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Abstract

High dose rate brachytherapy allows the delivery of radiation internally, with high-dose gradients

creating a conformal distribution. The inherent drawback of this treatment exists within small

uncertainties producing a large impact on safety and efficacy. Applicator displacement was ret-

rospectively simulated for 29 cervical cancer treatments to determine a critical shift in applicator

position. A 2 mm shift in the anterior and posterior directions was detrimental to the bladder and

rectum, respectively and a 4 mm shift in all directions caused a critical reduction in HR-CTV cover-

age. These findings indicate the importance of quality assurance practices that mitigate applicator

displacement. Furthermore, the source localisation accuracy required for cervical brachytherapy was

quantified. HDR gynaecological brachytherapy relies on 3D imaging, contouring, precise reconstruc-

tion of applicator position and transfer of data to the afterloading device. To evaluate this process

an end-to-end phantom was developed, which consists of a component that houses gynaecological

applicators and the Magic Plate 987 (MP987), created by the Centre of Medical and Radiation

Physics, University of Wollongong. The 21 × 22.5 cm2 silicon diode array facilitates source tracking

at clinically relevant depths. A characterisation of the MP987 for HDR source tracking has been

performed, producing an error in dwell time and position of 0.1s and 0.25 mm respectively, for dwell

times greater than 5 s. Source tracking accuracy is a function of both dwell time and distance from

detector to source.

The End-to-end phantom has verified both vaginal and cervical treatments. For a vaginal treat-

ment, the mean residual in dwell position is within (0.24 ± 0.01) mm for all directions, with the

difference in dwell time being (0.10 ± 0.01) s. Catheter swap, indexer length and activity miscalibra-

xiv



tion errors were all detected within the vaginal therapy end-to-end test. Validation of the End-to-end

phantom for a cervical brachytherapy treatment produced a mean difference of (3.49 ± 0.57) mm,

(4.74 ± 0.77) mm, (6.14± 1) mm in the X, Y and Z directions respectively, with a dwell time differ-

ence of (0.19 ± 0.03) s. The localisation accuracy achieved is below the critical displacement value

established within the treatment planning study. Improvement in co-registration and Z localisation

methodologies will provide better outcomes for cervical cases. The End-to-end phantom successfully

verifies the procedure for HDR gynaecological brachytherapy treatments, enabling safe and effective

patient care.
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Chapter 1

Introduction

Gynaecological cancer refers to cancer of the female reproductive system and is the 3rd most preva-

lent cancer affecting females in Australia.[7] Treatment for gynaecological cancers generally requires

a combination of chemotherapy and radiotherapy, and/or surgery if possible. Early-stage lesions

in the lower genitalia can be removed surgically, however, analysis on a cellular level might still

suggest a high probability of local recurrence. The combination of surgery, external beam radiother-

apy, chemotherapy and brachytherapy utilised is defined by the stage, grade and type of disease.

Brachytherapy is a type of radiotherapy used to treat a range of cancers. The radiation is delivered

to the clinical target volume from within, via the implantation of radioactive sources. Administering

dose internally allows for a short-range dose, facilitating the conformity required. Dose conforming

to the treatment volume is extremely important as it minimises irradiating organs at risk (OAR). [8]

Gynaecological brachytherapy is performed with the use of applicators, which assist in transporting

the brachytherapy source to the right locations. Applicator selection depends on the specific type of

gynaecological cancer being treated.[8] Careful treatment planning and quality assurance are integral

to a positive patient outcome since brachytherapy administers a large dose gradient. Clinical errors

such as a shift in applicator position, uncertainties in applicator reconstruction or an activity miscali-

bration can causes incongruencies between the treatment plan and delivered radiation distribution.[9]

Dose applied outside the planned treatment volume will result in tissue damage.
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The shortcomings in gynaecological brachytherapy’s lay within the detriment small errors or un-

certainties have on the treatment due to large dose gradients. The impact a shift in dose distribution

can have on treatment quality is evaluated in a retrospective treatment planning study. Within this

study, the dose distribution is shifted, and its impact is calculated. This provides insight into the

change in dose to organs at risk and quantifies a clinically relevant objective for source tracking

accuracy.

Quality assurance needs to be performed for new and existing aspects of a treatment workflow to

ensure patient safety and treatment efficacy. To accomplish this an end-to-end test is proposed to

test a complete clinical workflow and compare the indented treatment to what is delivered. Clinical

errors, applicator construction and use and data transfer protocols are all tested to determine if

the intended treatment is delivered. This is especially important when introducing new equipment,

software or protocols.

We propose the construction of a phantom to provide end-to-end testing of gynaecological brachyther-

apy treatments. Establishing a means of examining imaging, planning and treatment delivery. The

End-to-end phantom consists of a component that can house gynaecological applicators for treatment

planning and imaging as well as a novel silicon diode array used for HDR source tracking. The Magic

Plate 987 is a novel diode array with 987 silicon diodes and a 21 cm by 22.5 cm field of view. A

characterisation for HDR source tracking will be completed within this thesis. A. Espinoza et al,

produced a source tracking system with the Magic Plate-121, providing submillimeter localisation

and dwell times within 1 ms. The plan verification “Magic Phantom” accomplished source tracking

with catheters at a distance of 6 mm. [10] The MP987’s large field of view will allow source tracking

at greater distances enabling the evaluation of different treatment configurations. The following the-

sis develops a methodology to facilitate tracking within the End-to-end phantom, providing source

location and timing information. Performing a full treatment on the proposed phantom will allow a

comparison between the treatment planning system’s intended and implemented treatment.

This thesis will serve as a validation of the End-to-end phantom. The Centre of Medical and
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Radiation Physics at the University of Wollongong has developed the MP987, which will be charac-

terised for HDR source tracking. Practical components were carried out at St. George Cancer Care

Centre and Prince of Wales Hospital, Nelune Cancer Care Centre.

Project Goals:

� Provide a clinical benchmark for the End-to-end source tracking phantom by establishing a

deviation from the planned dwell position which causes a critical deterioration in treatment

efficacy and safety

� Inform on the clinical importance of protocols that mitigate the risk of a physical displacement

in applicator position and reconstruction uncertainty

� Develop an HDR source tracking methodology for its use in the End-to-end phantom. Deter-

mining dwell times and positions.

� Outline optimal processing parameters and define source localisation and temporal accuracy

� Construct End-to-end phantom for vaginal and cervical brachytherapy

� Image and develop treatment plan on the End-to-end phantom for vaginal and cervical brachyther-

apy

� Deliver full clinical plans for the applicators within the End-to-end phantom. Compare dwell

times and positions with a treatment plan to determine discrepancies.

� Determine if the End-to-end phantom can detect the following clinical errors: catheter swap,

indexer length error and an activity miscalibration
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Chapter 2

Literature Review

2.1 Treating Gynaecological Cancer

Gynaecological cancer is an umbrella term which encompasses many cancers of the female reproduc-

tive system and is the 3rd most prevalent cancer affecting females, as per the Australian Institute

of Health and Welfare in 2018. [7] A combination of treatments are required for gynaecological

cancer depending on the type and extent. These treatments can include a combination of surgery,

chemotherapy and radiation therapies. The stage of cancer is classified via the FIGO (International

Federation of Gynecology and Obstetrics) system or the AJCC (American Joint Committee on Can-

cer) “TNM” staging system, both are extremely similar. Both systems classify the stage depending

on 3 factors, (TNM):

� Tumour size(T)- The size of main/primary tumour

� Lymph nodes (N)- Extent of cancer development into nearby lymphatics

� Metastasis (M)- The spread of the primary tumour to distant tissues.[11]

Surgery entails the removal of tumours and effected tissue, and is dictated by the stage of the

disease. In the case of cervical cancer, removal of the uterus and cervix is known as a hysterectomy

4



and is sometimes prescribed. In the case of a radical hysterectomy the removal of the ovaries, fallopian

tubes, uterus, cervix, soft tissues around the cervix and top of the vagina may be required.[12]

Chemotherapy is a drug based treatment which damages cells that replicate at a rapid pace. It can

be applied before or after surgery, which is known as neoadjuvant or adjuvant therapy respectively.

A chemotherapy plan is prescribed in cycles to allow healthy cells effected by the drugs to recover.

The medicine can be administered orally, via intravenous or injected into the tissue.Chemotherapy is

effective in destroying cancer cells since they divide quickly. However, this causes certain normal cells

such as nail, mouth, digestive tract, bone marrow and hair follicle tissues to also sustain damage.

The cytotoxic effect on normal cells is largely responsible for the associated side effects.[13] A review

of radiosensitisers in cervical cancer has determined that cytotoxic agents which are widely used

clinically are also generally radiosensitisers. The chemotherapy drug while cytotoxic also prevents

the DNA repair of a cell, allowing a sub-fatal amount of radiation to cause cell apoptosis, making

adjuvant radiation treatment more effective.[14]

Radiation therapy functions by causing lethal damage to cancer cells in a manner which conserves

normal tissue. The main mechanism by which ionising radiation causes cellular damage is via double-

strand breaks (DSB), where both strands of DNA have been broken within proximity of each other

to inhibit repair.[15] DSBs can occur via direct or indirect methods. Direct breaks are the result of

ionisation electron tracks breaking each strand, while indirect breaks occur due to radiation-producing

free radicals such as a hydroxyl group which damages DNA.[16] T.J McMillan et al demonstrated the

importance of DSBs when determining if there is a use for the quantification of DSBs in radiotherapy.

It is clear that DSBs are pivotal, however, other damage types aid in triggering cell death pathways.

For patients where surgery is of high risk such as the morbidly obese or elderly, primary radio-

therapy can be a good alternative. In a review, Elzbieta van der Steen-Banasik found brachytherapy

for endometrical cancer to be a well tolerated treatment approach with outcomes comparable to

surgery.[17] Alternatively, Sedlis et al demonstrated the benefit of postoperative radiotherapy in

early-stage cervical cancer treatments with a study of 277 cervical cancer patients who had under-
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gone surgery. 137 of whom have been treated with pelvic radiotherapy and 140 received no further

treatment. This concluded a statistically significant 47% reduction in risk of recurrence but did

induce a 6% increase in toxicity and one death following adverse GI effects. The use of postoperative

radiotherapy is beneficial in most stages across multiple gynaecological cancers.[18] A combination of

external beam therapy and brachytherapy is utilised with or without surgery to constitute a complete

radiotherapy regime.

2.1.1 External Beam Radiotherapy

External beam radiotherapy (EBRT) consists of a carefully constructed conformal beam of photons

incident on a specific region to administer a tumoricidal radiation dose with the aim of destroying

cancer cells while sparing normal tissue. The consequences of normal tissue damage consist of both

the long term risk of secondary cancers and organ damage.[19] A case of this was demonstrated by

Devarati Mitra et al, where 212 endometrial cancer patients received a combination of EBRT and in-

tracavitary brachytherapy of which 17% experienced rectal bleeding.[20] Fortunately the treatment’s

subsequent organ damage is present only within a subset of patients due to the heavy optimisation of

EBRT. A unanimous goal sought within radiotherapy is the isolation of dose to cancer cells. This has

motivated the development of highly conformal methods of treatment such as intensity-modulated

beam therapy, which is the result of multi-leaf collimator adjusting the specific shape of the beam

and thus a tailored resulting dose profile.[21] This combined with the use of multiple beams enables

three-dimensional tumour conformity. The treatments are performed based on a treatment planning

system(TPS), where computed tomography (CT) and/or magnetic resonance imaging (MRI) data

is input into the planning system to carefully construct a treatment volume. The final target vol-

ume considers various characteristics such as organs at risk (OAR) and organ motion based on the

individuals anatomy. Quality assurance is then conducted on the treatment plan using dosimetry

methods before the treatment is carried out.[22] An example of the importance of treatment planning

considerations is given by John Ng et al, Columbia University Medical Center, where the treatment
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plans for 15 patients with early-stage breast cancer were retrospectively assessed by an institutional

review board. Finding that treatment in a prone position produces substantially lower risk of sec-

ondary lung cancer when compared to the supine position.[23] The need for meticulously thought

out and accurate treatment planning is paramount to positive patient outcomes.

The treatment planning system optimises conformity of each treatment, an example of which is

the use of an multi-leaf collimator, a collimator which has multiple motorised segments, attenuating

and contouring the beam into different profiles. Planning with such complexity via the use of a

treatment planning system enables a designed dose tailored to the target volume. This has been

demonstrated by Vivian et al, using a micro multi-leaf collimator and BrainSCAN v3.5 stereotactic

treatment planning system. Leaf transmission, penumbra and multiple fixed field dose distributions

are measured. Beam data was acquired using a water tank and diamond detector with the planned

dose distributions verified using LiF, TLDs and film. Vivian et al concluded that the micro-multi

leaf/treatment plan system set-up is stable and accurate enough for small field applications. [24]

External beam therapy is generally standard practice for gynaecological cancers, with brachyther-

apy implemented to provide a local dose boost. 45 Gy in 25 fractions over 5 weeks of EBRT is recom-

mended by the EMBRACE collaborative group and a brachytherapy course is prescribed according

to dose volume constraints.[25]

2.1.2 Brachytherapy

Brachytherapy is a type of radiotherapy used to provide a local dose to a range of cancers. The

radiation is delivered to the clinical target volume from within, via the implantation of radioactive

sources. The source position within the patient, strength and amount of time at this position defines

the applied dose distribution. A large dose gradient localised around the source allows the treatment

to have more of a conformal approach. Specific protocols which govern the use of brachytherapy were

developed relatively early, with the Stockholm and Paris methods for intracavitary treatments pre-

scribed in 1914 and 1919 respectively. Historically Ra-226 was used followed by the implementation
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of other radionuclides such as Co-60, Cs-137 and Au-198 before Henschke first used Ir-192. Develop-

ments in the 1950s and 1960s provided the application of afterloading devices, initially to minimise

exposure to medical professionals[26]. The function of these afterloaders has since evolved to me-

chanically drive sources into implanted applicators or catheters. Enabling a computerised execution

of source dwell position and time, creating the required dose distribution.

Brachytherapy is used on its own or in conjunction with other treatments. The treatment can

achieve high levels of local precision given the introduction of 3D aspects to treatment planning;

utilising MRI and/or CT. Such precision is important to ensure coverage of the target volume as well

as conservation of healthy tissue. Brachytherapy is useful for gynaecological cancers to provide a

radiation boost as there are many organs at risk in this pelvic region. The current standard of care to

treat locally advanced cervical cancer has progressed from solely external beam therapy to external

beam therapy, brachytherapy and chemotherapy combined. Brachytherapy provides an extra dose

to the gross tumour while the chemotherapy also serves as a radio-sensitiser and kills fast-growing

cells. [8]

Low dose rate treatments refer to the implanting of low activity sources within the patient for 1-3

days or permanently, with a dose rate of under 0.4 Gy/hour.[8] The disadvantages of LDR treatment

in gynaecological brachytherapy includes possible radiation exposure to staff, hospitalisation, long-

term discomfort from applicators and the possible displacement of applicators.[27] The high dose

rate (HDR) alternative uses a small, highly active source inserted via remote afterloading; where

a mechanically driven cable with a radioisotope at the tip allows travel via a catheter into the

body. The source spends specific amounts of time at predetermined locations, creating the required

dose profile. HDR treatment lasts a few minutes as opposed to the large treatment time of LDR

brachytherapy.[8]

Sonali S. Patankar et al compared low and high dose rate brachytherapy for cervical cancer

within the National Cancer Database in the United States in which contains 10,564 women across

900 hospitals determining an increase of HDR brachytherapy and a decrease of the use of LDR.
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However, the overall survival is the same for both HDR and LDR.[28] Additionally, HDR therapies

allow dose optimisation when treatment planning after surgical insertion has occurred. Minimising

the effect of suboptimal needle placement. Discomfort to the patient when considering LDR implants

and the longer treatment time affecting hospital throughput has seen a HDR implementation of

gynaecological brachytherapy be more prevalent and thus has become more appropriate to research.

Brachytherapy allows a large conformal dose distribution making it an attractive treatment op-

tion, with the down-side being costly repercussions for uncertainties and error within the treatment.

2.2 Treatment Planning

Treatment planning requires imaging of the region being treated to identify the extent and location of

the disease. As methods have become more sophisticated the assignment of treatment specifications

within the plan requires dosimetry to predict the applied dose distribution. Early brachytherapy

planning used orthogonal x-rays to localise non-radioactive dummy sources or implants and super-

imposed each source’s dose distribution to determine the applied dose. Previous systems prescribed

dose, based upon dose-rates at specific distances from the implanted applicator and not the patient’s

anatomy (Point A presciption).[26] Currently, 3D imaging is utilised to plan according to anatomic

volumes, with organs at risk and tumour volumes identified. This well-established treatment plan-

ning approach has seen the development of the gross target volume (GTV), clinical target volume

(CTV) and planning target volume (PTV) quantities. The GTV is the macroscopic tumour volume

which is visible in the imaging, where the CTV is the microscopic spread and includes margin for the

associated lymphatics. The PTV accounts for organ motion and treatment uncertainty. The GTV

exists within the CTV which is contained within the PTV.[29]

The GYN GEC-ESTRO group have compiled the protocols from many contributing physicists,

to delineate important protocols which allow effective, 3D volume-based, treatment planning. When

treating cervical cancer, prescription is required which priorities complete remission. The terminology
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which allows this is the High-Risk CTV (HR-CTV) and Intermediate Risk CTV (IR-CTV). The HR-

CTV is defined to have a major risk of local recurrence because of residual macroscopic disease and

requires clear definition by a radiation oncologist when treatment planning. The IR-CTV contains

significant microscopic disease and also poses a risk of local recurrence. HR-CTVs receive as much

dose as possible to achieve eradication of all residual macroscopic tumour. Prescription is also made

with the intent of curing the microscopic disease which typically results in a total dose of at least

60 Gy to the IR-CTV. The target volumes are contained by anatomical structures demonstrated in

figure 2.1, where the pelvic wall serves as a border of which target definition is not crossed without

justification. [1]

Figure 2.1: Definition of target volumes due to cancer cell density [1]

An example of 3D data motivated treatment planning can be seen in figure 2.3, where isodose

lines can be seen overlaying the CT images. Historically dose precription is completed utilsing specific

dose points. This is known as the Manchester system, where the dose is considered at points “A”
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which is 2 cm superior and 2 cm lateral to the cervical os. Point B is 3 cm lateral from point

A and a dose points on the bladder and rectum are considered.[30] The International Commission

on Radiation Units and Measurements (ICRU) recommend dose to volume specification instead,

this is accepted clinically as advances in 3D imaging has enabled the treatments to progress.[31] A

comparison between point dose planning and treatment planning using 3D data by Yasur A. Bahadur

et al demonstrates that without volumetric treatment planning, the target volume is underdosed and

OAR such as the bladder and rectum receive more dose.[32]

Figure 2.2: Traverse slice view used for treatment planning, displaying the lunar ovoids of the Venezia
applicator, the red HR-CTV and isodose lines.

Contouring of critical volumes such as the CTV, and OARs are conducted on the planning image.

Structures of interest are outlined by a clinician in each 2D slice, an example of which is illustrated

in figure 2.2. All transverse slices are combined to reconstruct the clinical volumes. The bladder,

HR-CTV, sigmoid colon and rectum are displayed in a sagittal view within the anatomy and as

reconstructed volumes from a cervical brachytherapy treatment in figure 2.3. Similarly catheters are

localised within each slice, isolating the path the source will take. The treatment plan is created by

determining the dwell time and position of the source will take relative to the reconstructed volumes.

Dose optimisation occurs by determining the optimal weighting of each dwell position to provide

the required CTV coverage and OAR dose limits. Accomplished by manual adjustment or using
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inverse planning methods. Inverse treatment planning requires a set dose prescription to the clinical

volumes (CTV, OARs) and calculates dwell times and positions which accomplish the prescribed

dose distribution.

The EMBRACE publication is a commonly used recommendation for image-guided brachyther-

apy. The study is an interventional and observational multicentre study by the GEC-ESTRO

GYN working group. EMBRACE stands for Image guided intensity modulated external beam ra-

diochemotherapy and MRI based adaptive brachytherapy in locally advanced cervical cancer. The

study aims to establish a high level of tumour control while limiting morbidity. Previous RetroEM-

BRACE and EMBRACE I studies have indicated that positive patient outcomes stem from the

evidence-based specification of dose prescription and technique.[33][34] EMBRACE II proposes an

advanced target volume selection and contouring protocol for brachytherapy and EBRT. The proto-

col also consists of weekly chemotherapy and a bio-imaging sub-study of MR biomarkers to assist risk

of local reoccurrence. The protocol specifies a multifaceted approach of dose and volume end-points,

as well as dose escalation and de-escalation for image-guided adaptive brachytherapy (IGABT). [25]

(i) Sagittal view of critical volumes within anatomy (ii) Reconstructed volumes

Figure 2.3: HR-CTV and OAR reconstruction for gynaecological brachytherapy, with the bladder
yellow, HR-CTV red, sigmiod colon magenta and rectum green
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2.2.1 AAPM Task Group 43

The American Association of Physicists in Medicine (AAPM) task group reports provide a clinical

standard of practice through the construction of specific formalism. The AAPM Task Group 43

updated its report in 2004 and is recognised globally. The formalism exists to provide good practice in

determining dosimetric quantities both experimentally and via Monte Carlo methods. The formalism

specifies dose calculation from a single source at point P(r,θ) as shown in figure 2.4. The equations

2.1 and 2.2 provide insight into the factors which the TG-43 formalism uses for calculation of dose

rate in 1 dimension and 2 dimensions respectively.[2]

Figure 2.4: Polar co-ordinate system geometry for dose calculation used in TG-43 formalism [2]

Ḋ(r) = Sk · Λ ·
(r0
r

)2
· gp(r) · φan(r) (2.1)

Ḋ(r) = Sk · Λ ·
GL(r, θ)

GL(r0, θ0)
· gL(r) · Fan(r, θ) (2.2)

The air-kerma strength Sk ( 1 U = 1 µGym2h−1), is a measure of brachytherapy source strength.

