acquired US image displayed visible artefacts which hinders the ability to clearly define

the position of each catheter. The origins of these artefacts come from the existence of air

gaps which occurred during the insertion of the catheters; a lateral motion was used in order

for visualisation. This can be easily avoided.

To further improve the obtained results, the distances between each catheter should be

known prior to insertion. This can be achieved using the TRUS template. By inserting the
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catheters into known grid locations which are also mirrored on the TPS, accurate distances

can be determined and verified.

Finally, to improve the usability of the results with further studies, the midpoint of the

prostate should be marked prior to image acquisition. By doing so, accurate comparisons

between the CT localisation and US values can be made.

The uncertainties associated with US localisation of the treatment catheters in the End-to-

End phantom was obtained through the employment of CT imaging. The distances between

each treatment catheter was measured at the midpoint of the prostate and compared to the

measurements obtained in the US study. A comparison can be seen in the table below.

Distance (mm)

US CT

Difference

(mm)

Catheter 1 to Catheter 2 32.05±5 31.02±2 1.03±0.2

Catheter 2 to Catheter 3 28.96±5 23.24±2 5.72±1.5

Catheter 3 to Catheter 1 22.5±5 28.24±2 5.74±1.7

Table 3.6.1: A comparison of the distances between three Proguide treatment catheters using
both US and CT based measurements.

The differences between the CT and US catheter distances stems from the inherent uncer-

tainties associated with the US based measurement.

Ultimately, the results obtained demonstrate the TRUS’ suitability for localisation of treat-

ment catheters within the E2E phantom and Gel Prostate insert system with the existence

of a small error.



Chapter 4

Characterisation of the End-to-End

phantom and the Magic Plate 987

using clinically relevant treatment

plans

As shown in the previous study, the feasibility of combining the Gel Prostate insert with

the End-to-end phantom to be used in end-to-end studies was proven; The foundation of the

combined systems use in further clinically relevant studies was developed.

The next step in the development of a holistic quality assurance tool for HDR brachyther-

apy is the use of the Magic Plate detector system combined with the End-to-end and Gel

Prostate insert to measure clinically relevant treatment plans. The following steps need to

72
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be undertaken in order to quantify the systems in-vivo treatment verification (IVTV) ability:

1. Calibration and Initial set up of MP987

2. Clinically relevant treatment plans carried out on E2E phantom with the MP987

• Comparison of treatment plan dwell positions and time to measured values

3. Introduction of a clinically relevant error to test the response of the setup.

4.1 Proposed Instrumentation

4.1.1 MP987

The MP987 is a 2D p-type monolithic detector array with dimensions of 29 by 31 pixels

designed by Owen Brace and Marco Petasecca (CMRP). There are 987 diodes mounted to

a kapton substrate using edgeless drop-in technology developed by the Centre of Medical

and Radiation Physics (CMPR). There is a 13cm by 13cm central section of the plate which

has a pitch of 5mm, with the rest of the plate having a pitch of 7.5mm. 16 AFE (ana-

logue front-end) chips situated around the board provide a charge-proportional differential

analogue output from accumulated charge in a capacitor during some defined time frame.

Each of the AFE chips are coupled to an ADC (analogue-to-digital converter) and the output

signal is synchronised by the FPGA (field programmable gate array). From the FPGA, the

data is transferred via USB to the computer, where the signal is processed using the Magic

Suite software. The software allows different acquisition parameters and visualise a integral
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detector response in real-time.

(a) PCB design of the MP987. (b) A schematic showing the design of the

MP987.

Figure 4.1.1: The E2E phantom used in conjunction with the MP987.

4.1.2 MP Tracking software

In order to obtain coordinate data from the MP987 readings, a tracking software was devel-

oped by Yashiv Dookie (CMRP). The program allows coordinate data to be returned from

the acquired data in the following process:

• The raw data from the MP987 is decoded, an equalisation factor is applied and a

baseline is removed. The equalisation factor is obtained from LINAC normalisation and

the baseline is determined from 5s of data collected at the beginning of the acquisition

when the source is still inside of the afterloader.

• In order to remove a level of noise from the data and reduce computational time, every
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10 frames are averaged into one.

• The averaged data is mapped into a 2D matrix, which represents each diodes position

on the MP.

• The difference in pitch (discussed in Section 4.1.1) in accounted for through the process

of 2D radial interpolation. The new mapped data has a uniform 2mm pitch for each

detector.

• The tracking component is then initiated for each frame and for the x and y axis

separately.

◦ The centre of mass is calculated for the top 30% of pixel responses using the

following equation:

COMx,y =

∑N
i=1mixi
M

(4.1)

◦ The centre of mass for each frame is multiplied by 0.25 in order to return a

position, not a diode number.

• The Z position for each frame is calculated using the top 90% of the pixel responses.

This process is explored further in Section 4.2.

4.2 Calibration and initial set up of Magic Plate 987

Before commencing clinically relevant E2E testing, the general properties of the MP987

coupled with the tracking software needed to be established. There are three main attributes
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of the system which need to be quantified in order to proceed with future measurements:

1. The repeatability (r) of the system between measurements need to be measured.

2. The variance of the system (σ) for measurements at difference SDD and dwell times

needs to be investigated

3. Establishing a z calibration factor based on TG-43 calculations.

By quantifying these parameters by means of source positions, the subsequent studies will

have defined properties which will propagate through each study.

Method

Repeatability

The definition of repeatability is the measure of closeness in agreement between two sets of

results which are themselves mutually-independent, obtained within a short difference in time

using the same equipment and experimental setup [72]. The value obtained for repeatability

is r, which defines the an upper value for which the absolute difference obtained for 95% of

measured cases (under repeatable conditions) will be below. This can be calculated using

the following equation:

r = 2.8Sr (4.2)

where Sr is:

Sr =

√∑q
i=1wi

2

2p
(4.3)
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and:

• p = the total number of measurements for each run

• wi = absolute difference between each measurement.

In order to determine the repeatability of MP987 and source tracking software system, data

needs to be compared between subsequent acquisitions. The source will be delivered to a

predetermined position for a set amount of time. This will be conducted twice in two separate

treatments with the data acquired compared between measurements. The repeatability will

be evaluated at two different dwell positions which are located at different SDD.

Standard deviation of acquired data (σ)

The measure of standard deviation (σ) defines the spread of some set of variables from the

mean. It is important to define σ for the MP987 and tracking software system as this standard

deviation will propagate throughout each measurement acquired. σ can be determined using

the following equation:

σ =
√
R2 −R2 (4.4)

The effect of dwell time and SDD on σ needs to be investigated before a singular value is

determined. To investigate the impact of time on the calculation of σ, two dwell positions

with times 5.7s and 33.1s will be used. The effect of SDD on σ will further be investigated

by using the same dwell positions with varying SDD.
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Z-calibration

Unlike the x and y positions, the z coordinate positions need to be obtained in accordance to

TG-43 radial distance calculations (Equation 2.1). In order to utilise this function, the dose

rate needs to be obtained from the pixel responses. This is achieved by a calibration factor,

which when obtained can be used to convert any pixel response to a dose. In order to obtain

a calibration factor, the pixel response from varying known SDD can be used and compared.

(a) The E2E phantom with a 60cc Gel

Prostate insert inside. 20 treatment

catheters have been inserted.

(b) A closeup of the treatment catheters in-

side of the phantom.

Figure 4.2.1: The experimental setup used in initial calibration studies

The same treatment plan which steps the source across the plate will be used for varying

thickness of solid water: 4.5cm, 6.5cm, 7.5cm, 8.5cm, 9.5cm and 10.5cm. A calibration factor
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will be calculated at each of the SDD values and applied to the tracking algorithm to quantify

their robustness with varying SDD calculations.

Results

Repeatability

Two separate acquisitions were taken for the same dwell position and time. The data collected

was compared and computed, according to Equation 4.1 and 4.2. The values for repeatability

can be seen in Table 4.2.1. Note: Dwell position 1 has an SDD of 70mm and dwell position

2 has an SDD of 127mm.

Table 4.2.1: Repeatability values for two different dwell positions.

r (mm)

Dwell Position 1 2.6

Dwell Position 2 1.2

Standard deviation of acquired data (σ)

A value for standard deviation was calculated in two different instances to investigate their

effect on σ; at two different dwell positions of differing dwell times and at varying SDD for

the same dwell time.
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Figure 4.2.2: The tracking data returned for a single dwell position. The standard deviation
over the dwell position can be seen.

Using Equation 4.4, the standard deviation was calculated for two different dwell positions

with different dwell times. The first dwell position had a dwell time of 5.7s while the second

had a dwell time of 33.1s. Each dwell position was measured three times and the average

sigma was calculated. The results can be seen in Table 4.2.2

Table 4.2.2: Relative differences in timing of maximum dose rates.

