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Abstract 

Three-dimensional (3D) shape measurement for object surface reconstruction has 

potential applications in many areas, such as security, manufacturing and entertainment. 

As an effective non-contact technique for 3D shape measurements, fringe projection 

profilometry (FPP) has attracted significant research interests because of its high 

measurement speed, high measurement accuracy and ease to implement. Conventional 

FPP analysis approaches are applicable to the calculation of phase differences for static 

objects. However, 3D shape measurement for dynamic objects remains a challenging task, 

although they are highly demanded in many applications. 

The study of this thesis work aims to enhance the measurement accuracy of the FPP 

techniques for the 3D shape of objects subject to movement in the 3D space. The 3D 

movement of objects changes not only the position of the object but also the height 

information with respect to the measurement system, resulting in motion-induced errors 

with the use of existing FPP technology. The thesis presents the work conducted for 

solutions of this challenging problem.  

Firstly, a model-fitting approach based on phase-shifting fringe projection is developed 

to extend the multi-shot FPP to objects with general 3D movements. A marker-free 

method based on the iterative closest point (ICP) algorithm is designed to estimate the 

movement parameters from initial estimates of the object shape. By establishing the 

correspondence among the object surface at different time instants, a new analytical 

model is developed to describe the multiple deformed fringe patterns as an explicit 
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function of the unknown object height. This model is then fitted to the actual 

measurements to retrieve the object height by solving an optimization problem.   

Secondly, a data fusion approach is designed to enhance the performance of dynamic 3D 

shape reconstruction. During the movement of the dynamic object, the multiple height 

maps reconstructed by Fourier transform profilometry (FTP) at different time instants are 

first denoised individually. Then an adaptive fusion scheme is applied to suppress the 

errors in the coarse measurements, which exploits the correspondence among the height 

maps established by estimating the movement parameters and adaptive weights obtained 

by analyzing the measurements. This approach is also extended by applying phase-

shifting profilometry (PSP) to retrieve the course height maps, which is more robust 

against errors.   

Extensive simulation and experimental results are presented in the thesis to demonstrate 

the performance of the proposed approaches, which show that they provide effective 

solutions to extend FPP to objects subject to general 3D movements. Limitations of the 

proposed approaches are also analyzed and potential improvements are outlined.    
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1. INTRODUCTION 

In recent years, three-dimensional (3D) shape measurement has become a highly 

demanded technology in many areas, such as biomedicine [1], entertainment [2,3], 

industrial monitoring [4], robot control [5], design and manufacturing [6,7]. Although 

various techniques have been developed, (e.g., time of flight (TOF) [8-12], laser scanner 

techniques [13-16], stereo vision [17-23], Moiré method [24-25] and structured light [26-

33]), accurate and fast measurement of moving objects remains challenging tasks.  This 

thesis aims to tackle the problems of profile measurement of moving objects using fringe 

projection profilometry (FPP). 

This chapter introduces the background of the research problems and contributions. In the 

following, Section 1.1 gives an overview of 3D shape measurement techniques. Section 

1.2 reviews fundamental FPP approaches. Section 1.3 discusses dynamic object 

measurement using FPP. Section 1.4 introduces the experiment setup and Section 1.5 

summarizes the structure of this thesis. 

1.1 Overview of 3D shape measurement techniques 

Fig 1.1 shows the classifications of traditional 3D shape measurement techniques, which 

can be categorized into contact-based techniques and non-contact techniques. Contact-

based techniques acquire the 3D information by physically touching the surface of objects 

with a probing device.  Non-contact techniques include passive measurement techniques 

and active measurement techniques. Stereo vision is one of the commonly used passive 

techniques, which requires no additional light projected on the objects. 
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Fig. 1.1 Classifications of 3D shape measurement techniques 

TOF techniques and structured light techniques are among the most used active 

techniques. The TOF techniques are based on the flight time of a laser or light beam 

between the object and the system to reconstruct objects. The structured light techniques 

project patterns on objects and use triangulation to retrieve the surface shape of objects, 

which can be further classified into fringe projection profilometry (FPP) and non-fringe 

projection profilometry according to the patterns applied. In general, FPP employs 

patterns with periodical fringes. Single-shot and multiple-shot FPP techniques differ in 

the number of patterns projected.  

1.1.1 Contact-based techniques 

Contact-based techniques need to touch the surface of the object to obtain the coordinates 

of all points on the object. The coordinate measuring machine (CMM) [34,35] is a widely 
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used contact-based measurement technique. The CMM is composed of the main body 

part, the probing detecting system, and the data collection component. The movement of 

the probe is controlled by the main body so that the probe can move freely to reach the 

whole surface of the object. The controlled probe contacts and slides on the surface of the 

object to collect the shape information on a point-by-point basis, and then these pointwise 

data are analyzed by the data collection component. Contact techniques are advantageous 

by high measurement accuracy but also suffer from obvious weaknesses. Firstly, it is 

time-consuming for the probe to slide on the object surface.  Hence, they are not suitable 

for applications requiring real-time or fast measurement. Secondly, the direct contact 

between the probe and object limits the material and rigidity of the object. The damage 

on the object surface may happen for less rigid objects. Besides, the system is usually 

expensive in implementation and a sophisticated system calibration is required [36]. 

Finally, these techniques are not suitable for dynamic and large objects. 

1.1.2 Non-contact techniques 

Non-contact techniques can be classified into passive techniques and active techniques. 

Passive techniques reconstruct the object surface by analyzing the ambient light reflected 

from objects. For active techniques, light sources with intentionally designed patterns or 

beams are utilized to probe the object surface, which are deformed and reflected and 

acquired by a receiving device (e.g., a camera). 3D information is extracted by analyzing 

the received lights in combination with the probing ones and the geometrical structure of 

the measurement system.  

1.1.2.1 Passive techniques 
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Stereo vision [17,22,37-39] is a typical passive technique that imitates the human visual 

system (HVS) by using two cameras. With stereo vision, two capturing cameras snap 

objects from two different perspectives. Different perspectives lead to the corresponding 

points of the object located at different positions in the captured images. The position 

difference is described as disparity [23]. The disparity map is obtained by calculating all 

the disparities between the two captured images. After generating the disparity map, 

calibration parameters of the stereo vision system are exploited to reconstruct the 3D 

shape of the object.  

Nevertheless, detecting the corresponding points from two images and generating the 

disparity map require a high computation cost, and the task can be difficult to complete 

for the object with flat and non-texture areas. Besides, the same points on the object must 

be snapped simultaneously from two different angles, and the two angles of the cameras 

should keep some distance to guarantee a distinct disparity map. Therefore, the 

measurement scope and the shape of the object are highly restricted [39]. 

1.1.2.2 Active techniques 

In contrast to passive techniques, active techniques are usually less sensitive to the object 

texture and the effect of ambient light. With active techniques, encoded patterns or light 

beams are projected onto the object surface by means of a projector or a laser. The 3D 

shape of the object surface will result in distortion and delay on the reflection of the 

projected light beam or patterns, which are captured by the camera or sensor. By 

analyzing the difference between the cast pattern or light beam with the captured ones, 

the shape of the object can be reconstructed. Among other active techniques, TOF, laser 

triangulation and structured light are widely used, which are reviewed as follows. 
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(1) TOF techniques 

The time of flight (TOF) technique is inspired by the echolocation system of bats. Bats 

generate ultrasonic signals and receive the echoes to estimate the distance to a target. 

Similarly, a TOF system is composed of a light source and a sensor [40]. The light source 

emits the modulated light beam on the object surface, and the light sensor captures the 

reflected. According to the time interval between the sent and captured, the distance 

between the detector and the point on the object surface can be obtained. TOF techniques 

are typically classified into two categories: optical shutter techniques and intensity 

modulation techniques. While the time difference between sending and receiving is used 

to calculate the height information by optical shutter techniques, intensity modulation 

techniques [11] use phase difference between the lights sent and retrieved. Because the 

emitter and detector have the same viewing angle, the whole system is compact in its 

structure [41]. However, each individual point on the object surface is required to be 

measured separately, which limits the speed of reconstruction. Also, the TOF techniques 

are sensitive to noise and impairments of the system [8,9,42]. 

(2) Laser triangulation 

A laser triangulation system [43] consists of a laser source, a laser detector, and a lens. 

The laser source emits a beam or a line of light, casting on the object surface, which is 

reflected and captured by the detector. The light path from the source to the point on the 

target, and back to the detector form a triangle, which is used to obtain the 3D location of 

the point.  To implement the measurement, calibration is required. The detector is 

normally a CCD array [44] or CMOS array [45], which is able to capture the whole scene. 

The laser triangulation technique achieves higher measurement resolution than TOF as it 



  
 

22 
 

is less sensitive to time. However, their pointwise or line-wise processing is not suitable 

for objects with large surfaces and objects subject to movement. 

(3) Structured light 

Structured light techniques normally use a projector to cast a designed light pattern or 

onto the object surface for correspondence searching and phase difference analysis. A 

camera is triggered to capture the images reflected from the object surface, which are 

deformed by the shape of the surface. By analyzing the difference between the projected 

patterns and captured patterns, the 3D shape of the object can be extracted, also based on 

the triangular relationship. The principle for correspondence establishment is similar to 

the stereo vision system, but structured light techniques rely on the designed pattern rather 

than the texture feature of the object, and hence they are more reliable and robust in terms 

of measurements. Generally, structured light techniques can be classified according to the 

structure of the projected patterns. The most commonly used type of pattern is the one 

with straight stripes (fringes) across the pattern, and the techniques are referred to as 

fringe projection profilometry (FPP).  Other light patterns can also be used, and the 

approaches are referred to as non-FPP.    

l Non-FPP techniques   

The non-FPP techniques utilize the distribution of dots in a 2D array to identify the 

position of each point on the images. 2D spatial coding techniques take advantage of 

windowed image processing [46]. Pseudo-random patterns, codewords-based mini-

patterns, and color-coded patterns are three popular patterns for 2D spatial coding 

techniques. To guarantee the uniqueness of each dot within a sub-pattern, a pseudo-

random binary array (PRBA) applies the marked dots to encode the position information. 

The displacement of marked dots is detected and then mapped to the height based on the 
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triangulation relationship. In contrast, a multivalued array [47] encodes the projected 

pattern by representing each pixel as a unique codeword. By analyzing the variation of 

codewords on the specific pixels, the shape of the object can be reconstructed. Another 

non-fringe technique is color-coded grid pattern, which utilizes the feature of color to 

guarantee the uniqueness of each pixel. All the mentioned non-FPP projection 

profilometry techniques are single-shot techniques, and thus the accuracy and resolution 

are limited. 

l FPP techniques  

Fringe-based techniques use fringe patterns to retrieve the height distribution of the object. 

Traditional fringe patterns can be classified into binary patterns, triangular patterns, 

trapezoidal patterns, saw-tooth patterns, and sinusoidal patterns. A projector is applied to 

create the designed fringe patterns and then cast onto the object. Nowadays, FPP is 

extensively applied for object surface reconstruction due to simple system structure and 

controllable fringe patterns. Besides, FPP can achieve high-resolution performance, fast 

measurement speed, and high accuracy results. 

1.2. Literature review of fringe projection profilometry 

A typical FPP system consists of a projector generating the fringe patterns and a camera 

capturing the patterns deformed by the object, as illustrated in Fig. 1.2. The distance 

between the lens of the projector and that of the camera is 𝑑! and the distance between 

the lens of the camera and the reference plane is	𝑙!. Firstly, one or several fringe patterns 

are cast on a reference plane and captured by a camera. Then, the system projects the 

same fringe patterns on the object. By calculating the difference between the reference 

patterns and the deformed patterns, the height distribution of the object can be retrieved. 
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FPP techniques can also be categorized into single-shot and multiple-shot techniques 

according to the number of patterns projected.  

  

Fig. 1.2 FPP system model 

1.2.1 Single-shot techniques 

Single-shot techniques require the projection of only one fringe pattern to retrieve the 

height distribution of the object. Because the camera captures only one image, these 

techniques are suitable for real-time and fast object shape measurement. Nevertheless, 

single-shot techniques catch less information and may not guarantee a high accuracy due 

to the impact of background light and variations of the surface reflectivity. 

(a) Fourier transform profilometry (FTP) 
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FTP is one of the most widely studied single-shot techniques and was first proposed by 

Takeda et al. [48], which projects and captures only one sinusoidal fringe pattern on the 

object surface to reconstruct the object shape. The advantage of the sinusoidal pattern is 

that spectral analysis can be implemented easily. FTP adopts the Fourier transform to 

convert the fringe pattern from the spatial domain into the frequency domain. With the 

help of frequency analysis, the 3D shape of objects can be retrieved. Although the FTP 

algorithm is fast, the noise component mixed with the phase component is hard to be 

eliminated, resulting in low accuracy. Besides, the phase component and background 

component may overlap in the filtering process when the spatial frequency of the 

projected fringe pattern is relatively low and the shape of the object is relatively complex, 

which leads to reconstruction errors.  

(b) Techniques based on saw-tooth patterns 

The saw-tooth technique employs saw-tooth fringe patterns to retrieve the object shape 

information, which is similar to the wrapped phase map from the sinusoidal pattern [49]. 

In contrast to FTP, the saw-tooth technique does not require the complex phase extract 

algorithm because the wrapped phase can be simply obtained by calculating the difference 

between the deformed saw-tooth map and the reference saw-tooth map. Then phase 

unwrapping algorithm is applied to find the absolute phase map. A triangular relationship 

among the projector, camera and object is used to convert phase map to height map. 