Sk is the air kerma rate measured in free-space at a point far enough from the source that it can

be considered a point-source, multiplied by that distance squared. Sk = K̇(d) · d2. The dose rate

constant Λ is defined in a medium using Sk normalisation. Both equations demonstrate many similar

factors, including radial dose functions which consider the scatter and absorption within the medium.

Considering the dose-rate fall off is integral to source tracking in three dimensions, as it is used to
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Figure 2.6: Inverse square reduction in dose, normalised to 6 cm. [3]

determine SSD. In the 1 dimensional case, a point-source is considered and so an inverse-square

reduction (Gp(r)) is applied with the radial dose function gp(r). Comparing figures 2.6 and 2.5

demonstrates the relative effect each factor has on the dose fall-off with distance. The inverse-square

reduction is dominant when comparing the two factors.

Figure 2.5: The radial dose function normalised to 6 cm.[3]
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Figure 2.7: Anisotropy function at different depths.[3]

While equation 2.2 considers a line-source, radial dose function gL(r) and the geometry function

GL(r, θ) weights the distribution of activity within the source. Both equations address the dose

rate’s respective angular dependence with functions φan(r) for an anisotropic point source model and

Fan(r).[2]

There are a set of TG-43 assumptions which accompanies its implementation, these are stated

as:

� Dose rate contributions from individual sources are summed to give the total dose rate, ne-

glecting source-to-source interactions

� Water equivalence of all material within 30 cm of the calculation point

These assumptions simplify the clinical situation to enable fast standardised calculation and have

been implemented widely throughout treatment planning systems. However, this can present limita-

tions which need to be considered on a case by case basis. Rivard et al presents multiple limitations

such as the difference in absorbed doses for lower energy photon emitting sources.[26] Secondly,

scattering conditions within the treatment need to be considered with Ir-192 presenting a 5% dose
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difference over 10 cm. Patients who are undergoing brachytherapy treatments which are closer to

the skin will differ dosimetrically from the TG-43 formalism due to the lack of backscatter material.

Additionally, a lack of charged particle equilibrium can exist within 2 to 7 millimetres of an HDR

source, with a dose/kerma ratio greater than 1.05 occurs. Finally, a difference in non-water equivalent

media around the source needs to be considered given possible tissue heterogeneity and/or applicator

shielding.[26] Depending on the brachytherapy source used, the effect of neighbouring heterogeneity

needs to be considered accordingly.[35]. The AAPM specifies that the medical physicist has to quan-

titatively evaluate the influence a TG-43 dose calculation method and associated approximations will

have on dose delivery. [36]

Model-based dose calculation algorithms (MBDCA) will be able to address the TG-43 formalism

limitations by progressing from water geometries by modelling radiation transport in different media,

which should correspond to a more accurate representation of the dose distribution patients receive.

The Linear Boltzmann Transport Equation (LBTE), which describes the radiation’s interaction with

media, needs to be solved to model the dose deposited. The equation can be solved by Monte Carlo

codes which track a multitude of particles with a set probability of each interaction within the media.

Kernel superposition can also be used which is the application of a simpler solution which will be

adapted to fit the set-up. A discrete numerical approach to MBDCAs can also be implemented. [37]

In 2012 the TG-186 report created recommendations for the transition from TG-43 formalism

to MBDCA, arguing that “clinical dose parameters may vary by at least 5% and by as much as

a-factor-of 10 in numerous situations” providing a variability which will be detrimental to patient

outcomes.[38] The extent upon which the MBDCA will improve treatment varies, depending on

the circumstances of that treatment. Jacob et al,. conducted a retrospective study to compare

CT based tandem-ring treatment MBDCA plans with TG-43 based dose formalism. Both manual

applicator contouring and vendor catalogue applicator models were tested. Finding a 2.1±0.3% and

3.3±1.4% reduction in OAR coverage relative to the TG-43 plan for the manual applicator contouring

and vendor applicator library respectively. These improvements are met with the corresponding
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reduction of 2.4±0.9% in the target D90 dose compared to the TG-43 formalism.[39] The MBDCA

is computationally intensive and increases planning time, however, it will improve patient outcomes

in most circumstances.

MBDCAs will address the difference in absorbed dose in water and tissue, the radiation’s inter-

action with surrounding sources or applicator as well as a correct dose calculation for all scattering

conditions. However, for the algorithm to perform adequately it requires accurate inputs. Applicator

and source models are built into the vendor’s software and need to be selected. The input of the pa-

tient’s anatomy via a 3D scan is required with the assigning of media properties such as density and

elemental composition of each structure. This can be accomplished assigning these properties from a

predefined catalogue or conversion of CT data from Hounsfield Units to density information.[39] The

accuracy of mapping HU to mass density can be improved by dual-energy CT.[40] Key areas which

determine the clinical success of MBDCAs are the modelling of sources and applicators, CT/MRI

data being accurately converted to have the correct material properties and a sufficiently accurate

LBTE solver.[41]

Currently, Varian Medical System’s BrachyVision has incorporated MBDCA for Ir-192 source and

Elekta has done the same with their Ocentra Brachy treatment planning software. With Varian’s

AcuroTMBV Grid-Based Boltzmann Solvers which directly solves the LBTE via discretization and

Elekta’s Oncentra functioning on a 3 phase collapse-cone convolution/superposition.[42][37] A model-

based formalism is the future of treatment planning and will become more prevalent as computational

development continues.

2.3 Gynaecological Brachytherapy Applicators

Accurate placement of brachytherapy sources are an extremely important facet of the treatment.

Applicators are medical devices with internal channels which source runs through to provide control,

stability and reproducibility in each fraction. A vast array of applicators are available for different
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types of brachytherapy treatments to assist interstitial and interactivity use. Applicators can be a

surgical insert for gynaecological needs, a surface applicator for skin cancer treatment and even an

external grid attachment for the fortification of interstitial catheter position. Applicators can be

used for both LDR and HDR applications.[21]

The gynaecological treatment planning process consists of applicator selection depending on the

type of cancer. Multiple attachments and configurations enable customisation of the specified appli-

cator type.

Multichannel cylindrical applicators are used to treat vaginal malignancies, as it can deliver dose

to the vaginal canal, vaginal cuff and submucosal lymphatics. The cylindrical applicator is also used

for the treatment of endometrial cancer post-hysterectomy.[43] Hsiang-Chi Kuo et al investigated the

optimisation of the multichannel applicator with loading methods. Plans were generated and evalu-

ated for central loading(CL), peripheral loading(PL), modified peripheral loading(MPL) and middle

ring loading(MRL).[4] The configurations are demonstrated in figure 2.8, where the red channels are

those being used and the others are unoccupied.

Figure 2.8: Multichannel applicator loading configurations [4]

Hsiang-Chi Kuo et al demonstrated a change in loading plan to suit unique anatomy providing

better conformity, reducing dose to normal tissue and inner mucosa.[4]

Air pockets between the cylindrical applicator and vaginal mucosa are common since the tissue

is not smooth. An overall reduction in dose is found to be 26.4% ± 13.9% by Ashraf Hassouna et

al as a result. With an average air-pocket volume of 0.15 cm3 ± 0.36 cm3. Vaginal balloons can be
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attached to cylinder applicators to reduce this effect, but are not commonly used.[44]Tandem and

ovoid applicators are used to treat endometrial and cervical cancer. At the end of the applicator in

figure 3.5, is the tip of the tandem, this travels through the cervix providing dose to the uterus. At

the base of the tandem sits two ovoids which in the case of the fletcher applicator are more cylindrical.

The ovoids are positioned outside the cervix to provide dose for cervical treatment. Multiple types

of tandem ovoid applicators are available, some with additional ports for interstitial needles.

2.4 Dosimeters

Dosimetry is the measurement of dose deposited to a certain volume by incident radiation and

verification of the dose distribution specified is vital in all forms of radiotherapy. Higher dose gradients

require smaller margins for error to minimise toxicity to healthy tissues and ensure the treatment is

beneficial. The dosimetric goals within treatment are verified by the calculation of the dose deposited

to OAR or the CTV. Dosimetry can evaluate the physical translation of a treatment plan and whether

execution within these tolerances is achieved. [45]

The dosimeters used specifically in brachytherapy require a high spatial resolution due to the high

dose gradients. Radiochromic films are common dosimeters as they easily provide dose and position

without the need for chemical processing. The films can be easily integrated into most set-ups, as

the size and shape of the detecting volume can be cut into the required shape. The film operates

on a proportional change of opacity to dose. Incident ionising radiation or thermal annealing causes

di-acetylenes monomer to undergo polymerisation, this reaction causes the creation of crystalline

poly-acetylene resulting in a change of colour.[46]

19



Figure 2.9: Farmer ionisation chamber

Ionisation chambers are also commonly used for dose verification and are used heavily in water-

tank phantom beam calibration. A farmer ionisation chamber can be seen in figure 2.9 and represents

the basic design of an ionisation chamber. It is a gas-filled cavity with an outer electrode made from

graphite and an aluminium central collecting anode. An insulator separates the two electrodes to

prevent current leakage. The electric field is established across the gas between the two electrodes to

collect the charge produced by ionisation events from the incident radiation. The ion-pairs created by

these events are collected by the oppositely charged electrode and a signal is collected. [47] The signal

can be converted into absorbed dose when combined with calibration factors and the water-to-air

ratio of mean mass energy-absorption coefficients.[48]

Multiple types of ionisation chambers exist with different shapes and sizes. A well ionisation

chamber is generally used for brachytherapy source calibration for example, since it has an almost

complete 4π counting geometry. This ionisation chamber allows the source to be placed inside it.

The source is surrounded by two layers when placed in the well, one the inner electrode and the next

the outer electrode.[49] Generally, the brachytherapy source strength quoted by vendors can have an

uncertainty of 5%.

Thermoluminescent dosimeters (TLD) can be used for determining surface doses during treat-

ments or in personal monitoring devices for staff. TLDs function through holes in the lattice structure

trapping charges which are filled during an ionisation event within the dosimeter. After irradiation,

the TLDs go through an annealing process where the dosimeter is heated to provide the trapped

charges with enough energy to be released from its potential well. When the charges overcome this
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potential, they relax to a lower energy state and release a light photon. The intensity of light produced

during annealing is proportional to the dose deposited. Optically stimulated luminescent dosimeters

(OSLDs) function similarly but require light, to free trapped charge, instead of heat and so are more

stable over time. Although readout is not live, in-vivo and surface monitoring of treatments are ideal

for TLDs and OSLDs since the patients do not require wiring during the procedure.[50]

Solid-state dosimetry is ideal for brachytherapy QA applications due to good spatial resolution,

on-line readout and little to no bias voltage. The simplest form of solid-state dosimeter is a p-n

junction diode made from silicon.[47] A p-type semiconducting material is a semiconductor that has

been doped with trace amounts of atoms with one less valence electron, thus its addition to the pre-

existing semiconductor lattice will leave a locally positive hole. Similarly, an n-type semiconductor

is formed when the dopant has one more valence electron, leaving an unbound negative charge. Both

structures are displayed in figure 2.10.

(i) Silicon doped with antimony to create p-type semi-
conductor

(ii) Silicon doped with boron to create n-type semi-
conductor

Figure 2.10: Semiconductor doping

A p-n junction is formed by an interface of p and n-type material, coupling the two semicon-

ductor types leads to majority charge carrier diffusion across the boundary, where electrons have

travelled to the p-type and holes have travelled to the n-type. This creates a depletion region, in this

region exits a steady electric field. Electron-hole pairs created by incident ionising radiation will be
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collected by the intrinsic electric field in the depletion region, eliminating the need for an external

bias.[51] In-vivo dose measurement capitalises on this, making solid-state devices optimal for rectal

measurements.[52]Variations utilising solid-state technology have seen the development of multiple

types of dosimeter.

Figure 2.11: MOSFET

An extension of the semiconductor-transistor based dosimeter is the metal oxide field-effect tran-

sistor (MOSFET) dosimeter. MOSFETs function via two p-type channels embedded in an n-type

base, one of those channels being the source and the other the drain, as displayed in figure 2.11.

When a negative voltage is applied to the gate, holes are attracted to the oxide surface. Once the

threshold voltage is reached enough holes would have accumulated for a current to flow between

source and drain.[53] Upon irradiation, the electron-hole pairs created in the silicon oxide layer move

out of the gate causing a shift in threshold voltage. The miniature transistors possess excellent spa-

tial resolution and are perfect for in-vivo measurements[54]. MOSFETs enable real-time or delayed

feedback through a shift in threshold-voltage which is linearly proportional to the absorbed dose.

MOSFETs are ideal for dose verification and preventing overexposure as direct feedback from a rectal

dose measurement can ensure the treatment says within safe limits. [47]

2.5 Uncertainty and Error Within HDR Brachytherapy

Uncertainties in brachytherapy cause a difference between prescribed dose values in the treatment

plan and what is delivered to the patient. There exists systematic uncertainty which is present for
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all treatments and will thus have the same influence on each treatment fraction. Some examples of

systematic uncertainties include the selection of slice thickness within imaging, as it can limit the

accuracy of applicator reconstruction or identifying interstitial needle position. TPS uncertainties

exist within interpolations or model simplifications which neglect the effects of applicator material,

or dose delivery uncertainties due to catheter curvature and temporal rounding off. The effects of

random uncertainties can differ between brachytherapy sessions, such as imaging artifacts, catheter

displacement or implant motion.[55]

Applicator reconstruction involves the correct positioning of an applicator within the treatment

planning system relative to anatomical structures. While catheter reconstruction can be clear with

CT scans, MRI imaging is used to visualise critical soft tissue structure in gynaecological cases.

Rigid applicator models or digital reconstruction is used to position the applicator within the TPS.

As recommended by the GYN GEC-ESTRO working group a slice thickness must be less than 3 mm

for CT images and 5mm for MR sequences .[56] These image data sets are used for reconstruction

and contouring, to minimise inaccuracy a smaller slice thickness should be considered. Regulated

commissioning and reconstruction methods need to be established to minimise reconstruction un-

certainties and errors. Under these conditions, reconstruction uncertainty commonly has less of an

impact on treatment than contouring or organ movement uncertainties.[56]

Other factors which inevitably impact every brachytherapy treatment involve. source strength

calibration accuracy and correct specification of this source strength within the TPS. Additionally,

temporal uncertainty within the afterloader will cause a deviation in dwell times and ultimately un-

certainty in dose deposited. A rounding error can be introduced when transferring the treatment plan

to the afterloading console. However, when the dose distribution is optimised, and dwell weightings

are set, the rounding error is negligible. [55] An adequate, well-maintained quality assurance routine

will ensure that these factors will not alter treatment efficacy in any substantial manner.

Treatment planning around heterogeneity and inadequate scattering material need to be consid-

ered, especially where calculations are TG-43 based.[2] A large difference in the material composition
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and density can introduce attenuation effects and thus implant/applicator effects need to be consid-

ered.

The AAPM TG-138 report standardises uncertainty propagation in the source dosimetry data

chain and encourages medical physicists to use this data when necessary to enable correct entry and

commissioning with the TPS. Uncertainty within the TG-43 formalism, and Monte Carlo recommen-

dations are also demonstrated within the TG-138 report.[57]

2.5.1 Failure Mode and Effect Analysis

Failure modes and effect analysis (FMEA) systematically identifies each possible uncertainty or error

within the procedure and defines this as a failure mode. FMEA is a powerful tool that can guide

future development within a clinic, highlighting where improvements can be made to provide safer

and more effective treatment. FMEA is conducted by mapping out the entire treatment process and

possible failure modes are identified at every stage. A committee of practitioners from the clinic, rate

each failure mode on a risk priority number (RPN) scale.[58] The RPN is calculated by multiplying

together three factors, each a rating between 1 and 10. The factors are; the frequency of occurrence,

detectability and severity of the failures consequence. A 10 on each scale means the failure mode

occurs several times a day (frequency), is impossible to detect (detectability) and leads to patient

death (severity). This allows the failure modes with a higher ranking RPN to receive attention and

resources.

J. Mayadev et al conducted an FMEA study on HDR gynaecological brachytherapy analysing

a tandem-ring brachytherapy procedure. Evaluation of sub-processes in the treatment workflow

was conducted to determine a FM and assign scores by consensus of the group. The failure mode of

applicator movement during transportation would change the dose applied relative to the surrounding

anatomy, greatly altering the prescribed dose to treatment volumes and organs at risk. Producing a

frequency score of 3, but a detectability and severity score of 8. The other failure mode which scored

192 was the treatment planning team not communicating effectively concerning the completion of the
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treatment simulation, extending the patient’s time under sedation. Evaluated to have a frequency of

4, detectability of 6 and severity of 8. [9]

Some highly rated sub-processes and their failures within the analysis includes:

� Treatment simulation error - external fixation device not adequately tightened or attached to

the board and the wrong image dataset transferred

� Treatment planning - not detecting errors in physics, incorrect source activity entered, error

within the dwell control window, CTV contouring error and DVH constraints not met or checked

� Treatment delivery - incorrect bladder fill, not removing the rectal tube, incorrect afterloading

channel used and therapist not performing verification check-list

Closely monitoring these uncertainties is critical for safe and effective HDR gynaecological brachyther-

apy. The design of specific QA protocols directed by failure mode effect analysis is required to provide

optimal treatment and guide research.

2.6 The Impact of Catheter and Applicator Displacement

High dose-rate (HDR) brachytherapy provides a high dose gradient which is effective in producing a

conformal dose. This leads to effective treatment of the clinical target volume (CTV) while sparing

surrounding tissues and organs, such as the rectum, bladder, and urethra. The benefit of brachyther-

apys high dose gradient is met with the consequence of small inaccuracies having large effects on

the treatments potency and safety. The calculated dose distribution depends on the sources position

relative to the relevant volumes. During gynaecological brachytherapy, uncertainty in applicator/-

catheter reconstruction, tissue swelling and applicator displacement during patient transport can

cause the delivery of dose to differ from the treatment plan. This change in position may give an

additional dose to organs at risk and inadequately treat the CTV. Toxicity and damage sustained to
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organs at risk (OAR) can affect patient quality of life and survival. Dose to these clinical volumes

provides the endpoints for which treatments are planned. [59]

Figure 2.12: The workflow of gynaecological brachytherapy for cervical cancer and potential appli-
cator displacement

Determining the impact of applicator displacement will enable the development of clinical toler-

ances which allow hospital staff to make informed decisions when evaluating potential uncertainty

and patient safety. Failure mode and effect analysis (FMEA) evaluates the likelihood of occurrence,

detection, and detriment to the patient a particular failure will cause. FMEA finds applicator shift-

ing to be one of the two highest-ranking failures. The inability to detect this failure demonstrated

within the workflow illustrated in figure 2.12 accompanied by the detrimental impact it would have

on patient care. The impact of a shift in applicator position due to displacement or reconstruction

uncertainty is evaluated in several different instances through retrospective studies. [60] Previously

conducted plans are altered through a virtual shift in applicator position within the treatment plan

and the resulting change in DVH for critical volumes is calculated via comparison with the initial

plan. Tanderup et al, conducted this study to evaluate the consequences of applicator position, using

20 cervical cancer cases with MRI based planning. 10 cases required sole intracavitary, ring-tandem

applicators, with the other 10 being treated with an intercavitary-interstitial combination using a

modified ring-tandem applicator. Displacement was simulated with applicator translation ±3 mm

in every dimension, and an additional ±5 mm in the anterior-posterior direction. A ±15◦ rotation

is applied to the ring component to simulate applicator rotation. The corresponding change in DVH

parameters for the patient population serves as input parameters for a linear model. The model
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found a 5-6% per mm change in the rectum and bladder mean DVH parameters, for displacement

in the anterior-posterior direction, and a 4% per mm change in all other directions.[61] The study

demonstrates the significant impact 2 or 3 mm of shifting can have on a patient population, solidi-

fying the importance of strict quality assurance procedures for both applicator reconstruction, and

implant stability during the procedure. Overall, only 20 patient cases were used, a larger popula-

tion size would provide greater credibility. Tanderup et al,. intentionally centred the study around

reconstruction uncertainty, without a comprehensive evaluation of applicator displacement failures.

