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DEVELOPMENT OF A WIRELESS SYSTEM TO 
MEASURE THE STRAIN/DEFORMATION OF ROCK 

BOLTS 

Hadi Nourizadeh1, Ali Mirzaghorbanali2, Naj Aziz3, Kevin McDougall4 
and Ali Akbar Sahebi5 

ABSTRACT: In this study a smart set-up integrated with rock bolts was proposed to automatically 

monitor, record and analyse rock mass deformation. The proposed system which includes sensors and 

a wireless data acquisition system, rapidly and readily generates data sets along with customisable 

graphs, calculations and analysis in a cloud system and can be used in modern mining. To evaluate the 

developed technique, rock bolts were instrumented lengthwise using resistive strain gauges and then 

connected to the wireless data logger system. Elastic tensile tests as well as pull-out tests were 

conducted and the strain values along the rock bolts were successfully and accurately measured, 

recorded and uploaded to the cloud system.  

INTRODUCTION 

The stability of underground excavations and surface slopes is a primary concern for engineers to 

improve workers safety, reduce environmental issues and avoid financial loss. Ground support is a 

general term describing the materials and methods used to improve the stability of rock mass. This term 

can be categorised differently depending on the conditions; for instance, if it applies an active load to 

the rocks (i.e., active or passive).  

Rock bolts are widely used in mining and geotechnical engineering and are capable of effectively 

improving the stability of rock mass, reduce the rock mass deformation, resulting in improvement in 

safety, cost and time. Regardless of the type, rock bolt systems generally develop forces in response to 

rock deformation and displacement. Fully-grouted rock bolt installation is considered as the most 

common type of rock bolts in mining and civil engineering. Once a fully-grouted rock bolt is installed and 

rock mass starts to displace, the bolt interacts with the grouted materials and surrounded rock mass and 

load is transferred from unstable rocks to the intact rock. Rock bolts restrain rock movement along a 

discontinuity and control the rock deformation along the grouted length. When a fully-grouted bolt is 

subjected to a tensile force, a part of the axial stress is distributed at the bolt-grout interface, the grout, 

the grout-rock interface and the rock. The failure can occur in the bolt, at the bolt-grout interface, at the 

grout, at the grout-rock interface, inside the rock depending on the type, magnitude, and direction of 

stress besides the mechanical characteristics of the components. There are several robust software 

systems available in the market to design effective supporting systems to act as the shield for workers 

and equipment, nevertheless comprehensive and continuous monitoring programs are necessary to 

ensure the safety of the excavations. Monitoring is traditionally approached by surveying the opening 

periphery and/or measuring deformation of ground in the vicinity of the supporting elements e.g., multi-

point rod extensometers. These approaches generally investigate the whole ground condition rather 

than a direct investigation of the interaction between the ground and the element itself. Furthermore, 

phenomenal deformation of rock mass occurs suddenly without precaution signs, and it may not be 

detected by ordinary approaches, while supporting elements experience high degree of tension.  

Axial performance of rock bolts is usually investigated by capturing the load-displacement curves and/or 

induced strain of the bolt along the encapsulation length. This can be achieved using sensors such as 

Linear Variable Differential Transformers (LVDTs), load cells, vibrating-wire sensors and extensometers 

resistive strain gauges (SG), and fibre optic sensors (FOS).  
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Singer (1990) used electric sensors to analyse the behaviour of rock bolts. He conducted field pull-out 

tests on the strain gauged rock bolts in varied geological conditions and concluded that the results 

compared well with the experimental studies and numerical models. Singer et al. (1997) conducted 

another study by which axial and shear behaviour of rock bolts were measured using strain gauges. The 

sensors were located along the length of fully grouted rock bolts installed in the roof of coal mines. 