σ 1 (mm) σ 2 (mm) σ3 (mm) σ (mm)

Dwell position 1 (5.7s) 0.41 0.29 0.50 0.40

Dwell position 2 (33.1s) 0.18 0.16 0.16 0.17

Using Equation 4.4, the standard deviation was then calculated for various SDDs. Each

calculation was made for data above the same area of the MP987 for each SDD. The obtained
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values for σ can be seen in Figure 4.2.3

Figure 4.2.3: A value of σ calculated at different SDDs.

The maximum and minimum value for σ was 1.83mm for an SDD of 10cm and 1.04mm for

an SDD of 4cm respectively.

Z-calibration

Measurements were taken for SDDs of 4.5cm, 6.5cm, 7.5cm, 8.5cm, 9.5cm and 10.5cm. The

same dwell position across these measurements was used to obtain a mean pixel response.

From this, a calibration factor for each SDD’s data set was determined. This calibration

factor was used in the TG-43 radial distance calculation.

In order to verify the effect of the choice of SDD calibration factor on the accuracy of z

position output, each calibration factor was used in order to return a z position for an array
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of measurements, which are outlined in Table 4.2.3. The z position output using the 4.5cm

calibration factor for varying SDD measurements can be seen in Figure 4.2.4.

Figure 4.2.4: The z position outputs using the 4.5cm calibration factor. Note the difference
in obtained value from the expected distances as SDD increases from 4.5cm.
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Table 4.2.3: Relative difference (%) between the expected depth and the obtained depth
for each calibration factor at each depth. The minimum difference is highlighted for each
calibration factor.

Depth of Calibration

4.5 5.5 6.5 7.5 8.5 9.5 10.5
M

ea
su

re
m

en
t

D
ep

th
(c

m
)

4.5 4.5 7.6 9.4 24.6 32.9 36.4 45.1

5.5 14.5 1.2 0.8 17.4 26.5 30.3 39.9

6.5 18.9 5.1 3.1 14.2 23.6 27.6 37.6

7.5 41.3 24.9 22.5 2.0 9.3 14.0 25.7

8.5 64.8 45.7 42.7 18.8 5.7 0.2 13.5

9.5 73.0 52.9 49.9 24.8 11.1 5.3 9.3

10.5 92.8 70.5 67.1 39.2 23.7 17.4 1.1

Discussion

Before the MP987 and tracking software were to be used in conjunction with clinically relevant

treatment plans, some general parameters of the system needed to be established. These

included the repeatability (r) of the system, the standard deviation (σ) of measurements and

the z calibration factor.

When quantifying the repeatability of the system, two measurements were taken for different

SDDs to note its affect. The repeatability (r) for an SDD of 70mm was 2.6mm and 1.2mm for

an SDD of 1277mm. This means that 95% of the measured cases between two data sets will

have a difference of less than r. A known value of r is paramount as it defines the precision
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of the systems spatial and temporal resolution in successive measurements.

The value obtained indicates the system has a strong level of repeatability for initial feasibility

studies. However, for clinical applications there needs to be an improvement in r. The

repeatability of the system needs to be sub mm to ensure its purpose of accurate source

localisation can be obtained for each repeated application.

To determine the standard deviation of measurements taken with the system, a value of σ

was obtained for varying dwell times and SDD. By doing so, the effect of these parameters on

the standard deviation could be investigated. σ for a dwell time of 5.7 seconds was found to

be 0.4mm while for a dwell time of 33.1s, σ was found to be 0.17mm. The increase in dwell

time saw a decrease in standard deviation. One possible explanation for this observation is

due to the detectors stabilising after a change in dose rate for longer dwell times. When

calculating σ for different SDD, there was a correlation between an in increase in SDD and

standard deviation; The minimum σ was found for a SDD of 4cm while the maximum σ was

found for a SDD of 10cmm. The spread of the detected signal has a 1/r2 dependence. This

will cause the standard deviation for each dwell position to be larger at larger values of r.

When comparing the two separate studies, the value of σ should be relatively similar however

they vary by ≈1mm. This difference can be attributed to a large degree the time over which

the SDD measurements were taken. The susceptibility of the MP’s AFE system in picking

up interference is also a factor which may have contributed to differences. The conditions

between measurements may have changed which may have caused the MP to exhibit a degree

of noise. This phenomena will be explored more in Section 4.3.

Finally, the calibration factor in determining z coordinates was investigated. Calibration
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factors determined from SDD measurements of 4.5cm, 5.5cm, 6.5cm, 7.5cm, 8.5cm, 9.5cm

and 10.5cm were calculated and used in the tracking software which utilises the TG-43 radial

distance calculation. The returned z coordinate from the 4.5cm calibration factor can be

seen in Figure 4.2.4. As the SDD deviates from the original calibration SDD, the deviation

in determined and true z coordinate increases. For SDD values which are within 1cm of the

calibration SDD, the returned z coordinate varies by 7% to 18.8%. This increases to 18.9%

to 24.9% for an increase in 20mm from the calibration SDD. This pattern holds true for all

calibration SDDs, and can be seen in Table 4.2.3. The z coordinate output from the tracking

software is dependent on the z calibration SDD.

It is expected that the calibration factor calculated at any SDD would return accurate z

coordinate results when used with the TG-43 calculation. This did not hold true for the

MP system. The main reason behind this inaccuracy is the process of equalisation. Each

diode, before any equalisation, will yield different responses for the same source. To equalise

variation in diode response, the MP is subjected to a flat field from a LINAC and a correction

factor is determined for each diode. Ideally, this correction factor would hold true for all

future measurements but this is not the case. Furthermore, the size of the plate itself is

too big for a flat field, and so equalisation is computed in sections. A more appropriate

equalisation protocol would be one that is more frequent and robust. An alternate approach

for equalisation would be to compute diode correction by adopting a diode by diode approach

in which a HDR source is sent directly above each diode at the same hight.
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4.3 Testing the source tracking capabilities of the Magic

Plate 987 by means of clinically relevant treatment

plans.

In order to test the feasibility of the MP987s use in HDR pBT in vivo treatment verification,

the E2E phantom will be used to carry out a complete clinical procedure. The use of the MP

in source tacking studies have seen localisation accuracies of less than 1mm [63, 60, 59]. In

order to quantify the MP and E2E phantom’s ability to perform source tracking, it is hoped

to achieve the following objective: Source position verification of sub mm accuracy under

clinical procedures.

Method

A 60cc Gel Prostate insert was used in conjunction with the End-to-end phantom for this

study. By doing so, an anthropomorphic representation of the clinical environment could be

emulated. The Gel Prostate insert was constructed as outlined in 3.1.1 and the E2E phantom

was filled with a tissue equivalent gel. The phantom was placed on the MP in the same dorsal

lithotomic position used in Chapter 3. This can be seen in Figure 4.3.1. The TRUS Probe

from the BkMedical FlecFocus400 on a stepper mount was inserted into the E2E phantom

and kept in position throughout the duration of the treatment, as per clinical procedure.

The superior aspect (base) of the prostate was located, to retain clinical relevance. Twenty
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treatment catheters were then inserted into the target volume under US guidance. As a

result of artefacts caused from the treatment catheters, a US based plan was not able to be

generated. Instead, a 271.0mm FOV CT using prostate protocol 2mm iDose(4) at 120keV

with 161mAs/slice was acquired. Based on the acquired image, the prostate was contoured

and a 9Gy per fraction plan was generated [Figure 4.3.2]

(a) The E2E phantom with a 60cc Gel

Prostate insert inside. 20 treatment

catheters have been inserted.

(b) A closeup of the treatment catheters in-

side of the phantom.

Figure 4.3.1: The experimental setup showing the anthropomorphic phantom.
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(a) The E2E phantom setup

about to be CT scanned.

(b) A CT slice showing the treatment catheters in-

serted inside of the phantom. The MP can be seen

below.

Figure 4.3.2: A CT based treatment plan was generated. Note the insertion of copper rods
inside the treatment catheters to be registered.

Results

A total of three separate clinical procedures were carried out on the E2E phantom. Data

from the MP987 was collected, decoded and interpolated as per Section 4.1.2. Each clinical

procedure returned on average 8370 frames, with a large majority of the 987 pixels returning

a response per frame. Figure 4.3.3 shows the response of the MP, once post interpolation

has been applied.
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Figure 4.3.3: A colour map of the response of each pixel across the plate with a source directly
above. The response is in counts.

Each of the three runs, once interpolated, was processed through the tracking algorithm.