This is demonstrated by the model used functioning for minor displacements in the superior-inferior

direction. Additionally, applicator rotation was only evaluated through a shifting of dwell positions

within the ring and not a rotation of the entire applicator set, which could occur clinically during

patient transport or if the implant has not been placed firmly against the vaginal fornices. This

could affect the dose to rectum and bladder which are critical OARs and further study is required

to evaluate the impact of this failure.

Alternatively Schindel et al,. set out to evaluate both, the impact of reconstruction uncertainty

and applicator displacement, but evaluate between ±1.5 mm and ±20 mm for the superior-inferior

direction. Two sets of shifting are completed, moving the entire applicator in the superior-inferior

axis to simulate applicator displacement and a shift in dwell position along each channel to simulate

reconstruction error.

The tandem-ovoid applicators used, produced a 10% change for a ±1.5 mm displacement, with

a significantly larger impact found for volume-based planning than point A plans. This is most

likely due to the optimisation of the conformal distribution for volume-based planning. A ±3 mm

reconstruction-based shift caused a 10% change for both MRI-guided, conformal brachytherapy plan-

ning and point A planning.[62] Although applicator displacement was simulated in this retrospective

study, only one axis of motion was evaluated (sup-inf). Movement in any dimension is clinically

relevant since the specific failure can be caused by sub-optimal vaginal packing, which is used to

hold the applicator in place within the vaginal cavity. Shifting of applicator position during patient
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transferring to imaging and incorrect applicator size selection can result in applicator displacement

in any direction.

Retrospectively evaluating the impact of catheter and applicator displacement through both pos-

sible translation and rotation over a larger patient population will build on the existing literature.

Comprehensively determining the dosimetric risk of applicator displacement and reconstruction un-

certainty will enable specific guidelines to be determined and establish the importance of quality

control measures for reconstruction and applicator insertion.
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2.7 Quality Assurance

Brachytherapy enforces a localised dose to a tumour volume through the application of large dose

gradients. Whether the radiative source is implanted for low dose rate therapies or with a remote

after-loading device for high dose rate treatments, the precise implementation of a patient-tailored

treatment plan is paramount to positive patient outcomes. The advantage of large dose gradients

presents with the associated drawback of any deviation from the treatment plan causing toxicity

in nearby OAR and/or render the treatment ineffective. For the safety of staff and patients, qual-

ity assurance (QA) procedures are developed to minimise the prevalence of human error, device

malfunction and miscommunication.

2.7.1 AAPM Task Group 56

The American Association of Physicists in Medicine developed a task group to devise the “Code of

Practice for Brachytherapy Physics: Report of the AAPM Radiation Therapy Committee Task Group

No. 56” which outlines the complete design and implementation of a QA program for brachyther-

apy facilities. The report dictates an adequate quality assurance program addresses the following

fundamental endpoints.

Radiation Safety

The facility needs to address the safety of the patient, staff and public when considering the

consequences of a quality assurance plan. This means controlling exposure to all personnel involved

in the procedure through adequate shielding barriers and substantial consideration of treatment

workflow. For HDR afterloading sources, this includes verifying the function of error identification

features such as interlocks, treatment status indicators, emergency stop button and background

measurements. The maintenance of a comprehensive radiation safety QA program mitigates risk to

the institution, staff, patient and the public.
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Positional Accuracy

Confirmation of the sources dwell position is vital in determining whether the prescribed dose

distribution is being given to the patient. The TG-56 report specifies a ±2 mm relative to the

applicator system and ±1 mm for remote afterloading devices.[63] Positional accuracy can be tested

using a source positioning ruler shown in figure 2.13. The afterloader source is programmed to take

a specific position within the ruler and this is compared to the ruler’s scale viewed from the safety of

the treatment console via a monitoring camera. The position can also be denoted by a radiochromic

film measurement.

Figure 2.13: Elekta Source Position Check Ruler

Temporal Accuracy

The treatment plan specifies that dwell time each source is required to spend at each location.

Dose delivered during the source’s motion (transit dose), is accounted for when planning dwell times.

Remote afterloading technology has an on-board electronic timer, however, independent tests of the

accuracy of the timer need to be done when source calibration is performed. Relative measurements

are suitable when the on-board timer is used to control treatment delivery and charge integration

during source strength calibration. An accuracy of ±2% is specified [63].

Dose Delivery Accuracy

Perfect delivery of the prescribed plan relies not only on the dwell positions and times being correct

but the dose delivery complying with the dose absorbed by the medium. Calculation of applicator

attenuation and shielding corrections and accurate calibration of the source in terms of air kerma

strength are prime examples of this. Accurate dose delivery is also a function of uncertainties in
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treatment planning such as applicator reconstruction and a correct optimisation of uniform dose

coverage of the specified volume. A correct definition of the target volume and critical organ margins

relative to the implanted applicators will affect dose delivery accuracy.[63]

The TG-56 report intensively characterises the quality assurance of brachytherapy treatments

and the creation of a QA plan. These principles have been foundational in the research conducted

into treatment verification. Quality assurance techniques have been evolving along with technological

development.

2.7.2 The Gamma Index

Dosimetric measurements require an analytical tool that considers a preselected acceptance criteria

for each treatment type. This can be accomplished by definition of quantities dose-difference and

distance-to-agreement. Dose-difference distributions identify regions where measurements differ from

the calculated spatial dose and are expressed as a percentage. The distance-to-agreement (DTA)

quantity is defined as the distance between the measured point and the point in the calculated

distribution which has the same dose. A combination of dose difference and DTA can be used to

characterise the criteria at which the treatment plan in question will be evaluated.[64] The gamma

index technique utilises these two quantities to calculate the γ quantity for each point of interest,

where γ ≤ 1 passes. The percentage of gamma values that pass is frequently used to compare dose

distributions for a given dose difference and DTA tolerance.[65] This analytical apparatus, developed

for IMRT evaluation is applied as a measure in some brachytherapy quality assurance studies.

2.7.3 Developments in QA

Quality assurance phantoms and tools are continuously developed to verify brachytherapy practices,

determining if the procedure correctly implements the prescribed dose distribution. A wide variety

of technologies are utilised in the literature to enable localisation of sources, perform dosimetry and

provide a test of congruency between the treatment plan and what is implemented. The literature
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establishes developments that range from conceptualising the technology’s application in quality

assurance to a complete evaluation of clinical workflow. Implementing a comprehensive QA proce-

dure for each type of brachytherapy treatment is extremely important in ensuring positive patient

outcomes.

T.Hanada and colleagues developed an HDR remote afterloading QA tool to test the temporal and

localisation accuracy of the afterloading system.[66] The tool is made up of a plastic-scintillator cou-

pled with a CCD camera for scintillation photon detection. A straight channel applicator is inserted

into the plastic scintillator and with a travel distance of 5 cm and 11 dwell positions programmed.

The device can achieve submillimeter localisation and a temporal resolution of one-thirtieth of a sec-

ond for a stationary source. The specified afterloading positional and temporal accuracy tolerance

(1 mm and 1% respectively) fall within these limits, making the device a viable option for HDR

afterloader quality assurance. T.Hanada et al, does recognise the devices potential for 2D dosimetry

given further development in analytical software. Despite this limitation, the tool demonstrates a

capability to perform QA of afterloading cases. The device can evaluate HDR afterloading of straight

channel applicators and catheters but the study has not indicated what performance can be expected

from curved applicators such as ring-tandem applicators where the source position can vary in three

dimensions.[66]

Radiochromic film is widely used for quality assurance, providing a sufficient resolution of the

dose deposited. Its application in brachytherapy allows an evaluation of the treatment, which can

range from afterloader-applicator checks to phantom studies.[67] The films implementation within

current QA is accompanied by an aptitude for complex research applications. I. Gerardy et al, carried

out a comparison of in-phantom film measurements and Monte Carlo calculations using the MCNP5

code, in which mesh grids are super-imposed to calculate dose. In both cases, a cylindrical vaginal

applicator is used with an intra-uterine tube. The physical phantom allowed the positioning of a cali-

brated film as well as a small ionisation chamber at specific positions. Isodose curves agreed between

the simulation and physical phantom, implying that the simulation is a viable model to estimate
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dose [68] I. Gerardy et al, demonstrates congruency between the physical and simulated models. An

extension of this concept is evident through the use of radiochromic film to validate model-based

dose calculation algorithms. As discussed previously model-based dose calculation algorithms are

recommended by TG-186 to improve treatment planning. Gregorz Zwierzchowski et al,. uses film

dosimetry to verify the TPS calculation algorithm for vaginal applicator shielding. A round hole is

cut into the film with a diameter equal to that of the cylindrical applicators tested. The applicator

is inserted into the hole, such that the film provides a perpendicular cross-section. Shielding verifi-

cation is accomplished as the applicator contains several arrangements of internal tungsten inserts

which surround the applicator channels. A gamma analysis is conducted to compare the MBDCA

and film measured dose distribution with over 90% of the analysed points meeting the 3% / 3 mm

criteria. The study determined radiochromic film is suitable for QA of treatment planning systems,

revealing shielding leakage which was not calculated. Although this additional dose was not clini-

cally relevant, these findings demonstrate a possible need for shielding leakage checks pretreatment

for other configurations. Radiochromic film has been found to provide adequate dosimetry for quality

assurance, however, it requires a time-consuming process of calibration and analysis when compared

to ionisation chambers or solid-state dosimetry.[69]

Real-time quality assurance for HDR brachytherapy is extremely important to identify errors and

uncertainties within the procedure. The need for real-time readout which TLD dosimeters and film

measurement do not provide, has inspired the development of multiple dosimeter systems.

Using multiple detectors to localise the brachytherapy source has been outlined by Nakano et

al, where three diamond dosimeters are used, combined with the treatment plan timing information

to determine the location of the source in three-dimensions. The response as a function of source-

to-detector distance, angular dependence, backscatter effect and temperature dependence has been

measured to produce a localisation system. This characterisation serves as an appropriate archetype

for using multiple detectors to determine source position. HDR brachytherapy source localisation

has been achieved with this system within 2 mm. This level of accuracy is accessible for a 10-120 mm
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source-to-detector distance, with uncertainty being dominant outside this range.[70] These results

were attained within a Perspex, homogenous phantom but provided preliminary research for the

development of a 12 diamond detector system that can provide real-time localisation within hetero-

geneous tissue. A 3 mm positional uncertainty within the system allows the detection of significant

errors. [71] Both studies were foundational to the development of utilising multiple detector elements

to determine the source position in real-time, enabling superior error identification and establishing

the prospect of online quality control during the procedure. GaN radioluminescent probes demon-

strate sub-millimetre accuracy in measurements both within gynaecological applicator channels and

a PMMA QA phantom. The errors in dwell position are (0.11 ± 0.70) mm and (0.01 ± 0.42) mm

for phantom and applicator respectively, with the standard deviation of dwell times less than 100

ms. The system ability to decern errors in dwell position and time were tested through experimen-

tally introduced errors into the phantom protocol. Multiple applications of a 23 position plan were

conducted with an implemented position offset which ranged from 0 to 5 mm. 20 positions were run

through repeatedly with dwell times adjusted from the planned time to an additional 2.0 s. Using a

gamma index pass/fail methodology error detection rates were produced for the system, up to 96%

at 1 mm and 100% error detection at 0 s. The QA system performs extremely well when discerning

special and temporal inaccuracies within an applicator, and can serve as a useful tool for afterloader

and applicator checks. The set up did however require, probes to be fairly close to the source and

will require modification for the use of different applicator arrangements.[72]

The use of multiple detector elements coupled with a localisation algorithm for HDR source

tracking was expanded through the application of two pinholes, pixelated silicon detector units.

Each detector contained two pixelated silicon sensors with 256 elements. Despite the large number

of elements giving the detectors good spatial resolution, the system’s error is largely a function of

detector-pinhole alignment. This is demonstrated in the system’s limited accuracy of 5 mm for a

dwell time of 1 second and the average absolute difference between the reconstructed position and

true position of (4.9 ± 2.2) mm for a larger number of measurements. Given the high dose gradients
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in HDR brachytherapy the systems ability to perform real-time brachytherapy quality assurance

is inadequate.[73] An alternate technology followed, as Manikandan A et al,. investigated the use

of a commercial ion chamber array, IMatriXX, generally used for LINAC profile checks applied to

HDR source tracking. An aptitude for brachytherapy treatment verification is evaluated through

comparison with the treatment planning system. The array consists of a 32 by 32 grid arrangement

of 0.08 cc active volumes. A maximum error of 1.8 mm has been found for plans with dwell positions

greater than or equal to 2 cm apart. Due to the size of each ion chamber, a volume averaging effect

causes the output peaks to have a full width half maximum of 5.8 mm, thus a plan with step sizes of

1 cm or less cannot be resolved. The system can provide an adequate solution for plans which have

larger step sizes and does well to evaluate the dosimetry against the TPS. [74] Using the IMatriXX for

quality assurance of HDR brachytherapy procedures has provided a precedent for the development

of array detector devices but performs inadequately for treatment verficiation.[75][76]

The Magic Plate being a similar application of this concept as it is a 2D array, however uses silicon

diode elements to provide three-dimensional sub-millimetre tracking of HDR brachytherapy sources in

a TG-43 environment.[77] The Magic Plate detector is superior when compared to other localisation

systems with the ability to determine source position within 1 mm and provide a high temporal

resolution.[77] Direct comparison with the literature shows a pixelated silicon pinhole system that

has a tracking accuracy of 5 mm, or a three diamond detector system with a localisation accuracy of 2

mm.[73][70] The ionisation chamber array IMatriXX provides an uncertainty of 1.8 mm but requires

the dwell positions which are more than 2 cm apart due to volume averaging effects.[74] A EPID

base system provides a complete evaluation of the treatment plan with 1 mm accuracy similar to

the magic plate system, however, requires elaborate commissioning and the use of a robotic arm.[78]

The MP possess the advantage of simple setup while achieving adequate pre-treatment verification

with the Magic Plate based “Magic Phantom”.[10] Further work is required on the Magic Plate’s

phantom to match the EPID setup above which is an end-to-end analysis procedure. It allows water

phantom measurements to evaluate any HDR brachytherapy procedure, demonstrating the ability to
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house gynaecological applicators as well as interstitial catheters. This discrepancy will be addressed

within this thesis, constructing and verifying an Magic Plate end-to-end phantom.

Due to the complexity of HDR brachytherapy planning and the high dose gradients utilised, an

accurate quality assurance system is integral to patient, public and institution protection. These

developments allow improvements that enable progression towards refined positional, temporal and

dose delivery end-points.

2.8 The Magic Plate

The Magic Plate (MP) is a 2D silicon array detector developed for quality assurance by the Centre

for Medical and Radiation Physics at UOW and exists in many different generations. Initially, the

MP121 is an 11x11 array of thin, 0.5 × 0.5 mm2 diodes on a 0.6 mm Kapton substrate that can be

used to provide live readings. Wong JH et al performed a large range of characterisations on the

novel diode array using a linac. This included a radiation damage study, dose per pulse effect, dose

linearity, energy response and angular response, amongst other properties. The results for radiation

damage are 2.1% reproducibility following irradiation. The dose rate is measured to be independent

at low doses and the response is dampened at higher doses. The dose linearity was excellent with

a 10.8% angular dependence at a 180 degrees gantry angle. This is due to the minimal angular

dependence of the silicon diode, where a 3.5% differnece in response is see for an incidence 75 degrees

in either direction of the normal. [76] The MP121 was initially used for upstream QA, acquiring

transmission measurements of linac treatments, as the device offers minimal beam perturbation and

a less than 0.5% increase in relative surface dose. The MP’s low beam perturbation and skin dose

is a result of the detector’s “Drop-in” technology, which avoids the use of high Z materials.[79]

Additionally, the MP has also demonstrated the ability to function as an in-phantom dosimeter. The

IMRT dose profile determined in two dimensions corresponds with ionisation chamber measurements,

illustrating the Magic Plate’s versatility for low perturbation linac transmission measurements and
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dose profile quality assurance.[80] A Magic Plate with higher spatial resolution followed to perform

QA for stereotactic radiotherapy, where a large dose 8-24 Gy/fraction is delivered in a low number of

fractions (1-5). Small volumes are treated and require precise margins with specific small field quality

assurance tools. Volume averaging effects of ionisations chambers and some diodes can be detrimental

to the treatment, finding large small-field variations. The monolithic-silicon based MP512 is a Magic

Plate that contains 512 pixels, with a pixel size of 0.5 × 0.5 mm2. The detector is a viable alternative

for stereotactic radiosurgery (single fraction) and stereotactic body radiation therapy, given it’s high

spatial and temporal resolution. The MP512’s spatial and temporal resolution proves the ability to

evaluate treatment motion and the intended solutions. The electromagnetic tracking system Calypso

enables dynamic MLC compensation in response to motion and the MP512 is suitable for quality

assurance of this system, demonstrated by M. Petasecca and M.K. Newall et al,.[81][82]

The Magic Plate-121 spatial and temporal resolution is pivotal for quality assurance of HDR

brachytherapy due to its ability to determine both dwell positions and times enabling the complete

evaluation of a treatment plan. A. Espinoza et al conducted a feasibility study that validates the

Magic Plates use within HDR brachytherapy through the development of a four-dimensional lo-

calisation system.[77] Measurements of the angular dependence of a single diode were measured by

stepping a source in 15◦ increments around an arc of 180◦ about a single diode element. Furthermore,

the source-to-detector distance dose (SDD) function was measured for the Magic Plate diode in solid

water. These results are used to calculate the radial dose function. Measurements over 71 mm were

not obtained due to low signal. The TG-43 calculated radiation dose function differs by 8% at 30 mm

and 40% at 70 mm. There exists a substantial deviation from the TG-43 protocol due to the diodes

over-response to low energy scatter at these distances. All MP detector elements are coupled with an

electronics system (AFE DAQ) and field programmable gate arrays FPGA designed by the Center of

Medical and Radiation Physics (CMRP). Due to the X-Tream unit which has also been designed by

CMRP, the system can acquire data at a rate of 1 MHz, however, sample averaging is often required

to mitigate both thermal and electrical noise. The electronics and detector combination is connected
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to a PC via USB for analysis and live readout. Custom C++ based interface software was devel-

oped by the CMRP research group to enable real-time source tracking and post-processing, gamma

analysis and TG-43U1 protocol dose calculation for evaluation of a treatment plan. The proficiency

of this complete quality assurance system is evident through the construction of a brachytherapy

phantom known as the Magic Phantom, where the MP is in the middle of a PMMA phantom, which

houses 10 catheters above and below the MP at a fixed perpendicular distance of 6 mm. A CT

scanner was used to image the Magic Phantom and a treatment plan is created, setting a specified

dose to each detector element. A variation of dwell positions and times were programmed for each

catheter. A second plan was created with altered dwell times and positions to simulate errors to

evaluate the magic plates ability to differentiate these errors from the original plan. The Magic Plate

measured source position within 0.5 mm of 75% if measurements. The system’s ability to provide

sub-millimetre accuracy is undoubtedly impressive when compared to other quality assurance tools in

the literature. The device’s compatibility and ease of use make it an exciting prospect for integration

into future developments. [77][10]

The MPs capacity to be utilised for source tracking is further demonstrated for verification in

brachytherapy where Joel Poder et al tested the accuracy in which this can be achieved via a Monte

Carlo study. 12 source positions were simulated from an HDR prostate brachytherapy treatment using

a Geant 4 toolkit. This was accomplished via simulation of a Ir-192 Flexisource within a voxelised

patient geometry. The magic plate was also inserted into the simulation and the dose deposited

in the detector is determined. Joel Poder et al,. found a mean difference between the known and

measured source positions to be (2.1 ± 0.8) mm. This was determined to be due to inhomogeneity

in the simulated tissues. A calculation with the patient voxels set to be water equivalent enabled

a localisation accuracy of 1 mm. CT data integrated into the localisation algorithm to account for

inhomogeneity will improve the Magic Plate’s accuracy.[83] Presently this study determined that

the Magic Plate system requires adjustment to accomplish invivo tracking, however, it’s superior

localisation accuracy enables the device to be useful for in phantom quality assurance.
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2.8.1 Localisation Algorithm

An iterative localisation algorithm is used to track the source position and compare this dwell position

to the treatment planning system. The algorithm uses the position of the diode with the largest

response and those around it. The measurement of angular dependence, energy dependence for

the Ir-192 spectra and radial dose function has been performed by Espinoza et al[77]. The diode’s

response and its SDD function are compared to the geometrically calculated distance between the

diode and estimate to localise the source.