However, the influence from the ambient light and the reflectivity of the object surface 

degrades the accuracy of the reconstruction result. 

(c) Techniques based on color patterns 
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There are also techniques fusing multiple patterns in different colors into a single pattern 

[50-55]. Compared to the techniques with multiple projections and multiple acquisitions, 

such techniques require one pattern composed of three single-color patterns (red, green, 

and blue). A color projector and a three-channel camera are applied to cast and snap the 

multi-color fringe pattern. This camera can separate the red, green, and blue patterns by 

different colors, which have different frequencies. Simultaneously, the three patterns are 

phase-shifted. Analyzing the multiple patterns, the 3D shape of the object can be retrieved. 

With color patterns, objects can be reconstructed with higher accuracy than standard 

single-shot techniques. Nevertheless, the color camera increases the cost of the system. 

Meanwhile, the crosstalk phenomenon [56] happens between every two channels of the 

camera, which may degrade the accuracy of the reconstructed result. 

(d) Techniques based on frequency encoded patterns  

Multiple fringe patterns, distinguished by their frequencies, can be superimposed. Each 

of the fringe pattern can be shifted in phase and then superimposed for measuring the 

object. The object-deformed fringe patterns of different frequencies can be separated in 

the frequency domain by bandpass filtering. This is followed by the typical phase-shifting 

algorithm to retrieve the phase. Separating the fringe patterns increases the complexity of 

computation [57], and a steep slope of the object may lead to spectrum overlapping in the 

frequency domain so that the reconstructed result is blurred. 

1.2.2 Multiple-shot techniques 

Multi-shot techniques generally improve the measurement accuracy at the cost of a longer 

measurement time. They require at least two fringe patterns (often three or more) to 

reconstruct the 3D shape of the object. Capturing multiple patterns increases the 
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information on the 3D shape of the object. Binary pattern [58-60], Gray-code pattern [61-

64], intensity ratio method [65-71], speckle-embedded fringe patterns [72-74], and PSP 

[75-78] are typical multiple-shot techniques. These techniques are robust to the noise and 

object texture. However, multiple-shot techniques need to project and capture multiple 

patterns, which can be time-consuming. Besides, the object needs to keep stationary 

during the projection and acquisition. Otherwise, motion-induced errors will be 

introduced because of the loss of correspondence among the multiple captured patterns. 

(a) Techniques based on binary patterns 

Binary patterns use only two illumination levels so that the projected patterns captured 

by a camera are presented as black and white stripes [58-60]. Meanwhile, a sequence of 

black and white stripes is projected on the reference plane to guarantee the uniqueness of 

each point. Normally, 𝐾 fringe patterns can encode 2" unique stripes. Because the fringe 

patterns with extreme illumination levels are projected on each point, the binary encoded 

pattern is reliable and insensitive to the influence from ambient light and variation in 

reflectivity of the object surface. Thus, this technique is more robust than the non-binary 

techniques. However, the resolution of the reconstructed result is highly restricted by the 

number of projected patterns. Increasing the number of binary patterns can enhance the 

resolution, which also significantly increases the acquisition time. Therefore, techniques 

based on the binary pattern are not suitable for fast measurement or dynamic objects. 

(b) Techniques based on gray-level patterns 

The use of gray-level patterns can decrease the number of projected fringe patterns. In 

contrast to binary patterns, the gray-level patterns employ multiple distinct levels of 

illumination to generate the unique coding of each point [61-64]. For example, the whole 
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illumination range can be divided into eight distinct levels, and 𝐾 fringe patterns can 

encode 8" stripes, which effectively enhances the resolution of the measurement. The 

relatively small intensity interval between adjacent levels is easily influenced by the 

ambient light and variations in the reflectivity of the object surface. 

(c) Intensity ratio techniques 

Intensity ratio techniques take full advantage of all intensity levels to measure the phase 

difference caused by the shape of the object [65-68]. The intensity values are integers that 

range from 0 to 255, so there are 256 levels of illumination, which is easier to specify the 

uniqueness of each point. The ramp intensity signal and uniform intensity signal are 

mixed to generate the intensity ratio patterns. The periodic ramp signal of intensity value 

increases from black to white across the whole image using the full range of intensity 

levels. The intensity differences between the adjacent points are the same, and the shape 

of the object can be extracted based on the triangulation [69,70]. The extensive range of 

illumination levels reduces the number of projected patterns and achieves a fast 

measurement speed. However, these techniques are sensitive to noise due to small 

intensity intervals. To separate the intensity between adjacent points, periodical patterns 

such as triangular patterns [67,68] and trapezoidal patterns [71] can be utilized. Even so, 

the ambiguity problem still appears due to the use of periodic patterns. 

(d) Techniques based on speckle-embedded fringe patterns 

Speckle-embedded fringe patterns [72-74] fuse a pseudo-random speckle pattern and a 

fringe pattern into one pattern. After capturing a serial of composite patterns, the speckle 

component and fringe component are separated. The sinusoidal patterns are used to 

retrieve the wrapped phase map containing the height distribution of the object, which 
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applies the traditional phase retrieval algorithm. The speckle patterns from the composite 

patterns help determine the fringe order on each pixel for the phase unwrapping process. 

The fringe order on each pixel is determined by correlating the reference speckle pattern 

and a small area of the deformed speckle pattern. In general, the fringe order 

determination is highly influenced by the shape of the object. For example, a complex 

shape with a large slope may lead to the shadowing or overlapping of the speckle. Besides, 

the poor separation of patterns leads to poor reconstruction.  

(e) Phase-shifting profilometry 

Phase-shifting profilometry is the most commonly used and extensively studied 3D shape 

reconstruction technique, which employs the sinusoidal fringe patterns to retrieve object 

height information [75-78]. Multiple equally phase-shifting patterns are projected and 

then captured by a camera. Using the feature of the phase-shifting fringe, the phase 

difference caused by the object can be retrieved. Meanwhile, the influence of background 

light and variation in the reflectivity of the object surface can be eliminated by jointly 

processing multiple patterns. Being robust against the noise and object texture, highly 

accurate results can be achieved. Because projecting and capturing multiple patterns are 

normally conducted at different times, the object must keep stationary during the 

projection and acquisition. Besides, the periodic patterns lead to the ambiguity of fringe 

order and phase unwrapping is required. 

(f) Techniques based on deep learning 

Recently, deep learning has been used for 3D shape measurement based on FPP system 

due to its successes for computer vision and image processing [79]. Specifically, deep 

learning [80] can employ convolutional neural network (CNN) to automatically analyze 
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patterns from large amounts of historical information and then utilize the captured images 

to retrieve the height distribution of objects. The number of fringe order can be easily 

classified from the trained CNN duo to the limited number of label tag, and the edge of 

objects and systematic errors can be detected duo to the convolution kernel that extracts 

the edge and high frequency information from input image [81]. Besides, the CNN can 

predict the sub-component of traditional height retrieving algorithm to achieve higher 

measurement accuracy [82]. While the large computation time for training data and the 

massive training data set are required, which askes for tremendous training resource 

related to both expenses cost and time cost. 

1.3. Dynamic object measurement using FPP 

1.3.1 Challenges for dynamic object measurement 

The PSP algorithm takes advantage of multiple patterns to achieve high spatial resolution 

and high measurement accuracy. However, the conventional PSP requires static objects, 

as the motion of the objects can significantly degrade the performance due to the loss of 

the correspondence of the points. A static object keeps the object height distribution 

invariant during the projection and acquisition of images so that the pixels containing the 

same height information are held in the same position among the captured images. This, 

however, is no longer the case when the object moves because not only the position of 

the dynamic object can change, but also the height value of the same point on the object 

can vary due to the 3D movement of the object. The variation of the position and height 

value is reflected in the phase values on multiple captured images. The phase variation 

violates the static assumption of the PSP algorithm. Hence, the traditional PSP algorithm 

may fail to reconstruct dynamic object surfaces   
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Compared with PSP, FTP projects only one pattern to reconstruct the 3D shape of the 

object. When the object is moving during the acquisition process, one shot of the pattern 

is adequate to retrieve all height information of the object. Therefore, the motion-induced 

errors have less effect on the phase retrieving process. However, FTP still has several 

disadvantages for dynamic object measurement. Firstly, the measurement accuracy for 

dynamic objects is limited due to its single-shot nature. Consequently, once the object 

phase information is blurred or missed, the relevant shape cannot be retrieved. Besides, 

the ambient light and variation in the reflectivity of the object surface are hard to be 

removed with only one pattern. In the frequency domain, the first sidelobe contains the 

object height information, and this fundamental component should be separated from 

other spectra, which leads to the limitation of the slope on the object surface. Aliasing 

between the spectra will affect the extraction of fringe pattern components and fail FTP 

reconstruction.  

1.3.2 Existing FPP techniques for dynamic shape 

measurements 

As discussed above, the FTP approach is a feasible solution for dynamic objects due to 

its single-shot nature. However, the measurement accuracy of FTP is low. On the contrary, 

high accuracy reconstruction may be achieved by multiple-shot PSP techniques, but they 

can suffer from motion-induced errors. In order to address the challenges for dynamic 

object measurement as presented in Section 1.3.1, the PSP and FTP techniques have been 

modified from different aspects. Related works for dynamic object measurement are 

reviewed below. 

(1) Modified PSP for the measurement of dynamic objects  
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Several modified PSP approaches have been proposed for measuring dynamic objects. 

According to the targeted movement trajectory, we classify the existing approaches into 

the following categories. 

(i) Modified PSP for dynamic objects with 1D movement 

Let us consider that the object moves in a one-dimensional (1D) space, i.e., along a 

straight line. In this case, every part of the object undergoes the same motion. This case 

is normally observed in the factory inspection process, where the objects are placed on 

the pipeline and they are moving along the movement trajectory of the pipeline. The FPP 

system is set over the pipeline, which is treated as the reference plane. During the delivery 

of the objects, their shapes are inspected. 

Weise, et al. [83] proposed a method that combines the phase-shifting technique and 

stereo vision technique to compensate for the motion-induced errors. The phase-shifting 

processing aims to remove the influence from ambient light and reflectivity of the object 

surface, and stereo vision processing aims to solve the discontinuity problem on the object 

surface. When the movement trajectory of objects is 1D, there is a position shift of the 

corresponding point among capture images. This shift leads to ripple errors in the 

reconstruction results [88]. Then, the traditional PSP is modified to compensate for the 

errors by taking the shift caused phase difference into consideration. After that, stereo 

vision contributes to the fringe order determination for phase unwrapping, which 

addresses the discontinuities problem on moving artifacts. However, this technique needs 

three cameras to capture phase-shifting patterns and stereo vision patterns and assumes 

dynamic objects moving in one direction at a constant speed. 
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Yoneyama, et al. [84] also considered objects with 1D movements at a constant speed. A 

single fixed sinusoidal fringe pattern is cast on the dynamic object. During the movement 

of the object, cameras with linear array sensors are applied to detect the trajectory of the 

object and capture the deformed fringe pattern caused by the object. Because the 

movement direction and speed of the objects are known, the object can be captured at 

specific positions that can guarantee that the object induces the same phase shifts in the 

captured images. Using the deformed phase-shifting patterns, the height distribution of 

the object is reconstructed by the traditional PSP algorithm. In this method, there is no 

need for any phase-shifting process, and the algorithm for phase retrieval is simple. 

However, the movement speed needs be constant and known, which seems impractical in 

some real-world measurements. 

Cao, et al. [85] proposed a PSP algorithm based on the orthogonal two-frequency fringe 

patterns to reconstruct the 3D shape of objects with 1D movements. The orthogonal fringe 

pattern is composed of a low-frequency pattern and a high-frequency pattern. During the 

movement of the target object, a series of orthogonal two-frequency fringe patterns are 

projected on the object and then captured. To separate the low-frequency fringe 

components and high-frequency components, a 2D window filter is employed to avoid 

the aliasing phenomenon in spectrum separation. The separated high-frequency fringe 

components are used to match the corresponding points of captured patterns, and the low-

frequency fringe components are applied to retrieve the height distribution and alleviate 

the error from the phase unwrapping process. However, the movement of the object is 

highly restricted by 1D movement, which allows the object to move along only one 

specific direction.  

A method based on PSP with unequal phase shifting is proposed by Li, et al. [86]. A fixed 

fringe pattern is projected on the dynamic object. The dynamic object moves along the 
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perpendicular direction of the fringe and a camera is used to capture the object. The fringe 

patterns captured from the dynamic object have phase shifts similar to those in standard 

PSP for static objects. The dynamic object may be captured by the camera at any time, so 

the shifting phase is unequal on the object. To determine the unequal phase shifting, FTP 

is employed to extract the edge of the dynamic object for matching the corresponding 

pixels among multiple captured images. This method extends the traditional PSP 

algorithm for the equal phase-shifting situation to the unequal phase-shifting situation. 

However, the 1D movement still limits the movement of the dynamic object. 

Wang, et al. [87] proposed a PSP approach combined with a temporal phase unwrapping 

algorithm to reconstruct the dynamic object with a constant speed. In order to eliminate 

this motion-induced error, a modified PSP with six phase-shifting patterns is applied to 

enhance the measurement accuracy. At first, the displacement of the object among 

captured patterns is calculated based on the centroid of the dynamic object. This is then 

used to calculate the phase offsets on multiple fringe patterns. Third, a series of the 

designed fringe patterns are regenerated and projected on the object. After that, the 

patterns deformed by the object are captured by the camera to calculate the wrapped phase 

distribution. At last, the unwrapped phase map is obtained. This approach alleviates the 

motion-induced error from the dynamic object and takes advantage of high accuracy from 

PSP. Besides, the temporal phase unwrapping improves the robustness of fringe order 

determination. Nevertheless, the movement of the object is highly restricted, which 

requires the fixed movement trajectory and constant speed of the object. 