The x, y, and z coordinates with respect to time can be seen in Figure 4.3.4. Each individual

catheter with its respective dwell positions can be seen.
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Figure 4.3.4: The tracking coordinates returned from the MP987 and tracking software. Each
axis has been considered separately with respect to time.

In order to quantify the differences between measured dwell position and the TPS, the data

collected for each catheter was sorted into a frequency histogram, with each cluster corre-

sponding to an individual dwell position. Based on the width of these clusters, as well as the

frequency of each cluster, position data is returned for the x, y and z coordinates. A defined
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cut off frequency was established under which the counts would be disregarded. An example

of an obtained histogram can be seen in Figure 4.3.5.

Figure 4.3.5: The histogram obtained from a single catheter. Note each dwell position is
visible based on the clusters (indicated by the arrows).

Of the total 348 dwell positions across three runs, 21 returned zero counts for the frequency

histogram. These points corresponded to dwell times of 0.2s or less.

Each of the coordinate positions across all catheters were compared to the TPS and a differ-

ence was obtained. These can be seen in Table 4.3.1. The average difference between TPS

and measured coordinates for x, y, z and t were found to be (3.60±0.14)mm, (3.70±0.15)mm,

(3.53±0.12)mm and (0.30±0.06)s respectively. The maximum difference for the x, y, z

and t was found to be (11.42±0.4)mm, (18.02±0.4)mm, (10.07±0.4)mm and 15.3s respec-

tively while the minimum difference for x, y, z and t was (0.02±0.4)mm, (0.03±0.4)mm,



92

(0.01±0.4)mm and 0s respectively.

Table 4.3.1: The average difference between TPS and MP measured dwell position.

x (mm) y (mm) z (mm) t (s)

Average Difference 3.60 3.70 3.53 0.30

Standard Error ± 0.14 0.15 0.12 0.06

Discussion

In this study, the feasibility of the MP987’s use for source localisation in a clinical setting

was proven. Typical dwell positions for real-time HDR procedures are 2mm-3mm. This was

established to be the benchmark we hoped to attain. A complete clinical work flow was

carried out on the E2E phantom with a 60cc Gel Prostate insert, from insertion of treatment

catheters under US guidance to CT based treatment planning and afterloader delivery. Three

separate treatment deliveries were carried out and the source position was evaluated at each

dwell position and compared to the TPS plan. The overall average difference for the x, y, z

and t components were (3.60±0.14)mm, (3.70±0.15)mm, (3.53±0.12)mm and (0.30±0.06)s

respectively. The maximum difference for the x, y, z and t coordinates was found to be

(11.42±0.4)mm, (18.02±0.4)mm, (10.07±0.4)mm and 15.3s respectively while the minimum

difference for x, y, z and t was (0.02±0.4)mm, (0.03±0.4)mm, (0.01±0.4)mm and 0s respec-

tively.

In previous MP tracking studies returned tracking capabilities of sum mm accuracy [64, 61,

60]. The accuracy obtained from these studies was not reproduced in the findings. However,
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this is the first application of the MP system in phantom study in which the catheter place-

ment is not well defined, which is also indicative of a clinical procedure. Furthermore, the

accuracy of the system in measuring dwell times was (0.3±0.06)s, which indicate that the

system is able to monitor the timing aspect of a typical clinical procedure with ease, as dwell

timings range from 0.5s to 10s.

The positioning of the TRUS probe within the phantom was seen not to hinder any results.

This is due to the large number of detectors.

One large contributing factor to the results obtained stem from the detector array itself. The

tracking algorithm relies on a centre of mass calculation to determine x and y coordinates.

The top 30% of the pixel responses are used in this calculation, utilising Equation 4.1. The

accuracy of this calculation operates under the assumption that the detector has a uniform

response directly under the source. If there are any irregularities in the pixel response, the

distribution of the top 30% will not be uniform and so, the centre of mass calculation may

not return a pixel from directly below the source, yielding inaccurate tracking. This was ob-

served when the source was near any dead pixels; the response was not symmetric in shape,

rather it was distorted around the location of the dead pixels. This can be seen in Figure

4.3.6.

This phenomena can also be observed when the source is located near the edge of the detector.

To eliminate this issue, the tracking software must be further developed to eliminate/replace

these dead pixels based on a relative response within a neighbourhood of pixels. As outlined

in Section 4.2, each pixel could also be re-calibrated.

Another source of inaccuracy in source localisation using the MP987 system is the sensi-
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Figure 4.3.6: The colour map of the pixel responses highlighting the effect of dead pixels on
the response.

tivity of the electronics to EMF and heat. It was found that any source of EM activity in

the operating room caused there to be a significant degree of electronic noise which inhib-

ited accurate localisation. Appropriate shielding in the form of aluminium plating was used

which significantly reduced this noise, but a more permanent and robust solution is needed

for future use.
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4.4 Introduction of a clinically relevant error to test

the capabilities of the Magic Plate 987.

In the previous study, the tracking capabilities of the MP987 system were quantified using a

clinically relevant treatment plan. It was shown that the tracking system can achieve source

localisation within 4mm for all coordinates. A clinically relevant error will be introduced

and the systems ability to detect this error will be evaluated. By doing so, the feasibility of

systems use as an in-vivo treatment verification tool can further be proven.

Method

The same experimental setup was used as in Section 4.3. The same 9 Gy treatment plan was

also used. The clinically relevant error chosen to introduce to the system was a catheter swap:

swapping of catheters 1 and 3. The reasoning behind this kind of error introduction was the

clinical relevance associated with the user specificity of the task of connecting treatment

catheters and transfer tubes.

Results

A single clinical procedure was carried out on the E2E phantom after catheter 1 and 3’s

transfer tubes were swapped. Like the previous study, the MP987 data was collected, de-

coded, interpolated and the tracking software was applied. The relative differences between
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Table 4.4.1: The relative differences in MP measured positions with respect to TPS planned
positions with the introduction of a catheter swap.

Relative Difference (%)
x y z

Catheter 1

Dwell 7 16.5 -706.0 -8.8
Dwell 6 45.6 47.1 -6.6
Dwell 5 56.2 21.7 -6.2
Dwell 4 61.2 12.7 -5.7
Dwell 3 75.4 8.5 -3.2
Dwell 2 82.2 6.4 -1.3
Dwell 1 83.6 5.4 -1.1

Catheter 3

Dwell 7 -82.1 -69.4 5.9
Dwell 6 -44.9 -103.1 6.6
Dwell 5 -4.1 -319.8 7.9
Dwell 4 16.8 241.6 8.6
Dwell 3 32.7 59.7 9.4
Dwell 2 40.0 22.8 9.8
Dwell 1 39.3 6.8 10.1

the TPS and measured x, y, and z coordinates can be seen in Table 4.4.1.

The average difference in position for x, y and z coordinates for catheter 1 was (3.07±0.71)mm,

(14.31±0.67)mm and (5.68±1.20)mm respectively. For catheter 3, the average difference in

position for the x, y and z coordinate was (1.97±0.36)mm, (4.38±0.82)mm and (11.04±0.80)mm.

The maximum difference in position for both catheters was 17.48mm with a minimum of

0.38mm.

Discussion

The purpose of this study was to verify if the MP987 and tracking software system was able

to determine the introduction of a catheter swap. In order to successfully determine the

existence of a catheter swap, the system should return a larger than normal difference in

position compared to the TPS. When comparing catheter 1 and 3, which are they catheters
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which were swapped prior to treatment, the differences in measured dwell position for each

dwell position can be seen in Table 4.4.1.

No defined parameter was set in order to verify if a catheter swap was detected, however

the average difference in each coordinate position does clearly indicate the misplacement of

a catheter. There is a defined displacement for each dwell position with a corresponding

dwell time. This data in itself can be used in the determination of a treatment error; a set

difference in threshold could be defined before any intervention.

Further, the data collected from the misplaced catheter could be used retrospectively to

determine which catheter it had been swapped with. The dwell position data can be cross-

referenced with the TPS data to find a catheter which exhibits the smallest difference with it.

4.5 Conclusion

This chapter investigated the feasibility of the MP detector system for the use of HDR source

localisation. The MP987 detector system coupled with the source tracking algorithm proved

it’s potential for use in HDR pBT source localisation. The E2E phantom, which is an an-

thropomorphic representation of prostate anatomy, allowed the detector system’s abilities to

be tested in a clinical setting.

Preliminary aspects of the MP system were evaluated for the plate, highlighting its design

and software limitations. When conducting source localisation, the returned measured coor-

dinates on average across all axis fell within 5mm. The introduction of a clinically relevant
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error to the system highlighted the capabilities of the plate, with the catheter swap being

evident. With some of the limitations of the current system addressed, further clinical testing

will be rudimentary in the integration of the MP into a typical BT work flow.