The initial source position is determined using the detector with the largest response and its near-

est neighbours. Given the element D(x1, y1, z1) has the highest response, it serves as an adequate

initial estimation of the sources x and y position.The response of the ith diode is a function of its

distance to the source Ii = f(ri), determined via SDD measurement. Using the inverse function we

can calculated the distance ri = f−1(Ii), where r1 is calculated for element D(x1, y1, z1). Angular

dependence is neglected in the first iteration and is incorporated within the algorithm in later iter-

ations. Using the detector element position D(x1, y1, z1) and r1, the initial source position estimate

S(xs, ys, zs) is S(x1, y1, r1). The detector response combined with a previously determine SDD can

establish an initial estimate of source position.

di, the distance between the ith diode and the estimated position S(xs, ys, zs) and is calculated

geometrically with equation 2.3.

di(xs, ys, zs) =
√

(xs − xi)2 + (ys − yi)2 + (zs − ri)2 (2.3)

A non-linear least-squares fit is used, which is a mathematical procedure for minimizing the sum

of the squares of the residuals. The residuals in this case being the relative difference between the

geometrically calculated estimate di and the quantity ri, which has been derived from the response

and SDD measurements. The relative residual error to be minimised is thus given by equation 2.4.
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R2(xs, ys, zs) =
n∑

i=1

(
di(xsn , ysn , zsn)− ri

ri

)2

(2.4)

The estimated source position will be the similar to the actual source position when the sum

of squares of the relative residual R2 is at a minimum. To find minimum values of R2 in all three

dimensions Newton’s Method for optimization is required. Newton’s Method is used to find roots of

a curve and subsequently can be utilized to perform the optimisation required for the minimisation

of R2. Considering a one dimensional function f(x), and estimation point xk. Newton’s Method uses

a linear approximation to find the roots of a function (f(x) = 0) through iteration of δ.

δx =
f(xk−1)

f ′(xk−1)
= xk−1 − xk (2.5)

xk = xk−1 − f(xk−1)

f ′(xk−1)
(2.6)

By analogy finding the roots of the derivative function f ′(x) = 0 for optimisation will yield equation

2.7.

xk = xk−1 − f ′(xk−1)

f ′′(xk−1)
(2.7)

Applying this method to minimise the three dimensional quantity R2(xs, ys, zs) requires the differ-

entials taken in 3-dimensions and iteration performed in each dimension.

xks = xk−1s − δk−1x

yks = yk−1s − δk−1y

zks = zk−1s − δk−1z

(2.8)

∇R2 −∇2R2~δ = 0 (2.9)
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Calculation of δ in 3-dimensions is accomplished through solving the set of linear equations

arranged in the matrix below.


∂2R2

∂x2
s

∂2R2

∂xs∂ys
∂2R2

∂xs∂zs

∂2R2

∂ys∂xs

∂2R2

∂2y2s

∂2R2

∂ys∂zs

∂2R2

∂zs∂xs

∂2R2

∂zs∂ys
∂2R2

∂z2s




δx

δy

δz

 =


∂R2

∂xs

∂R2

∂ys

∂R2

∂zs


All three coordinates of the source estimate S(xs, ys, zs) are modified in each iteration. The algo-

rithm converges and stops when delta becomes small or the following estimation fails to reduce R2.

The source position is continuously re-estimated using this method, however, the initial estimate is

set as the source position determined in the previous calculation.[83] T Nakano et al,. used the same

algorithm to localise Ir-192, HDR source with 12 diamond detectors within an inhomogeneous phan-

tom. The algorithm described above was used with the addition of weighting parameters accounting

for the attenuation through different tissues. The algorithm and detector achieved a real-time locali-

sation of the source within 3 mm. The methodology used serves as an important archetype for source

localisation, however, a 3 mm accuracy is not sufficient for HDR brachytherapy but the system will be

able to detect large errors. [71] Joel Poder et al,. also investigated adjustment of the non-linear least

squares algorithm to overcome the effect of the TRUS probe for the Magic Plate 900, a 30x30 diode

array. Because of the positioning of the TRUS probe, primary radiation from the HDR source during

prostate treatment would be blocked affecting the algorithm’s source tracking accuracy. Monte Carlo

simulations using the Geant4 toolkit were used to create source positions within a voxelised patient

geometry and the MP900. Reconstruction of the source position differed from 11.9 ± 2.4 mm and

1.5 ± 0.3 mm with and without the TRUS probe inserted. This demonstrates the degrading effect

the TRUS probe has on the system’s source localisation accuracy. To mitigate this effect a signal

threshold was implemented within the algorithm. Any dose deposited below this threshold was not

used for the localisation calculation. A threshold of 70% of the maximum dose deposited demon-

strated the least error, achieving a tracking accuracy of 1.8 ± 0.4 mm with the TRUS present.[84]
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The iterative algorithm has provided adequate source localisation through homogeneous media for

quality assurance and adjustment has allowed for solutions in inhomogeneous source tracking.

The optimisation of these localisation algorithms in each case has utilised signals which orig-

inate from multiple detector elements to determine the position and timing information of HDR

brachytherapy sources. The algorithm is effective as it allows the incorporation of factors such as

weighting for inhomogeneity or angular dependence. The MP121’s use in HDR source tracking is in-

dicative of a localisation algorithm that provides the spatial and temporal resolution which is critical

for the evaluation of HDR brachytherapy, due to its large dose gradients and high dose rates.

2.9 End-to-end Verification of HDR Gynaecological

Brachytherapy

The complexity which accompanies modern imaging-based HDR brachytherapy requires advanced

quality assurance to maintain the safety and efficacy of the treatment. The ideal testing procedure

will command an evaluation of the complete process. End-to-end testing assesses the entire procedure

to determine faults that will present as an incongruency between the prescribed treatment plan and

what is implemented. All end-to-end phantoms have a component that houses the gynaecological

applicator for treatment planning and detector type that allows HDR source localisation to monitor

the treatment. This ranges from Radiochromic film, ion chambers or an EPID panel. An end-to-end

phantom is the gold standard of quality assurance as it serves multiple clinical failures within one test,

evaluating planning procedure, catheter reconstruction, imaging procedure and a host of treatment

delivery errors/uncertainties. The ability to evaluate the entire workflow enables an opportunity

to seek improvement within the current treatments or assess the impact of a newly commissioned

device. Both are extremely important to achieve optimal patient outcomes.

There are multiple approaches to creating an end-to-end quality assurance system using differ-

ent technologies. Hiroyuki Okamoto et al, produced a phantom that houses both a tandem-ovoid
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applicator and Radiochromic film. Enabling the prescription, imaging, planning and treatment to

be performed on the phantom. Three tests were conducted; the reproducibility of 5 source posi-

tions, source movements within the catheters and the subsequent change in source position given a

curve in the transfer tube. As a trial study, the phantom was mailed to 12 institutions and 2sets

of data were obtained and analysed. Reproducibility of source position fell within 1 mm, movement

within the interstitial needles was small at 0.1 mm and curving of the transfer tube resulted in a

source position disparity of under 1 mm for all degrees of curvature. The study demonstrates the

end-to-end phantoms competence in performing in-depth quality assurance (QA) of the treatment

process. [85] The study is extremely important as it provides the potential to use a standard end-to-

end apparatus to effectively audit the treatment planning and implementation accuracy of multiple

institutions. However, the use of film for these measurements is time-consuming in a clinical setting

and diode-based source tracking would provide a practical solution to including the use of an end-

to-end phantom for routine QA. An end-to-end test is integral in gynaecological brachytherapy, in

contrast with QA techniques such as those conducted by Gerardy et al,. which cannot be considered

a clinical gold standard as an assessment of both treatment planning and treatment delivery are not

accomplished.[68]

Antony et al, also outlined an end-to-end QA approach, describing the study as a full system

dosimetric audit comparing the planned and delivered HDR gynaecological brachytherapy dose dis-

tributions. The phantom used is a water tank with film and applicator holders made from Solid

Water.[86] Solid Water is an epoxy resin-based substitute that has radiation characteristics similar

to that of water, Constantinou C, Attix FH, Paliwal BR found it to have only a 0.2% difference in

the transmission of X and gamma rays when comparing 10 cm of water and Solid Water. [87] Films

are positioned to bisect at high-risk clinical volumes. CT data is taken to conduct the treatment plan

involving applicator reconstruction. Gamma analysis is conducted to compare the multichannel dose

maps and the TPS dose distributions. Antony et al ran two pilot audits with the prior mentioned

set-up using Ir-192 and Co-60 sources resulting in a mean gamma passing rate of 98.6% with 3% /
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3 mm (Dose Difference/DTA). An end-to-end study used to evaluate an institutions treatment has

been achieved, a method which systematically assess clinical treatment workflow.[86]

End-to-end systems have recently undergone significant development incorporating sophisticated

technologies to address QA needs of 3D imaging centred gynaecological brachytherapy. Fabian Krause

et al,. in 2018 developed a water phantom with a specialised PMMA applicator and ion chamber

holders developed to fix the clinical geometry in place within the phantom. A full clinical workflow

including CT imaging of the phantom and BrachyVision v.13.7., a treatment planning with the TG-

43 based dose calculation. Reference dose points are calculated on this TPS and compared to the

PinPoint 3D ion chamber, which is fixed 6.5 cm from the vaginal cylindrical applicator. An MBDCA

TPS is also used for comparison measurements for a shielded vaginal cylindrical applicator. The

end-to-end phantom evaluated the computed doses and found a deviation of less than 5% between

the computed and measured dose points. As expected the MBDCA TPS calculated dose showed little

deviation from the ion chamber measurements when performing end-to-end analysis for the shielded

vaginal cylinder applicator. Alternatively, the TG-43 based TPS experienced a large deviation due

to the tungsten shielding used. This illustrates an end-to-end phantom’s ability to evaluate new

technologies and treatment techniques. Error simulation is often tested in an end-to-end system to

assess the phantoms ability to detect common clinical errors, Fabian Krause et al,. implements this

in two tests. One of which examines the systems ability to detect applicator displacement, by shifting

the position of the applicator relative to the ion chamber by 1 cm and the second, a switching of dwell

weightings within the treatment plan. The ion chamber/water-based phantom detected a deviation

of 9.4% for the applicator shift and 1.1% for the dwell positions switching. Although this end-to-end

system can evaluate planning and treatment discrepancies it will require a large number of measure-

ments and troubleshooting to identify specific errors such as applicator/catheter reconstruction or

multichannel systems being assigned to the incorrect after loader channel. The study does provide

an adequate archetype for an end-to-end quality assurance system but lacks the timing and spatial

acquisition data when compared to other sophisticated systems, which use 3D source tracking that
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the Magic Plate or an electronic portal imaging device (EPID) will provide.[77][88] Gabriel P Fonseca

et al, demonstrates a significant improvement of the end-to-end phantom as the study utilises this

EPID technology coupled with a water phantom which houses a multichannel vaginal cylindrical

applicator to create an end-to-end phantom. However, the added complexity of using an EPID panel

means a range of calibrations such as darkfield correction, pixel sensitivity, energy dependence and

non-linearity which need to be applied. These systems also enable 3D source tracking which requires

the application of additional analysis, similar to what is outlined in the Magic Plate, Localisation

Algorithm section. Unlike previous end-to-end systems, Gabriel P Fonseca et al, alters the workflow

of the original treatment as the applicator and water phantom are imaged separately with the two

image sets fused before planning.[89] A robotic arm is used to accurately position the applicator

within the phantom, according to the CT coordinate system. This does introduce the potential

of fusion/co-registration uncertainties as well as the intricacy of using a robotic arm but produces

sophisticated error detection and a source localisation uncertainty of 2 mm or less. Three errors

were simulated; 1) certain dwell positions were set to zero, simulating a missing dwell position, 2) all

dwell positions were shifted, each catheter by different amounts and 3) two channels were swapped.

Each error was not only identifiable but distinguishable, there were specific characteristics in the

positional and temporal data which enabled error identification. A feature that was not present in

the Krause et al,. ion chamber setup.[88] The use of an EPID panel for HDR source tracking is

a sophisticated end-to-end system that accurately performs QA for the treatment procedure and

identifies potential failures and errors. However, the availability of a robotic arm within the setup

and the EPIDs elaborate calibration requirements will be laborious within a clinical setting. The

end-to-end system should be capable of fitting into an MRI based workflow which is common for

these gynaecological treatments although this is not tested within the study. This is the most com-

plete end-to-end, HDR brachytherapy phantom within the literature, enabling an efficient review of

the planning and treatment errors to ensure optimal treatment quality.[89]

The development of an end-to-end testing system in each case has allowed a progression of error
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detection and quality assurance within the HDR brachytherapy procedure. 3D imaging, applicator

reconstruction, planning and after-loading uncertainty largely impacts the safety and effectiveness

of the treatment. The end-to-end QA approach enables a complete view of treatment quality as

well as data transfer methods and evaluating the function of new devices or software within the

workflow. The application of the Magic Plate into an end-to-end phantom enables HDR tracking

capable of localisation and treatment timing properties to detect and distinguish clinical uncertainties

and failures for gynaecological brachytherapy.
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Chapter 3

Materials

3.1 Iridium-192

HDR brachytherapy involves the insertion of a radioactive source internally. The small size of Ir-

192 enables more flexibility in the treatment plan. The radioisotope has a half-life of 73.8 days,

meaning the source has to be changed every 3-4 months.[5]. Source tracking relies on the detection

of photons that the source emits. The complex decay pattern of Ir-192 results in twenty-nine gamma

emissions, with a minimum energy of 110keV and maximum energy of 1.378MeV. Most notably,

gamma emissions are 296keV, 309keV, 317keV and 468keV with probabilities ranging from 29% to

83% respectively. Electron emissions are mostly absorbed by the encapsulation of the source.
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Figure 3.1: Decay scheme of Ir-192 [5]

As seen in figure 3.1 Ir-192 decays with a total of 95.6% probability of β− decay and 4.4% electron

capture.[5] Ir-192 is a common brachytherapy source, encased in stainless steel and attached to a

stainless steel cable. The Ir-192 source within the afterloader has an active length of 3.5 mm and a

diameter of 0.6 mm. The source is encased within a capsule that has a diameter of 1.1 mm and a

length of 5 mm. [90] A dummy source is displayed in figure 3.2 and has the same physical dimensions

as the active source. This test source is sent out by the afterloader to check if there are any blockages

in the catheter.

Figure 3.2: A dummy source from the Flexitron afterloader
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3.2 Afterloader

The HDR Ir-192 source is controlled by an afterloading machine which sends the source out to pre-

determine positions for specific dwell times. The remote afterloading device used within the following

experiments is the Elekta Flexitron displayed in figure 3.3. The afterloader also enables safe storage

of the source and a mechanism to retract and store the source during emergencies, such as power

failures, or other interlocks.[91]

Figure 3.3: Elekta Flexitron HDR brachytherapy afterloader at St George Cancer Care Centre

3.3 Gynaecological Applicators

Gynaecological applicators are medical devices that are inserted into patients to provide a path

for the source to travel. Transfer tubes are used to connect the afterloader to catheters or the

applicator. The applicators used within this study are CT and MRI safe. This enables patient

imaging after insertion without distortions and artifact. As previously described the Multichannel

Vaginal Applicator displayed in figure 3.4 is used for vaginal brachytherapy. The applicator can

be used with a balloon and inter-uterine tube attachments. Specialised catheters with rubber cuffs

placed into the channels and locked in place. The Fletcher applicator with 30 degree tandem is
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used for the cervical end-to-end test. The applicator has three channels when used for intracavitary

treatments. The Venezia applicator has two lunar ovoids which click together to form a ring-like

structure. The applicator can be used in an intracavitary or interstitial capacity, with holes in the

ovoids to guide any required needles. All gynaecological applicators used within this study have been

provided by Prince of Wales Hospital, Nelune Cancer Care Centre.

Figure 3.4: 30 mm Multichannel vaginal applicator (Elekta Brachytherapy, Venendaal,
Netherlands).[6]

Figure 3.5: Fletcher applicator tandem and ovoid set (Elekta Brachytherapy, Venendaal, Nether-
lands) [6]
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Figure 3.6: Venezia applicator, with added perineal template (Elekta Brachytherapy, Venendaal,
Netherlands) [6]
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Chapter 4

Determining The Impact of Applicator

Displacement for HDR Gynaecological

Brachytherapy

4.1 Introduction

A shift in the delivered dose distribution can occur due to a physical displacement of the applicator

or catheter within the patient or uncertainty in the reconstruction of needle and applicator position

within treatment planning[62][61]. A physical displacement of the applicator and/or needles after

imaging has occurred in the workflow demonstrated in figure 2.12 will evoke a shift in the applied

dose distribution. This physical shift can occur due to issue swelling (oedema), while moving the

patient on and off imaging equipment and during patient transport. Inaccuracies in applicator

reconstruction can transpire due to imaging artifact such as volume averaging or uncertainty in

applicator model alignment. Both forms of applicator displacement introduce uncertainty in the

relative position between the applicator set and critical volumes. Within the treatment planning

procedure optimisation occurs once all source channels, OAR and CTVs are reconstructed. This

optimisation is done by hand or via an inverse algorithm and enables the clinician to establish the
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required CTV-OAR dose compromise, ensuring both the adequate treatment of CTVs and OAR

protection. However, the robustness of each plan needs to be considered as the impact of applicator

displacement due to reconstruction uncertainty or physical displacement can be dangerous if the

plan is overly optimised.[60] Retrospectively, finding critical limits of applicator displacement using

optimised patient treatment plans will help practitioners make decisions that mitigate the risk of

applicator shifting when optimising treatment plans, maintaining imaging and applicator quality

control and creating implant insertion protocols.

In this section, the impact of applicator displacement will be determined and a distinct limitation

will be developed to determine the “in vivo source tracking error threshold”. Initially derived for

prostate treatments, the in vivo source tracking error threshold is the difference in dwell position

from the original plan that requires the treatment to be stopped.[92] Similarly the in vivo source

tracking error threshold can serve as a benchmark to which an HDR source tracking system will need

to perform. If a discrepancy in source position which is clinically unacceptable is established then a

source tracking system must be able to localise the source within this margin.

The impact of applicator displacement will be determined for two purposes:

� Demonstrated the importance of protocols that mitigate the risk of a physical displacement in

applicator position and reconstruction uncertainty

� To provide a clinical benchmark for the End-to-end source tracking phantom by establishing

a deviation from the planned dwell position which causes a critical deterioration in treatment

efficacy and safety
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4.2 Method

Applicator displacement will be simulated retrospectively using patient treatment plans and con-

toured structure sets to calculate a critical limit of displacement. The study will retrospectively

calculate treatment plans after a shift in dwell position has been implemented on each plan. The

dose to organs at risk and the HR-CTV will be calculated for the shifted plan without re-optimisation

to simulate clinical applicator displacement and determine what impact this displacement of dwell

positions will have on treatment end-points. Patient data has been extracted from Prince of Wales

Hospital, Nelune Comprehensive Cancer Care Centre. Patients have been selected for the study if 18

years of age or over and have undergone brachytherapy for cervical cancer stages IIB, IIIA or IIIB.

The patients have had brachytherapy as a local boost to accompany their external beam therapy

and chemotherapy treatments. Once patients are selected, all patient data used for the study are

anonymised and identified by their assigned unique identification code. The code assigned includes

a number and a letter that signifies the applicator or set up used. The required South Eastern

Sydney Local Health District Ethics approval has been granted, under the Department of Radiation

Oncology Research Authorisation Number, SESLHD-NRA REF: 2021/16.

Two types of digital imaging and communications in medicine (DICOM) files are exported from

Oncentra Brachytherapy treatment planning system (Elekta, Stockholm, Sweden) for each patient.

While exporting, Oncentra Brachytherapy is set to anonymise the files removing any patient in-

formation. A treatment plan file and structure file is exported for each patient. Treatment plan

DICOM files contain all dwell positions in 3D space and dwell times for the treatment, as well as the

prescription and other relevant set-up specifications. A single fraction of the multi-fraction treatment

is considered for each case.

A structure set DICOM file contains the contours which are drawn on each slice of the planning

image to outline each OAR, catheters, HR-CTV and IR-CTV. The slice by slice outline of relevant

structures within this file can be seen in figure 4.1, these are not all the structures in each file, the
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IR-CTV has been removed from the figure to view the HR-CTV well. The reconstructed volumes

and positions can be demonstrated in figure 2.3 which are combined with the treatment plan to

calculate the dose to each volume.

Figure 4.1: A treatment structure set DICOM visualised in RadCalc, a secondary check program
(Lifeline Software, Austin, USA). The contour of each slice is displayed, with the rectum on the left
in dark yellow, the HR-CTV a purple structure in the middle and the bright yellow structure to the
right a bladder. The channels of a Fletcher applicator is seen with the tandem in bold blue within
the HR-CTV and the ovoid channels in red and yellow.