(ii) Modified PSP for dynamic objects with 2D movement 

With 2D movements, the object can move freely in a flat plane. The 2D movement can 

be decomposed into rotation and translation. Rotation means every part of the object 
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moves in a circle covering the same rotating angle regarding the center point of objects, 

and the translation means every part of objects moves by the same amount with the same 

direction and distance. Meanwhile, dynamic objects with 2D movements are more 

common than 1D movement, which has wider applications. We classify the modified PSP 

into two categories, according to whether the motion parameters are explicitly estimated 

for compensating the motion-induced errors. 

l Direct compensation of the motion-induced errors  

We first summarize techniques that do not require explicit estimation of the motion 

parameters. Cong, et al. [88] investigated a Fourier-assisted PSP algorithm for dynamic 

objects. This algorithm utilizes the FTP to compensate for the errors for PSP. Each step 

of the phase-shifted fringe pattern is processed by FTP to obtain the phase map, so the 

motion-induced phase difference on the object can be estimated by analyzing the phase 

maps. After that, the traditional PSP is modified to retrieve the phase distribution of the 

object by taking the motion-induced phase difference into consideration. Besides, the 

maker-based phase unwrapping method is introduced to enhance the performance of 

dynamic object reconstruction. However, the system parameters are fixed empirically, 

which may not perform well when the objects are different. 

In [89], Feng, et al. observed and summarized three types of artifacts caused by motion-

induced errors. Motion ripples are ripple errors on the retrieved object surface, which are 

introduced by the variation of the dynamic object. Motion outlier errors are impulsive 

errors at the boundaries of moving objects and texture edges. Besides, the phase 

unwrapping errors are caused by the motion-induced error of the fringe order. In order to 

combat these artifacts, a motion compensation approach is proposed. The motion-induced 

phase shifts are initially estimated by comparing the three captured images. When the 
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objects have a constant speed, the motion-induced phase shifts between the first and 

second images as well as the second and third images can be initially estimated. Then, the 

least-square algorithm is applied to iteratively refine and correct the initially estimated 

phase shifts. To eliminate the outliers, the reference phase map is employed to 

compensate for the phase map that contains the object phase information. Then, the 

reliable pixels around the pixels with erroneous fringe order are detected by estimating 

the gradient, which are used to obtain the correct fringe order for phase unwrapping. This 

approach only works for objects with a constant moving speed, which limits the 

application. 

In [90], Liu, et al. compensated the motion-induced errors by applying the pin-hole model. 

The pin-hole model describes the relationship between the 3D coordinate and the 2D 

projector and camera coordinate. By comparing the phase difference of corresponding 

points on the projector and camera coordinates, the motion of objects in 3D world 

coordinates can be estimated. After that, the motion of objects is converted to phase-

shifting errors and then applied for the modified PSP to compute the new phase 

information of objects. Because this method treats each point independently, 

reconstruction quality for both rigid and non-rigid objects can be improved. However, the 

system is only suitable for objects with slow movement where the phase-shifting errors 

are within a fringe period. 

Duan, et al. [91] proposed a novel approach for objects with arbitrary 2D movements by 

applying composited fence images and fringe images. The 2D movement of objects can 

be described as the rotation and translation of objects on a plane. In this approach, 

designed markers with vertical fences and horizontal fences are utilized to track the 

moving trajectory of dynamic objects among each PSP step. First, the cropped fence 

images are binarized, by which the rotation angles can be calculated by the Hough 
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transform algorithm. Then, translation distances along row and column directions are 

detected by the 1D hybrid phase correlation method. Third, the transformation parameters 

are applied to the reference phase map for compensating for the motion-induced errors. 

However, large-scale movement leads to the failure of rotation angle and translation 

displacement extraction, and the movement of objects is still limited to 2D movements. 

Liu, et al. [92] proposed a method compensating the motion-induced errors by estimating 

the unknown phase shifting. In contrast to the static object, the varying position of the 

object among captured images results in unknown additional phase shifts. To determine 

the unknown shifts pixel by pixel, three successive captured images are combined to 

estimate the motion-induced errors. Because the object trajectory is unknown and the 

motion-induced errors change during acquisition, the object at the first position with no 

motion-induced error can be regarded as the reference to determinate the phase-shifting 

errors in the following captured images. Then, a phase map of the object without a motion 

artifact can be retrieved. To meet the requirement of real-time measurement, the phase 

ambiguity problem of the wrapped phase map is solved by the system geometry 

constraints. This method can be utilized for objects with non-homogeneous and 

significant motion but still targets 2D movement. 

l Motion parameter retrieval-aided compensation of the motion-

induced errors 

There are also schemes that first estimate the motion parameters and then apply the 

movement model to compensate for the effect of motion-induced errors. Lu, et al. [93] 

addressed the reconstruction of the dynamic object with 2D movements by placing 

markers on the object surface to calculate the rotation matrix and the translation vector. 

With the established movement trajectory, the correspondences of the points on the object 
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among different captured images are established. Then the PSP is modified by generating 

a new reference phase map to retrieve the phase information. Lu, et al. [94] proposed an 

automatic approach to reconstruct 3D shapes for objects with 2D movements. Similar to 

[93], the rotation matrix and translation vector are also estimated to describe the 

movement of the object. In contrast to the markers-based approach, the SIFT algorithm 

is exploited to track the object. After obtaining the movement parameters, the correct 

phase value caused by object height is retrieved by the LS algorithm. This method 

addressed motion-induced errors. Besides, human intervention for the motion parameters 

extraction can be removed, and automatic measurements are thus possible. However, 

these methods are still limited to 2D movements. 

(iii) Modified PSP for dynamic objects with 3D movement 

2D movement of objects limits the object to move on the reference plane, and the 

compensation of errors caused by the variation of position may be adequate to reconstruct 

the surface of the dynamic object. When 3D movement is introduced, the variation of 

height distribution also occurs, which adds significant challenges for retrieving the phase. 

There are fewer studies aiming to address such challenges.    

Zhang and Yau [95] proposed a two-plus-one phase-shifting algorithm to measure the 3D 

shape of the object with 3D movements. In this method, two sinusoidal patterns with 𝜋 

phase-shifting and a uniform flat pattern are used. All three patterns are combined to 

retrieve one phase map. Two phase-shifted sinusoidal patterns provide reference phase 

information and the object height information, and the uniform flat pattern captures the 

object texture information rather than object height information. The uniform flat pattern 

assists the fringe pattern to eliminate the background light and then the two fringe patterns 

can retrieve the object phase information. Due to the reduced patterns used for height 
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retrieved, the motion-induced errors have less effect on the reconstruction result than 

traditional PSP. At the same time, the resolution of the two-plus-one method can achieve 

the same level of PSP due to the elimination of background light and the reflectivity of 

the object surface. Though performance can be improved to some extent, the motion-

induced errors between the two 𝜋 phase-shifted patterns can not be and still blur the 

reconstruction result. 

Lu. et al extended their method from the 2D movement of the object to 3D movement in 

[96], where the 3D movement changes not only the position of the object but also the 

height information. Similar to [93], the rotation matrix and translation vector are also 

introduced to model the movement of the object, but they are extended from the 2D format 

to 3D, which also accounts for the height variation. First, the captured fringe patterns are 

rewritten as a new model by replacing the original reference phase map with an imaginary 

phase map. Then an iterative least-squares (LS) algorithm is performed to retrieve the 

phase difference caused by the object height information and compensate for the height 

variation errors from 3D movement. This method could estimate the correct object height 

distribution without knowing the height variation of the object, which converts the 3D 

movement model to the 2D movement model with extra phase variation. However, the 

height variation of the object is highly restricted, which only allows the translation in the 

direction of height rather than free 3D movement. 

(2) FTP-based techniques for dynamic object measurements 

In contrast to the PSP techniques, the FTP techniques can retrieve the object surface from 

one captured image, and so it is not sensitive to the movement trajectory of objects. 

However, its accuracy is limited. To address this problem, FTP has been modified in 

several different ways, which may enhance dynamic object reconstruction. 
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(i) Modified FTP with multiple shots 

The measurement accuracy of the single-shot FTP method can be improved by increasing 

the number of the projected fringe patterns. Thus, the 𝜋 phase-shifting approach (IFTP) 

based on traditional FTP is proposed by Li, et al. [97]. An ordinary sinusoidal fringe 

pattern and a 𝜋  phase-shifted fringe pattern are projected and captured by a camera. 

During the movement of the object, two successive patterns are captured by the camera. 

By subtracting the two captured patterns, the zero-frequency component in the spectral 

domain is eliminated, which mitigates the frequency aliasing problem between adjacent 

frequency components. This method improves the measurable slope of the height 

variation on the object surface by around three times with the same system parameters. 

Meanwhile, the accuracy is better than that of conventional FTP by eliminating the 

background light. However, this method is not suitable for dynamic objects with large-

scale movement. 

The 𝜋 phase-shifting FTP approach was extended to measure the moving objects with 

constant speeds by Hu, et al. [98]. They propose to project only one sinusoidal pattern on 

the reference plane. Two regions are detected and captured by two line-scan cameras 

when the moving object is sliding in. The object will be captured twice from two cameras 

at the same time. The experiment system should be calibrated by the digital correlation 

method to guarantee the two fringe patterns on the object with 𝜋  phase-shifting and 

calculate the coordinate difference between two patterns. After obtaining the two phase-

shifting patterns with known differences, the IFTP algorithm in [97] is employed to 

reconstruct the dynamic object. The accuracy of the reconstruction result is significantly 

enhanced. However, the high cost of line-scan cameras increases the difficulty of 

implementation. 
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Su, et al. [99] developed a new FTP-based algorithm to reconstruct the dynamic object. 

After using Fourier transform algorithm, filtering process, and inverse Fourier transform 

algorithm, a sequence of wrapped phase maps can be calculated. By combining the 

current time instant and the neighboring time instant, the phase difference between these 

two instants can be retrieved. In order to unwrap the phase map for the dynamic object, 

the 3D phase unwrapping algorithm is proposed. In this approach, only one reliable 

unwrapped phase map is required, and this unwrapped phase map can be obtained by a 

general spatial unwrapping algorithm. Then, the phase difference between the adjacent 

instants can be added to the original unwrapped phase map, so the absolute phase of the 

object in the next instant can be measured easily. Even the simple acquisition system and 

fewer phase unwrapping errors are the advantage of the method, the overlapping of the 

spectra influences the reconstructed result. 

(ii) Modified FTP with single shot 

Even the modified FTP with multiple shots can improve the performance of the dynamic 

object reconstruction by receiving more information, the motion-induced errors may be 

introduced at the same time. Instead of employing extra fringe projections, single-shot 

FTP may be improved by using more advanced phase retrieval algorithms.  

Two-dimensional FTP is proposed by Lin, et al. [100], which operates the fringe pattern 

from a two-dimensional perspective rather than one-dimensional. The captured deformed 

fringe pattern is converted from the spatial domain into the frequency domain by the 2D 

fast Fourier transform (FFT) algorithm, and the object-contained frequency component is 

extracted by the 2D Hanning window, then the filtered component is transformed by 2D 

IFFT to obtain the wrapped phase map. 2D FTP provides a clearer separation of the 

object-contained component from the background noise, so the measurement accuracy is 
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improved. Besides, the 2D phase unwrapping is more reliable with fewer fringe order 

errors. However, the reconstruction result is still influenced by the reflectivity of the 

object surface.  

1.3.3 Outstanding issues and contributions 

(1) Outstanding problems 

From the discussion above, FPP has great potential for fast reconstruction, high accuracy, 

and dense resolution for measuring 3D shapes. Although several techniques have been 

developed for measuring moving objects with special forms of movement, it is still 

challenging to obtain high accuracy reconstruction of objects with general 3D movement 

using low-cost devices. The FTP approach employs a single fringe pattern. It is thus less 

sensitive to motion-induced errors, but the reconstruction result suffers from accuracy 

degradation due to such factors as ambient light, reflectivity variations on the object 

surface, and noise owing to its single-shot nature of FTP. For multi-shot techniques, the 

existing PSP solutions cannot eliminate the motion-induced errors when free 3D 

movement is present. In light of the above, we can identify the following outstanding 

problems for dynamic object measurement:  

l For rigid objects with general 3D movements, when multiple fringe patterns are 

projected, the correspondence of the captured fringe patterns is lost as the position of 

the object changes. This together with the phase change due to height variation can 

significantly degrade the measurement performance. Is it possible to track the 3D 

movement of the dynamic object among the captured patterns to enable further 

processing? 
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l The motion-induced errors will be introduced in fringe patterns while applying the 

PSP techniques to moving objects. How do the motion-induced errors from general 

3D movement influence the fringe patterns and how can these errors be described 

and compensated? 

l The FTP is limited by its one-shot nature. Is it possible to enhance the performance 

of single FTP results and combine multiple FTP results to further improve the 

performance for dynamic object reconstruction? 