Grasselli (2005) developed an experimental set up to investigate the response of the rock bolts in direct 

shear testing. Each steel rebar was equipped with five pairs of resistive strain gauges to directly measure 

the bolts deformation during experimental tests. Zhang et al. (2006) studied the load transfer mechanism 

of fibre-reinforced tendons by carrying out laboratory tests using resistive SG, embedded SG, FOS and 

LVDTs. Zhao et al. (2015) updated the control system of a servo testing machine and developed a jig 

to run pull-out tests on anchored rebars. To achieve the induced shear stress, two symmetric grooves 

were cut on the bolts and strain gauges were arranged in cuttings. Huang et al. (2013) manufactured a 

self-sensing fibre reinforced polymer anchor with a built-in optical fibre sensor. Forbes et al. (2018) 

presented a technique for measuring the induced strain distribution along supporting elements. There 

are usually two methods to couple deformation sensor with rock bolts: (i) surface coupling (ii) and 

subsurface or internal coupling. In surface coupling the sensor is mounted on the surface of the rock 

bolt, however grinding and polishing the surface might be necessary for better bonding. Opposite to the 

surface mounting, subsurface mounting can be approached by machining lengthwise grooves on the 

rebar and then the sensor is attached using a specific adhesion internally. Zhao et al. (2018) compared 

the effects of groove shape and glue materials for the bolt equipped with fibre optic sensors. Six different 

shapes including U-shape groove, U-shape groove with chamfer, inverted trapezoidal-shape groove, 

trapezoidal-shape groove and V-shape groove were analysed and it was concluded that the trapezoidal-

shape groove has the best results. The surface coupling approach can effectively provide information 

about the deformation of the encapsulated rock bolts particularly in laboratory studies, however sensors 

get damaged at higher loads because of their direct exposure to the grouting materials (TeymenandKılıç 

2018). Accordingly, the internal method for instrumentation of rock bolts was used in this study to capture 

and perform a full-scale deformation analysis along the rock bolts. 

Conventionally reading and collecting the recorded data through all abovementioned equipment are 

limited to manual inspection. This can be time consuming and costly, and more importantly eliminating 

accurate and timely risk and safety assessment. Alternatively, popular wireless systems can be used to 

continuously monitor ground conditions. Within this context, this study proposes a smart set up to 

automatically monitor, record and analyse rock mass deformation. The proposed system which includes 

sensors and a wireless data acquisition system, rapidly and readily generates data sets along with the 

user-friendly graphs in a cloud system and consequently can be used in modern mining. Real time 

monitoring of ground conditions will lead to effective actions, avoiding the occurrence of potential life-

threating hazards and consequently financial loss. 

EXPERIMENTAL PROGRAM 

Specimen preparation 

Pull-out test, which is known as the common method in investigation of rock bolts behaviour, was 

performed in this research to explore the workability of the proposed method in practise (Nourizadeh et 

al., 2021). The tensile test was conducted on a double-sided strain gauged rock bolt using both a 

conventional data acquisition system and the new wireless set-up to check and compare the possible 

errors and create adjustments. While the pull-out tests were employed to remotely measure the full-

scale induced deformation along the rock bolts encapsulated in concrete samples. The rock bolt used 

in the tests was a 24 mm diameter threaded rebar (M24 X Coal Bolt) manufactured by Minova Australia. 

For the surrounding rock, concrete with a UCS of approximately 40 MPa was cast in a steel pipe (CHS) 

with an inside diameter of 154 mm and thickness of 5.4 mm. The quality of the pipe was according to 

AS/NZS 1163 and AS 1074 standards. The confining materials (steel pipe and concrete) were selected 

and designed so that the confinement simulates a medium strength rock. Prior to casting the concrete, 

a 28 mm PVC tube was placed in the centre of the steel pipe as the bolt hole. A flexible polyvinyl tube 

with 4 mm in diameter was wound around the central PVC tube to create a rifled borehole and to mimic 

the in-situ conditions (Figure 1). In order to create a uniform interfacial shear stress throughout the 

encapsulation length, the rifling was designed such that the pitch was zero. To make sure the bolts are 

installed exactly in the centre of the concrete cylinders, one large hole of 161 mm diameter and a depth 

of 10 mm was machined on a 30 mm wooden plate to place and fix the steel cylinders. Also, two more 



                                        

                                          2022 Resource Operators Conference (ROC 2022)   

 University of Wollongong, University of Southern Queensland, February 2022            218    

 

holes were machined and drilled in the centre of the previously machined large hole with diameters of 

28.1 and 24.1 mm for the PVC tube and the bolt, respectively (Figure 2). 150 mm of the rock bolt was 

instrumented and grouted inside the central hole using Type A Pour and Mix Resin (Figure 3). 