A displacement of dwell positions and recalculation of dose to OAR and HR-CTV without re-

optimisation enables the simulation of applicator displacement due to both reconstruction uncertainty

and physical displacement due to failures within the procedure. To displace the dwell positions

a Python script is developed using the Pydicom package, a package that allows the reading and

adjusting of many different DICOM file types. The displacement script used loads in a patient

treatment plan DICOM and then shifts all catheters along one of the three axes, Anterior-Posterior

(Ant-Post), Superior-Inferior (Sup-Inf) or Right-Left demonstrated in figure 4.2. Displacing all dwell

positions by a specific displacement value and a new treatment plan file is saved.
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Figure 4.2: Definition of the axes used in relation to the anatomy

A maximum displacement of ±7 mm has been calculated in each direction. The current literature

investigates maximum shifts of ±5 mm by Kari Tanderup et al, ±6 mm by Joel Poder et al, and ±10

mm and ±20 mm by Joshua Schindel et al.[61][60][62] These displacements have been investigated

as they emulated the possible uncertainty present for the combination of reconstruction and physical

displacement uncertainties. A range that is suitable amongst the literature while clinically realistic

has been chosen as ±7 mm which should cover a combination of errors and uncertainties.
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(i) Anterior-Posterior shift

(ii) Superior-Inferior shift
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(iii) Right-Left shift

Figure 4.3: The Python displacement script created to simulate applicator displacement demonstrates
its function to change dwell positions, shifting a maximum of ±7 mm along each axis.

The Python script loads a patient treatment plan, then shifts all dwell positions by a specific

value, which ranges from -7 mm to 7 mm in 1 mm increments along one axis with a new treatment

plan created for every increment. Thus each initial patient treatment plan produces 14 altered

treatment plans along each axis. This is then repeated for all three Ant-Post, Sup-Inf and Right-Left

directions, producing a total of 42 altered treatment plans for each patient. Figure 4.3 demonstrates

the dwell positions plotted for an intracavitary treatment plan. The tandem and lunar ovoid set can

be identified since a Venezia applicator has been used for this treatment. The figures demonstrate a

7 mm shift of the original plan in each direction, revealing the Python displacement script’s function.

Figure 4.3 demonstrates the definition of directions used when discussing the results. A positive

shift relates to a posterior displacement along the Anterior-Posterior axes, a superior shift along the

Superior-Inferior axes and a shift left when discussing the Right-Left direction. With a negative

value signifying the opposite direction (anterior, inferior, right).
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The original treatment plan and structure set as well as the 42 altered treatment plans are

imported into RadCalc, the secondary check program (Lifeline Software, Austin, USA). This software

is clinically used as an independent QA of treatment plans to verify the dose delivered. The program

uses a TG-43 formalism to determine the dose to critical volumes and dose points. Space over which

dose calculation will take place is set to 10 mm around all structures and a 1 mm3 voxel size is

implemented for discretisation. All plans with the same structure set DICOM are bulk imported and

are listed under a single patient ID. Individually, each treatment plan is opened and the dose to the

bladder, rectum, and HR-CTV volumes are calculated. DVH paramters D2cc is used as a measure

of dose to OARs and the D90 is used to determine HR-CTV coverage both of which are commonly

used as treatment guidelines [25]. D2cc indicates the dose received by the most irradiated two cubic

centimetres of each OAR and the D90 parameter signifies the dose 90% of the volume received.

The method of altering all dwell positions within a treatment plan without re-optimisation,

followed by calculating how treatment endpoints are effected, is applied to both intracavitary (n=21)

and interstitial (n=8) cases. Intracavitary treatments entail an applicator implanted within the

vagina with the ovoids sitting firmly against the external os of the cervix and the tandem extending

through the cervix. Interstitial plans use additional needles to treat a further spread of the disease.

The difference in the treatment types can be seen in figure 4.4, where it is clear that the larger

HR-CTV in 4.4ii requires peripheral catheters for adequate dose coverage.
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(i) Intracavitary treatment with Fletcher applicator. (ii) Interstitial treatment with Venezia applicator and
seven needles inserted.

Figure 4.4: The two treatment types used within the study demonstrated with the HR-CTV being
treated in red

Additionally, applicator rotation for intracavitary cases has been considered to quantify the im-

pact of failure during surgical insertion. Once the implant is placed against the external os of the

cervix, surgical gauze is packed around the applicator to hold it in place. Inadequate or imbalanced

packing can cause applicator rotation, which cannot be accounted for after imaging has taken place

and thus a rotation of the applicator about the intrauterine tube (tandem) is being considered for

intracavitary cases. Interstitial cases have been excluded since the needles which are inserted through

the ovoids and tissue should provide a firm anchor, making rotation unlikely. The tandem has been

taken as a possible axis of rotation for the applicator set as the cervix should limit rotation along

other axes. A Python script has been developed to simulate applicator rotation by rotating all dwell

positions about the tandem, ±20◦ in 5◦ increments. The script constructs a line between the first and

last dwell position in the tandem and uses this as an axis of rotation, the effect of which can be seen

in figure 4.5. 8 altered treatment plans are created for each of the 21 intracavitary patients. These

plans were also recalculated in RadCalc without re-optimisation to determine the impact applicator

rotation can have on treatment endpoints concerning dose to organs at risk and HR-CTV coverage.
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Figure 4.5: Fletcher applicator treatment plan rotated 20◦

4.3 Results

Figure 4.6: Isodose volume position in relation to the bladder, rectum and HR-CTV. The isodose
volume is blue, HR-CTV red, bladder yellow and rectum a dark yellow.

The following results demonstrate the impact a displacement in applicator position has on the dose

to the bladder and rectum as well as its effect on HR-CTV coverage. When interpreting results one

must consider the dose distributions position in relation to the OAR and HR-CTV to identify if the
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displacement corresponds with expected results. Figure 4.6 demonstrates the general geometry of an

unaltered plan and the isodose volume with relation to the critical volumes in question, expecting

an increase in dose as this shifts towards OAR and a decrease in coverage when moving out of the

HR-CTV volume.

Figures 4.7 - 4.15 contain multiple boxplots which signify multiple patients at each attribute,

whether it is a treatment type in figure 4.7 or a specific displacement in the subsequent figures.

These boxplots demonstrate the distribution of each dataset and denote the median with a red

line. The lower edge of the blue box illustrates the 25th percentile (Q1) and the upper edge the

75th percentile (Q3). Thus the length of the box signifies the interquartile range, encompassing the

middle 50% of the dataset. The maximum and minimum lines are drawn up to 1.5 times the span

of the interquartile range, data points which fall outside of which are considered to be outliers and

are illustrated with a red “+” symbol.

A positive displacement translates to a Posterior shift when considering the Anterior-Posterior

axes, Superior shift for the Superior-Inferior axes and displaces the dwell positions Left for the Right-

Left directions. With a negative displacement corresponding to the opposite direction as expected,

this is important when considering the expected impact of displacement as the relative change in

dose is a function of the distance between dwell positions and the volume considered.

Results for displacement to intracavitary and interstitial plans are presented, as well as a test of

the applicator rotation failure. A summary of the critical displacements is listed in table 4.1.
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(i) Bladder (ii) Rectum

Figure 4.7: Prescribed D2cc for the Organs At Risk

Figure 4.8: Prescribed D90 for the High Risk Clinical Treatment Volume

The figures 4.7 and 4.8 demonstrate the dose parameters of the original treatment plans. Gener-

ally, the bladder is allowed a higher dose as allowed by the current EMBRACE II guidelines, which

is congruent within the dataset, in both interstitial and intracavitary cases. Variation in initial doses

within the dataset can be explained by the differing needs of each patient when considering the

extent of disease, differences in anatomy and the dose history of the patient. Most notably all cases

examined are treatment plans from a single fraction which is part of a three to four fraction treatment

schedule, in which dose escalation or de-escalation can occur during the following fractions. Within

the governing recommendations, dose constraints are set for the whole treatment schedule, combin-

ing all EBRT and brachytherapy fractions.[25] Consequently, determining a threshold displacement

based upon absolute dose is inappropriate since only a single fraction can be assessed per plan and
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thus applicator displacement is evaluated with a relative measure for this study. [61] In line with the

literature, a 10% change in prescribed dose to organs at risk or the HR-CTV has been enforced as a

critical threshold.[62]

A relative increase inD2cc for OAR can be detrimental to patient health, similarly, a 10% reduction

in the D90 HR-CTV can diminish local control. The action level of a 10% relative change to more

than 25% of the dataset has been set. Graphically, when the marked 10% threshold is within the

blue box of the boxplot 25% of patients would receive more than a 10% relative change in dose for

that displacement and the action level is met. This action level is considered the critical limit of

applicator displacement and will define a safe HDR source tracking uncertainty for the End-to-end

phantom.

4.3.1 Intracavity Treatments

Applicator displacement has been evaluated for twenty-one intracavitary treatments for displacement

in each direction and applicator rotation about the tandem (intrauterine tube).

It is important to consider the direction of displacement with respect to the organ or volume in

question, as stated in the method a positive shift along the relevant axes relates to dwell position

displacement in the posterior, superior or left direction. With a negative displacement value signifying

a shift in the opposite direction (anterior, inferior, right). Figure 4.9i reveals a 2 mm displacement

meets the threshold, this is expected as dwell positions are being shifted anteriorly, towards the

bladder. A shift of the dwell positions towards an organ at risk will be the most sensitive. This is

apparent when compared to figures 4.9ii and 4.9iii, where the relative increase in dose is minimal for

the bladder, and the error threshold is only met with a 6 mm shift in the inferior direction.
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(i) Anterior-Posterior shift

(ii) Right-Left shift

(iii) Superior-Inferior shift

Figure 4.9: A relative change in dose to the bladder has been calculated for each displaced treatment
plan. The red dashed line represents a critical change in dose.
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(i) Anterior-Posterior shift

(ii) Right-Left shift

(iii) Superior-Inferior shift

Figure 4.10: A relative change in dose to the rectum has been calculated for each displaced treatment
plan. The red dashed line represents a critical increase in dose.
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In conjunction with what is found for the bladder, the rectum also experiences the expected trend

as posterior shift elicits a 2 mm limitation in applicator displacement and a decrease in dose with

an anterior shift, as illustrated in figure 4.10i. A displacement within 7 mm in every other direction

has not produced a 10% increase in relative dose to 25% or more of the cases. A clear HDR source

tracking error threshold of 2 mm has been established in the Anterior-Posterior direction. There

exists a clear sensitivity along this axis which can provide source tracking systems with guidance

to prioritise this direction since it is substantially more sensitive. Additionally, a consequential

sensitivity of ±2 mm along the anterior-posterior axis can inform clinical protocol when considering

possible treatment uncertainties such as applicator instability or reconstruction uncertainties.

A shift in dwell position has a measurable effect in HR-CTV coverage as demonstrated in figure

4.11. Unlike the impact to OAR, HR-CTV coverage is effect by movement in almost every direction,

which is expected when considering a shift in the blue isodose volume in figure 4.6 and how that will

affect the coverage of the HR-CTV volume in red. A shift of 4 mm in the left, anterior, posterior

and inferior directions causes a significant detriment to local control as well as a 5 mm shift to the

right. The effect a displacement in dwell position has on decreasing local control is far less directional

dependent since the HR-CTV volume symmetrically surrounds the catheters when considering the

transverse plane which the Anterior-Posterior and Right-Left Axis exist on demonstrated in figure

4.4i. This causes the symmetric trend in dose either side of zero displacement displayed in figures

4.11i and 4.11ii. The reduction in dose as dwell positions are shifted inferiorly and escalation in dose

superiorly in figure 4.11iii is expected considering the general shape of the HR-CTV volume and

the position of the tandem and ovoid channels positioned within the inferior end of the volume. An

inferior shift would cause the dwell positions to move towards exiting the volume and conversely a

superior shift will drive the dwell positions closer to the middle of the volume. A growing interquartile

range is apparent in figure 4.11iii in the superior direction due to a variation in plan and volume

from patient to patent. A HR-CTV volume that is shorter in the Superior-Inferior direction will

experience a higher sensitivity to a displacement in the superior direction as the tandem will be
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removed from the volume and thus removing the dose distribution it provides.

Applicator rotation has been evaluated as possible clinical uncertainty, within a limit that could

go undetected during treatment. A rotation about the tandem is considered with the dwell positions

within the ovoids shifting accordingly as displayed in figure 4.5. The effects are minimal due to the

degree of rotation studied not being large enough to displace ovoid dwell positions close enough to

organs at risk. With the bladder reaching its dose threshold at -20◦ and the rectum overcoming the set

tolerance at 20◦. Due to the rotational symmetry of the HR-CTV volume in the plane perpendicular

to the tandem applicator rotation has no meaningful effect on HR-CTV coverage within the ±20◦

tested. This was an additional test to evaluated a possible clinical error of applicator rotation. Unlike

the treatment plans which have been altered via translation, this does not provide a recommendation

for HDR source tracking.
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(i) Anterior-Posterior shift

(ii) Right-Left shift

(iii) Superior-Inferior shift

Figure 4.11: A relative change in HR-CTV coverage has been calculated for each displaced treatment
plan. The red dashed line represents a critical reduction in dose.

69



(i) Applicator rotation impacting bladder dose.

(ii) Applicator rotation impacting rectal dose.

(iii) The effect of applicator rotation on HR-CTV coverage

Figure 4.12: A rotation of the applicator about the axis of the tandem and the relative change in
dose. A 10% change in dose is denoted by the red dashed line.
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4.3.2 Interstitial Treatments

The displacement of interstitial treatment plans have produced results similar to the intracavitary

cases, however, as expected are more sensitive in some cases as dwell positions may exist closer to

OARs. Interstitial plans are identical to the intracavitary plans for the rectal and bladder critical

limits of 2 mm and -2 mm respectively when considering the Anterior-Posterior direction as well as

a null result along the Right-Left axis. The interstitial plans are more sensitive to displacement in

the Superior-Inferior directions for both OARs, with the bladder’s displacement limit being a 4 mm

inferior shift and rectum a 5 mm superior shift.

The HR-CTV again demonstrated a critical displacement in each direction, yielding a respective

-5 mm and 3 mm shift in the Anterior-Posterior direction, a -4 mm and 5 mm displacement in the

Right-Left direction and a -4 mm and 7 mm shift in the Superior-Inferior direction. Overall, the

HR-CTV demonstrated similar traits to what has been found for the displacement of intracavitary

plans. A direct comparison of interstitial and intracavitary treatment plans are demonstrated in

table 4.1.
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(i) Anterior-Posterior shift

(ii) Right-Left shift

(iii) Superior-Inferior shift

Figure 4.13: A relative change in dose to the bladder has been calculated for each displaced treatment
plan. The red dashed line represents a critical change in dose.

72



(i) Anterior-Posterior shift

(ii) Right-Left shift

(iii) Superior-Inferior shift

Figure 4.14: A relative change in dose to the rectum has been calculated for each displaced treatment
plan. The red dashed line represents a critical change in dose.
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(i) Anterior-Posterior shift

(ii) Right-Left shift

(iii) Superior-Inferior shift

Figure 4.15: A relative change in dose to the HR-CTV has been calculated for each displaced
treatment plan. The red dashed line represents a critical change in dose.
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Critical Volume Direction
Intracavitary Plan
Displacement(mm)

Interstitial Plan
Displacement(mm)

Bladder
Anterior-Posterior -2 -2

Right-Left Null Null
Superior-Inferior -6 -4

Rectum
Anterior-Posterior 2 2

Right-Left Null Null
Superior-Inferior Null 5

High-Risk CTV
Anterior-Posterior -4,4 -5,3

Right-Left -5,5 -4,5
Superior-Inferior -4,7 -4,7

Table 4.1: Summary of critical applicator displacements. A positive displacement value is considered
to be the posterior, superior or left direction of axis in question, with a negative displacement value
signifying the opposite direction.

4.3.3 Outliers

There exists a patient to patient variation in treatment plans due to the individual’s anatomy and

treatment needs. This can cause the treatment plan to be either more or less sensitive to applicator

displacement. If the individual’s treatment plan contains dwell positions that are within 7 mm of

a critical volume edge the displaced plan will enter or exit the volume leading to a large change

in dose. During optimisation of the treatment plan dwell positions are weighted to accomplish an

optimal plan for the programmed treatment endpoints. When plans are heavily optimised for the

individual they can become sensitive to uncertainty since they can have individual dwell positions

which contribute a large fraction of the dose. Once this heavily weighted dwell position is displaced

it can cause a large change in the dose to critical volumes.[60] This variation in dwell weighting

combined with anatomical diversity produces a variation within the dataset.
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4.4 Conclusion

A displacement in dwell position due to the physical displacement of the applicator or catheter

localisation uncertainties can cause a change to the delivered dose distribution. The objective of this

study has been to determine the impact of this effect for two distinct purposes, to reveal the clinical

importance of protocols that can limit these uncertainties and to advise the requirements of an HDR

end-to-end source tracking system. In doing so the study has produced clear results which imply

for both interstitial and intracavitary plans a 2 mm localisation is required in the Anterior-Posterior

direction. Clinically, protocols should favour stability in this direction during surgical insertion,

imaging and treatment planning. Source tracking systems require a 2 mm resolution along this axis,

or at minimum is oriented to provide the most accurate information in this direction during QA.

These results coincide with the literature which finds a 10-12% increase in dose to the bladder

and rectum for a 2 mm shift as found by Tanderup et al.[61] A study which also finds a 12% change

in dose for OAR when considering a ±3 mm shift, in all other directions. Alternatively, Tanderup et

al found applicator and needle displacement in the inferior direction has demonstrated a tolerance of

4 mm for the bladder in interstitial cases and 6 mm in intracavitary cases. The increased sensitivity

when compared to the findings listed in table 4.1, could be attributed to the study only evaluating a 3

mm and 5 mm shift and assuming a linear relationship between OAR dose and applicator translation.

Additionally, Schindel et al,. finds a ± 4.5 mm shift in the Superior-Inferior direction to cause a

change in OAR dose greater than 10%, these results are however an average impact over 20 patients.

As demonstrated in figure 4.7 there can exist a large variation in treatment plans from patient to

patient. Determining the impact of displacement based on mean value can allow outliers and a

minority of heavily optimised treatment plans to influence the results.[62]The analysis used within

the study conducted considers the impact to be critical when 25% of the patient cohort experiences

a critical change and is expected to produce conservative results. Local control is effect by a shift

in any direction for both interstitial and intracavitary cases, this most sensitive of which being a

76



posterior displacement limit of 3 mm for interstitial plans.

Applicator rotation was investigated as a possible clinical failure to determine the impact the

rotation of an applicator set can have on the dose delivered. Minimal change in dose has been found

within the ±20◦ investigated, with HR-CTV coverage un-affected and a 20-degree rotation required

to elicit a 10% increase to bladder and rectal dose. The study has successfully demonstrated the

requirements for HDR tracking within gynaecological brachytherapy by retrospectively evaluating the

dosimetric effect a change in dwell position can have on patient outcomes. This can be used to inform

the creating of HDR tracking devices to have an uncertainty within 2 mm in the Anterior-Posterior

direction and within 4-5 mm in other directions. This is in line with the TG-56 recommendation

of ±2 mm recommendation of source localisation in relation to the applicator system[63]. Although

uncertainty in HDR tracking position would act on each dwell position individually and is not

necessarily representative of an entire plan displaced in a single direction, the study provides insight

into the degree of sensitivity required and the directions which are most important for HDR tracking.

The primary limitation of the study presents as a simplification of possible applicator displace-

ment, only evaluating the movement of applicator displacement along each axis demonstrates sensi-

tivity to reconstruction uncertainty but does not account for all locations the applicator might take.

The study does not account for changes in shape or size of the OAR due to rectal or bladder filling.

The evaluation of applicator rotation serves as an example of a specific clinical scenario assessed for

quality assurance. Utilising a python script to change dwell positions in a specific fashion that simu-

lates a treatment scenario can serve as an archetype to test the influence of a multitude of different

situations which are more complicated than displacing the entire treatment plan along one axis. An

example of this could be assessing the bending of interstitial catheters due to oedema by adjusting

dwell positions to sit along a bent path. Ultimately, the study has successfully demonstrated the

impact of applicator displacement for the purpose of both determining the required accuracy of HDR

tracking and providing clinical guidance on the treatment’s sensitivity to reconstruction uncertainties

and physical displacement.
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Chapter 5

Characterisation of the MP987 for High

Dose-rate Source Tracking

HDR source tracking is an integral aspect of the end-to-end phantom which is enabled by the MP987.

This chapter serves to develop and evaluate a methodology for HDR source tracking with the MP987.

Establishing methods of data processing, a source tracking algorithm and analysis techniques. The

MP987, combined with the proposed methodology is characterised based on the temporal and spatial

accuracy as well as its performance at varying depths. Ultimately, a preliminary source tracking

experiment is performed to establish a complete validation of the MP987 for HDR source tracking.

5.1 The MP987

The Centre of Medical and Radiation Physics (CMRP), Wollongong University has created multiple

novel silicon diode arrays known as the Magic Plate which exist in multiple configurations such as

the MP121 and MP512. The applications and properties of which are discussed in detail in Chapter

2, Section 2.8. The MP987 is a silicon diode array with 987 diodes arranged with two different pitch

sizes, 7.5 mm and 5 mm. Figure 5.1i demonstrates the location of the finer pitch in the centre of

the plate, and spans over a 13 × 13 cm2 area. Surrounding this middle region there are 29 × 31
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pixels with a pitch of 7.5 mm giving an area of 21 × 22.5 cm2. A larger field of view is provided by

the MP987 compared to the 10 × 10 cm2 of the MP121. This will enable the MP987 to track HDR

brachytherapy at clinically relevant distances, making it central to the end-to-end phantom.[93]

(i) The silicon diode board, with individual seg-
ments visible.