Chapter 5

In-vivo treatment verification

feasibility for the TRUSProbe Tracker

combined with MOSkin dosimeters.

The need for a device which can perform accurate in - vivo treatment verification (IVTV)

is apparent, as demonstrated in Chapter 2. Characteristics of HDR pBT, such as the high

dose gradients as well as the ease of clinician error, exemplify the need of achieving accurate

end-to-end IVTV [25, 5]. This chapter hopes to offer a novel means of both in-vivo dosimetry

as well as source localisation within the one unit: the TRUSProbe Tracker. The End-to-end

phantoms use as a tool for E2E studies was proven in Chapter 3 and so, will be used to

provide a holistic QA tool in this study.

The development of an all-in-one system is built upon the work of earlier studies [69, 68, 46,

99
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64] and hopes to incorporate the ability to both monitor rectal dose in real time as well pro-

vide accurate source localisation. The first half of the chapter hopes to perform preliminary

source tracking tests to establish both the accuracy and characteristics of using dose rate

information from MOSkin dosimeters inbuilt into the TRUSProbe Tracker. The second aim

of this chapter is to achieve a high level of dosimetric accuracy. Similar rectal dose accuracies

obtained by Carrara et al and Poder et al are hope to be replicated, as well as assessing the

feasibility of real-time catheter-by-catheter dose monitoring and finally to test the ability of

the system to detect a clinically relevant error.

5.1 Proposed Instrumentation

5.1.1 MOSkin Detectors

The MOSkin system developed by the Centre of Medical Radiation Physics (CMRP), Uni-

versity of Wollongong, Australia, is a MOSFET sensor packaged in a kapton strip with a gate

oxide thickness of 0.55µm [65]. This can be seen in 5.1.1. Using ‘drop in’ technology, the sys-

tem is hermetically sealed with a thin polyamide film. This film layer acts as a build-up layer

for the MOSkin which equates to a water equivalent depth of 0.07mm in tissue [73]. This

water equivalent depth can be varied based on this film layer. The measure of accumulated

radiation dose involves the measurement of the voltage across the gate under a threshold

voltage. Typically, the detector system is used for real-time in-vivo skin dose measurements.



101

Figure 5.1.1: The schematics of a MOSkin dosimeter, with both the side view and the top
view showing the polyamide build up layer as well as the connections on the kapton tail.

For the purpose of our experiments, the MOSkin dosimeters will be used to obtain a real-

time readout of dose rate which will be used in an application of source tracking.

The dose data from each MOSkin dosimeter is managed using the OneTouch readout system.

The system allows up to six dosimeters to be simultaneously read out in real-time and trans-

ferred wirelessly via bluetooth to a computer. The system also automatically compensates

for any temperature variation in the output doses.

5.1.2 TRUSProbe Tracker

The TRUSProbe Tracker (TPT) is an original design which hopes to appease the need

for in-vivo treatment verification by offering both verification of treatment delivered and

quantifying patient dose. By using CAD software, a model of a BK-Medical trans-rectal

ultrasound probe was created with 1:1 dimensions. This model can be seen in 5.1.2. In order
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(a) The raw CAD drawings of the TRUSProbe Tracker and the three
separate bodies that make up the probe.

(b) A close up view of each of the slots for in vivo rectal dose measure-
ments and slots for source tracking

Figure 5.1.2: Schematics of the TRUSProbe Tracker showing its design.
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to facilitate in-vivo dose determination, there are five separate, embossed slots which run

along the longitudinal direction of the TRUS probe designed specifically for MOSkin diodes.

At the end of each slot is a channel which allows the kapton tail of the detector to feed into

the central channel, which runs along the probe to the handle to allow cable connection.

For treatment delivery verification, there are twelve slots in two rows, separated by 15mm.

They are positioned on a plane 5mm below the top surface of the TRUS probe. The central

channel, which runs the length of the probe, separates the rows.

5.1.3 Seed Position Algorithm

In order to obtain source coordinate data based on dose rate measurements, a source tracking

algorithm was employed. The algorithm operates based on the method of simulated annealing

which involves optimisation based on iterative improvement randomisation. Typically, an

initial function is calculated at a random starting position. The function is then recalculated

at a neighbouring position and compared to see if there is an improvement. If there is an

improvement, that new position is then set. This iterative method is repeated until there is

an optimisation in the solution [74].

The algorithm operates based on the following methodology:

• The locations of the virtual detectors were established. The activity of the source at

the time of treatment is also input into the algorithm.

• The dose rate data for each detector is loaded into the algorithm.

• A virtual source is placed in the centre of the simulation. Based on this location, the
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integral counts in each detector is calculated based on TG-43 formalism..

• An optimisation function is computed

F =
6∑
i=1

(I − V )2 (5.1)

Where I is the recorded integral counts, V is the virtual integral counts computed based

on the virtual seed. The function is computed for all 6 detectors.

• The virtual seed is then repositioned systematically in three dimensions in 1mm step

sizes. The integral counts based on this new position is then re-calculated in each

dosimeter.

• Iteration is computed until F is minimised.

• 0.01mm steps are then used to further improve the accuracy of the seed positions.

Once computed, the locations of each source in each time iteration is known.

5.2 Initial source tracking feasibility for the use of MOSkin

dosimeters coupled to the TRUSProbe Tracker

In order to proceed with further source delivery verification studies, it is first required to

prove the feasibility of the TRUSProbe Tracker and MOSkin systems ability to perform in-

vivo source position verification. To validate some level of source tracking ability, the system

must be able to perform the following task; By using the dose rate data from each of the
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individual MOSkin dosimeters, the source location along the axis of the TRUS probe can

be quantified. At the successful completion of this task, further source tracking testing will

performed using the tracking algorithm.

Method

The TRUSProbe Tracker is used in conjunction with MOSkin dosimeters to allow for pre-

liminary tracking to be tested. Six dosimeters were arranged in an alternating fashion inside

of the TRUSProbe Tracker, as shown in Figure 5.2.1.

Figure 5.2.1: A schematic of the TRUSProbe Tracker with the individual MOSkins arranged
in their alternating fashion.

The setup was placed in a specially designed holder, which accommodated the probe whilst

also providing a surface for solid water to be placed. A slab of perspex with channels the

size of treatment catheters was used to ensure consistency and to maintain a straight path

for the source to traverse. Two treatment catheters were used; one directly above the centre

of the probe and one offset 2cm to the right. The experimental setup can be seen in Figure

5.2.2. A QA plan with 5mm steps and a 5 second dwell time was chosen for both catheters.

The SSD for the treatment was 17.15mm, and was kept constant throughout the treatment.
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(a) The experimental setup,
showing the afterloader in the
foreground connected to the
TRUSProbe Tracker. The One-
Touch readout system can be
seen connected.

(b) A overhead view of the catheters above the
TRUSProbe Tracker.

Figure 5.2.2: An overview of the initial tracking feasibility for the TRUSProbe Tracker.

The dose-rate delivered to each of the 6 MOSkin dosimeters was monitored in real-time

using the OneTouch readout system.

In order to validate the systems ability to track a HDR source, the coordinate system of the

probe needed to be established. In keeping with the convention of the source tracking code,

the z axis is defined along the direct of the probe, the y axis pointing vertical and the x axis

horizontal. The origin of the coordinate system is defined by the plane of the detectors.

Results

During the course of the study, all six MOSkin dosimeters returned usable dose rate values.

A total of 357 data entries were taken for six separate dosimeters throughout the entire proce-
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dure, with a maximum dose rate returning 3.58 cGys-1 and a minimum value of -0.54cGys-1.

The average dosimeter response was 0.39cGys-1 with a standard deviation of ±0.58cGys-1.

The initial qualitative feasibility of the TRUSProbe Tracker’s ability to perform source track-

ing was evaluated by comparing the dose rates for each dosimeter. It is expected that the

dose rate will give a clear indication of the location of the HDR source along the z axis; an

increase in dose rate corresponds to the source being located in close proximity. As the source

travels towards the tip of the probe, each dosimeter’s dose rate will increase momentarily,

and then decrease when the source passes. The results comparing the dose rates for each

dosimeter can be seen in Figure 5.2.3.

In order to quantify the feasibility of using dose rates to achieve source localisation, as well

as to establish a baseline accuracy, the z positions of each dosimeter will be compared based

on their known fixed differences. Using the assumption of the maximum dose rate being an

indication of the source dwelling directly above the dosimeter, each time stamp correspond-

ing to the maximum value was noted. Using these values, as well as the fact that each 5s

dwell position is separated by 5mm, the difference between each dosimeter can be evaluated.

These values can be seen in Table 5.2.1.
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Figure 5.2.3: A comparison of the dose rate of each MOSkin dosimeter as the HDR source
steps along the z axis of the probe. Note the two different catheters, the first directly above
the probe and the second offset by 2cm.