 

 

 

 

 

 

 

 

 

Figure 3: concrete cylinder 

Rock bolt instrumentation 

The rock bolts used in this study were modified with a pair of opposed right angle U-shape grooves (4×4 

mm) (Figure 4). These grooves were machined diametrically along the longitudinal ribs of the rock bolts. 

The monitoring of the axial deformation and stress was achieved by mounting the resistive strain gauges 

along the embedment length. The resistive strain gauges, 3 mm in length with a nominal Gauge 

Resistance of 120 Ω were bonded directly inside the grooves using Cyanoacrylate adhesive. Therefore, 

the induced strain in the rock bolts can be directly transferred to the coupled strain gauges and 

consequently can be transduced to electrical signals received in the data acquisition system. Four strain 

 

Figure 1: Simulating the refiling in the specimen preparation 

 

Figure 2: PVC tube used for rifling and hole for installing the bolt 
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gauges were mounted every 50 mm on the bolts with 150 mm encapsulation lengths. It should be noted 

that the strain gauges were bonded one in between on the opposed grooves because of space 

constraints in passing the lead wires. Furthermore, in order to protect the strain gauges and lead wires, 

an organic and nonacidic sealant was applied to fully cover the instruments and the grooves (Figure 5).  

 

Figure 4: Bonding strain gauges inside the grooves 

 

Figure 5: Instrumented and sealed rock bolts 

Testing equipment 

The value of strain caused by the pull-out force is calculated by measuring the change in the gauge 

resistance which is a result of the elongation of the bolt due to the applied axial load. The resistance 

change is much smaller compared to the strain gauge resistance itself, thus it is required to be measured 

accurately. Usually, a Wheatstone Bridge Circuit is used to measure this small resistance change. There 

are different types of Wheatstone Bridge Circuits such as Quarter, Half and Full Wheatstone Bridges 

which should be used depending on the measurement task. In this study, the Quarter type was designed 

and used (Figure 6).  

 

Figure 6: Wheatstone Bridge Circuit 

Here; 

𝑉0 =
𝑉𝑒𝑥

4
× 𝑘 × 𝜖 
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where V0 is voltage change, Vex is excitation voltage, k is gauge factor and ε is the induced strain. When 

the distance between strain gauge and the other three resistors is not equal, e.g., longer lead wire, the 

output voltage can be impacted. In this case the undesired effect can be rectified by connecting a third 

wire to the upper wire of the connected strain gauge.  

To supply the power (Vex) in the circuit and also to measure and record the output voltage (V0) created 

in the resistance bridge, a millivolt sensor node was used and connected to the manufactured 

Wheatstone Bridge. Basically, this unit works as a convertor to translate the change in the strain gauge 

resistance to the voltage change. The millivolt sensor node uses an integrated mesh radio transceiver 

with the frequency of 2400-2485 MHz to report the measurement through the wireless communications 

network. Also, a built-in is a 19000 mAh Lithium Thionyl Chloride battery which provides the input voltage 

of the system. The device can communicate remotely with the receiver to a maximum range of 300 m 

depending on the environment and fitted antenna with maximum transmit power of 6.5 dBm and 

maximum antenna gain of 2.2 dBi. The bridge circuit was connected to the sensor node using an M12 

female connector providing a range of ±0.625 V and a stimulus of 5.0±0.1 V. The strain data converted 

in the millivolt sensor node is sent directly and remotely to a receiver which is called a 4G Gateway 

system, afterwards. The 4G Gateway system is a fully integrated unit which provides all the functionality 

required to operate a wireless sensor network in a remote location. The Gateway with built-in cellular 

service simply initiates the connection with the WebMonitor software over the internet to upload the data 

in the cloud system. The Gateway system can be integrated with a solar circuit for charging the internal 

lithium-ion chargeable battery. The system can fully operate for three weeks on the internal battery 

without recharging. The Web-Monitor is a web-based data access system run on a Microsoft Azure 

cloud platform and provides a tool for the management of monitoring solutions deployed in the field. The 

data can be transferred to other systems with different options including FTP(S) uploads in a variety of 

formats and an HTTP API. Figure 7 shows the wireless unit.  