(ii) The complete MP987 system with electronics
and protective Perspex covering the diode array.

Figure 5.1: The Magic Plate 987 system

5.1.1 The Data Acquisition System

The Centre of Medical and Radiation Physics (CMRP), Wollongong University have developed a

data acquisition system (DAQ) with similar components to those used for previous Magic Plate diode

arrays, such as the MP512 and MP121.[81][77]. The readout system made for multi-channel detector

devices, consists of the commercial AFE0064(AFE) by Texas Instruments, an analogue-to-digital

converter and a Field Programmable Gate Array(FPGA). The AFE is an integrator, accumulates

charge from an input current.[94] The amount of charge which can accumulate is adjustable, with

7 distinct levels between 0.1 pC and 9.6 pC, set as the range. [95] Range ultimately determines

the detector’s sensitivity, as a lower range will mean less charge is accumulated per count and

sensitivity of the detector will increase. The AFE is suited to use for detector arrays as each AFE

can accommodate 64 channels simultaneously, thus 16 AFE chips are used for the MP987 to provide
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an adequate number of 1024 channels for the 987 detector elements. The AFE chips are distributed

around the detector with 4 chips used for each of the four segments the array is divided into, illustrated

in figure 5.1. AFEs output to an analogue-to-digital converter both of which are managed by the

FPGA, which also enables output to a computer via USB.[81] An in-house graphical user interface

has been created by CMRP to visualise detector output, manage acquisition parameters and decode

raw data. The decoded files present as multiple lines of 1024 channel outputs, a line for each frame

acquired. Each line is then mapped to the 2D diode location illustrated in figure 5.2i.

5.2 Frame Processing

A requirement of accurate HDR tracking with the Magic Plate 987 is the selection of the appropriate

acquisition settings and post-acquisition frame processing for the end-to-end phantom. Suppressing

noise is extremely important when attempting to accurately track an HDR source over a range of

depths. Ideally, the 2-dimensional distribution or frame will be free from fluctuations in signal and will

have a gaussian shaped profile at the source location. Dead pixels, a difference in response from diodes

and AFEs will affect the 2D distribution and ultimately source tracking accuracy. Fluctuation within

each frame can originate from electronic noise due to radiofrequency interference from equipment in

the brachytherapy treatment room, mains powerlines and the AFE DAQ electronics boards.[93] Due

to Compton Scatter events and an inverse squared reduction in signal with distance, the signal-to-

noise ratio will deteriorate when measuring at an increasing distance from the MP987. To achieve

accurate source tracking at distances that are clinically relevant and enable a flexible end-to-end

phantom geometry, well-defined acquisition parameters and post-processing methods are necessary.

An acquisition software has been previously developed for the MP987’s use in linear accelerator

profile measurements. The software displays live readout, enables the user to set acquisition param-

eters and decodes files. For all measurements, an integration time of 9000 µs and an AFE sensitivity

range of 2 is selected. The integration time used is close to the maximum (9920 µs) the system is
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capable of. A larger integration time allows an increased signal-to-noise ratio.[93] This is an adequate

compromise as a temporal resolution finer than 0.01 seconds is not required. Accordingly, further

averaging of every 10 frames occurs to allow for more accurate source localisation, thus a frame is

produced every 0.01 seconds. The effect of frame averaging can be seen in figure 5.10, where a distinct

improvement in localisation is achieved, however, the impact this will have on resolving dwell time

is discussed in section 5.4. An AFE range of 2 allowed a balance that avoids detector saturation and

resolves the source over a 4-10 cm distance from the magic plate.

Equalisation was conducted by CMRP in previous studies to ensure an even response for each

diode and AFE within the detector. This was achieved by delivering 200MU with a flattened 6MV

beam, with a 30x30 cm2 field at 100 cm SSD. The detector was at a depth of 10 cm of Solid Water

and a further 10 cm of Solid Water is placed below as backscatter material. The outputs from

all channels were normalised to a channel that had the least variation in response throughout the

measurement, producing an equalisation factor for each diode. These factors are applied at the start

of frame processing to allow an even relative response.

Acquisitions are started with at minimum 5 seconds worth of data collected before the source is

present. The average response from each diode over the first 5 seconds of the measurement is taken

away as a baseline of electronic noise from all subsequent frames.
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(i) Responses mapped to diode location with 2.5 mm pitch,
preceding interpolation and filtering.

(ii) The use of two 1D interpolations applied along each axis.

(iii) Processed frame with 2D radial basis function interpola-
tion.

Figure 5.2: Measurements taken at a perpendicular distance of 5.5 cm between the source and magic
plate through Solid Water. The frame demonstrates processing which occurs prior to source tracking.
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The diode responses are then mapped to a 2D array, demonstrated in figure 5.2i to represent

the position of the diodes on the plate. The array is an 85 x 91 grid, with an even 2.5 mm pitch.

This allows both the 7.5 mm and 5 mm pitch regions to take a position within the array while the

diodes maintain their original locations. Interpolation is then required to give an even distribution

of data, without which the diode dense region in the middle of the plate would skew source tracking

results. Two methods of interpolation were considered, figure 5.2ii represents a 1-dimensional spline

interpolation, conducted along each column then each row for the 2-dimensional data. Although a

1-dimensional interpolation successfully provided an even spread between the regions of two different

pitch, dead pixels and noisy regions still had a large impact on the distribution’s shape. If data is

sparse along a column or row the interpolation will expectedly be poor. Since the source tracking

method relies on a centre of mass calculation, a skew in the response due to dead pixels or electronic

noise will produce inaccurate localisation. Figure 5.2iii demonstrates the use of a 2D radial basis

function (RBF) interpolation of the diode response map in figure 5.2i. The use of a 2-dimensional

interpolation method enables response to be interpolated from surrounding pixels and not exclusively

diodes in the same row or column. 2-dimensional interpolation combined with a gaussian filter to

overcome dead pixels and noisy regions of the magic plate. Ultimately a 2D interpolation is completed

using a Python script and all frames are imported into MatLab where the source tracking method is

implemented.

5.3 Source Tracking Methodology

A series of calculations are done to each frame to determine the source location (x,y,z) at a point

in time. To eliminate false positives a condition is required to ensure source tracking only occurs

when the source is present. The AFE operating at a specific range has a maximum number of counts

before saturation. For a range of 2, the maximum response is 216−1 and for source tracking to occur

a response 10% of this value needs to be detected.
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x =

∑n
i=1 s(Xi, Yi) ·Xi∑n

i=1 s(Xi, Yi)
· δ (5.1)

y =

∑n
i=1 s(Xi, Yi) · Yi∑n

i=1 s(Xi, Yi)
· δ (5.2)

(i) A frame which has undergone the processing pro-
cedure and meets the cut-off to undergo the source
tracking

(ii) Pixel locations used in the x-y source tracking cal-
culation

Figure 5.3: Single frame utilised for source tracking algorithm.

To determine the source’s position in the x-y plane a calculation that is analogues to determining

the centre of mass is performed. The position of each pixel is weighted with its response as demon-

strated in equations 5.1 and 5.2. Firstly, a threshold is implemented where only pixels which are

above 30% of the maximum response in the frame are used for the calculation. The n number of

positions each with the pixel location X and Y are plotted in figure 5.3ii, with the corresponding re-

sponse at each position being s(Xi,Yi). The position is weighted by an associated response, summed

and normalised by the total response. The calculation tends towards a final location that places the

source closer to those pixels which have a larger response and thus determines the location in the x-y

plane. A factor δ is applied to transfer the units from pixel location to the (x,y) position. Taking

the bottom left pixel to be (0,0) the value of δ is equal to the pitch (0.25 cm).

Source localisation in the Z direction is accomplished through the TG-43 formalism discussed in
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section 2.2.1. A point source approximation is used given the relatively large distance between the MP

and source. The TG-43 updated formalism states that most TPS systems used this approximation,

but recommends a 2D approach for distances less than 1 cm.[36].

In every frame, pixels greater than 90% of the maximum pixel are used to calculate the distance

between the source and MP987. The response of each pixel is converted to a dose rate and using the

equation 2.1 the distance is calculated. Firstly, a measurement is taken with the source at a single

dwell position a known distance from the Magic Plate. The dose rate is then calculated using the

1D TG-43 formalism and divided by response. This provides a calibration factor between dose and

response which is used for all following measurements.

The response is converted into dose rate via the calculation factor. Using equation 2.1, Sk when

the measurement is taken, radial dose and inverse-square functions are input. The dose-rate equation

is then solved radial distance between source and diode. The anisotropy function is neglected as it is

assumed that the diodes greater than 90% of the maximum response will be directly below the source

and thus will have a θ of approximately 90 degrees. As demonstrated in figure 2.7, any deviation

away from 90 degrees will not have a large impact. With 90 ± 20 degrees causing a 1% change in

dose.[3]

Figure 5.4: A treatment plan with 5 mm step size and 5 second dwell time.
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Figure 5.4 demonstrates the ideal time and location of a treatment plan which has a 5 mm step

size and 5 second dwell times for a single catheter. Realistically, a source tracking system will be able

to determine the timing and location of a source within a certain resolution, providing a distribution

of dwell times and positions. Figure 5.5 is a measurement of the same plan, with the catheter

running along the Y direction of the MP987. Compared to figure 5.4 the effect of the system’s finite

localisation accuracy illustrated through a spatial variation at each dwell position. Additionally, the

time resolution only enables a single acquisition point for source transit between dwell positions.

Figure 5.5: Measured output of a 5 mm step size, 5 second dwell time treatment plan

Dwell times and positions are calculated based on a histogram produced along the axis of which

the source is travelling. This has been selected as it will provide the greatest separation between dwell

points. Ideally, the histogram will present as demonstrated in figure 5.6, where all measured dwell

positions are differentiable, and a very small bin width can be used. Source transit has been neglected

and a point generated every 0.1s at each dwell position for the histogram. If the measurement of a

perfect system was being displayed there would be an even amount of positions measured between

each dwell position, to denote the source transit demonstrated in figure 5.4. For the source localisation

method proposed, a good separation of dwell times is required. Although the source transit does
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contribute some counts to bins between dwell positions, it is negligible due to the implemented 0.1s

acquisition rate.

Figure 5.6: A treatment plan with 5 mm step size and 5 second dwell time

Figure 5.7: The measured histogram used for of 5 mm step size, 5 second dwell time plan

To calculate a dwell position an average is taken of the measured points. A histogram is used with

a bin width of 0.5 mm to separate an output into individual dwell positions. The output in Figure

5.5 is represented by the histogram in figure 5.7, where the six dwell positions are denoted by the six
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groups of neighbouring bins. The grey line within the histogram illustrates an implemented threshold

of 1. Bins with a frequency below this threshold are used to differentiate dwell positions. Outputs

of data which is less spatially accurate will have a greater number of counts between dwell positions

and a larger threshold and will need to be implemented to gain a separation of dwell positions.

Once measured points have been grouped into dwell positions, their corresponding location along

each other axis is averaged.

Dwell time is equal to the sum of the frequencies of neighbouring bins multiplied by the sampling

rate of 0.1 s−1. An example of this can be seen in figure 5.4, where a 5s dwell time produces a

frequency of 50 for each position. A sample mean is calculated with equation 5.3 to determine dwell

position along a single axis. Each group of neighbouring histogram bins represents a dwell position

where fi is the frequency and xi is the bin location.

Pav =

∑n
i=1 fi · xi∑n

i=1 fi
(5.3)

5.4 Temporal Resolution

The MP987 system and source tracking process requires an evaluation of its temporal characteristics

since a source tracking system’s function is to provide source localisation and timing information.

The aims within this section are to:

� Determine the system’s optimal processing parameters

� Define the system’s limitations when determining dwell time

5.4.1 Method

To test the temporal resolution of the system, and determine the optimal amount of frame averaging

during processing, measurements are taken of a two catheter plan. Each catheter has the same series

of dwell times and a single step size of 5 mm.
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Two catheters are placed at a distance of 6.5 cm from the MP987 separated by Solid Water. The

two catheters are placed parallel both 5 cm from the middle of the MP as shown in figure 5.15. A

treatment plan which steps the source 5 mm between each dwell position is used, with a series of

different dwell times demonstrated by the histogram 5.8ii. To represent the treatment plan points

were generated every 0.1 seconds. The dwell times in order are 5 s, 5 s, 3 s, 3 s, 2 s, 1 s, 1s, 0.5 s,

0.5 s, 0.3 s, 0.2 s, 0.2 s.

(i) Treatment plan for the temporal resolution test, with a 5 mm step size and varying dwell times

(ii) A histogram of the treatment plan, where points are generated every 0.1 s

Figure 5.8: Treatment plan for temporal resolution test
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Each catheter has been analysed individually using the procedure developed above, where mea-

sured points are grouped into dwell positions. A threshold of 1 is used for the measurement process

using a 10 frame average. Without frame averaging, the single frame measurement requires a thresh-

old of 5 to differentiate dwell positions. This implements the finest temporal resolution of 0.2 s and

0.05 s for the averaged and single frame measurements respectively.

5.4.2 Results

The temporal resolution test was conducted with and without frame averaging to determine the

optimal processing parameters. Outputs from the two catheters are displayed in figures 5.10 and 5.9.

The histograms of these results in figures 5.11 and 5.12 provide insight into the tracking system’s

interpretation of the measurement. The dwell time for each position is calculated from their respective

histogram. Where residuals represent the difference between the programmed dwell time and what

is measured at each dwell position, displayed in figures 5.13 and 5.14.
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Figure 5.9: Temporal resolution test without frame averaging.

Figure 5.10: Temporal resolution test averaging 10 frames.
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(i) Catheter one

(ii) Catheter two

Figure 5.11: Catheters processed without frame averaging
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(i) Catheter one

(ii) Catheter two

Figure 5.12: Catheters processed averaging 10 frames
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(i) Catheter 1

(ii) Catheter 2

Figure 5.13: Residuals when using single frames.
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(i) Catheter 1

(ii) Catheter 2

Figure 5.14: Residuals for each dwell time when averaging 10 frames.

5.4.3 Discussion

The temporal resolution dictates a minimum dwell time for which a dwell position can be recognised

and the accuracy in determining dwell times. It is expected that dwell times measured by the MP987

are fractionally less than that of the treatment planning system as the afterloader corrects for transit

time. This is apparent throughout most measurements as the residuals are commonly negative.

In figure 5.10 and 5.9, the effect of frame averaging on the spatial resolution is apparent, where

the inter-dwell spaces cannot be resolved without frame averaging. Figure 5.10 however does exhibit

spaces between each dwell position, which has come at the expense of a reduction calculation fre-

quency. When averaging 10 frames a point is calculated every 0.1s, reducing the 0.01 s−1 acquisition
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rate output by the AFE-DAQ system. Acquisition at this high rate can provide superior temporal

accuracy, demonstrated by the residuals calculated in figure 5.13ii for the second catheter. In this

case, the source tracking has determined 5 s, 3 s within 0.05 s and all other dwell position up to

0.3 s within 0.15 s. Averaging 10 frames, the minimum dwell time measured is 0.3 s, within 0.1 s

for catheter 2. Catheter one with frame averaging produced an error less than 0.4 s for all dwell

positions, besides the first 5s dwell position. Although the measurements which are free from frame

averaging produce superior temporal precision for catheter two, figure 5.13i demonstrates a dominant

inaccuracy for catheter one. Dwell times are calculated to be over 100% different to what is expected,

with an inability to resolve a dwell position for times below 0.5s. Comparing figure 5.11i for catheter

one with figure 5.11ii for catheter two demonstrates a higher noise level for catheter two. Figures

5.12i and 5.12ii demonstrate a 10F average minimising this noise. Frame averaging provides a robust

outcome given the proposed methodology is sensitive to a lack of spatial separation of measured

points between dwell positions. Noise within the data can be attributed to radio frequencies induc-

ing electrical noise at 50 Hz, the MP987 increasing in temperature and an inaccurate equalisation

leading to overresponse in sections. With frame averaging a dwell position with a time of 0.5 s will

be detected with an expected accuacy of 0.2 s.
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5.5 Source Localisation

The aims within this section are to:

� Calculate the fluctuation within a dwell position as a function of depth

� Determine the error in the calculated mean when determineing dwell position as a function of

dwell time

5.5.1 Method

The precision for localisation is determined by quantifying fluctuation within dwell positions to one

standard deviation. This has been calculated with equation 5.4 and defines the expected variation in

each measured point. The variation is a function of depth and could also depend on the region of the

MP987. σ has been calculated for measurements taken of a treatment plan at multiple depths. The

setup used is illustrated in figure 5.15. A 1 cm Perspex plate with channels to house the catheters

is used to prevent them from moving. The plan consists of a 5 mm step size and a 3s dwell time

for each catheter. The 12 dwell positions in the treatment plan are centred over the middle of the

MP. Measurements are taken in 1 cm increments from a depth of 4.5 cm to 10.5 cm. An average σ

is calculated for the two catheters at each depth.

(i) Two parallel catheters are fixed on top of the solid
water 5 cm apart.

(ii) The MP987’s silicon diode array is signified in
black, above which there is 5 mm of perspex. The
Solid Water is place on top of this protective surface
for all measurements.

Figure 5.15: Set up for source tracking at different depths
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A dwell position is calculated by determining an average position from the generated histogram.

The error for this average is calculated to one standard deviation using equation 5.5. While the

fluctuation has been characterised using σ, the uncertainty in this average needs to be quantified

as a function of time to outline the methodology’s limitations given the chosen bin size and frame

averaging. Since treatment plans include a range of dwell times, so the setup used for this test is

identical to the temporal resolution test in section 5.4, with dwell times ranging from 5 to 0.3s.

σ =
√
x2 − x2 (5.4)

∆Pav =

√√√√ 1

n

n∑
i=1

(xi − Pav)2 (5.5)

5.5.2 Results

Figure 5.16: A measure of variance in dwell position for different distances between source and MP
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Figure 5.17: A change in mean error with dwell time along the Y axis

Figure 5.18: A change in mean error with dwell time along the X and Z axes
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5.5.3 Discussion

The fluctuation has been quantified for a series of different depths between 4.5-10.5 cm. The standard

deviation of two catheters has been averaged to provide an uncertainty at each depth. An increase

in uncertainty with depth is as expected given a decrease in signal and increase in Compton scatter.

From 4.5 to 6.5 cm the fluctuation is constant within (1±0.01) mm. Within this range, the primary

signal strength is dominant and an error of approximately 1.1 mm is apparent. Outside of this

range, there is a general increase in σ between 7.5 and 10.5 cm as expected. A reduction in signal

and increase of noise due to scattering causes growth in fluctuation. A decrease in σ is seen for a depth

of 9.5 cm, this can be attributed to the shift in catheter position when setting up the measurement as

noise level can differ for different regions of the MP. Ultimately, the measurement of dwell positions

at depths between 4.5 cm and 10.5 cm has a standard deviation of 1.1 to 1.7 mm respectively.

Since treatment plans include an array for different dwell times, accuracy needs to be evaluated as

a function of dwell time given the histogram methodology outlined in this chapter. To determine how

dwell time affects accuracy, standard deviation has been calculated for the treatment plan in section

5.4. Figure 5.17 reveals an increase in standard deviation for smaller dwell times. A reduction in

accuracy is expected for smaller dwell times as fewer measurements are taken in this location. Given

the source is moving in the Y direction, this reduction in data has a large impact on precision due

to the rate of change in the Y position compared to the constant X and Z position. Additionally,

the source’s transit toward and away from the dwell position may contribute to the spread in the

calculated position. Which will have a larger effect with small sample sizes. Figure 5.18 demonstrates

the standard deviation for the Z and X directions, where the expected reduction in accuracy is not

clear. The standard deviation is less than 0.6 mm and does not decrease with dwell time. A low

sampling rate has little effect on the localisation within these axes as the source’s position along

the axis is constant. Figure 5.18 demonstrates a variation in standard deviation which can be due

to factors that affect the response of the MP987 such as electronic noise, inadequate equalisation
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or heating of the MP. An example of this is the two successive measurements of a 5s dwell time

seen in figure 5.18 differing in standard deviation by 0.3 mm. A time-dependent error needs to be

considered with the current methodology since the average location used to define dwell position and

a larger sample of measurements decreases the error in the calculation. Additionally, a fluctuation in

dwell position is always present and is dictated by the value of the variance (σ). Localisation error is

expected to be less than 2 mm for depths between 4.5 cm and 10.5 cm and dwell times greater than

0.5s. For dwell times of 5s and greater an accuracy of 0.25 mm is expected.