Table 5.2.1: Relative differences in timing of maximum dose rates.

D1 D2 D3 D4 D5 D6

Time of Maximum (s) 165.231 146.127 129.987 102.891 83.055 58.826

Time Between Successive Dosimeter (s) - 19.104 16.14 27.096 19.836 24.229

Relative Difference (%) - -4.6 23.9 26.2 -0.83 17.4
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The next step in investigating the source tracking feasibility of the TRUSProbe Tracker sys-

tem is to evaluate source positions in space using the source tracking algorithm. The source

strength at the time of treatment was used in the algorithm. The output of the x, y, and z

positions with respect to time can be seen in Figures 5.2.4, 5.2.5 and 5.2.6 respectively.

Figure 5.2.4: Source positioning algorithm returning x positions against time.

Starting with the x tracking, it can be seen from Figure 5.2.4 that there exists a regular

oscillation in position either side of the mid line. The turning points of this oscillations were

investigated in order to determine if they coincide with the positions of the dosimeters. Due

to the 5mm step size and 5s dwell time of the treatment as well as the known (20mm) z sepa-

ration of each dosimeter, the time between the source being at its closest point to a dosimeter

(i.e above) is 20 seconds. The time at which each turning point occurs is shown in Table 5.2.2.
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Table 5.2.2: x axis Turning points of the source tracking data.

Turning Point Number 1 2 3 4 5 6

Time of Turning Point (s) 58.8 80.9 101.4 124.9 143.9 168.2

Error (s) ±5

Figure 5.2.5: Source positioning algorithm returning y positions against time.

When investigating the y tracking data, as shown in Figure 5.2.5, the oscillating nature seen

in the x tracking is observed. The y separation of the catheter and the plane of the dosimeters

is 17.15mm. The average y separation from the tracking data was found to be (19.6±3.3)mm.
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Figure 5.2.6: Source positioning algorithm returning z positions against time.

The z tracking data can be seen in Figure 5.2.6. As expected, the z tracking data returned

a straight line. Individual dwell positions however cannot be distinguished. Based on the

treatment parameters, it is expected that it would take twenty 5mm-steps to travel from

the first dosimeter to the last. At 5 seconds per dwell position this equates to 100 seconds.

From the tracking data, it can be seen that to travel the 10cm, it has calculated it to take

(101.3±4)s.
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Discussion

To validate the feasibility of using MOSkin dosimeters inside of the TRUSProbe tracker as a

tool for source position verification, the dose rate from six dosimeters were recorded. It was

hypothesised that the position of the HDR source along the z axis could be determined based

on the dose rates of each dosimeter; a maximum dose rate in any dosimeter corresponds to

a minimum in distance between it and the HDR source.

A single catheter was placed above the TRUSProbe and a QA plan of 5mm, 5s dwell times

was carried out on the system. The dose rates obtained can be seen in Figure 5.2.3. Quali-

tatively, it can be seen that the dose rates for each successive dosimeter increase to a point,

followed by a decrease back to a low baseline value. This is an indication showing when the

source is directly above. Further, it is expected that dosimeter 6, which is located at the

furthest point back from the tip, would see this peak first as the afterloader delivers the seed

in steps toward the tip. By this logic dosimeter 1 which is closest to the tip, would also

display this peak last. The dose rate curves for each dosimeter indicate this logic; dosimeter

6 shows the first peak at t≈60s and dosimeter shows its peak at t≈165s.

The dose rate data obtained clearly indicates that the premise behind source tracking along

a single axis has merit. To quantitatively prove this relationship between dose rate peaks

and z axis position, the timing between successive peaks was measured. The results can be

seen in Table 5.2.1. The smallest relative difference between dosimeters was found to be

-0.83%, with the largest being 26.2%. The differences in relative difference can be attributed

to the temporal resolution of the MOSkin dosimeters; the OneTouch system allows direct
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read out of dose data every 1 second. The peaks which are associated with the source being

the closest to the dosimeter do not have a narrow peak; the maximum can be seen to spread

over ≈10 seconds. Furthermore, taking into account the findings of Jong et al ’s 2014 study,

the angular dependence of surface dose deviates based on any oblique incidence [73]. Because

the dosimeters are not directly below the source, there may be some introduced angle for

which the value is not known.

Despite the obtained relative difference having a standard deviation of 17.57%, the obtained

results still prove to be useful in the determination of the location of the HDR source along

the z axis.

The next step in determining the feasibility of the systems source tracking ability is evalu-

ating the performance of the source tracking software. The x, y and z location data with

respect to time is seen in Figure 5.2.4, 5.2.5 and 5.2.6 respectively.

The obtained x position data can be seen to oscillate in a regular fashion. The turning points

of these oscillations were investigated and the time of each turning point can be seen in Table

5.2.2. Each successive turning point can be seen to occur approximately every 20 seconds,

which is the locations of the dosimeters based on QA plan used.

The y source position data also exhibits this oscillation. The y coordinates should have re-

turned as a horizontal line, as there was no deviation in the y axis. When averaging the y

points, the returned value was (19.6±3.3)mm, while the expected y was 17.15mm.

The oscillation observed in both the x and y axis can be attributed to the limitations of the

MOSkin dosimeter; the angular dependence on the measurements is evident in the obtained

data. The changing in angels between the source and each dosimeter based on its relative
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position in space has a great influence on the dose measurements.

The z source position data returned considerably consistent data. The returned z positions

are linear in nature, with a constant gradient. Individual dwell positions cannot be deter-

mined however. To quantify the source position data, the time taken to travel from the first

dosimeter to the last was determined. To travel the 10cm, the algorithm values returned a

timing of (101.3±4)s. This is consistent with the expected timing of 100s.

5.3 Evaluation of the Source Tracking limitations of the

TRUSProbe Tracker system with varying SDD.

In the previous study, it was demonstrated that preliminary tracking can be achieved using

the TRUSProbe Tracker and MOSkin dosimeters. The next step in the commissioning of the

tracking system is to quantify the effect on its ability to track a source with varying SDD.

At the completion of this study, it is hoped to quantify the relationship between SDD and

tracking capabilities.

Method

Similarly to the previous study, the same configuration of MOSkin dosimeters used in an

alternating fashion inside of the TRUSProbe Tracker was used. The probe was placed in the

same holder with the catheter perspex holder above. The same QA plan of 5mm step sizes
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and 5 second dwell times was used. MOSkin data was collected in real time. Solid water

was added in between measurements to change the SDD. Data was collected at 17.15mm,

21.15mm, 26.15mm, 31.15mm, 36.15mm, 41.15mm and 51.15mm SDD.

Figure 5.3.1: The TRUSProbe Tracker with solid water pieces on top. The two treatment
catheters can be seen above.

Results

For each SDD, all of the six dosimeters returned usable dose rate values. These dose rate

values were used in the tracking software to return source positions. Due to the findings

in the previous study, x positions were neglected and not compared. In order to obtain a

quantifiable effect of the SDD on tracking capability, both the z and y components were

compared separately.

Similarly to the previous study, based on the treatment parameters the time taken for the

source to travel the length of the probe can be compared at each SDD to quantify any vari-



116

ations for the z positions. Qualitatively, from Figure 5.3.2 it can be seen that as the SDD

increases, the linearity of the output decreases. Quantitatively, the difference in time taken

to travel the 10cm is compared in Table 5.3.1.

Figure 5.3.2: Source positioning algorithm returning y positions against time.

Table 5.3.1: A comparison of the time taken to travel 100mm across each SDD.

SDD(mm) 17.15 21.15 26.15 31.15 36.15 41.15 51.15

Time Taken (s) 101.28 100.5 102.0 110.1 113.7 121.8 130.6

Error (s) 4 5 9 13 15 19 22

Relative Difference (%) 1.3 0.5 1.9 9.1 12.1 17.9 23.5
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Table 5.3.2: A comparison of the average y value for various SDD.

SDD (mm) 17.15 21.15 26.15 31.15 36.15 41.15 51.15
Average y (mm) 19.6 24.2 29.6 34.6 40.0 45.2 50.1

Error(mm) 3.4 1.9 2.8 4.7 9.0 8.8 12.1
Relative Difference(%) 12.6 12.5 11.8 10.0 11.5 9.0 0.8

For each SDD, the average y value was calculated with its associated error to quantify any

relation to SDD. The results can be seen in Table 5.3.2. Qualitatively, Figure 5.3.3 shows

clearly as SDD increases so too does the y coordinate, as expected.