(2) Contributions 

This thesis addresses the above outstanding problems for dynamic 3D shape 

measurements. The influence of object movement on the performance of FPP systems is 

examined. We focus on multiple-shot techniques (multiple-shot FTP or PSP) for 

achieving robust performance against background light and variations of reflectivity on 

the object surface. To eliminate the motion-induced errors, we make the following 

contributions in this thesis: 

l We develop a marker-free, ICP-based method for estimating the motion parameters 

for rigid objects with free 3D movement, which can be well integrated into the 

standard FPP systems; 

l We analyze the captured fringe patterns by taking the free 3D movement into 

consideration and develop a model-fitting approach to retrieve the object height 

distribution from multiple fringe patterns; 

l We improve the FTP-based dynamic object measurement by alleviating the noise and 

fusing multiple FTP results and extend the approach to the PSP technique;  

l Through numerous simulation and experimental studies, we demonstrate the 

performance of the proposed approaches. 
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1.4 Experiment setup 

To achieve high-accuracy measurement for the dynamic object with low hardware cost 

and an easy-to-setup system, the experiment system for this thesis is based on the 

traditional FPP system, which contains a single camera and single projector. Fig.1.3 

shows the photo of the system setup. The distances between the camera lens, projector, 

and target object on the reference plane are adjustable. This flexible system can meet the 

requirement of objects with different sizes, shapes, and movement states. 

1.4.1 Projection and Acquisition 

A color digital projector BENQ w1090 is employed, which is connected to the computer 

over a High-Definition Multimedia Interface (HDMI) port. The display gamma parameter, 

brightness, focus, and contrast for the RBG channels are tuned. A high-resolution 

IMAVISION MER-1070-10GM camera is applied to acquire the images, which is 

connected to the computer via a Gigabit Ethernet port. The camera has three individual 

RGB channels with the highest resolution of 3840×2748. 

 

Fig. 1.3 The experiment system setup 
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1.4.2 Software Interface 

A MATLAB Graphical User Interface (GUI) is designed to integrate hardware 

components, generate and control the fringe projection. The frequency and initial phase 

of the fringe patterns can be controlled digitally. Under the control of GUI, the final fringe 

pattern is presented as shown in Fig.1.4. 

 

Fig. 1.4 Fringe produced 

1.4.3 Processing of the Image projection and acquisition 

In the experiment, the FPP system needs to capture two sets of images to reconstruct the 

object surface: one fringe pattern set on the reference plane only and one deformed pattern 

set on the object surface. For example, a mask shape is placed on the reference plane as 

the target object. Fig.1.5 shows two fringe patterns with and without the object. The 

projection and acquisition of the images use the following system setup. The camera is 

placed beyond the projector at a distance of 180mm. The distance between the lens of the 

camera and the reference plane is 725mm. The camera with a resolution of 1,900 × 1,600 



  
 

46 
 

pixels captures the field of vision with 400mm×200mm. Consequently, the equivalent 

spatial resolution is around 0.18 mm/pixel. This system is employed to implement the 

experiments in this thesis. 

 

(a) 
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(b) 

Fig. 1.5 Captured images from a reference plane (a) and object surface (b) 

 

1.5 Structure of this thesis  

The structure of this thesis is organized as below: 

l Chapter 2 proposes a model fitting-based approach based on an iterative closest point 

algorithm (ICP) to compensate for the motion-induced errors for objects with 3D 

movements. By considering the movement information of the object, a new model of 

the fringe pattern that accounts for object movement is derived. Instead of retrieving 

the phase value by the PSP algorithm, the proposed method extracts the height 

information directly by fitting the model to the captured fringe images. The model-

fitting problem can be solved by an exhaustive search over a range of height values. 

In order to reduce the computational complexity, an initial estimate of height value 

is obtained first. FTP algorithm is applied to retrieve the coarse height map of the 

objects, which provides the initial height values to search the real height for each 

point. In the meanwhile, the coarse height maps retrieved by FTP are utilized to 

extract movement parameters using the ICP algorithm. Simulations are performed to 

verify the feasibility. 

l In Chapter 3, a new approach based on data fusion is proposed to improve the 

reconstruction result for rigid objects with 3D movements. By utilizing the 

knowledge of the motion parameters, multiple height maps are retrieved from several 

FTP measurements and then combined after compensating the motion effect. The 

proposed method suppresses the influence due to the ambient lights and reflectivity. 

To further improve the performance of the fusion method and estimation of motion 
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parameters, the RPCA algorithm is applied to eliminate impulsive errors and random, 

unstructured errors. Besides, error-suppressed height maps are then applied to 

estimate the motion parameters by ICP. Then, multiple height maps are fused using 

estimated motion parameters and weights adapted to the quality of captured fringe 

patterns. This method is extended to be combined with 3-step PSP to improve the 

performance. Simulations and experiments verify the effectiveness of the proposed 

schemes. 

l To complete this thesis, Chapter 4 summarizes the findings and discusses the 

directions of future research.
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 2. MODEL FITTING-BASED 

RECONSTRUCTION OF DYNAMIC OBJECTS 

WITH 3D MOVEMENT 

2.1 Introduction  

Among the various fringe projection techniques (FPP) techniques for object surface 

reconstruction, PSP has attracted significant research interests. Thanks to its multi-shot 

nature, PSP is less sensitive to ambient light and reflectivity on the object surface. For 

static objects, the performance of PSP can be improved by projecting and capturing more 

phase-shifted fringe patterns. When the object moves, however, the movement may lead 

to significant degradation of the performance of the PSP due to the loss of correspondence. 

In order to address this challenge, the object motion may be tracked and used to 

compensate for the motion-induced phase errors. However, the existing approaches are 

only valid for objects with 1D, 2D and specific 3D movement, which is not the case of 

general 3D movements. Therefore, it is highly exigent to develop new approaches for 

measuring objects with general 3D movements using a simple FPP system. 

This chapter proposes a novel approach to enhance the performance of 3D shape 

measurements using phase-shifting fringe projections. We consider rigid objects with 3D 

movements, which can be modeled by 3D rotation matrices and 3D translation vectors. 

The motion-induced position changes and phase shifts are integrated into the analysis of 

the deformed fringe patterns. Based on this, a model-fitting approach is developed to 

retrieve the height profile. In contrast to existing solutions for measuring moving objects, 

the proposed approach allows general 3D motion and employs marker-free estimation of 



 

50 
 

the motion parameters. The simulation results indicate that the proposed approach can 

achieve higher accuracy than the traditional FTP and PSP approaches for moving objects.   

This chapter is organized as follows. Section 2.2 introduces the system model and 

formulates the problem. Section 2.3 details the proposed model fitting-based method. 

Section 2.4 evaluates the proposed method using simulations. Finally, Section 2.5 

summarizes the findings.   

2.2 Problem formulation 

Let us consider the measurement of the 3D shape of a rigid object. Suppose a set of 𝐾 

phase-shifting sinusoidal patterns with spatial frequency 𝑓!  are projected at 𝐾  time 

instants. When the object is static, the fringe patterns captured respectively from the 

reference plane and the object can be written as: 

𝑠!(𝑥, 𝑦) = 𝑎!(𝑥, 𝑦) + 𝑏! (𝑥, 𝑦)𝑐𝑜𝑠 -𝜑(𝑥, 𝑦) +
"#(!%&)

(
/ , 𝑘 = 1,2, … , 𝐾,      (2.1) 

and 

𝑑!(𝑥, 𝑦) = 𝑎!(𝑥, 𝑦) + 𝑏!(𝑥, 𝑦) 𝑐𝑜𝑠 -𝜑(𝑥, 𝑦) + 𝛷)(𝑥, 𝑦) +
"#(!%&)

(
/ , 𝑘 = 1,2, … , 𝐾,	(2.2) 

where 𝑎#(𝑥, 𝑦)  is the average intensity and 𝑏#(𝑥, 𝑦)  is the intensity modulation of 

sinusoidal fringe patterns. Generally, 𝑎#(𝑥, 𝑦) and 𝑏#(𝑥, 𝑦) can be assumed constant over 

time. The PSP algorithm can eliminate the influence from 𝑎#(𝑥, 𝑦) and 𝑏#(𝑥, 𝑦) and then 

retrieve the height information wrapped in the phase Φ$(𝑥, 𝑦). 

When the object moves during the 𝐾 time instants, both the position and height of the 

object surface can change, which results in deformed patterns different from (2.2). In such 

cases, the traditional PSP algorithm fails to extract the required phase Φ$(𝑥, 𝑦). Let the 
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3D coordinates of a point 𝑃 on the dynamic object surface at time instant 𝑘 be (𝑥#,𝑦# , ℎ#), 

where (𝑥#,𝑦#) defines the position on the X-Y plane and ℎ# the corresponding height. 

The coordinates of the point 𝑃 measured at time instant 𝑘 can be modelled as: 

5
𝑥#
𝑦#
ℎ#
6 = 𝑹# 5

𝑥%
𝑦%
ℎ%
6 + 𝒕# ,                                                 (2.3)  

where 𝑹# 	and	𝒕# are the rotation matrix and translation vector relative to time instant 1, 

respectively, given by      

	𝑹# = >
𝑟#%% 𝑟#%& 𝑟#%'

𝑟#&% 𝑟#&& 𝑟#&'

𝑟#'% 𝑟#'& 𝑟#''
@,			                                             (2.4) 

𝒕# = >
𝑡#%

𝑡#&

𝑡#'
@.                                                          (2.5) 

For general 3D movements, the transformation in (2.3) contains six degrees of freedom 

(6 DOF), including three for rotation and three for translation. Let us temporally drop the 

index 𝑘 for notational simplicity. The rotations matrix 𝑹 can be parameterized by three 

rotation angles 𝛼, 𝛽 and 𝜃 for the X, Y and Z axis respectively, as illustrated in Fig. 2.1. 

The mutually orthogonal rotation matrices with respect to the three directions are given 

as  

             𝑹((𝛼) = 5
1 0 0
0 cos	(𝛼) −sin	(𝛼)
0 sin	(𝛼) cos	(𝛼)

6                                        (2.6) 

  𝑹)(𝛽) = 5
cos	(𝛽) 0 sin	(𝛽)
0 1 0

−sin	(𝛽) 0 cos	(𝛽)
6                                        (2.7) 
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Fig. 2.1 Rotation matrices 

  𝑹*(𝜃) = 5
cos	(𝜃) −sin	(𝜃) 0
sin	(𝜃) cos	(𝜃) 0
0 0 1

6                                      (2.8) 

The overall rotation matrix is computed as: 

        𝑹 =	𝑹*(𝜃)𝑹)(𝛽)𝑹((𝛼)                                          (2.9) 

 𝑹 = #
cos(𝜃) −sin(𝜃) 0
sin(𝜃) cos(𝜃) 0
0 0 1

/ #
cos(𝛽) 0 sin(𝛽)
0 1 0

−sin(𝛽) 0 cos(𝛽)
/ #
1 0 0
0 cos(𝛼) −sin(𝛼)
0 sin(𝛼) cos(𝛼)

/           (2.10) 

𝑹 = ,
cos(𝜃)cos	(𝛽) cos(𝜃) sin(𝛽) sin(𝛼) − sin(𝜃)cos(𝛼) cos(𝜃) sin(𝛽) cos(𝛼) + sin(𝜃)sin(𝛼)
sin(𝜃)cos	(𝛽) sin(𝜃) sin(𝛽) sin(𝛼) − cos(𝜃)cos(𝛼) sin(𝜃) sin(𝛽) cos(𝛼) − cos(𝜃)sin(𝛼)
−sin	(𝛽) cos(𝛽)sin(𝛼) cos(𝛽)cos(𝛼)

8          (2.11) 

From (2.11), the matrix 𝑹 describes the three degrees of freedom for rotation, which 

together with the displacement vector 𝒕 model the overall 3D movement. 
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In the following, we treat (𝑥%,𝑦%) as known constants and ℎ% the unknown height to be 

obtained. The gray value at the point 𝑃 from the deformed fringe patterns captured at time 

instant 𝑘 can be expressed as: 

𝑑#+(𝑥# , 𝑦#) = 𝑎#(𝑥# , 𝑦#) + 𝑏#(𝑥# , 𝑦#) cos P𝜑#+(𝑥# , 𝑦#) + Φ$
+(𝑥# , 𝑦#) +

&,(#.%)
"

R   

(2.12) 

Comparing (2.12) with (2.2) we can see that the 3D movement of the objects leads to the 

variation of both the position-related phase 𝜑#+(𝑥# , 𝑦#)  and the height-caused phase 

Φ$
+(𝑥%, 𝑦%) . Such variations of the phases are mixed and hard to be separated and 

compensated. Meanwhile, the coordinates (𝑥# , 𝑦#) of the point 𝑃 are unknown after the 

movement because neither the movement parameters nor the original heights are available. 

This is in contrast to the previous studies [84], [94] for 1D or 2D movements where the 

coordinates of 𝑃 and variations of the position-related phase can be tracked. Hence it is 

challenging to retrieve the dynamic height of the surface from the captured patterns. In 

this chapter, we propose a novel approach to address this problem.   

2.3 Model fitting-based height retrieval 

The overall process of the proposed approach is illustrated in Fig. 2.2 for the case where 

𝐾 = 3 fringe patterns are used, but the technique can be generalized to a larger 𝐾. The 

key steps are summarized below:  

l Acquire coarse estimates of the dynamic shape {𝑯U#} by applying FTP to each 

fringe image;   

l Estimate the object motion parameters {𝑹W# , 𝒕X#} from {𝑯U#} using ICP;   
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l Retrieve the 3D shape 𝑯W% by solving a model fitting problem for all points on 

the object surface.   

 

Fig. 2.2 Workflow of the proposed model fitting-based approach when K=3 phase-

shifting fringe patterns are employed. 