5.6 Source Tracking at Different Depths

The aims within this section are to:

� To determine the accuracy the MP987 can provide in the Z direction

� Evaluate the impact depth has on source tracking in the X and Y directions

5.6.1 Method

The Z position is determined using a TG-43 based formalism and response to dose calibration factor,

decribed in section 5.3. The MP987’s ability to determine source position in the Z direction was

tested via measurement of two catheters through varying depths of Solid Water, with the set up

shown in figure 5.15. A single calibration point for conversion from signal to dose-rate at a distance

of 5.5 cm has been used across all measurements. A dwell time of 5 s and a step size of 5 mm was used

for 12 dwell positions, these are all measured at depths from 4.5 - 10.5 cm in 1 cm increments. The

catheters are placed within perspex channels to prevent them from moving. The distance between

the two channels used was measured with a ruler to be (5±0.2) cm. To determine spatial linearity

with depth, the distance between the two catheters will be measured as a function of depth. As per

figure 5.15i, the source’s x position should be constant for each catheter. The average x position
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was calculated for each catheter. The difference in average x position between the two catheters was

determine for different depths.

5.6.2 Results

Figure 5.19: Measured Z position at different depths

Figure 5.20: Spatial linearity at different depths

102



5.6.3 Discussion

Calculating source position in the Z direction has been tested to determine the efficacy of the proposed

TG-43 based methodology. Figure 5.19 demonstrates the expected depths compared to what is

measured. The calibration factor used was at a distance of 5.5 cm. Depth measured for 5.5 cm is

within the calculated error for both catheters. Both catheters measured at 4.5 cm have produces a

measurement close to 5 cm, this can be attributed to detector saturation. Measuring at a higher AFE

range will decrease sensitivity and allow adequate data within this region. At depths further than

the 5.5 cm calibration point, the calculated distance is less than expected. At a depth of 8.5 cm, the

difference between, the expected and measured Z is (1.16±0.01) cm and (0.84±0.01) cm for catheters

1 and 2 respectively. This discrepancy continues to increase to 10.5 cm, reaching (2.21 ±0.01) cm

and (1.48 ±0.01) cm for catheters 1 and 2 respectively. Given the shape of the two separate gradients

for measurments between 4.5 cm to 7.5 cm and 8.5 cm to 10.5 cm there could be an error in the

implementation of the TG-43 formalism. Investigation into scripts developed for the calculation is

required. Additional uncertainties stem from a lack of full scattering conditions specified by TG-43,

despite the inverse square reduction in dose being dominant. An assumed water equivalence of the

Perspex catheter channels and MP cover will also add to uncertainty. Since the MP987 is a novel

silicon diode array it has not undergone radiation hardening, a possible dose-rate dependence would

also have a large effect on localisation in the Z direction.

Additionally, multiple time-variant factors affect the response of the MP987. An accurate equal-

isation needs to be performed to ensure an even response from each region of the MP987. Over

time the equalisation required can change and so repeating this process will ensure an equal response

from each diode and AFE. A build-up of heat throughout the measurement can cause over and under

response in sections of the Magic Plate. Although a fan was used throughout data acquisition, an

increase in temperature on the power supply was present, leading to a small change in bias on the

detectors. Electronic noise due to RF frequencies within the treatment room can induce fluctuations
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in signal. The effect of electronic noise had been reduced by shielding the electronics with aluminium,

however, it is still present during acquisition. Since the depth is completely dependant on diode re-

sponse, these factors which alter the output signal have a large effect on accuracy in the Z direction.

Additionally, a difference between the two catheters demonstrates a variation in response for different

regions of the MP987. Filtering and frame processing do well to supplement data allowing accurate

source tracking in the X and Y directions, but do not remedy response irregularity.

Figure 5.20 demonstrates the distance between two catheters given different depths. The spatial

consistency in the X-Y plane for different depths is imperative for source tracking as treatment

plans can include catheters at multiple depths. The distance between the two channels in which the

catheters are housed is measured with a ruler to be (5 ± 0.2) cm. For depths from 4.5 cm to 8.5 cm,

the measured distance between catheters is within error. For distances of 9.5 cm and 10.5 cm, distance

between the catheters has decreased. At a distance of 10 cm, the off-axis profile demonstrates a width

of 12 cm for a response of 70% of the maximum [93]. A spread in the distribution off the detector

skews the measurement, shifting the centre of mass centrally. End-to-end phantom measurement

should be taken in the middle of the detector and less than 8.5 cm away.

5.7 Preliminary Source Tracking

The concepts and methods established within this chapter will be utilised to enable preliminary

source tracking in preparation for a complete end-to-end test. The aims within this section are to:

� Evaluate source tracking in 3-dimensions with the use of a replica multichannel applicator

5.7.1 Method

A 6 channel cylindrical vaginal applicator which is 25 mm in diameter, was 3D printed with polylatic

acid (PLA) and a 100% infill. PLA has been shown to provide a good agreement to water, limiting

additional attenuation.[96].
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As displayed in figure 5.21 the applicator was placed on top of a 30 cm x 30 cm x 6 cm block

of Solid Water, with 1 cm of solid water on each side. The setup was taped together to prevent

components from moving and positioned on top of the MP and aligned with its centre. The top

end of the applicator is positioned 5 cm above the centre in the Y direction and the midline of the

applicator was aligned with the middle of the Magic Plate. Catheters are inserted into each channel

and afterloader connected in the arrangement demonstrated in figure 5.21ii. The same sequence of

dwell positions and times are planned for all catheters. A step size of 5 mm was used over the 80

mm treatment length. With the source stepping towards the top end of the applicator, the first 30

mm has a dwell time of 5s and the remaining 50 mm has a dwell time of 2 s.

An absolute analysis of position compared to a CT based treatment plan was completed in end-

to-end testing. Within this preliminary study, results are analysed with respect to the discrepancy in

dwell times, the ability to determine the distance between dwell positions and the relative difference

in-depth for each catheter.

(i) 3D printed Multichannel Vaginal Applicator placed
on 6 cm of Solid Water

(ii) Displays configuration of afterloader to applica-
tor connection, with each number corresponding to a
channel.

Figure 5.21: MVC setup for preliminary source tracking
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Figure 5.22: Applicator orientation

5.7.2 Results

Figure 5.23: Source tracking along the Y axis
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Figure 5.24: Difference in dwell times from treatment plan

Figure 5.25: Difference in step size
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Figure 5.26: Source tracking along the Z axis

5.7.3 Discussion

Results from the preliminary source tracking study demonstrate the accuracy expected for pre-

treatment quality assurance. Figure 5.23 displays the data output along the length of the catheter.

Each dwell position is resolved for all catheters. A source position has also been measured during

transit in most cases, as well as two points between catheters illustrating the source’s retraction. A

clear change in gradient can be seen for all catheters after the first six dwell positions, signifying

the change from a 5s to a 2s dwell time. Unlike the clinically used multichannel applicators where

each active channel is connected to the afterloader, interstitial catheters are inserted into the 3D

printed applicator. These catheters are subject to movement in and out of the applicator leading to

a marginal offset of each catheter in the Y direction. Figure 5.24 demonstrates the difference between

the measured dwell times and the 5s and 2s dwell times planned. With 17 dwell positions in each

catheter, 81% of all dwell positions have been determined within 0.1s and only 1 dwell position with

a residual of 0.3s. An average magnitude of the difference is calculated to be (0.1 ± 0.01)s, which is

the expected minimum temporal resolution. Additionally, measured dwell times are all below what

has been planned since the afterloader corrects for transit dose, and reduces the actual dwell times

accordingly. Figure 5.25 displays the difference between programmed step size and what is measured.

These measurements compound the uncertainty from two calculated dwell positions. The absolute
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value of the difference between the planned and measured step size is averaged to give (0.58 ± 0.04)

mm.

The uncertainties calculated for the average magnitude of the residuals are type A, statistical

uncertainties, quantifying the precision of the result based on the standard error of the data collected.

Type B, systematic uncertainties include the limitation of the HDR afterloader specified to a dwell

position accuracy of ±1 mm, and a dwell time accuracy of ± 0.1 s for example.[97]

Figures 5.21ii demonstrates the sequence of channels the source travels through, from 1 to 6.

Noting the different distances each channel is from the MP and the order in which this occurs a

qualitative comparison to the output in figure 5.26 can be made. Within catheter 1 the source has

its largest Z value, followed by the next two catheters which are below one another. Catheter 3 and

4 have similar depths followed by catheter 5 and 6 which are in their expected configuration. All

catheters are 0.5 mm closer to the MP than expected, performing better than the underestimation

demonstrated in figure 5.19. It is expected that the Z position stays constant for each catheter.

However, in figure 5.26 there is an increase in Z with time after the first 30 mm of the treatment

plan. The catheters are within a rigid body and so the increase in Z position is attributed to an under

response of the MP987. This effect is occurring for all catheters over the same region of the Magic

Plate. A relative decrease in response could occur in a specific region due to the reasons addressed

in 5.6.3. Additionally, there exist multiple dead pixels near this region and an interpolation that

is not representative of the real response could cause a deviation in the Z direction. Although an

inverse square fall off in signal is the dominant interaction, the TG-43 based calculation requires

full scattering conditions which are not met, this will be as a source of error which changes as the

source steps towards the tip. An increase of 1 cm can be seen in most cases. The measurement

was repeated with the same feature present in both acquisitions. A live readout system with source

tracking will enable the user to monitor data as it is acquired and determine if suitable results have

been taken. Moving the applicator to a different region of the MP987 could produce better results

in the Z direction.
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5.8 Conclusion

Characterisation of the MP987 has required the development and evaluation of a source tracking

methodology and frame processing. The source tracking system has been examined with respect to

accuracy when determining dwell time and location. Data that has been output from the MP987

requires processing to enable HDR source tracking. Equalisation, baseline removal and frame av-

eraging take place to minimise variation in response across the MP. Interpolation is required to

provide an even pitch and supplement data from dead pixels. Once the frame is processed a source

tracking algorithm is implemented to produce dwell times and positions. A centre of mass approach

is successfully utilised for the X and Y positions, with a TG-43 based calculation used for the Z

direction. Once positions have been calculated every 0.1 s, dwell positions are identified via binning

the measurements in a histogram and calculating an average.

Although measurements with a high acquisition frequency can produce a finer temporal resolution,

the methodology relies on accurate localisation to accomplish this, making frame averaging a robust

solution. It has been established that the MP987 HDR source tracking system can predictably resolve

dwell times 0.5s and above, with an accuracy of ±0.2 s.

Source localisation has been evaluated as a fluctuation of measured positions within each dwell

location. This fluctuation has been determined as a function of depth. The measurement of dwell

position between 4.5 cm and 10.5 cm has a standard deviation of 1.1 mm to 1.7 mm respectively.

Fluctuation in the measured position is below 1.2 mm for 4.5 cm to 6.5 cm and increases beyond

this. 9.5 cm produces an unexpected reduction in σ, below the 7.5 cm measurement. This might be

attributed to a different region of the MP being used. This experiment will benefit from repetition

and ensuring an even response across the MP.

Since an average location is calculated to determine the final dwell position, a time-dependent

error in localisation has been determined. An increase in error along the direction of travel is

apparent, with a dwell time of 0.5 s producing an uncertainty under 2 mm. The error is below 0.6
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mm irrespective of dwell time for the dimensions in which the source’s position is relatively constant.

Accuracy in the Z direction is determined through a comparison of what is measured and the true

depth for a single calibration point. Measurement at 4.5 cm is overestimated, this may be attributed

to detector saturation. The end-to-end phantom should be constructed to avoid the source being

4.5 cm or closer to the MP987. At depths further from the 5.5 cm, the calculated distance is less

than expected. At a depth of 8.5 cm, the difference between, the expected and measured Z is (1.16

± 0.1) cm, this discrepancy continues to increase with depth reaching (2.21 ± 0.1) cm at 10.5 cm.

Two separate gradients are present for measurements between 4.5 cm to 7.5 cm and 8.5 cm to 10.5

cm. This signifies a possible error in the implementation of the TG-43 formalism, an examination of

the calculation will be beneficial. Generally, the response across the MP987 can differ, which has a

large impact on localisation in the Z direction. The sensitivity of each AFE regulated segment can

change over time. Performing another equalisation will ensure an even response from each segment

of the magic plate. Irradiation with a Co-60 source will remove possible dose rate dependence and

stabilise response. Both thorough RF shielding of the electronics instead of the aluminium sheets

used and adequate cooling will ensure a stable, reproducible response. Improvements that regulate

response across the MP will enable accurate localisation in the Z direction.

When tracking in three-dimensional space a consistent representation of the X and Y positions is

required at different depths. For depths of 9.5 cm and 10.5 cm, an expected narrowing of the distance

between catheters is measured. This occurs due to the projection of the distribution widening when

further away. Since both catheters are off-centre, some of the distribution is no longer in the field of

view. This results in the centre of mass calculation shifting catheters closer together.

All established methodology has been applied within a preliminary tracking experiment to eval-

uate its performance using a replica multichannel applicator. An average magnitude of the residual

dwell times gives a value of (0.10±0.1) s for the entire plan. This is within the projected 0.2s accuracy.

The difference between the planned and delivered step size was also calculated to evaluate localisa-

tion accuracy. The absolute value of which is averaged to give (0.58±0.04) mm. This in line with
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the accuracy established within the chapter. The Z position relative to other catheters within the

applicator is consistent when considering the order of delivery. An increase in Z position is displayed

for all catheters in the final 50 mm of the treatment plan. Since this occurs for all catheters when

the source is above the same region of the MP, the deviation in the Z position can be attributed to a

variation in response across the plate. This could be attributed to multiple dead pixels which exist

in that region. If the source is directly above a cluster of dead pixels, interpolation can struggle to

supplement this data accurately. The experiment will benefit from repeating measurement above a

different region of the MP. Additionally, the multitude of factors previously discussed will contribute

to variation in the distribution of counts and cause uncertainty in the Z localisation. Validation of the

MP987 for HDR source tracking has been achieved through the preliminary experiment. A complete

characterisation has been performed for HDR source tracking with the MP987. A methodology has

been developed for end-to-end analysis and the expected temporal and spatial limitations outlined.
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Chapter 6

Validation of the End-to-end Verification

Phantom

The End-to-end phantom enables testing of a treatment procedure to determine faults that present

as a difference between the treatment plan and what is delivered. An end-to-end test can assess the

implementation of a new device, software or protocol and it’s cohesion into the current workflow. This

is accomplished through testing data transfer, function and its ultimate impact on the treatment.

The End-to-end phantom requires a component that houses a gynaecological applicator and

method for HDR source tracking. The MP987 has been characterised for HDR tracking, providing

positional and timing information.

The purpose of this chapter is the validation of the End-to-end phantom to establish and define

its use and limitations for vaginal and cervical cases. This will be accomplished via different setups

for each treatment type, while undergoing the same sequence of tests. The phantom will undergo

construction, imaging, treatment planning and monitoring of the treatment’s delivery through source

tracking. The system’s ability to detect common clinical errors will also be evaluated for both

treatment types.

113



6.1 Validation of the End-to-end Phantom for a Vaginal

Brachytherapy Treatment

Validation of the end-to-end phantom’s use for vaginal brachytherapy is performed through imaging,

planning and delivering a clinical treatment plan.

The aims within this section are to:

� Evaluate the system’s ability to undergo a vaginal brachytherapy workflow and monitor delivery

of the treatment, determining dwell times and positions

� Determine if the following common clinical errors can be detected: catheter swap, incorrect

indexer length, a miscalibration in activity

6.1.1 Method

Applicator preparation, imaging, treatment planning and treatment delivery are the key aspects

within the clinical workflow, and as such, are conducted for the end-to-end test. For treatment of the

posterior vaginal wall a 30 mm, multichannel vaginal applicator (MVC) is loaded with 4 catheters, as

displayed in figure 6.1. The phantom consists of a prepared applicator on a (30 x 30 x 3) cm3 slab of

Solid Water. A 3D printed applicator holder has been made to provide the applicator with stability

within the setup. The holder has an infill of 10% and no surrounding backscatter material is used

for the measurement. Full scattering conditions are not necessary since the end-to-end phantom’s

function is source tracking based and does not calculate dosimetry.
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(i) 3D printed applicator holder to allow a stable, re-
producible experimental setup.

(ii) Multichannel vaginal applicator posteriorly loaded
with four catheters.

Figure 6.1: Prepared applicator for end-to-end test.

The applicator is positioned as demonstrated in figure 6.2i, with its superior tip lined up to be 5

cm left of the Solid Water’s centre. The applicator’s position is marked with a pencil to minimise the

effect of applicator displacement between imaging and planning. A ball bearing is placed 10 cm left

of the middle of the plate. The ball bearing serves as a reference point to co-register the coordinate

systems of the TPS and MP987.

(i) Position of applicator and reference point (ii) Red arrow shows reference point for co-registration
with TPS. Applicator visualised to the right, a large
central channel can be seen but will not be used for
this treatment.

Figure 6.2: MVC end-to-end phantom
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A CT is taken under treatment parameters, with a 2 mm slice thickness. A reconstructed image

of the CT is shown in figure 6.2ii, where the applicator and reference point is visible. The CT is

imported into the Oncentra Brachytherapy treatment planning system (Elekta, Stockholm, Sweden).

Within the TPS, an MVC applicator model is selected from a library. The virtual model of the

applicator is aligned with the CT data to allow a reconstruction of the channel positions. The model

is aligned using three anchor points, followed by slight rotations to ensure the channels are aligned

within orthogonal views. A PTV is then drawn posteriorly as shown in figure 6.3, to simulate the

appropriate vaginal wall therapy. The volume is 80 mm along the Superior-Inferior axis. 800 cGy is

prescribed to the volume and optimisation is performed to give dwell positions and times.

The ball bearing shown in figure 6.2ii is saved as a point of interest to obtain its coordinates in

the TPS reference frame. A co-registration will be done between the MP reference frame and the

TPS as the reference point’s coordinates are known in both spaces.

Figure 6.3: PTV drawn for vaginal wall treatment and reconstructed channels shown in the TPS
co-ordinate system.

The middle of the phantom and the MP987 are aligned. The applicator’s catheters are connected

to the appropriate transfer tube and the treatment is delivered. The MP acquires data before and

during delivery of the treatment to allow for a baseline to be measured.
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Simulating clinical errors requires a slight variation at the treatment planning or delivery stage

of the method. These variations are stated below for the appropriate error.

� Catheter Swap: Before delivering the treatment, the transfer tubes are swapped between

catheters 1 and 4. The TPS and afterloader do not have a method of detecting this failure and

will result in the incorrect dose delivery.

� Indexer Length Error: Indexer length informs the afterloader of the channel length. Within

this error, the indexer length is reduced. Catheter 1 is reduced by 2 mm, catheter 2 by 5

mm and catheter 3 by 10 mm. No indexer length change is implemented for catheter 4. The

reduction in indexer length shifts dwells positions along their catheter.

� Activity Miscalibration: During treatment planning, a 5% increase in prescribed dose is im-

plemented, leading to a new treatment plan with a prescription of 840cGy. This simulates an

incorrect activity being entered into the TPS or treatment communication console (TCC) when

the source is changed.

6.1.2 Results

Figure 6.4: Measurement of vaginal treatment plan. Undetected dwell position highlighted by the
red arrow.
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Figure 6.5: A view of the measurement and treatment plan in the Z direction.

The absolute value of the difference between the treatment plan and measurment is averaged for

each dimension.

X (mm) Y (mm) Z (mm) Time (s)
Mean Difference 0.16 0.24 0.20 0.10

Error 0.01 0.01 0.01 0.01

Table 6.1: Mean difference between treatment plan and source tracking

Figure 6.6: Residuals for catheter swap error
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Figure 6.7: Residuals for incorrect indexer lengths

Catheter X (mm) Y (mm) Z (mm)
1 2.13 ± 0.12 0.17 ± 0.04 7.36 ± 1.11
2 5.15 ± 0.37 0.00 ± 0.00 2.11±0.12
3 9.9 8± 0.66 -0.06 ± 0.00 2.94 ± 0.09
4 0.03 ± 0.00 -0.05 ± 0.00 7.62 ± 0.14

Table 6.2: The difference between normal and indexer length error measurements

For the activity error and increase in the average difference in magnitude of dwell time is (0.69

± 0.08)s, compared to the measured (0.10 ± 0.01) s for the normal plan.

6.1.3 Discussion

The end-to-end phantom successfully monitored a vaginal treatment, with imaging, planning and

delivery. Co-registration was performed, however, a setup error in the MVC’s alignment when moving

from imaging to treatment was apparent. A 1 cm shift was required by the entire dataset along the

X-axis. A script is run to find the most common difference between the plan and measurements

in the X-Y plane for all points. The same translation is applied to all measured points. Figure

6.4 demonstrates a comparison between the measured data and the TPS. Although this remedied

the setup error, removal of an external reference point prevents the source tracking from being a

completely independent check. For example, an index error that has shifted all catheters by the

same value will not be detected.
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One dwell position has gone undetected, declared by the red arrow. The position went undetected

as its dwell time was 0.2s, which is too short for the current system to detect. The minimum detected

dwell time is established in 5.4.3 is (0.3±0.1) s. Figure 6.5 demonstrates a view of the Z position

measured compared to the TPS. A flatter distribution of dwell positions can be seen compared to

the treatment plan which exists at various depths. The low gradient seen in section 5.6.3, figure

5.19, where there is a flatness in output for depths 4.5 cm to 7.5 cm. The issues within localisation

in the Z direction have been outlined in 5.6.3. Despite this, table 6.1 demonstrates localisation in all

directions are well above the expected accuracy. A mean difference in dwell time is (0.10±0.1)s for

the treatment plan, which is very accurate considering the afterloader’s reduction in dwell time for

transit dose. The end-to-end phantom has successfully undergone a clinical workflow that provides

validation for its application in vaginal brachytherapy.