Figure 5.3.3: Source positioning algorithm returning y positions against time.
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Discussion

Through the completion of this study, a relationship between the SDD and the tracking capa-

bilities was hoped to be achieved. Measurements were taken for SDDs of 17.15mm, 21.15mm,

26.15mm, 31.15mm, 36.16mm, 41.15mm and 51.15mm. Due to the poor tracking ability in

the x, only the y and z axis were considered.

By observing Figure 5.3.2, it can be seen that as SDD increases, the returned z coordinates

loses it’s linearity. For SDDs of 17.15mm, 21.15mm and 26.15mm, there exists a consistent

linearity in z position which indicates accurate tracking due. At SDD of 31.15mm, the in-

crease in deviation from this linear trend is started to be observed. This trend of declining

linearity with increasing SDD continues, with SDD of 51.5mm showing little to no linear

trend.

In order to quantify the relationship between each SDD and the z coordinates, the time taken

for the source to travel the length of the probe was compared at each SDD. These values can

be seen in Table 5.3.1. The relative difference was calculated for each SDD, with the smallest

being 1.3% and the largest being 23.5%. The relative difference at each SDD can be seen to

follow a trend; as SDD increases, so too does the relative difference.

This trend can be attributed to the dose rate detected at these depths. At a SDD of 51.15mm,

the maximum dose rate across all dosimeters was 0.718cGys-1 while at SDD of 17.15mm the

maximum dose rate was 3.58cGys-1. The source tracking algorithm, as explained in section

5.1.3, calculates a radial distances based on the dose rate. A lower dose rate corresponds to

a larger radial distance, in accordance to TG43 [20].
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For the y coordinates, the effect from varying SDD can be seen in Figure 5.3.3. Similarly to

the z tracking, there exists a consistent linearity for SDD values of 17.15mm, 21.15mm and

26.15mm. At SDD of 31.15mm and 36.15mm, this linear trend looses its consistency, with a

larger variation in y values. At SDD of 41.15mm and 51.15mm, the linear trend is lost.

To quantify the accuracy of the y tracking at various SDDs, the average y value was cal-

culated, along with its relative difference. These values can be seen in Table 5.3.2. The

largest relative difference can be observed for SDD 17.15mm of 12.6% while the lowest rela-

tive difference was observed for SDD 51.15mm of 0.8%. Despite SDD 51.15mm having the

lowest relative difference, it had the largest standard deviation of ±12.1mm. One possible

explanation for this is the reduction in the occurrence of lower value dose rate fluctuations.

This fluctuations in dose rate can provide incorrect radial dose calculations in the algorithm;

the reduction of these calculations leave only the true radial distance values and hence, a

more correct y value.

5.4 Determining the x-axis limitations of the MOSkin

dosimeters for HDR tracking

In the assessment of the feasibility of the TRUSProbe Tracker’s source tracking ability, it has

been shown that for sources directly above the probe preliminary tracking can be achieved.

However, the systems x axis limitations need to be evaluated. It is hoped that a FOV in the
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x direction will be established as well as a quantitative evaluation of the effect of varying x.

Method

The same TRUSProbe and MOSkin configuration as previous studies was used. The 5mm

step size and 5 second dwell time QA plan was also used. In order to evaluate the systems

performance in the x axis, two experimental configurations were used: Two catheters running

along the z axis of the probe, one directly above the probe and one 2cm to the right at

17.15mm SDD followed by two catheters with the same separation running perpendicularly

(along the x axis) to the probe at 17.15mm SDD. This is shown in Figure 5.4.1.

Figure 5.4.1: Source positioning algorithm returning x positions against time with catheters
travelling across the TRUSProbe Tracker.
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Results

The dose rate values at a SDD of 17.15mm, with two treatment catheters travelling along

the z plane can be seen in Figure 5.2.3 from Section 5.2. Qualitatively, it can be seen that

there exists a clear difference in dose rate values from the catheter above and the catheter

to the right. Quantitatively, the average dose rate for the catheter above the probe was

0.513cGys-1 with a standard deviation of 0.721 cGys-1 and a maximum value of 3.585 cGys-1.

The catheter 2cm to the right returned an average of 0.319cGys-1 with a standard deviation

of 0.387cGys-1 and a maximum value of 2.181cGys-1.

Adopting the similar principal as in Section 5.2, the time of the maximum dose rate for each

dosimeter was noted. The values as well as their relative differences to the expected timing

can be seen in Table 5.4.1.

Table 5.4.1: Relative differences in timing of maximum dose rates for catheter 2 cm to the
right of the central z axis.

D1 D2 D3 D4 D5 D6

Time of Maximum (s) 342.71 330.92 315.55 280.40 271.60 238.61

Time Between Successive Dosimeter (s) - 11.79 15.38 35.15 8.80 32.99

Relative Difference (%) - -69.6 -30.2 43.1 -127.2 39.4

The next step in evaluating the systems x axis tracking involved rotating the two treatment

catheters 90o such that they travelled across the TRUSProbe Tracker. The x, y and z tracking
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coordinates can be seen for the two treatment catheters in Figures 5.4.2, 5.4.3 and 5.4.4.

Figure 5.4.2: Source positioning algorithm returning x positions against time with catheters
travelling across the TRUSProbe Tracker.
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Figure 5.4.3: Source positioning algorithm returning y positions against time with catheters
travelling across the TRUSProbe Tracker.

Figure 5.4.4: Source positioning algorithm returning z positions against time with catheters
travelling across the TRUSProbe Tracker.
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Discussion

The purpose of this study was to investigate the x axis limitations of the TRUSProbe Tracker

system. Measurements were taken at 17.15mm SDD, both along the axis of the probe and

perpendicularly.

The dose rates for the catheter directly above the dosimeters and the catheter 2cm to the

right can be seen in Figure 5.2.3. The catheter which is directly above the probe is treated

first, followed by the second catheter. From the dose rate comparison, it is clearly evident

that there is a reduction in dose rate for the catheter off centre. The maximum dose rate

observed for first catheter was 3.585 cGys-1 compared to 2.181cGys-1 for the second. Further,

the overall average dose rate for the first catheter was 0.513cGys-1 with a standard deviation

of 0.721 cGys-1 and 0.319cGys-1 with a standard deviation of 0.387cGys-1 for the second.

Despite there only being a 2cm difference, this corresponded to a 55% reduction in dose rate.

Further quantitative analysis was applied to the timing between each dosimeter, similarly to

Section 5.2. The results are listed in Table 5.4.1. The maximum relative difference obtained

was 43.1% with a minimum of -127.2%. This is significantly larger than those obtained for

the catheter directly above (Table 5.2.1).

The catheters were rotated 90o and the tracking algorithm was applied to the dose rate data.

The x, y and z tracking coordinates can be seen in Figures 5.4.2, 5.4.3 and 5.4.4.

Across all three figures, there exists a high degree of over estimation. For the y, there was no

variation across the treatment however it can be seen that there is a parabola-type response,

with the vertex corresponding to directly over the probe. The z coordinates returned similar
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results, with somewhat expected results for a small region above the probe and then a high

degree of misrepresentation.

The presence of these over estimation data points may have been the result of the way in

which the algorithm obtains radial distance; a lower dose rate corresponds to a large radial

distance. This explains why we have the parabola-type response for the y coordinates.

The limitations of the MOSkin dosimeters also contribute to the results obtained. As a

result of the large angles associated with the measurements, the angular dependence of the

dosimeters may have also caused incorrect dose rate measurements for those points laterally

further from the probe. Furthermore, the spacing between the dosimeters has an effect on

the accuracy performance; by using a probe with detectors further apart it is expected that

the accuracy would increase

5.5 Testing the limitations of the TRUSProbe Tracker

with varying step sizes

The final test in investigating the feasibility of the TRUSProbe Tracker and MOSkin system

for HDR source tracking is determining if the system can distinguish between different step

sizes. In order for the system to be used in clinical applications, the system must be able to

differentiate between different step sizes.
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Method

The same experimental configuration as previous tests was used, which can be seen in Figure

5.2.2. SDDs of 17.15mm and 37.15mm were chosen. A QA plan of 5s dwell time was used.

In order to test the systems ability to distinguish between dwell steps of different sizes, the

dwell step sizes were chosen to be 2mm, 5mm and 10mm in a repeating pattern.

Results

The varying step size QA plan was delivered at both 17.15mm and 37.15mm. Dose rate data

was collected for all six dosimeters and was used in the tracking software. The y coordinates

were neglected due to their independence from varying step size and the x coordinates were

neglected due to the limit accuracy of these values as found in the previous study.

The z coordinates for each SDD can be seen in Figure 5.5.1. It can be observed that

there exists regular ≈10mm steps across the 17.15mm z coordinate data. However, these

same steps cannot be resolved in the 37.15mm SDD. The 2mm and 5mm step sizes were not

observed.