Step 1: Initial height retrieval  

Recall that at each time instant a deformed fringe image is captured, which can be 

exploited to retrieve a coarse estimate 𝑯U#  of the height map 𝑯# = {ℎ#+}. This can be 

achieved by applying a standard FTP algorithm. At time instant 𝑘, the fringe pattern 

deformed by the object can be modeled as a composite of harmonic components [48]: 

         𝑑#(𝑥, 𝑦) = 𝑟(𝑥, 𝑦)∑ 𝐴0 𝑒𝑥𝑝 P𝑖_2𝜋𝑛𝑓!𝑥 + 𝑛𝜙#(𝑥, 𝑦)bR
∞

01.∞
,         (2.13) 

and the corresponding reference fringe pattern is given by    

         𝑠#(𝑥, 𝑦) = 𝑟!(𝑥, 𝑦)∑ 𝐴0 exp P𝑖_2𝜋𝑛𝑓!𝑥 + 𝑛𝜙!(𝑥, 𝑦)bR
∞

01.∞
,											(2.14) 
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where 𝑟(𝑥, 𝑦) is the (nonuniform) reflectivity of the object surface and 𝐴0 is the Fourier 

series coefficient. Note that the reference fringe patterns can be obtained and stored before 

the measurement. Thus only 𝑑#(𝑥, 𝑦)  needs to be acquired during real-time 

measurements. 

The first step of FTP is applying the Fourier transform on the fringe patterns. The fringe 

pattern in the frequency domain is illustrated in Fig.2.3. The height information of the 

object is wrapped into the first side lobe, which corresponds to the region 𝑄%. To extract 

the component containing the object information, a band-pass filter is employed to 

remove the rest components. Finally, an inverse Fourier transform is utilized to convert 

the signal from the frequency domain to the spatial domain, and the filtered pattern is 

expressed as: 

       	𝑑h#(𝑥, 𝑦) = 𝐴%𝑟(𝑥, 𝑦)exp P𝑖_2𝜋𝑓!𝑥 + 𝜙#(𝑥, 𝑦)bR.                 (2.15) 

After similar FTP processing, the reference fringe pattern can be modeled as    

   �̂�#(𝑥, 𝑦) = 𝐴%𝑟!(𝑥, 𝑦)exp j𝑖 P2𝜋𝑓!𝑥 + 𝜙k#(𝑥, 𝑦)Rl.																						(2.16) 

The differences 𝜑#(𝑥, 𝑦) = 𝜙#(𝑥, 𝑦) − 𝜙k#(𝑥, 𝑦)  between the phases 𝜙#(𝑥, 𝑦)  and 

𝜙k#(𝑥, 𝑦) carry the height information of the object at the time instant 𝑘. From (2.15) and 

(2.16), the phase difference distribution [48] can be obtained as  

       𝜑#(𝑥, 𝑦) = Im{log	[	𝑑h#(𝑥, 𝑦) × �̂�#∗(𝑥, 𝑦)]}                         (2.17) 
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Fig. 2.3 Illustration of the fringe pattern in the frequency domain for a given y 

where ∗	denotes conjugate, log(. )  denotes the logarithm function, and Im(. )  is the 

operation to obtain the imaginary part of the complex number. Note that {𝜑#(𝑥, 𝑦)} are 

wrapped into the range	[−π,π) with	2π discontinuities. In order to obtain the real height 

distribution of the object, phase unwrapping algorithms are needed to eliminate the 

discontinuities in the wrapped phase map to produce the unwrapped phase map [101-116]. 

The relationships between the wrapped phase and unwrapped phase are shown below: 

	Φ#(𝑥, 𝑦) = 2𝜋𝐼#(𝑥, 𝑦) + 𝜑#(𝑥, 𝑦)                               (2.18) 

where Φ#(𝑥, 𝑦) is the unwrapped phase of 𝜑#(𝑥, 𝑦), and 𝐼#(𝑥, 𝑦) indicates the fringe 

order. After obtaining the unwrapped phase map, the phase difference caused by the 

object is retrieved, then the height distribution of the object is obtained by utilizing the 

triangular relationship of the FPP system. As shown in Fig.1.2, ∆𝐸3𝐸4𝐻  is similar 

to	∆𝐶𝐷𝐻, so the following relationship holds: 
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567777

8!
= .$((,))

:!.$((,))
.                                                 (2.19) 

Using the fact    

              Φ$(𝑥, 𝑦) = 2𝜋𝑓!𝐶𝐷kkkk                                           (2.20)               

the height value can be computed as  

         ℎ{#(𝑥, 𝑦) =
;!<"((,))

<"((,)).&,=!8!
                                        (2.21) 

Fig.2.4 demonstrates the flowchart of the FTP algorithm. The FTP measurements at time 

instant 𝑘 is denoted by the matrix 𝑯U# = {ℎ{#(𝑥, 𝑦)}. 

Step 2: Estimation of motion parameters 

The FTP measurements {𝑯U#} at different time instants provide initial coarse estimates of 

the dynamic object shape. In order to refine the height measurement, we now estimate the 

motion parameters by using {𝑯U#}. This can be formulated as a point cloud registration 

problem to establish the correspondence between points in different fringe images [117-

122]. Similar problems have been seen in computer vision or image processing [123-129]. 

We here solve this problem by using iterative closest point (ICP) technique [130-132], 

Starting from initial coarse estimates of the motion parameters, the correspondence 

between the points in the different measurements is established using a minimum 

Euclidean distance criterion. 
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Fig. 2.4 Flowchart of FTP algorithm 

The motion parameters are then refined based on the established correspondence using 

the least squares method. The above correspondence matching and motion parameter 

estimation are carried out in an iterative manner until a stopping criterion is met. In 

contrast to the methods using markers and SIFT [93, 94, 96], the ICP approach eliminates 

the needs of human intervention and feature points extraction for establishing the 

correspondence. We assume that the height of the reference plane is low and known. A 
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threshold is then set to distinguish the object and the background and extract the point set 

corresponding to the object. In general, the object point set {𝑯U#}  each may contain a 

large set of points. Uniform sampling is used to extract a smaller subset of {𝑯U#}  

before ICP is applied, such that the computational complexity can be reduced. Let 𝑸 =

{𝒒>, 𝑚 = 1,2, … ,𝑀} and 𝑮 = {𝒈0, 𝑛 = 1,2, … , 𝑁} be the sets of 3D points sampled from 

the retrieved object surfaces at instant 1 and instant k, respectively. Let  

𝒒> ≜ 5
𝑥>
𝑦>
ℎ>
6,							𝒈0 ≜ 5

𝑢0
𝑣0
𝑧0
6 ,							𝑚 = 1,2, … ,𝑀,

𝑛 = 1,2… ,𝑁                           (2.22)                 

The ICP algorithm aims to obtain the motion parameters and establish the correspondence 

relationships of the point set 𝑸  Qand the point set 𝑮G . Let the Euclidean distance 

𝑑(𝒈0, 𝒒>) between two points 𝒈0 and 𝒒> be 

𝑑(𝒈0, 𝒒>) 	= �(𝑥> − 𝑢0)& + (𝑦> − 𝑣0)& + (ℎ> − 𝑧0)&.              (2.23) 

For each 𝒈0, the corresponding point in 𝑸 is estimated as   

𝒒0∗ = argmin𝒒#∈𝑸𝑑(𝒈0, 𝒒>).                                   (2.24) 

Assume that 𝑸B ≜ {𝒒0∗ } is the set containing the estimated corresponding points of 𝑮. 

Then the rotation matrix 𝑹 and translation vector 𝒕 are estimated by minimizing  

𝐸(𝑹, 𝒕) = ∑ ‖𝒈0 − (𝑹𝒒0∗ + 𝒕)‖&C
01% .                               (2.25)                             

Let 

𝒒B = %
C
∑ 𝒒0,					C
01% 𝒒40 = 𝒒0 − 𝒒B, 𝑛 = 1,2,⋯ ,𝑁,                        (2.26) 

𝒈B = %
C
∑ 	𝒈0∗C
01% ,					𝒈40 = 𝒈0∗ − 𝒈B, 𝑛 = 1,2,⋯ ,𝑁.	                      (2.27) 
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Define the correlation matrix  

  𝑪 = ∑ 𝒒40C
01% 𝒈40D                                              (2.28) 

and find its singular value decomposition (SVD) as   

                         𝑪 = 𝑼𝚲𝑽D .                                                  (2.29) 

Then the optimal rotation matrix 𝑹 is found as    

    𝑹W′ = 𝑽𝑼𝑻                                                   (2.30) 

and the translation vector 𝒕 can be determined as: 

   𝒕X′ = 𝒒B − 𝑹W′𝒒B                                               (2.31) 

The accuracy of 𝑹W′ and 𝒕X′ depends on the correspondence established using (2.25). Such 

correspondence may be poor initially but can be improved iteratively by updating the data 

points using the estimated motion parameter as 𝒒> ← 𝑹WB𝒒>+𝒕XB, 𝑚 = 1,2, … ,𝑀 . The 

operations described by (2.25)-(2.31) are then repeated based on the updated data point 

set 𝑸 = {𝒒>}G = {gF} , yielding updated 𝑹W′  and 𝒕X′ . Let 𝑹W  and 𝒕X  denote the overall 

rotation matrix and translation vector and initialize them to 𝑹W = 𝑰'×', 𝒕X = 𝟎'×%. They are 

then updated iteratively as 𝑹W ← 𝑹W′𝑹W, 𝒕X ← 𝑹W′𝒕X + 𝒕XB. The above process will be repeated 

for a preset number of iterations or until the value of the objective function 𝐸_𝑹WB, 	𝒕X′b 

becomes lower than a threshold. By letting 𝑸 and 𝑮 be data points from 𝑯U% and 𝑯U#H� H 

and applying the ICP algorithm, we can obtain the estimates (𝑹W# , 𝒕X#) of the motion 

parameters (𝑹# , 𝒕#) defined in (2.3) for each time instant. In the end, the movement 

parameters relating 𝑯U% and 𝑯U# can be estimated. 
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Step 3: Height distribution retrieval 

We now introduce a new algorithm to recover the shape of the moving object from the 

captured phase-shifting fringe patterns. We assume that the rotation matrix 𝑹W#  and 

translation vector 𝒕X# estimated in Step 2 are perfect. Similar to the traditional PSP, the 

shape is retrieved on a point-by-point basis. Hence, it suffices to consider a single point, 

say 𝑃, on the object surface in order to introduce the proposed method. From (2.3)-(2.5), 

the movement of 𝑃 can be described as     

𝑥# = 𝑓#(ℎ%) ≜ 𝑟#%%𝑥% + 𝑟#%&𝑦% + 𝑟#%'ℎ% + 𝑡#%                                  (2.32) 

          𝑦# = 𝑔#(ℎ%) ≜ 𝑟#&%𝑥% + 𝑟#&&𝑦% + 𝑟#&'ℎ% + 𝑡#&                                  (2.33) 

ℎ# = 𝑧#(ℎ%) ≜ 𝑟#'%𝑥% + 𝑟#'&𝑦% + 𝑟#''ℎ% + 𝑡#'                                  (2.34) 

Eq. (2.32) - (2.34) show that the position of the point 𝑃 can be tracked if (𝑥%,𝑦%,ℎ%) is 

known and 𝑹# 	and	𝒕#  are available from the ICP algorithm. Note that, however, ℎ% is 

unknown. In the following, we introduce a model fitting method to find ℎ%.   

We first establish the following model for the captured gray values corresponding to the 

point 𝑃:     

𝑀$(ℎ$) ≜ 𝑎$(𝑥$, 𝑦$) + 𝑏$(𝑥$, 𝑦$) cos(𝜑(𝑥$, 𝑦$) + Φ$(ℎ$))	
𝑀%(ℎ$) ≜ 𝑎%(𝑓%(ℎ$), 𝑔%(ℎ$)) + 𝑏% (𝑓%(ℎ$), 𝑔%(ℎ$))cos(𝜑(𝑓%(ℎ$), 𝑔%(ℎ$)) + Φ%(𝑧%(ℎ$)) +	

%&
'
)

⋮
𝑀'(ℎ$) ≜ 𝑎'(𝑓'(ℎ$), 𝑔'(ℎ$)) + 𝑏'(𝑓'(ℎ$), 𝑔'(ℎ$)) cos(𝜑(𝑓'(ℎ$), 𝑔'(ℎ$)) + Φ'(𝑧'(ℎ$)) +	

%&(')$)
'

	)

(2.35) 

Note that given the target point 𝑃 ’s location (𝑥%, 𝑦%)  and the modeling parameters 

{𝑹# , 𝒕# , 𝑎#(𝑥, 𝑦), 𝑏#(𝑥, 𝑦)}, the values of 𝑀#(ℎ%) are determined by ℎ% only. On the other 

hand, the light intensity of the same point on the acquired fringe patterns are as follows:  
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𝐷% ≜ 𝑑%(𝑥%, 𝑦%),
𝐷&(ℎ%) ≜ 𝑑&(𝑓&(ℎ%), 𝑔&(ℎ%)),

⋮
𝐷"(ℎ%) ≜ 𝑑"(𝑓&(ℎ%), 𝑔&(ℎ%)),

                                      (2.36) 

where 𝑑#(. , . ) are the fringe patterns actually acquired by the camera at the time instant 

𝑘.   

Equation (2.35) models the intensity value of the point 𝑃 on the object-induced fringe 

patterns computed using the mathematic model, while (2.35) presents the intensity value 

of the same point on the fringe patterns actually acquired by the camera. In the noise-free 

case with no ambient lights, these two sets of intensity values should be the same if 

(𝑥%, 𝑦%, ℎ%) and the modeling parameters are all accurately known. However, as the shape 

of the object is yet to be measured,	ℎ% is unknown. In the following, we tackle this issue.    