A repeated evaluation of the system’s capabilities within this setting will be accomplished while

testing its ability to detect common clinical errors. A catheter swap error occurs when the incorrect

transfer tube is connected to a catheter and thus all dwell positions and times are swapped. Since

catheters 1 and 4 have a similar z value, the major difference in position between the two catheters

exists in the Y direction. Figure 6.6 demonstrates the discrepancy between dwell positions in the

treatment plan and what has been measured. The catheter swap error is displayed in figure 6.6,

where a positive displacement in the y-direction for catheter one is seen. Correspondingly, a negative

displacement in the y-direction is demonstrated for catheter 4. This clearly, indicates a swap in

catheter position of catheter 1 and 4. The mean residual for dwell times should be unaffected for

this treatment plan and as such produces a result of (0.08±0.01)s.

The detection of an indexer length error has been tested. Each applicator channel has a specified

indexer length, entering the incorrect indexer length shifted the dwell positions along the path of

the channel. Figure 6.7 compares measurement of the indexer length error to the original treatment

plan. Since the rounded tip of the MVC is facing the negative x-direction, reducing the endpoint

of each channel should see an increase in residuals corresponds with the indexer length error. The
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implement 2 mm, 5 mm, 10 mm and 0 mm reduction in indexer length for channels 1 to 4 respec-

tively is displayed in figure 6.7. An indexer error for each catheter can be detected. Table 6.2, is

the difference between the measured normal plan and indexer length error for each catheter. A com-

parison between measurements demonstrates each catheter shift relative to a baseline measurement.

Each implemented shift has been determined within the calculated error. For localisation in the Z

direction, a large discrepancy is apparent for both comparisons against the TPS and the error-free

measurement. This variation in Z position is not a result of the indexer length error as catheter

4 did not undergo a change in length. Inconsistencies in the Z localisation can vary with time, an

under-response of the MP has caused a deviation of less than 1 cm. The dwell times for this plan

have remained the same and has produced a mean magnitude of discrepancy of (0.09±0.01)s.

To simulate the incorrect activity being entered into either the TPS or TCC during calibration,

dwell times are increased through an increase in prescription. The mean difference in dwell time has

been calculated to be (0.69 ± 0.08) s, signifying an activity error has this is larger than the maximum

discrepancy of (0.10±0.1) s previously measured.

Comparing the treatment plan made to simulate the activity error with the error-free treatment

plan gives the expected mean discrepancy. The expected change in dwell time is 0.61s which is within

error for what is calculated.

The end-to-end phantom has successfully undergone a clinical workflow and monitored treatment

delivery within the expected accuracy. Catheter swap, indexer length and activity miscalibration

errors were successfully detected. The end-to-end phantom is proficient in its application for vaginal

brachytherapy with well-defined limitations.
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6.2 Validation of the End-to-end Phantom for a Cervical

Brachytherapy Treatment

The end-to-end phantom is evaluated for multiple treatment types to determine its performance in dif-

ferent clinical applications. To validate the end-to-end phantom’s function for cervical brachytherapy

treatment a Fletcher applicator was used, enabling imaging, planning and monitoring the treatment’s

delivery.

Similar to the previous section, the aims are to:

� Evaluate the system’s ability to undergo a cervical brachytherapy workflow and monitor the

delivery of the treatment by determining dwell times and positions

� Determine if a miscalibration in activity can be detected

6.2.1 Method

Validation of the End-to-end Phantom for cervical brachytherapy presents unique challenges given

the difference in channel shape and length as demonstrated in figure 6.8. Once the phantom was

constructed, an end-to-end test was performed via imaging, treatment planning and monitoring of

treatment delivery.

Figure 6.8: Ovoid and tandem channels.
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A Fletcher applicator was assembled and firmly held in place within a water tank. Once the

phantom was constructed, an end-to-end test was performed.The tandem and two ovoid channels are

assembled and rigidly fastened together with additional rubber bands. Thermoplastic was heated in

a basin and wrapped around the applicator and ring clamp as demonstrated in figure 6.9. Once the

plastic cools, it hardens, forming an applicator specific holder.

Figure 6.9: Fletcher applicator constructed and attached to ring-clamp with thermoplastic.

The coupled applicator and clamp was fixed to an adjustable bracket within the water tank to

give the required phantom displayed in figure 6.10. A ball bearing was stuck to the middle of the

415 mm wide water tank, and at a height of 145 mm from the base. The phantom was CT scanned

with treatment parameters, including a 2 mm slice thickness.
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Figure 6.10: The End-to-end phantom, with fletcher applicator positioned in the water tank. The
red arrow demonstrates a ball bearing, which is used for co-registration.

When treatment planning the channels are reconstructed by noting their position in each trans-

verse slice. Fine adjustments are then made through altering the channel position in a sagittal view.

Point A and B prescription was used for the treatment plan. As described in the section 2.2, point

A describes a point of interest that is 2 cm superior and 2 cm lateral from the external os of the

cervix. In this case, the cervical os was taken to be the stopper of the applicator. Point B exists at

the same position superiorly but is 3 cm lateral from point A. These points of interest are generated

on the right and left side as displayed in figure 6.11.[30]
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Figure 6.11: Cervical point-based treatment plan

An 800 cGy, point A prescription was implemented. Ultimately this generates a treatment plan

which has a 2 mm step size, with dwell times ranging from 6.9s to 17.3s. The active length of

each ovoid was 1.8 cm and 3.4 cm used within the tandem. The ball bearing was saved within the

TPS as a reference point. 40 mm of Solid Water was placed on the MP before the water tank to

provided space between the tank and electronics around the M987. A corner of the tank was lined

up to be co-incident with a corner of the Solid Water to simplify the calculation of the reference

point position.Once positioned correctly the water tank was filled with water, up to 5 cm above the

applicator. Although full scattering conditions were neglected in the previous experiment, given the

use of a water tank within this setup, full scattering conditions were tested.The treatment plan was

delivered and monitored. A treatment plan was created to simulate an activity calibration error by

increasing the prescribed dose by 5%. This simulates an incorrect activity being entered into the

TPS or treatment communication console (TCC) when the source is changed.
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6.2.2 Results

Figure 6.12: Measurement of cervical treatment plan in XY plane

Figure 6.13: Measurement of cervical treatment plan in ZX plane

X (mm) Y (mm) Z (mm) Time (s)
Mean Difference 3.49 4.74 6.14 0.19

Error 0.57 0.77 1 0.03

Table 6.3: Mean difference between TPS and measured dwell positions

For the activity error and increase in the average difference in magnitude of dwell time was (0.53±

0.08) s, compared to the measured (0.19 ± 0.03) s for the error-free plan.

X (mm) Y (mm) Z (mm)
Mean Difference 3.73 3.91 6.24

Error 0.61 0.63 1.01

Table 6.4: Mean difference between TPS and measured position for activity miscalibration.
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6.2.3 Discussion

Validation of the End-to-end Phantom for a cervical brachytherapy treatment has been performed.

A co-registration between the TPS and magic plate is imperative in accurately monitoring and

evaluating source tracking. Figure 6.10 demonstrates the reference point used. Co-registration was

attempted with the measurement of the reference point location taken in space and a point of interest

assigned during treatment planning. Despite the known position of the reference point in each frame,

the calculated co-registration did not place the two data sets accurately. Shifting the origin within

the MP software to a well-defined point in the water tank will allow better co-registration. Further

investigation is required and necessary to allow an independent definition of dwell positions. To

compare the TPS to the measured dwell positions, an average of the programmed dwell position

was shifted to the location of the measured dataset’s average position. All TPS dwell positions are

translated by the same value.

Figure 6.12 demonstrates both the measured dwell positions and TPS. The ovoid channels show

a much larger spread than expected in the y-direction. Dwell position measurement within these

channels were poor given the channel shape in figure 6.8. The source steps towards the MP in 2 mm

increments, making its change in position in the Y direction less than 1 mm for each step. Since

the source tracking methodology relies on determining a difference in position with time, accuracy

is low for the ovoid channels. Ideally, the source tracking methodology would utilise the source’s

change in direction along the Z-axis to localise individual dwell positions. Figure 6.13 demonstrates

the expected variation in source position in this direction when viewing the TPS programmed dwell

positions. However, when compared to the measured data, the Z position was approximately constant

throughout the treatment. A lack of change in calculated dwell position when the source changes

depth was present in figure 5.19 and figure 6.5. The reasons for this effect have been established and

have a large effect on the cervical treatment given the source’s path. Tables 6.3 and 6.4, indicate

the mean difference between the treatment plan and measured dwell position. The mean difference
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in all directions was larger than expected with the largest discrepancy existing in the Z direction. A

comparison has been calculated for both the error-free treatment plan and the activity error since

they have the same programmed dwell positions. Localisation error in the X and Y directions can

be attributed to poor separation between dwell positions as well as an inaccurate co-registration.

The mean difference in dwell time was (0.19 ±0.03) s which is within the calculated error for the

expected 0.2s accuracy. The activity discrepancy error was detected, producing a significantly larger

mean difference of (0.53±0.08)s.

The End-to-end phantom’s ability within the application of cervical brachytherapy has been

evaluated and clearly defined limits established. The phantom can successfully undergo a complete

cervical brachytherapy treatment workflow. Improvements in source localisation in the Z direction

and co-registration methodology will allow significant improvements in monitoring treatment delivery.
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6.3 Conclusion

This chapter has determined the End-to-end phantom’s viability for evaluating clinical treatments

and define the system’s limitations. A complete clinical workflow has taken place for vaginal and

cervical treatments to validate the End-to-end phantom.

The vaginal brachytherapy workflow has been successfully evaluated through imaging, treatment

planning and source tracking. Attempted co-registration produced a misalignment of 1 cm in the

Y-direction, a virtual correction is implemented where all data points are shifted by the same value.

It is important to minimise the phantom’s reliance on virtually shifting the dataset, as this will

enable the source tracking to be an independent check.

Co-registration was also a point of concern in the cervical case where a virtual shift needed to be

applied. Due to the MP origin existing at the bottom left pixel, calculating the exact distance away

from this as a reference point can be difficult. This can be improved within the software, through

calibration of the origin to a visible location. Similar to the co-registration performed by Smith and

colleagues, when source tracking with a flat panel detector, a phantom that has the MP987 and

fiducials built into it can provide accurate co-registration.[98]

The vaginal end-to-end study produced both localisation and temporal accuracy which is within

the expected accuracies of ±0.25 mm and ±0.2s, established in the previous chapter. The mean

discrepancy measured to be within (0.24±0.01) mm, for all dimensions and a mean difference in

dwell time of (0.10± 0.01)s. The catheter swap, indexer length error and activity miscalibration

error have all been detected.

The cervical treatment was successfully conducted, producing well-defined limitations. Uncer-

tainty in co-registration and the inaccuracies experienced in the Z direction were the main sources

of discrepancy between the expected and delivered results. Due to the source stepping in the Z di-

rection within the ovoid channels, localisation relied on accuracy in the Z direction. Previous results

explored the issues with source tracking along the Z direction. Some of these include inaccurate
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equalisation, insufficient RF shielding of the electronics and a possible issue with the implementation

of the TG-43 formalism. Using the phantom for applicators which allow the source to travel in the X-

Y plane is recommended, such as tandem-ring or Venezia applicators. Dwell time accuracy is within

the expected 0.2s with all dwell positions identified and have an associated dwell time. The activity

miscalibration error which has led to a 5% increase in delivered dose has been detected. Within the

limitations which have been established, a complete end-to-end procedure has been conducted for

cervical brachytherapy using the End-to-end phantom.

Validation of the End-to-end phantom has been accomplished for both vaginal and cervical treat-

ments. Each phantom has successfully undergone the complete clinical workflow and limitations

within each setup have been established. This end-to-end test has the ability in both cases to iden-

tify and distinguish common clinical errors providing source position and timing information. An

end-to-end quality assurance method provides a complete view of the workflow. Evaluating data

transfer methods, the function of new devices and ultimately assessing the treatment a patient will

receive. Source localisation and timing properties can distinguish possible treatment failures and

uncertainties. The End-to-end phantom’s ability to provide these features of quality assurance have

been verified for gynaecological brachytherapy.
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Chapter 7

Conclusion

Validation of the End-to-end phantom required the development of an HDR source tracking method-

ology, of which the optimal processing and acquisition parameters have been determined. The End-

to-end phantom was for verification of both vaginal and cervical workflows, undergoing imaging,

planning and monitoring of the treatment. End-to-end testing enables full evaluation treatment

practices which are vital in maintaining treatment quality and additionally useful when implement-

ing new protocols or devices. The test presents any incongruencies between the treatment plan and

what is delivered by testing the function of each component within the treatment procedure and

their cohesion.

Complete verification of the End-to-End phantom for gynaecology has been performed and current

limitations have been defined. The use of a retrospective treatment planning study provided insight

into the importance of protocols that suppress applicator displacement. The study also provided a

clinical benchmark concerning source localisation accuracy for cervical brachytherapy. If a patient

has had a substantial bladder or rectal dose in previous fractions or from EBRT, the impact of

applicator displacement should be considered. Constraints for applicator reconstruction and patient

transport can be adjusted. When paired with source tracking, the quantified displacement limit can

provide clinical justification for a required localisation source accuracy. [92] As discussed within the

outliers section, the study demonstrated a variation in response to applicator displacement due to
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differences in anatomy or planned dose to OARs. This will make it difficult to set a single “source

tracking error threshold” for all patients.

Ultimately, the study demonstrates a 2 mm limitation in source localisation accuracy to protect

from a clinical error. Shifts in the Right-Left directions exclusively have an impact on HR-CTV

coverage. A 4 mm limit in all directions will ensure local control does not reduce critically. The

study successfully determines a critical applicator displacement value.

Validation of the End-to-end phantom for cervical brachytherapy treatment demonstrated a mean

difference of (3.49±0.57) mm, (4.74±0.77) mm, (6.14±1) mm in the X, Y and Z directions respec-

tively. Considering the tandem’s position through the cervix and into the uterus, the Z-direction

axis can be considered analogous to the anterior-posterior axis. The mean difference in the TPS and

measured dwell positions in the Z direction are above the 2 mm established limit. The improve-

ments discussed for localisation in the Z direction are pivotal for end-to-end testing of the cervical

brachytherapy treatment procedure. For the Right-Left and Superior-Inferior axes, the measured

discrepancy in the X and Y direction is within the calculated error of the critical applicator dis-

placement in that axis. However, given the characterisation experiments, with improvements to the

co-registration and Z localisation method, localisation accuracy could be within 2 mm in each di-

rection. Despite the localisation accuracy in the Z direction being less than clinically necessary, the

End-to-end phantom still produced accurate timing information, with a mean difference of (0.19 ±

0.03) s.

Multiple end-to-end systems have been developed, most of which differ substantially due to the

choice of dosimetry used. Film and ion chambers have been used for end-to-end testing of gynaeco-

logical procedures.[85][86][99] Both methods are time-consuming and do not provide the same timing

information as the End-to-end phantom. Comparable results have been accomplished with the use

of an imaging panel, with a standard deviation in a position of 0.2 mm in the X and Y directions and

1.6 mm in the Z direction. The MP produced an accuracy of 0.25 mm for similar dwell times and

a larger variation in Z. The EPID produces an accuracy of 0.2 s with the MP987 capable of a 0.1s
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accuracy. Localisation in the Z direction with the use of an imaging panel was far more accurate and

enabled a measurement distance of 22 cm. The imaging panel however requires extensive calibration.

Additionally, a robotic arm has been used to position the EPID panel, which will require a large

financial investment and has not been tested for cervical treatments.[78] Overall, the MP987 based

End-to-end phantom has produced a simple solution for end-to-end verification of gynaecological

treatments.

A source tracking methodology has been outlined and tested during the characterisation of the

MP987 for HDR source tracking. The optimal processing parameters and required operations have

been outlined. This has been used to enable source tracking for the End-to-end phantom. Utilising

these parameters to produce an online processing application will enable quick pre-treatment verifica-

tion and eventually in vivo source tracking. The larger MP987 has allowed development ahead of the

MP121, enabling source tracking at larger distances.[77] This allowed the creation of the End-to-end

phantom which can test multiple applicator types.

End-to-end testing of a vaginal treatment workflow has been accomplished with submillimetre

accuracy and mean difference of (0.10±0.01) s in dwell time. Both vaginal and cervical treatment

validations resulted in the detection of the implemented errors. Improvements in co-registration

techniques, equalisation and shielding of the detector will enable a uniform response and provide an

increase in accuracy in the Z direction. Additionally, the phantom could benefit from the exploration

of a new methodology to determine the Z position.

The uncertainties calculated within this chapter are measures of statistical precision of the system,

determined by the standard error. The error values listed are not the absolute error in position or

time. Systematic uncertainty such as in the uncertainty in catheter position, catheter reconstruction

uncertainty and HDR afterloader accuracy are not included within this calculation.[100] Results

have been presented in this fashion since the precision of the system is of interest and not the overall

uncertainty in the HDR brachytherapy workflow.

The End-to-end phantom has been developed and characterised for the verification of gynaeco-
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logical brachytherapy treatments. The phantom enables quality assurance of the complete workflow,

including imaging, treatment planning, data transfer and treatment delivery. Considering the multi-

faceted nature of image-based HDR brachytherapy, a meticulous evaluation of the complete procedure

is required to ensure patient safety.

7.1 Future Work

� The impact of applicator displacement will be evaluated relative to the development of a “ro-

bustness factor” parameter. The robustness factor is calculated by determining the weight and

distance of each dwell position to an OAR and summing the product of these two values. This

will indicate how robust a treatment plan is to displacement. The displacement study data

will show if there’s a correlation between the proposed factor and the plan’s sensitivity to dis-

placement. Ideally, minimising this robustness factor will eventually be part of the treatment

planning process.

� A refined End-to-end phantom and standardised protocol will enable centres to carry out

independent evaluations for system audits and commissioning of new devices. A water tank

phantom with attached applicator holders which is rigidly fixed to the MP987 will provide a

permanent and easily verified co-registration. Moving the electronics to a housing beneath the

MP will also make the entire phantom more compact.

� The MP987 can be used for in vivo source tracking during treatments. Embedding the MP

within the treatment couch will allow alignment between the patient anatomy and detector

using a C-Arm X-Ray machine. A live view of the source path relative to the anatomy provides

HDR treatment monitoring.
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[5] Ervin B Podgoršak et al. Radiation physics for medical physicists, volume 1. Springer, 2006.

[6] Elekta Team. Brachytherapy gynecology. Elekta AB, 2019.

https://www.elekta.com/brachytherapy/gynecology/.

135



[7] Gynaecological-cancer.canceraustralia.gov.au. Gynaecological cancer statistics gynaecological

cancers. https://gynaecological cancer.canceraustralia.gov.au/statistics.

[8] M. Kamrava and R. Banerjee. ”brachytherapy in the treatment of cervical cancer: a review”.

page 555.

[9] Jyoti Mayadev, Sonja Dieterich, Rick Harse, Susan Lentz, Mathew Mathai, Sunita Boddu,

Marianne Kern, Jean Courquin, and Robin L Stern. A failure modes and effects analysis study

for gynecologic high-dose-rate brachytherapy. Brachytherapy, 14(6):866–875, 2015.

[10] A Espinoza, Marco Petasecca, Iolanda Fuduli, Andrew Howie, J Bucci, Stephanie Corde,

Michael Jackson, Michael LF Lerch, and Anatoly B Rosenfeld. The evaluation of a 2d diode ar-

ray in magic phantom for use in high dose rate brachytherapy pretreatment quality assurance.

Medical physics, 42(2):663–673, 2015.

[11] Neerja Bhatla, Jonathan S Berek, Mauricio Cuello Fredes, Lynette A Denny, Seija Grenman,

Kanishka Karunaratne, Sean T Kehoe, Ikuo Konishi, Alexander B Olawaiye, Jaime Prat, et al.

Revised figo staging for carcinoma of the cervix uteri. International Journal of Gynecology &

Obstetrics, 145(1):129–135, 2019.

[12] Pedro T Ramirez, Michael Frumovitz, and Nadeem R Abu-Rustum. Principles of Gynecologic

Oncology Surgery E-Book. Elsevier Health Sciences, 2018.

[13] Roland T Skeel and Samir N Khleif. Handbook of Cancer Chemotherapy. Lippincott Williams

& Wilkins, 2011.

[14] Myrna Candelaria, Alicia Garcia-Arias, Lucely Cetina, and Alfonso Dueñas-Gonzalez. Ra-
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Appendix

Figure 1: Radiotherapy consent form submitted NRA ethics application for retrospective treatment
planning study with anonymised patient data.
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