Discussion

A qualitative study investigating various step sizes was conducted at two different SDDs. The

z coordinates were only taken into consideration. Qualitatively, from Figure 5.5.1 the 10mm

step size can be seen. From the plan, these steps occur every 15 seconds. This corresponds to
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Figure 5.5.1: Varying step sizes at 17.15mm SDD and 37.15mm SDD
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the observed pattern. The exact timing of these individual step sizes cannot be determined

due to the spread of the data. Both the 2mm and 5mm step size cannot be distinguished.

The inability to observe these steps sizes is likely due to the characteristics of the MOSkin

dosimeters; a low temporal resolution combined with an angular dependence. The system

cannot differentiate points if they occur within 10mm. Further, there exists a characteristic

fluctuation in dose values obtained. Due to this fluctuation, the system is not able to resolve

the smaller step sizes.

5.6 Feasibility for In-vivo rectal wall dosimetry using

MOSkin dosimeters coupled with the TRUSProbe

Tracker

Previously in this chapter, the use of the TRUSProbe Tracker in verification of treatment

delivery by means of preliminary HDR BT source tracking was proven. In order to quantify

the TRUSProbe Tracker’s ability in performing IVTV during TRUS based HDR BT, the

dose delivered to at risk organs must be verified.

This study hopes to achieve three objectives. The first is to verify findings from both Poder

et al and Carrara et al in their previous rectal wall dose studies [67, 68, 69]. These studies

both set out to quantify the differences between MOSkin dose measurements and the doses

calculated on the pre-treatment plan. Secondly, it is hoped to perform catheter-by-catheter

dose analysis to examine the feasibility of real-time measurement. Finally, a clinically relevant
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error will be introduced and the systems ability to verify this error will be evaluated.

Method

The End-to-end phantom was used in conjunction with a 60cc Gel Prostate insert in this

study. This provided an anthropomorphic phantom which allowed a complete HDR pBT

treatment to be planed and delivered as per clinical procedure. Prior to the study, 5 MOSkins

were placed longitudinally on the TRUSProbe Tracker, each with 15mm spacing in between.

Due to the small rectal hole used in the E2E phantom, a endorectal balloon was not used.

However, a condom was placed over the probe in order to protect the dosimeters (Figure

5.6.1).

Twenty treatment catheters were inserted under US guidance. A US based plan was not able

to generated due to artefacts caused by the treatment catheters. The base of the prostate

was chosen as a reference point to line up the first MOSkin dosimeter. A 120keV 50mA

CT was acquired and a treatment plan was generated. A 9 Gy per fraction prescription was

chosen after contouring the prostate and defining the urethra and rectal wall. For each of

the MOSkin diodes, a reference point was defined on the TPS which allowed the prescribed

dose to these positions to be known.

The dose delivered to each dosimeter was monitored in real-time using the OneTouch readout

system which was placed in the treatment room next to the phantom.

The introduction of a clinical relevant error was then applied to the experimental setup in

order to quantify the TPT’s ability to determine any large deviations from the treatment
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(a) MOSkins placed along the TRUSProbe
Tracker. The kapton tape can be seen secur-
ing the dosimeters.

(b) The E2E and the 60cc Gel Prostate insert
with the probe inserted prior to treatment.

Figure 5.6.1: An overview of the rectal wall dose study.

plan. This involved swapping catheters 1 and 3, an error which is both difficult to identify

given current QA methods and clinical relevant due to the user specificity of connecting

treatment catheters and the transfer tubes. The same treatment plan as previous tests was

used.

Results

Of the five MOSkin dosimeters used on the TRUSProbe Tracker, one dosimeter returned

a null reading, despite each dosimeter being tested before use. The malfunction may have

arisen when inserting the TPT into the E2E phantom. Its measurements were neglected in

any forthcoming calculations.
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Over the course of each treatment, 2600 MOSkin data points were taken for each of the four

functioning dosimeters across two fractions. The average response for all dosimeters across

both fractions was (0.234cGy±0.382)cGy. The cumulative dose for each of the dosimeters

was determined for each fraction and compared to the expected doses from the TPS. This

can be seen in table 5.6.1.

The doses measured at each of the dosimeter positions all fall within 5% of the expected

dose, with the largest being -4.49% and the smallest being 0.67%. The average ∆TPTvsTPS

was found to be (-2.34±6.3)%.

Table 5.6.1: A comparison of the measured dose deposited in each dosimeter and the expected
doses determined from the TPS.

Total Dose (cGy)

Dosimeter Fraction 1 Fraction 2 Mean Error TPS ∆TPTvsTPS (%)

1 437.56 447.41 447.41 ±9.9 467.54 -4.49

3 434.91 429.34 429.34 ±5.6 426.45 0.67

4 268.91 261.42 261.42 ±7.5 268.50 -2.71

5 158.81 146.33 156.33 ±2.5 160.72 -2.81

For the analysis of the catheter by catheter doses, twenty catheters per fraction over two

fractions were used. The doses for each catheter were determined for each of the 4 function-

ing dosimeters and compared to the expected catheter doses for each of the dosimeters from

the TPS. The average catheter dose measured was between 2.58 cGy to 133.60cGy, with the

average being (16.17±19.50)cGy.
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A histogram comparing the ∆TPTvsTPS can be seen in Figure 5.6.2. When comparing the

catheter by catheter doses between the dosimeter and the TPS values, the average relative

dose difference was determined to be -2.4%. The maximum and minimum ∆TPTvsTPS was

found to be 19.66% and -21.36% respectively.

Figure 5.6.2: Histogram showing the ∆TPTvsTPS for each catheter. The analysis uses 160
points which were taken using 20 catheters over 2 treatments measured with 4 MOSkin
dosimeters.

When comparing the dose measurements from the error run and the TPS doses, the av-

erage relative dose difference was determined to be -5.29%. The maximum and minimum
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∆TPTvsTPS was found to be 47.21% and -237.65% respectively. These results can be seen in

Figure 5.6.3.

Figure 5.6.3: Histogram showing the ∆TPTvsTPS for each catheter after the catheter swap
had been performed.

Discussion

In order to validate the feasibility of the TRUSProbe Tracker (TPT) for in-vivo dosimetry,

the first objective of the study was to obtain similar findings from earlier MOSkin studies.

Poder et al ’s 2020 study which utilised the Duel Purpose Probe obtained an average relative

dose difference of (-1.6±11.1)% across 20 measured fractions [69]. Similar results were ob-

tained by Carrara et al. Over 18 fractions, the measured doses returned an agreement with

the TPS doses of (-2.1±8.3)% [67].

In this study, the average ∆TPTvsTPS found across 2600 MOSkin data points taken from four
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dosimeters across 2 fractions was (-2.34±6.3)%. This value shows a close correspondence to

those results obtained in the previous studies. As a result, the use of MOSkin dosimeters for

in-vivo dosimetry is further proven.

In order to validate real-time dose measurement, a catheter-by-catheter dose analysis was

performed. Twenty catheters per fraction over 2 fractions were used. The doses were deter-

mined in each dosimeter for each catheter and compared to the TPS calculated doses. The

average ∆TPTvsTPS per catheter was found to be -2.4%, with a maximum of 19.66% and a

minimum of -21.36%. At the end of the procedure, the relative difference observed was -1.8%.

The measured and TPS dose in each catheter is shown in Figure 5.6.4. The data shows a

close correlation to the expected dose, with any deviations clearly visible by the existence of

a difference in step. For the second half of the procedure when the catheters are further away

from the dosimeters, it can be seen that there exists a clear difference in cumulative catheter

dose by the presence of a step in Figure 5.6.4. This step may be attributed to the decrease

in sensitivity of the dosimeters at this large SDD; errors associated with the fluctuations in

dose caused from limitations in the MOSkin dosimeters are highlighted at large SDD.

Another factor which may contribute to the differences observed is the limitations in readout

time for the OneTouch system. For smaller dwell times, the system is unable to to distinguish

between. This may have resulted in the total dose for each catheter to miss some dose values

or for some dose values to be contributed to the next catheter total.

The response of the TRUSProbe Tracker was evaluated when a clinically relevant error was

introduced to the treatment. The error chosen to introduce was a catheter swap, which

involved swapping catheter 1 and 3 prior to treatment delivery. The catheter by catheter
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Figure 5.6.4: The cumulative dose for each catheter for both the TPS predicted (orange) and
MOSkin (blue) measured doses.

cumulative dose can be seen in Figure 5.6.5.