Since (2.35) models the light intensity for the same point on the object surface, we can 

assume that the reflectivity involved are all the same. Following the discussion below 

(2.12), we can then assume   

𝑎#_𝑓#(ℎ%), 𝑔#(ℎ%)b = 𝑎%(𝑥%, 𝑦%), 𝑘 = 2,3… , 𝐾,                       (2.37) 

𝑏#(𝑓#(ℎ%), 𝑔#(ℎ%)) = 𝑏%(𝑥%, 𝑦%), 𝑘 = 2,3… , 𝐾.                       (2.38) 

Consider the case of 𝐾=3. Based on (2.35), we can then introduce the following metric 

with the aim to eliminate the influence of 𝑎#(𝑥, 𝑦) and 𝑏#(𝑥, 𝑦): 

𝑀_ℎ�%b =
I+J$K+L.I,J$K+L
I+J$K+L.I-J$K+L

	=
MNO	(Q((+,)+)R<+(	$K+)).MNO(Q(=,J$K+L,S,($K+))R<,J*,($K+)LR

,.
- )	

MNO	(Q((+,)+)R<+(	$K+)).MNO(QT=-J$K+L,S-J$K+LUR<,J*-($K+)LR
/.
- )	

     

(2.39) 
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Meanwhile, we can also compute the following based on the acquired fringe patterns 

in (2.36):  

	𝐷_ℎ�%b =
6+.6,(	$K+)
6+.6-(	$K+)

.                                            (2.40) 

With (2.39) and (2.40), we can define a cost function as the following fitting error: 

𝐽_ℎ�%b = �𝑀_ℎ�%b − 𝐷_ℎ�%b�
&
.		                                (2.41) 

In the ideal case 𝐽_ℎ�%b is zero if ℎ�% is equal to the true height ℎ% of P. Therefore, we 

propose to estimate the height ℎ%	by solving the following model fitting problem:    

ℎ�%∗ 	= argmin
$K+

𝐽_ℎ�%b.                                          (2.42) 

Problem (2.42) can be solved by exhaustive search over a feasible range of  ℎ�%. In order 

to reduce the computational complexity, an initial estimate ℎ{% can be obtained first. The 

cost function in (2.42) is then minimized over a grid of ℎ�% in the neighborhood of ℎ{% to 

produce a refined solution. In this work, we set such an initial estimate as the coarse 

estimate of ℎ% obtained by applying the standard FTP, as illustrated in Step 1, to the fringe 

image at the time instant 𝑘 = 1.  

In practice, ambient lights create random noises in the captured fringe patterns 

{𝑑#(𝑥# , 𝑦#)} in (2.36). In contrast to the case where traditional PSP is applied to static 

objects, the noise in (2.36) can differ from each other and they cannot be fully cancelled 

in (2.40). As such, the solution of (2.42) can deviate from the true height ℎ%. To improve 

accuracy, we introduce a local polynomial fitting treatment. Instead of considering only 

the point 𝑃 at (𝑥%, 𝑦%) while estimating its height, we consider a small local region Ω+ =

{(𝑥% − 1, 𝑦%), (𝑥%, 𝑦% − 1), (𝑥%, 𝑦%), (𝑥% + 1, 𝑦%), (𝑥%, 𝑦% + 1)}	 which includes the point 
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P itself and also its four nearest neighbors. We model the object surface over Ω+	as a 

planar surface,	i.e., the height of every point 𝑃′ at (𝑥%B , 𝑦%B ) in Ω+ can be modeled linearly 

as  

ℎ′(ℎ�%) = 𝛼(ℎ�%)(𝑥%B − 𝑥%) + 𝛽(ℎ�%)(𝑦%B − 𝑦%) + ℎ�%,                (2.43) 

where ℎ�%  denotes the hypothesized height at point P. Given ℎ�% , the parameters 

𝛼(ℎ�%), 𝛽(ℎ�%) are determined by fitting the FTP measurement results over Ω+ at 𝑘 = 1 

using the ordinary least squares method. Instead of the fitting error 𝐽_ℎ�%b in (2.41), the 

sum of the fitting errors over the local surface Ω+ is chosen as the new cost function. Its 

minimizer is then used to estimate the height of P as 

ℎ�%∗ = argmin
$K+

∑ 𝐽_ℎ′(ℎ�%)b+0∈V1 ,                                 (2.44) 

where 𝐽_ℎ′(ℎ�%)b denotes the cost function in (2.41) applied to a point 𝑃B in Ω+.  

2.4 Numerical Results  

In order to quantitatively evaluate the estimated height map ℎ�(𝑥, 𝑦) , the NMSE 

(normalized mean squared error) is computed as:  

NMSE =
∑ ∑ ($K((,)).$((,))),23

∑ ∑ ($((,))),23
,                                  (2.45) 

where ℎ(𝑥, 𝑦) is the true height map, 𝑋 and 𝑌 are the numbers of pixels along the 𝑥-axis 

and 𝑦-axis, respectively. 

We first examine the feasibility of applying the ICP algorithm to estimate the motion 

parameters. Consider an FPP system with 𝑙! = 4000mm and 𝑑! = 600mm. A spatially 

symmetric hemi-ellipsoidal object (with radius 200mm and height 20mm) is simulated as 
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shown in Fig.2.5(a) and then transformed by a known rotation matrix and translation 

vector into that in Fig.2.5(b). We treat the height map as a two-dimensional signal with 

average power 𝑃$PX. Noise with average power 𝑃0PY is added to the height distribution 

and the signal-to-noise ratio (SNR) is defined asSNR = 10log Z4
Z5
𝑆𝑁𝑅 = 10𝑙𝑜𝑔 +6

+7
. The 

motion parameters are estimated by using the ICP algorithm from the two point clouds 

from Fig.2.5(a) and Fig.2.5(b). They can then be utilized to transform the height map in 

Fig.2.5(b) to predict that in Fig. 2.5(a). The prediction error refers to the difference 

between the height map in Fig. 2.5(a) and its prediction obtained from Fig.2.5(b) using 

the estimated motion parameters, which is shown in Fig.2.5(c) for 𝑆𝑁𝑅 = 30 dB. The 

NMSE of the prediction is found to be 0.0032, 0.0108 and 0.0214 respectively under the 

SNR of 30 dB, 25dB and 20 dB. 

    

(a) 
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 (b) 

 

                                           (c) 

Fig. 2.5 Verification of the ICP algorithm at SNR=30dB. (a): Object before movement. 

(b): Object after movement. (c): Difference between the original object in (a) and its 

prediction obtained from (b) using the estimated motion parameters. 
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These results demonstrate the feasibility of using the ICP algorithm to estimate the motion 

parameters from noisy height maps. From Fig. 2.5(c), there can be a slight difference 

between the original map and the predicted map using the motion parameters estimated. 

This difference is partly caused by the modeling errors due to imperfect motion 

parameters estimation and linear interpolation. Note also that for spatially symmetric 

objects the same motion of the object may be described using different models. In this 

case, the motion parameters found by the ICP algorithm are not unique. In noisy cases, 

ICP aims to find the motion parameters that minimize the prediction errors described 

above.   

We next present simulation results to verify the effectiveness of the proposed model 

fitting approach. In the first simulation, the proposed approach is compared with the 

traditional 3-step PSP and FTP methods. A hemi-ellipsoidal object with 3D movement is 

considered and its shape at three time instants 𝑘 = 1, 2, 3 during the movement is shown 

in Fig. 2.6. We assume that phase-shifting fringe images are captured at the three time 

instants, based on which the object shape at the time instant 𝑘 = 1 is retrieved. Fig. 2.7 

compares the NMSE of the proposed approach with the alternative methods. The motion 

parameters {𝑹# , 𝒕#} are assumed perfectly known. The traditional 3-step PSP scheme is 

first applied to the three fringe images with the assumption that the object is static. From 

Fig. 2.7, it yields the worst NMSE for the height measurement, which cannot be alleviated 

by improving the SNR. This is due to the motion-induced artifact. The FTP applied to the 

fringe image at 𝑘 = 1 is able to achieve a better NMSE thanks to its immunity to the 

object movement, but it is sensitive to noise due to its single-shot nature. The proposed 

modified PSP approach noticeably outperforms the two alternatives. This approach 

utilizes multiple fringe patterns and hence is more robust against noise compared to FTP. 

Furthermore, it alleviates the motion-induced artifact, which degrades the performance of 
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the traditional PSP, by estimating the motion parameters and compensating the motion-

induced phase shifts.   
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Fig. 2.6 Three states of a moving 3D object. 

 

 

Fig. 2.7 Comparison of the proposed approach, the traditional 3-step PSP, and FTP. 
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Fig.2.8 Influence of the knowledge of the motion parameter and number of steps on the 

proposed approach. 

In Fig. 2.8, we examine the influence of the motion parameter estimation. The ICP-

estimated motion parameters (𝑹W# , 𝒕X#)	are shown to yield nearly the same performance as 

the true {𝑹# , 𝒕#}.  Besides, we can also extend the proposed approach to employ more 

fringe projections. When 𝐾 = 4, four fringe images are used. The metrics of 𝑀_ℎ�%b and 

𝐷_ℎ�%b defined in (2.39) and (2.40) can be modified as follows before plugged into (2.41): 

     𝑀_ℎ�%b =
I+J$K+L.I,J$K+L
I-J$K+L.I/J$K+L

 ,    𝐷_ℎ�%b =
6+.6,J$K+L

6-J$K+L.6/J$K+L
.                (2.46) 

From Fig. 2.8, employing more fringe projections may improve the accuracy of 3D 

reconstruction. However, the improvement can be limited by the errors in the estimated 

motion parameters.   

 



 

71 
 

2.5 Summary 

In this chapter, a model-fitting approach has been proposed to compensate for the motion-

induced errors in fringe projection profilometry. The proposed approach utilizes multiple 

phase-shifting fringe projections. The initial coarse estimates of the object height are 

obtained using Fourier transform profilometry based on which the motion parameters are 

estimated. A model of the deformed patterns is established, which takes into account the 

movement of the object surface in the 3D space. The model is fitted to the acquired fringe 

patterns, and the fitting error is minimized to retrieve the height map. The simulation 

results show that the proposed approach is effective in improving the accuracy of 3D 

shape reconstruction for moving objects. 
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3. DATA FUSION-BASED RECONSTRUCTION 

OF DYNAMIC OBJECTS WITH 3D 

MOVEMENT 

3.1 Introduction 

Chapter 2 proposes a model fitting approach to improve the performance for 3D 

shape measurement of objects with 3D movements. This approach employs 

exhaustive search to retrieve the height value, which is time-consuming. In order 

to reduce the computation complexity, we now propose a novel approach to 

enhancing the performance by fusing multiple height maps retrieved using standard FPP. 

We also consider rigid objects moving freely in the 3D space. Initial coarse measurements 

are obtained first, and robust principal component analysis (RPCA) is employed to 

alleviate the noise-induced errors. The results are then utilized to estimate the 3D motion 

parameters by applying the iterative closest point (ICP) method. Finally, we fuse the 

multiple height maps to obtain the final result using weights adapted to the quality of the 

captured fringe patterns.  

The chapter is organized as follows. Section 3.2 presents the proposed method. Section 

3.3 presents the simulation and experiment. Finally, conclusions are drawn in Section 3.4.  

3.2 Data fusion approach  

3.2.1 FTP-based fusion approach 
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FTP requires the projection of only one fringe pattern for each measurement. Its 

performance is insensitive to the motion, and hence it can be applied to each time instant 

to obtain a height map for a moving object. However, the performance of FTP is sensitive 

to background lights and abrupt changes of the object surface due to its single-shot nature. 

It is possible to fuse the FTP results from different time instants to achieve high-

performance reconstruction. However, correspondence between these data must be 

established first. Besides, the single FTP results from different time instants may have 

different quality, which should also be taken into account. 

In this section, we propose a method to improve the performance of the FTP approach for 

measuring moving objects by fusing multiple coarse measurements acquired at different 

time instants. The overall workflow is illustrated in Fig.3.1. Assume that FTP 

measurements at 𝐾 = 3  time instants are fused as an example. The key steps are 

summarized below: 

l Retrieve individual height map {𝑯U#} from each time instant 𝑘, and then denoise 

these maps by using robust principal component analysis (RPCA). 

l Produce the resulting height maps {𝑯W#} to estimate (𝑹W# , 𝒕X#) of the 3D motion 

parameters by applying the ICP algorithm.  

l Fuse height maps {𝑯W#} with adaptive weights computed from the signal-to-noise 

ratios (SNR) {𝛤#} to optimize the overall accuracy. 

Note that the method can be easily extended to other values of 𝐾 and to the cases 

where multiple measurements are performed simultaneously using multiple cameras.  
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Fig. 3.1 Workflow of the proposed approach when height maps acquired at 𝐾 = 3 time 

instants are fused. 

Step 1: Retrieval of initial height maps with denoising    

A standard FTP process is applied to retrieve an object height map at each time instant. 

Since a single pattern is used for acquiring each height map, there can be significant errors 

in the retrieved height maps due to noise, etc. Such errors can lead to poor results for 

further processing.  

Denote by matrix 𝑯U# = {ℎ{#(𝑥, 𝑦)}the height map obtained using FTP at time instant 𝑘. 

