
University of Wollongong University of Wollongong 

Research Online Research Online 

Resource Operators Conference Faculty of Engineering and Information 
Sciences 

2022 

Methodology for predicting explosion risk around underground coal mine Methodology for predicting explosion risk around underground coal mine 

openings towards developing exclusion zones openings towards developing exclusion zones 

Alex Remennikov 
University of Wollongong, alexrem@uow.edu.au 

Edward Chern Jinn Gan 
University of Wollongong, ecjg428@uowmail.edu.au 

Soon Sien Tan 
University of Wollongong, tss919@uowmail.edu.au 

Bharath Belle 
University of New South Wales 

David Carey 
Queensland Mines Rescue Service 

Follow this and additional works at: https://ro.uow.edu.au/coal 

Recommended Citation Recommended Citation 
Alex Remennikov, Edward Chern Jinn Gan, Soon Sien Tan, Bharath Belle, and David Carey, Methodology for 
predicting explosion risk around underground coal mine openings towards developing exclusion zones, in 
Naj Aziz and Bob Kininmonth (eds.), Proceedings of the 2022 Resource Operators Conference, Mining 
Engineering, University of Wollongong, 18-20 February 2019 
https://ro.uow.edu.au/coal/832 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/coal
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/coal?utm_source=ro.uow.edu.au%2Fcoal%2F832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/coal/832?utm_source=ro.uow.edu.au%2Fcoal%2F832&utm_medium=PDF&utm_campaign=PDFCoverPages


                                      

                                         2022 Resource Operators Conference (ROC 2022)                                                                      

 

 University of Wollongong, University of Southern Queensland, February 2022            126                                            

 

METHODOLOGY FOR PREDICTING EXPLOSION 
RISK AROUND UNDERGROUND COAL MINE 

OPENINGS TOWARDS DEVELOPING EXCLUSION 
ZONES 

Alex Remennikov1, Edward Chern Jinn Gan2, Soon Sien Tan3, 
Bharath Belle4 and David Carey5 

ABSTRACT: The risk of explosions in coal mines is an important subject that requires a comprehensive 

understanding of explosion dynamics, mining operations, and mining safety. A high level of knowledge 

is now available in the field of gas emissions, gas, and coal dust explosions in underground mines. 

However, not sufficient attention has been given to the potential risks associated with explosive forces 

expelled through the mine opening and resulting in injuries and fatalities to personnel (underground and 

at the mine portal) and catastrophic infrastructure damage in proximity to the mine opening on the 

surface. This paper presents a methodology for predicting explosion risk around the coal mine openings 

(drifts, shafts, boreholes, etc). The proposed methodology is based on establishing an empirical 

relationship between the parameters of blast overpressure waves emitting from mine entries and the 

radial distance at an azimuth angle for the various magnitude of methane or coal dust explosions. An 

Advanced Blast Simulator with the cross-sectional dimensions of 0.3 m x 0.3 m has been manufactured 

for this study to conduct a series of experiments simulating blast waves exiting a portal entry and 

propagating over an outside mine site terrain. An array of pressure sensors is placed along the centreline 

and at several azimuth angles of the blast simulator and along a surface representing a highwall to 

record the characteristics of blast overpressure waves. Computational Fluid Dynamics modelling of blast 

wave propagation outside of mine openings is used to correlate the experimental results and scale them 

up to full-scale dimensions of the coal mine infrastructure and mine sites. A procedure to estimate the 

lethal ranges of projectiles from mine entries using existing guidelines from a military ammunition 

storage reference manual is described. The outcome of this research will support the development of 

scientifically defined exclusion zones around surface mine openings that could be affected by an 

underground explosion event. 

INTRODUCTION 

Over the past century, the underground coal mining industry experienced a large number of explosions 

leading to a considerable loss of life and severe destruction of surface infrastructure. National Institute 

for Occupation Safety and Health (2019) recorded 503 cases of underground coal mine disasters 

caused by methane-air and/or coal dust explosions with a total of 12 thousand recorded casualties. 

While technological improvements and stricter safety regulations have reduced coal mining-related 

fatalities, accidents are still too common. Looking back as close as November 19th 2010, the Pike River 

coal mine located northeast of Greymouth in New Zealand exploded, trapping miners underground and 

ultimately claiming twenty-nine miners underground (Mine Accident and Disaster Database 2021b). 

Significant research efforts worldwide have been directed at investigating the prevention and 

minimisation of the effects of explosions in underground coal mines. However, not sufficient attention 

has been given to the potential risks associated with explosive forces expelled through the mine opening 
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and resulting in injuries and infrastructure damage in proximity to the mine opening on the surface. 

Although mine accidents have notably reduced due to the advancement of coal mining industry 

regulations and associated controls, the high-risk exclusion zone around mine entrances has been 

proven to be insufficient. After the Pike River explosion, Australian coal industry (Y2012) reassessed 

the applicability of the standards previously used in the industry to design explosion protection of coal 

mines. The review identified shortcomings with the current scientific knowledge on the basis and 

expectation to comply with the Reg 156 (Coal Mining Health and Safety Act of 1999) on various 

explosion panel ratings and informal guidance values of exclusion zones of up to 500 m. The review 

also resulted with proposals to carry out separate ACARP funded and industry coordinated research  

to address this shortcoming (B Belle, 2012, Personal Communication, Anglo American Coal). Although 

several operation guidelines and regulations are currently put in place to establish a high-risk zone 

around mine portals and ventilation shafts, there is an inadequate scientific basis to support the zone 

dimensions suggested in the Queensland Mines Rescue Services document (MIU-931 2019).  