A comparison of the dose measured in each dosimeter for each catheter can be seen in Figure

5.6.6. The measured, the TPS and the introduced run are all displayed.

From the graphs as well as the cumulative dose representation, the error introduction can

be qualitatively seen; a large dose difference of ≈20cGy is evident for each dosimeter. Each

dosimeter returned a different response to the error, based on where it is in relation to the

catheter. Dosimeter 1 and 3 both showed an under response while dosimeter 4 and 5 shower
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Figure 5.6.5: The cumulative dose for each catheter for both the TPS predicted (orange) and
MOSkin (blue) measured. Prior to treatment, catheter 1 and 3 were swapped.
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(b) A closeup of catheters 1,2,3 and 4

Figure 5.6.6: Dose deposited in each dosimeter in the initial measurement, the TPS and the
introduced error measurement.
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an over response.

The effect of a catheter swap can be observed in two different ways; timing and distance.

Each catheter has its own total dwell time. Any increase, say from a catheter swap with a

longer total dwell time, will cause measured dose for this catheter to increase and vice versa.

the distance between the catheter and the dosimeters will also influence the dose deposited.

Those catheters further away will deposit less dose than those which are closer. These two

effects have both an additive and subtractive influence on dose.

For catheter 1, we see that we have an decrease in dose compared to the TPS. This is at-

tributed to the difference in catheter 1 and 3 channel time: catheter 1 has a total dwell time

of 42.6s and catheter 3 has a timing of 34.4s. By swapping the two, we would expect to see

a decrease in dose for catheter 1 based on the timing differences.

For catheter 3, based on this difference in timing we would expect to see a large increase in

dose. However, we only see a small increase. This small difference in dose may be a result in

the other effect which influences detected dose; distance. Catheter 3 is located above catheter

1, with a difference in SDD. Based on this increased SDD, the dose deposited will be less.

This may have been an attributing factor to a lower dose being detected for catheter 3.

Although the system was able to detect this difference, the difference in measured dose for

catheter 2 cannot be explained. From Figure 5.6.6, the dose for catheter 2 can be seen to be

lower than the expected. Due to the catheter not being swapped or changed, it is expected

that its dose value was not to change. This difference may have been attributed to some level

of dose spill from the surrounding catheters or a movement in catheter within the phantom

during the catheter swap.
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Although the system can be used to observe an introduced error, more testing at different

heights and dwell timing needs to be conducted.

5.7 Conclusion

The purpose of this chapter was to investigate the potential of the TRUSProbe Tracker as a

tool for in-vivo treatment verification for HDR PBT.

The source localisation section of this chapter hoped to prove a novel means of source tracking

utilising MOSkin dosimeters. It was shown that preliminary source tracking was achieved

with a varying degree of accuracy based on which axis was being investigate and the SDD.

Based on limitations of the MOSkin dosimeter however, it is shown that the choice of detector

needs to be revised. A more superior detector choice would be silicon diodes, similar to those

used in the MP987 as they have a larger sensitive volume and are much easier to obtain a

real-time readout. By using this detector type, an array of 12 detectors could be used in

the probe to achieve its full source tracking potential. These diodes do not have the same

fluctuations and angular dependence that MOSkins exhibit which would produce a more

accurate source localisation.

The TRUSProbe Trackers ability to perform in-vivo dosimetry was evaluated in the second

half of this chapter. The results obtained mirrored those that were obtained in previous

studies, verifying the systems use as an in-vivo dosimetry tool. However, more studies are

required to further verify findings found. Patient and retrospective studies would also serve

as great importance in the commissioning of this device.
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Conclusion

The aim of this thesis was to develop a system which could accurately perform in-vivo

treatment verification for HDR pBT in a clinical setting. This aim was achieved through the

successful development of the E2E phantom with anatomically correct Gel Prostate insert

which allowed subsequent studies to be conducted under clinically relevant conditions. The

phantom was then used in the following chapters in conjunction with the MP987 detector

system and the TRUSProbe Tracker to investigate their potential in IVTV. It was shown that

the MP was capable of source localisation for clinically relevant treatment plans as well as

its use in the identification of clinically relevant treatment errors. The TRUSProbe Tracker

proved its ability to perform in-vivo dosimetry using MOSkin dosimeters and the abilities

and limitations in source HDR source tracking were established.
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6.1 Final Summary

In Chapter 3 of this thesis, it was successfully shown that the E2E phantom would be suitable

for clinically relevant treatments. The Gel Prostate insert were proven to be an appropriate

anthropomorphic phantom, with its US compatibility proven with a successful volumet-

ric study conducted. It was further demonstrated that the phantom was compatible with

the Proguide treatment catheters, with clear visibility shown on CT and US images. The

importance of phantom mixture consistency was identified with the evaluation of catheter

identification on US imaging.

The feasibility of using the MP987 to track clinically relevant HDR pBT treatment plans

was proven in Chapter 4 of this thesis. The statistically significant property of repeatabil-

ity between successive acquisitions was firstly evaluated, with results indicating that 95%

of data collected for a single dwell position would fall within 2.6mm. The variance(σ) was

calculated for varying SDD and dwell times, to evaluate their effect on the acquired data. It

was shown that the variance decreased with increasing dwell time and increased with increas-

ing SDD. It was then demonstrated that the calibration factor is dependent on the reference

depth that it is calculated from, causing deviations on z output positions by up to 90%. It

was then determined that the MP987 could localise a HDR source when comparing to the

known source positions from the TPS on average to within (3.60±0.14)mm, (3.70±0.15)mm,

(3.53±0.12)mm and (0.30±0.06)s for the x, y, z and t coordinates respectively. The systems

ability to detect a clinically relevant error was also evaluated, with the catheter swap clearly

evident in the returned dwell position differences.
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Finally, in Chapter 5 the ability of the TRUSProbe Tracker coupled with MOSkin dosimeters

to perform IVTV was evaluated. The tracking capabilities by means of dose rate comparison

of the system was evaluated; using the times of maximum dose rates and the separation of

the dosimeters the feasibility of using dose rate to localise a source was proven. The source

tracking algorithm’s use in source localisation was also demonstrated, with its performance

evaluated for varying SDD along the z axis. The coordinates determined for an SDD of

17.15mm resulted in a relative difference when measuring the time taken between a pre-

defined positions to be 1.3%. An increase of SDD to 51.15mm saw an increase in relative

difference to 23.5%. The x axis and step size tracking abilities were evaluated, highlighting

the systems source tracking limitations for these coordinates.

The feasibility of in-vivo rectal wall dosimetry using the TRUSProbe Tracker was then evalu-

ated, with ∆TPTvsTPS found to be (-2.34±6.3)% across 2 fractions. This is in close agreement

with results found in previous MOSkin studies [67, 68]. Catheter-by-catheter dose analy-

sis was then proven, with the average ∆TPTvsTPS per catheter was found to be -2.4%. The

plausibility of using the TRUSProbe tracker in determining a catheter swap was then shown,

with a clear increase in relate difference in the swapped catheters.

6.2 Future Work

Although the use of the MP987 detector system and the TRUSProbe Tracker in IVTV was

demonstrated successfully, there are a number of studies and alterations which need to be

made before routine clinical application.



143

Firstly, as demonstrated in Section 4.2 and 4.3, the need for a more robust method of equalisa-

tion is apparent. The z coordinate output from the tracking software relies on pixel response,

so a uniform response for each diode is a necessity. If each pixel across the plate responded

uniformly, a calibration factor determined at any SDD and position above the plate should

hold true for all measurements. This was not the case. A more reliable source of equalisation

should be applied to the system before further studies. One such possibility positioning a

source above each pixel individual at a fixed SDD, utilising treatment catheters and a remote

afterloader. By doing so, each pixels response to the same source will be known and adjusted

accordingly. Another factor which needs to be addressed in further studies is the influence of

dead pixels in the COM calculation which returns position data. By creating a non-uniform

distribution of the top 30% of pixel values, the COM calculation may produce an incorrect

position which is not directly below the source. To avoid this, the source tracking algorithm

needs to be altered in such a way as to remove the dead pixel’s response entirely and replace

it with an average of its neighbours responses.

Furthermore, a more appropriate means of shielding of the electronics should be investigated.

The use of aluminium foil, although crude, did provide an appropriate level of RF shielding.

However, the manufacture of a more permanent solution is required in order to reduce any

miss-reads or noise into the system.

In order to obtain a more clinically relevant system, the way in which the co-registration of

the MP and TPS coordinate system needs also to be investigated.

Finally, further studies for the TRUSProbe Tracker need to be conducted in order to further

refine its use in IVTV. Retrospective and patient studies should be carried out to test its
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in-vivo dosimetric properties. The source tracking capability of the TPT is limited however

due to the use of MOSkin dosimeters as a means of source localisation. Future studies should

replace MOSkins with SI diodes to maximise the systems source tracking abilities. This will

allow more detectors to be used in the TPT as well as a more accurate means of source

localisation.
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