We can model 𝑯U#as the summation of the true object shape matrix 𝑯#, an impulsive error 

matrix 𝑺#, and a random, unstructured error matrix 𝑾#, i.e., 

            𝑯U# = 𝑯# + 𝑺# +𝑾# , 𝑘 = 1,2,⋯ , 𝐾.                         (3.1)                          

For many applications, the object to be measured has a continuous surface shape, and in 

this case, it is reasonable to assume that 𝑯# is a low-rank matrix, i.e., it can be represented 
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in a low-dimensional subspace using a small number of singular vectors. Meanwhile, the 

impulsive error 𝑺# is sparse, i.e., only a small subset of its entries is non-zero with 

significant magnitudes. The above distinct features of 𝑯#  and 𝑺#  can be applied to 

recover them from 𝑯U#  with high accuracy. Intuitively, 𝑺#  can be estimated by 

thresholding the entries of 𝑯U# while 𝑯# can be retrieved by projecting 𝑯U# onto the low-

dimensional subspace spanned by its principal singular vectors. These processes, however, 

are subject to errors due to the mixing of 𝑯# and 𝑺# in 𝑯U# . In order to enhance accuracy, 

iterative algorithms can be applied to refine the estimates of 𝑯#  and 𝑺#  [133-139]. 

Various implementations of RPCA have been proposed in the past decade, e.g. [140], 

[141], which have been successfully applied to many areas such as computer vision.  

The original RPCA can be formulated as a matrix decomposition problem, which 

incorporates rank and sparsity constraints. This problem is non-convex and NP-hard. In 

order to obtain tractable solutions, one can heuristically reformulate RPCA as the 

following principal component pursuit (PCP) problem [141]:  

min
𝑺",𝑯"

𝛾‖𝑺#‖	:+ + ‖𝑯#‖∗			 s. t.		°𝑯# + 𝑺# −𝑯U#°
& ≤ 𝜖&.               (3.2) 

In the above, ‖∙‖:+ is the 𝑙% norm, defined as the sum of the absolute values of the entries 

of a matrix, and ‖∙‖∗ is the nuclear norm, defined as the sum of the singular values. The 

PCP reformulation is motivated by the fact that the 𝑙% norm and nuclear norm can act as 

surrogate functions of the sparsity level and rank, respectively. Therefore, minimizing 

these norms as in (3.2) can induce a sparse 𝑺# and a low-rank 𝑯#, subject to a tolerance 

of residual errors. The rank, sparsity level, and level of residual errors of the solutions can 

be controlled by the parameters 𝛾 > 0, 𝜖& > 0 . In particular, a smaller value of 𝜖& 

requires the residual error to be smaller. The parameter g controls the rank of the 
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recovered 𝑯#. A smaller g leads to a lower rank of 𝑯#, which may oversmooth the result 

and discard details of the shape information. A larger g  leads to a larger rank of 𝑯#, 

which tends to include more errors in the recovered 𝑯#. The choice of g has been a topic 

intensively studied in the literature. However, there is no universally optimal solution 

available. So, we resort to numerical studies by simulating common objects under 

different shape complexity and noise levels and identify a suitable range for g.  

Various low-complexity algorithms have been proposed to solve (3.2). We here apply the 

alternating direction method (ADM) of [142] for its simplicity, but other methods [140, 

141] can be alternatively used. For completeness, the ADM method is sketched as follows. 

Firstly, a multiplier 𝒁# is introduced to construct a cost function from (3.2) as  

𝐽(𝑺# , 𝑯# , 𝒁#) = 𝛾‖𝑺#‖:+ + ‖𝑯#‖∗ − 〈𝒁# , 𝑺# +𝑯# −𝑯U#〉 +
]
&
	°	𝑺# +𝑯# −𝑯U#°

&, 

(3.3) 

where 𝜌 > 0 is a penalty parameter for controlling the tolerance of the residual error, and 

〈∙〉 represents the standard trace inner product. The optimization problem then becomes 

the minimization of 𝐽(𝑺# , 𝑯# , 𝒁#). Let 𝑃^(⋅) be a thresholding operator with threshold 

𝑡 > 0, that is, 𝑃^(𝐗) returns a matrix obtained by thresholding all the entries of 𝑿 into the 

range [−𝑡, 𝑡]. Let n denotes the number of iteration of the ADM method, and (𝑺#0, 𝑯#
0, 𝒁#0) 

the current solution. The solutions are then updated iteratively as follows:   

• Generate 𝑺#0R%: 

𝑺#0R% = P%
]
𝒁#0 −𝑯#

0 +𝑯W#R − 𝑃
8
9 P%

]
𝒁#0 −𝑯#

0 +𝑯U#R.                   (3.4) 

• Generate 𝑯#
0R%: 
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𝑯#
0R% = 𝑼0R%diag Pmax ¼𝜎_0R% −

%
]
, 0¾R (𝑽0R%)D,                     (3.5) 

where 𝑼0R% , 𝑽0R%  and {𝜎_0R%} are, respectively, the left singular vector matrix, right 

singular vector matrix and singular values of  𝑯U# − 𝑺#0R% +
%
]
𝒁#0. 

• Update the multiplier: 

𝒁#0R% = 𝒁#0 − 𝜌(𝑺#0R% +𝑯#
0R% −𝑯U#).                            (3.6) 

The above iterative algorithm can be terminated based on a pre-set number of iterations 

or variations of the solutions. We refer the readers to [142] for detailed discussion about 

the properties and implementation of the ADM method.    

Step 2: Motion parameter estimation  

After applying the FTP and RPCA steps in step 1, K height maps {𝑯W#} are obtained, 

which may still suffer from errors. Fusing these height maps may improve the overall 

accuracy of the 3D reconstruction. In order to achieve this, we estimate the rotation matrix 

and translation vector from {𝑯W#}. Similar to Section 2.2, the ICP algorithm applied in this 

section is to find the transformation from {𝑯W#} to {𝑯W%},  which is described by 

	>
𝑥%+

𝑦%+

ℎ%+
@ = 𝑹¿# >

𝑥#+

𝑦#+

ℎ#+
@ + �̅�# 	𝑘 = 1,2,⋯ , 𝐾,                              (3.7) 

where 𝑹¿# 	and	�̅�# denote the rotation matrix and translation vector from the time instant 

𝑘 to the time instant 1, respectively, and  

𝑹¿# = 𝑹#.%,							�̅�# = −𝑹#.%𝒕# .                                       (3.8) 
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In this chapter, we denote by (𝑹W# , 𝒕X#) the estimates of (𝑹¿# , �̅�#). In the case of 𝑘 = 1 for 

the first instant, 𝑹W% = 𝑰'×', 𝒕X% = 𝟎'×%. 

Step 3: Height maps fusion with adaptive weights 

After obtaining the motion parameters (𝑹W# , 𝒕X#)  for 𝑘 = 2,3,⋯ , 𝐾 , the measurement 

results at different time instants can be fused. Let �̂�#
_` denote the (𝑖, 𝑗)th entry of 𝑹W# and 

�̂�#0 the 𝑛th entry of 𝒕X# . According to (3.7), we can generate 𝐾 estimates of the height map 

at instant 𝑘 = 1 from (𝑹W# , 𝒕X#) and 𝑯W# as   

 ℎ{%,#+ (𝑥%+ , 𝑦%+) = �̂�#'%𝑥#+ + �̂�#'&𝑦#+ + �̂�#''	ℎ{#+ + �̂�#',   				𝑘 = 1,2,⋯ , 𝐾.        (3.9) 

In the above, (𝑥#+ , 𝑦#+) denote the coordinates of a point P at the time instant 𝑘, and ℎ�#+ 

the corresponding height in map 𝑯W# . Linear interpolation is used to obtain ℎ�%,#+  when 

(𝑥#+ , 𝑦#+) do not fall on the center of a pixel. Finally, we fuse the multiple height maps in 

(3.9) to further alleviate noise-induced errors and improve accuracy. Note that due to the 

variations of the signal-to-noise-ratio (SNR), reflectivity, and orientation of the object 

with respect to the fringe patterns, the measured heights for the same point at different 

time instants have different accuracies. A weighted combination of the multiple height 

maps is employed with weights {𝑤#}:   

ℎ�a(𝑥%+ , 𝑦%+) = ∑ 𝑤#"
#1% ℎ�%,#+ _𝑥%,#+ , 𝑦%,#+ b,                             (3.10) 

where we use the coordinates at time instant 𝑘 = 1 to present the final height map 𝑯Wa =

{ℎ�a(𝑥%+ , 𝑦%+)}. The optimal choice of {𝑤#} is an open issue. In this work, we consider a 

heuristic approach similar to the maximum ratio combining (MRC) [143] that chooses 

{𝑤#} according to estimates of the SNR in the fringe images 𝑑#(𝑥, 𝑦) captured by the 

camera, which can be also modelled as: 
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    𝑑#(𝑥, 𝑦) = 𝑎#(𝑥, 𝑦) + 𝑏#(𝑥, 𝑦)𝑐𝑜𝑠_𝜑(𝑥, 𝑦)b + 𝑛(𝑥, 𝑦)                  (3.11) 

where 𝑛(𝑥, 𝑦) is the noise. Assume that the captured deformed fringe patterns contain the 

zero-mean noises 𝑛(𝑥, 𝑦) with variance	𝜎&, which are independent of the fringe signals. 

Then 𝑎#  and 𝑏#  can be estimated by averaging the captured images and curve fitting, 

respectively. We can verify that   

%
bcDc
∑ 𝑑#&(𝑥, 𝑦)( ≈ 𝑎#& +

d"
,

&
+ 𝜎&,                                     (3.12)                           

where 𝑇�  is the period of the fringe and 𝑄�  is the number of fringes. Therefore, we can 

obtain an estimate of the SNR of the captured image as: 

Γ# ≜
+
:;<;

∑ Te"Rd"MNOJQ((,))LU
,

2
+
:;<;

∑ 0,((,))2
≈

e"
,R

="
,

,
+
:;<;

∑ 8"
,((,))2 .fe"

,R
="
,

, g
.                        (3.13)  

Finally, we set the combining weights in (3.13) as  

       𝑤# =
hi"

∑ hi">
7?+

.                                                 (3.14) 

3.3.2 PSP-based fusion approach 

The FTP-based fusion approach improves the reconstruction accuracy by denoising the 

height maps and then fusing the height maps with adaptive weights. However, the steep 

slope on object surface leads to the failure of the reconstruction from FTP. To combat 

this problem and achieve higher reconstruction accuracy, we extend the FTP-based fusion 

approach to PSP-based. The overall workflow of the proposed method is illustrated in 

Fig.3.2. 
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Fig.3.2  

Fig. 3.2 Workflow of the PSP-based fusion approach when height maps acquired at 𝐾=9 

time instants with 𝐽=3 states are fused. 

Step 1: Retrieval of initial height maps by PSP algorithm 

Due to the multiple shots nature of PSP, the reconstruction of the object requires multiple 

fringe patterns from multiple time instants. So, we consider in total 𝐽 states of the object 

in motion and total 𝐾 fringe patterns are projected. At each movement state 𝑗, a small 

number of �̇� fringe patterns are employed to reconstruct the object. Let 𝑑#̇(𝑥, 𝑦) be the 

�̇�th fringe image acquired at an arbitrary state and 𝑠#̇(𝑥, 𝑦) the corresponding reference 

image. From (2.11) and (2.12), the phase maps for the cases without and with an object 

can be retrieved as                    

  𝜑k(𝑥, 𝑦) = 𝜑(𝑥, 𝑦) = tan.%
.∑ k"̇((,)) OlYm

,.A"̇B+C
>̇ n>̇

"̇?+

∑ k"̇((,)) MNOm
,.A"̇B+C

>̇ n>̇
"̇?+

                     (3.15) 

and 
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    𝜑8(𝑥, 𝑦) = 𝜑(𝑥, 𝑦) + Φ$(𝑥, 𝑦) = tan.%
.∑ 8"̇((,)) OlYm

,.A"̇B+C
>̇ n>̇

"̇?+

∑ 8"̇((,)) MNOm
,.A"̇B+C

>̇ n>̇
"̇?+

           (3.16) 

In (3.15) and (3.16), the retrieved phase values are wrapped into [−𝜋, 𝜋) . Phase 

unwrapping is then applied to obtain the absolute phase distribution Φk(𝑥, 𝑦)  and 

Φ8(𝑥, 𝑦). Then the phase difference caused by object shape can be calculated by   

              Φ$(𝑥, 𝑦) = Φ8(𝑥, 𝑦) − Φk(𝑥, 𝑦).                                  (3.17) 

The height distribution can then be retrieved in the same way as (2.25). In summary, the 

flow chart of the PSP algorithm at each state is given in Fig. 3.3. 

  

Fig. 3.3 Flowchart of the PSP algorithm 
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Since only a small number of patterns are used for acquiring each height map {𝑯U`} at each 

state, there are less motion-induced errors compared to PSP with large number of patterns. 

Compared to the FTP approach introduced earlier, more complex objects with steeper 

slopes can be reconstructed. 

Step 2: Motion parameters estimation 

After applying PSP, the initial height maps {𝑯U`} are obtained. To build correspondence 

among multiple height maps {𝑯U`}, we also apply the ICP algorithm from Chapter 2 to 

estimate the 3D motion parameters 𝑹U`  and 𝒕È̀ . 

Step 3: Height maps fusion with adaptive weights 

The final fused height map 𝑯Ua is obtained by applying adaptive weights calculated from 

the signal-to-noise ratios (SNR)	{𝛤} of the captured fringe patterns, in the same way as 

the FTP-based fusion approach. 