Pull-out and tensile tests were carried out using a servo-controlled 1000 KN Instron testing machine. 

Furthermore, a frame was designed and manufactured at the Engineering Workshop the University of 

Southern Queensland using high tensile materials to place and fix the specimen in the pull-out process 

(Figure 8). 

 

Figure 7: (a) Millivolt Sensor Node connected to the Wheatstone circuit, (b) the wireless 
Gatewway, and (c) the schematic of the whole measuring system 
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Figure 8: Pull-out test set-up 

TEST RESULTS 

Validation of the accuracy of the developed wireless set-up was accomplished by performing a tensile 

test with a 600 mm testing span using the 1000 kN servo-controlled machine. Similar to the procedure 

followed in preparing the specimens for the pull-out tests, two 170 mm lengthwise grooves were 

machined symmetrically on a 600 mm rebar. Two strain gauges (with same characterisations and equal 

wires length) were bonded carefully on the grooves such that the backing ends of the gauges are aligned 

crosswise. Thereafter, the instrumented bolt was clamped into the machine’s jaws from the top and 

bottom. One gauge was connected to an analogue DT800 data collection system, while the other was 

attached to the Millivolt Sensor Node for remote monitoring (Figure 9). After completion of the wire 

connections, the signals received from the gauges were reset in the software systems. The load was 

applied cyclically up to a maximum value with different rates and simultaneously the load-displacement 

was measured by the load cells and LVDTs and recorded in the software. While the strain data was 

monitored and recorded by both wired and wireless systems over the same interval frequency. It is noted 

that the tensile load was subjected to the bolt in a way that the induced tensile stresses always remained 

in the elastic zone. A comparison of the strains recorded by the systems over time is presented Figure 

10. As can be seen in the figure, there is a good correlation between the results obtained from DT800 

data logger system and the wireless system demonstrating that the wireless data collection system is 

capable of measuring strain values accurately. The negligible differences between the recorded results 

are attributed to the accidental error during strain gauges installation. 

 

Figure 9: Conducted elastic tensile test 
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Figure 10: Comparison the strains obtained from the DT800 analogue system and the 
wireless system 

The rock bolt embedded in concrete cylinders was subjected to pull-out load and the values of load, 

deformation and strains were measured immediately. Strain values were collected using the wireless 

data collection system and stored in the cloud system; however, the load-displacement was recorder by 

the servo-controlled machine (Figure 11).  Figure 12 shows the strain data collected by the wireless 

system. Sensor 1 is the closest sensor to the loading point, while sensors 2, 3 and 4 are located further 

away from the loading point. It is inferred from Figure 12 that at a certain level of pull-out load (or at a 

certain time) the strain values decrease as the sensor distance increases from the loading point. In 

addition, the strain values follow a similar trend as the load-displacement curve (Figure 13), indicating 

that the strain gauges arrangement successfully measure the deformations. In addition, it can be 

concluded that the failure of the rock bolt occurs when the stain-time curve bends over. Figure 14 also 

illustrates the specimen after pull-out testing and shows that a full-scale pull-out test was conducted 

successfully. 

 

Figure 11: Pull-out testing and wireless monitoring system 
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Figure 12: The strain recorded by the wireless collection system over time 

 

Figure 13: The load-displacement curve obtained from the pull-out test 

 

Figure 14: The specimen after completion of pull-out test 
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CONCLUSIONS 

This study proposes a smart set-up to automatically monitor, record and analyse rock bolts performance 

and behaviour. The proposed system which is comprised of sensors and a wireless data collecting 

system, rapidly and readily generates data sets along with the user friendly graphs in a cloud system. A 

single tensile test was conducted to evaluate the accuracy of the wireless data logger system and it was 

observed that there is good agreement between the results obtain from the analogue and the wireless 

systems. Then, an instrumented rock bolt with the encapsulation of 150 mm was grouted in a concrete 

cylinder and subjected to pull-out load. Simultaneously the strain and deformation of the rock bolts was 

measured and recorded by the wireless set-up. The results showed that the proposed technique is 

capable to record the data with high accuracy. However, it is recommended to carry out more tests such 

as in-situ pull-out tests as well as laboratory tests with longer embedment lengths. 
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