3.4 Simulation and experimental results 

l FTP based data approach 

We first verify the effectiveness of the FTP based fusion method. The workflow as 

demonstrated in Fig.3.1 is considered. In the simulation, the movement parameters at the 

three time instants are listed in Table 3.1 from (3.7), where the details of rotation angles 

and translation distance are from Chapter 2. 

Time instant (𝛼, 𝛽, 𝜃) 𝒕(mm) 

1 0°, 0°, 0° (0,0,0) 
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2 −0.32°, −0.48°, 0.32° (3,3,2) 

3 −0.64°, −0.64°, 0.64° (5,6,4) 

Table. 3.1 Rotation angles and translation distance 

 

(a)  

  

(b) 

Fig. 3.4 Verification of the FTP based fusion approach for a 3D dynamic object at 

SNR=25dB. (a): FTP (b): FTP based fusion approach 
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Fig. 3.5 Comparison of the FTP based fusion approach with three-step PSP and FTP. 

 

Fig. 3.6 Performance of the FTP based fusion approach with different numbers of height 

maps fused. 
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The standard FTP is first tested and its reconstruction result at SNR=25 dB is shown in 

Fig.3.4(a), achieving an NMSE of 0.0245 for the height measurement. In all simulations, 

we set g=0.1 for the RPCA algorithm. The proposed method fuses the three height maps 

as shown in Fig. 3.4(b), achieving an NMSE of 0.0065. The NMSE comparisons under 

different SNRs are shown in Fig. 3.5. It is confirmed that the proposed approach can 

improve the performance compared to traditional FTP and PSP schemes. Note that the 

PSP scheme suffers from the motion artifacts. In Fig. 3.6, we also simulate the fusion of 

different numbers of height maps. The overall NMSE performance of the proposed 

approach depends on the measurement error of each height map, the motion parameter 

error from the ICP algorithm and linear interpolation error from height fusion. When 𝐾 

is small, the overall performance is dominated by the original measurement error of each 

height map. When 𝐾 is large, the performance is dominated by the modeling errors which 

cannot be mitigated by increasing 𝐾. Overall, fusing more height maps can achieve better 

performance but the improvement of NMSE becomes minor when K is large. In order to 

balance the computation time and reconstruction accuracy, we set K=3 in the experiment. 

In the experiment, a gourd shaped object shown in Fig. 3.7 is captured at K=3 time instants, 

with its instantaneous shape illustrated in Fig. 3.8(a), 3.8(b) and 3.8(c). The movement of 

the object at the three time instants is shown in Fig. 3.8(d). Fig. 3.9(a) shows the 

performance of a three-step PSP scheme utilizing fringe patterns captured at the three 

time instants. Clearly, due to the motion artifact, such a PSP scheme performs poorly. 

The proposed approach applies FTP to obtain three height maps of the dynamic object, 

and the coarse height map acquired at the time instant 1. The PRCA algorithm is then 

applied to filter the coarse height map to produce a refined height map, as shown in 

Fig.3.9(c). The experimental results presented are based on the empirical choice of g=0.1 

determined from numerical simulations. The ICP algorithm works on the error-
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suppressed height maps to estimate the rotation matrix and translation vector. With the 

uniform sampling rate of 1/500 and around 2000 points from each point cloud, ICP takes 

about 20 seconds when implemented using MATLAB on an Acer Aspire V 15 laptop 

with a 2.8 GHz CPU and 16G memory. Finally, the three height maps are fused using the 

motion parameters and SNR-based weights, as shown in Fig.3.9(d). 

 

Fig. 3.7 The gourd shaped object. 

   

(a)                                                     (b) 
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(c)                                                   (d)  

Fig. 3.8 Dynamic 3D gourd at three time instants and movement trajectory. 

In order to evaluate the performance improvement of the FTP based fusion technique over 

the traditional FTP, we also calculate the NMSE result for the experimental results 

presented above. As the true shape of the gourd is not known, the nine-step PSP result in 

Fig.3.10(a) (when the gourd is kept static) is assumed as the true shape. The NMSE with 

respect to Fig. 3.9 of the cases displayed above are obtained in Table 3.2. 

 

Traditional three- 

step PSP 

Traditional 

FTP 

RPCA filtered 

FTP 

FTP based fusion 

approach 

0.6146 0.0135 0.0115 0.0054 

Table. 3.2 Comparison of the NMSE results of the gourd shaped object 
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(a) 

 

(b) 

 

(c) 
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(d) 

Fig.3.9 Comparison of the traditional FTP method and the FTP based fusion approach. 

(a): Results of three-step PSP using fringe patterns captured at the three different time 

instants in Fig. 3.8. (b): Reconstruction results from FTP. (c): Results obtained by 

refining (b) by using RPCA. (d): Results after fusing FTP results. 

Because the movement of the object leads to the loss of correspondence, the NMSE of 

the three-step PSP is 0.6146, which indicates the failure of reconstruction. The NMSE of 

a coarse height map obtained by FTP is 0.0135. When the RPCA algorithm is employed, 

the NMSE is reduced to 0.0115. After fusing the multiple height maps, the NMSE result 

is reduced further to 0.0054. Fig.3.11 shows the reconstructed results for the cross 

sections at x = 800 as indicated in Fig.3.10(b), where the corresponding absolute errors 

can be observed. It is seen that, the proposed method is able to improve the performance 

of FTP for 3D dynamic objects.  
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(a)                                                              (b) 

Fig. 3.10 The result of nine-step PSP when the gourd shaped object is kept static. 

 

Fig. 3.11 The result of the cross section at x=800 as indicated in Fig. 10(b). 

l PSP based data approach 

Then we verify the effectiveness of the fusion approach when combined with three-step 

PSP. In the simulation, the movement parameters at the nine time instants are listed in 

Table 3.3: 
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Time instant (𝛼, 𝛽, 𝜃) 𝒕(mm) 

1 0°, 0°, 0° (0,0,0) 

2 −0.16°, −0.16°, 0.32° (1,1,0) 

3 −0.16°, −0.32°, 0.32° (1,2,1) 

4 −0.32°, −0.48°, 0.32° (3,3,2) 

5 −0.48°, −0.48°, 0.32° (3,4,3) 

6 −0.48°, −0.64°, 0.48° (4,4,3) 

7 −0.64°, −0.64°, 0.64° (5,6,4) 

8 −0.80°, −0.64°, 0.48° (6,6,4) 

9 −0.48°, −0.80°, 0.48° (6,7,4) 

Table. 3.3 Rotation angles and translation distance 

A nine-step PSP with 2𝜋/9 phase shift is first tested and its construction result at SNR=30 

dB is shown in Fig.3.12(a), achieving an NMSE of 0.0371 for the height measurement. 

The PSP based fusion approach fuses the three height maps obtained by applying three-

step PSP to three states, each spanning three time instants. This way, the NMSE of the 

fused 3D map as shown in Fig. 3.12(b) is reduced to 0.0065, which is also better than the 

results from the three-step PSP with NMSE of 0.0249, 0.0190 and 0.0179 achieved at the 

three states. The NMSE comparisons under different SNRs are shown in Fig. 3.13, which 

confirms that the PSP based fusion approach can improve the performance compared to 

traditional PSP schemes. In Fig.3.14, we also simulate the fusion of different numbers of 

height maps with each obtained by three-step PSP. As we can see, fusing more height 

maps can achieve better performance. Compared to the model fitting approach from 
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simulation results, FTP and PSP based fusion approach saves around 85% computation 

time, while the less accurate reconstruction result will be achieved. 

In the experiment, a moving object is captured at 𝐽 = 3 states during its movement, as 

illustrated in Fig. 3.15. Fig. 3.16(a) shows the performance of a nine-step PSP scheme 

utilizing fringe patterns captured at nine time instants where each state spans three time 

instants. Clearly, due to the loss of correspondence, such a PSP scheme performs poorly. 

The proposed approach applies three-step PSP to obtain three height maps of the dynamic 

object and the coarse height map acquired at state 1 is shown in Fig.3.16(b). The ICP 

algorithm works on the coarse height maps to estimate the rotation matrix and translation 

vector. Finally, the three height maps are fused using the motion parameters and SNR-

based weights, as shown in Fig.3.16(c). The experimental results demonstrate that the 

proposed method is feasible and improves the accuracy as compared to the traditional 

PSP method. 

 

(a)   
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(b)                                                                           

Fig.3.12 Verification of proposed approach for SNR=30dB. (a): Results of nine-step 

PSP for a 3D dynamic object. (b): PSP based fusion approach 

  

Fig. 3.13 Comparison of the PSP based fusion approach and nine-step PSP 
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Fig. 3.14 Performance of the PSP based fusion approach with different number of 

height maps fused 

   

 

Fig. 3.15 Three states of a dynamic 3D mask. 
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(a) 

 

(b) 

 

(c) 

Fig. 3.16 Comparison of the traditional PSP and the PSP based fusion approach. (a): 

Results of nine-step PSP using fringe patterns captured at the nine different time 

instants in Fig. 3.15. (b): Results of PSP using fringe patterns at state 1. (c): Results 

after fusing the PSP result. 
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3.5 Conclusion  

In summary, an FTP based fusion approach has been proposed to enhance the 

performance for reconstructing 3D dynamic objects. Initial height maps of the object are 

retrieved by using FTP at each time instant and then filtered using RPCA. The ICP 

algorithm is then applied to establish the correspondence relationship between 3D point 

clouds at different time instants. The multiple coarse height maps are fused by applying 

SNR-based weights. Then, this FTP based fusion approach is extended to PSP based 

fusion approach to achieve the high-performance reconstruction for dynamic objects 

without the limitation of the object shape. The performance of the data fusion approaches 

has been demonstrated by simulations and experiments.  
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4.CONCLUSION AND FUTURE WORKS 

This chapter concludes the thesis and discusses potential future work.  

4.1 Conclusions 

This thesis focuses on enhancing the accuracy of measuring 3D shapes of dynamic objects 

using multiple-shot fringe projection profilometry (FPP). Novel techniques have been 

proposed to address several key challenges due to the 3D movement of objects. First, 

rigid 3D movements are described using motion parameters including the rotation matrix 

and translation vector, and a parameter estimation scheme is devised. Then, the estimated 

motion parameters are applied to model the fringe patterns deformed by the dynamic 

objects. Based on this, a model fitting approach is developed to estimate the height. 

Exploiting the correspondence established using the motion parameters, a data fusion 

approach is also designed to adaptively combine the height maps obtained at different 

time instants using standard FPP methods, such that the overall measurement accuracy 

can be enhanced. The proposed approaches are able to benefit from multiple-shot 

techniques to suppress the influence from ambient light and reflectivity on the object 

surface, such that robust and accurate measurements can be achieved. Specifically, the 

following contributions are made by this thesis. 

• Estimation of the motion parameters for general 3D movements in FPP 

systems: A new method has been developed for estimating the rotation matrix and 

translation vector in multi-shot FPP schemes. In contrast to previous methods, the 

proposed method does not require markers to be attached or feature points to be 

extracted. Instead, it utilizes only the coarse height maps obtained using standard 
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FPP and the iterative ICP algorithm and can thus be well integrated into the FPP 

systems with minimum human intervention.  

• A model fitting approach for measuring the 3D shape of moving objects: A 

key challenge for applying multi-shot FPP to objects with 3D movement is the 

unknown phase shifts in the captured fringe patterns caused by the change of the 

position and height of the object surface. In order to address this challenge, we 

utilize the estimated motion parameters to establish a new model for the fringe 

patterns captured at different time instants. By fitting the derived model to the 

acquired fringe patterns, the height distribution of the object is retrieved. This 

approach compensates for the errors caused by the 3D movement of the object, so 

that the accuracy of reconstruction can be improved. 

• A data fusion approach for measuring the 3D shape of moving objects: 

Instead of fitting the captured fringe patterns as functions of the unknown height 

for each point on the object surface, we also propose an approach to enhance the 

measurements by fusing the data from multiple height maps. Coarse height maps 

are first obtained by applying FTP or PSP (with a small number of fringe patterns) 

at different time slots. Then the correspondences among these height maps are 

built by using the motion parameters estimated. This is applied to adaptively fuse 

the different height maps based on their quality. Denoising based on RPCA and 

adaptive weight factors determined from estimates of the SNR of the fringe 

patterns are shown effective to enhance the performance.   

The proposed methods can be applied to reconstruct the 3D shape of dynamic objects 

during the movement. One potential application is the inspection of high-tech discrete 

manufacturing, which employs robot arm transmission rather than pipeline transmission. 

In contrast to the pipeline transmission involving dynamic objects with 1D and 2D 
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movement, the robot arm transmission introduces 3D movement of objects. Besides, the 

3D shape measurement for the objects with 3D movement builds a real-time connection 

of the real world and the virtual world, which may also find applications in virtual reality, 

metaverse, etc.   

4.2 Future work 

Based on the findings of this study, the following future work can be identified.  

• Complexity reduction: To obtain the motion parameters, the ICP algorithm is 

applied to iteratively estimate the rotation matrix and translation vector. Large 

numbers of iterations and points on the height maps lead to high computational 

complexity. Also, the model-fitting approach requires the search of the height on 

a point-by-point basis, which is still time-consuming. Therefore, techniques for 

reducing the computational complexity of the proposed approaches may be 

studied to improve the running efficiency of the proposed techniques. 

• Measurements of complex objects: Both the model-fitting approach and data 

fusion approach utilize the FTP algorithm to extract the coarse height maps for 

estimating the motion parameters and initial heights. Furthermore, rigid objects 

are assumed. The performance of measurement may degrade when the object has 

a complex, discontinuous, or even non-rigid surface. Extending the proposed 

techniques to the more challenging cases may be considered for future work.    
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