Past events such as the Raspadskaya mine and the West Wallsend mine disaster illustrated in Figure 

1 highlights significant infrastructure damage near the mine opening after the underground explosion 

(Australasian Mine Safety Journal 2020; Living Histories 2017; Mine Accident and Disaster Database). 

In addition to air blast propagation, further investigation reveals the hazardous effect of structural debris 

and projectiles on surface structures and personnel in the vicinity of the mine entrance. Historical records 

(Figure 2) such as Kainga No.1 Mine and Mount Mulligan Mine reveal large debris such as machinery, 

belt-rollers and even large rocks were blown out up to several hundred meters away from the mine 

entrance (Australasian Mine Safety Journal 2019; Loane and Queensland 1975). 

  

(a) (b) 

Figure 1: (a) The ventilation shaft of West Wallsend was thrown off by the explosion (Living 
Histories 2017), and (b) infrastructure facilities were damaged by the explosion in proximity to 

the Raspadskaya mine entrance (Mine Accident and Disaster Database 2021c) 

  

(a) (b) 

Figure 2: (a) A motor vehicle that was parked at the top of the incline of Kainga No. 1 mine 
entrance was found flipped and damaged beyond repair (Mine Accident and Disaster Database 
2021a), and (b) several large cable drums were found 15 meters away from the Mount Mulligan 

mine entrance after the underground explosion (Rigby and Mounter 2016) 
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Several previous studies on determining the safe exclusion zones for underground ammunition storages 

have developed empirical relationships to estimate blast wave characteristics as a function of azimuth 

angle and distance from the tunnel exit as the blast wave propagates into an open space (Helseth 1985; 

Kingery 1989; Skjeltorp et al. 1977; Swisdak and Ward 2000). Although the environment and explosion 

sources can be different, some of the studies can be relevant to underground mine explosions. Blast 

parameters such as peak overpressures, duration and impulses estimated by the empirical formulas 

can be characterised into explosion risks by relating them to personnel injury and structural damage 

thresholds compiled by the NATO manual for safety principles of storage of military ammunition and 

explosives (AASTP-1 2010). 

This paper proposes a methodology for predicting explosion risk around different types of mine entries 

to develop scientifically established exclusion zones that comprehensively consider the effects of blast 

waves and projectiles emanating from mine entries. 

DEVELOPMENT OF METHODOLOGY TO DEFINE EXCLUSION ZONES FROM MINE ENTRIES 

Physical Simulation of Blast Waves Emanating from Mine Openings 

To investigate the propagation of blast waves exiting mine entrances and over an outside mine site 

terrain, an Advanced Blast Simulator (ABS) with the cross-sectional dimensions of 0.3 m x 0.3 m was 

fabricated (Figure 3). The simulator is based on the ABS concept which is specially designed to 

generate shock or overpressure waves that replicate the wave dynamics of an actual free-field explosive 

blast (Gan et al. 2020). The Driver of the ABS has a divergent wedge-shaped profile and operates by 

the detonation of the oxy-acetylene mixture to generate a propagating shock wave. The characteristic 

blast wave shape is created by the expansion of the gas out of the divergent Driver and through the 

initial divergent Transition Section; once formed, the wave is smoothly re-converged into the Test 

Section before eventually exiting the ABS into the open space as a propagating shock front. 

(a) 

 

(b) 

 

Figure 3: (a) 0.3 m x 0.3 m Advanced Blast Simulator (ABS); (b) main components of the ABS 

For this study, the ABS was set-up with three configurations to represent different types of mine entries: 

portal into highwall, standalone portal, and a mine shaft (Figure 4). In addition to measurements of blast 

pressures at the ABS exit, pressure transducers were mounted outside on baffle plates (for measuring 

static overpressures) and pitot-static probes (to determine dynamic pressures) as an array along the 

centreline and on the vertical flange (surrounding the ABS exit) at 1 m intervals from the ABS exit. The 

ABS was rotated (i.e., 0˚, 30˚, and 60˚) to characterise the outside blast environment at different 

azimuths. A high-speed data acquisition system (Synergy P Portable; Hi-Techniques, Inc.) was used to 

record data at a sampling rate of 500 kHz. 

A sample of eight experimental tests performed with the ABS with either 1.75 L or 7 L of oxy-acetylene 

filled in the Driver of the ABS (see Figure 3) to vary the blast wave strength were used for analyses. 

These tests simulated the effect of blast waves propagating out of the portal into highwall (Figure 5). 

When the results were divided with the ABS exit pressure and ABS diameter, a consistent trend of 

pressure ratio 𝑃/𝑃𝑝𝑜𝑟𝑡𝑎𝑙 vs. distance ratio 𝑅/𝐷𝑝𝑜𝑟𝑡𝑎𝑙 is observed for all results regardless of differences 

with the blast wave strengths (see Figure 6). 𝑃 is peak overpressure determined, 𝑃𝑝𝑜𝑟𝑡𝑎𝑙 is the peak 

overpressure at the portal, 𝑅 is the outside distance from the ABS exit, 𝐷𝑝𝑜𝑟𝑡𝑎𝑙 is the diameter of the 

ABS exit. 



                                      

                                         2022 Resource Operators Conference (ROC 2022)                                                                      

 

 University of Wollongong, University of Southern Queensland, February 2022            129                                            

 

 

 

(a) (b) 

 

(c) 

Figure 4: Experimental setups for physical simulation of blast propagation from different mine 
openings: (a) portal into highwall; (b) standalone portal; (c) shaft 

 

 
Figure 5: Blast simulator setup for characterising blast wave propagation from mine portal  
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Figure 6: Several experimental tests superimposed. Consistent trend along the ABS centreline 

(i.e., 0˚) generated regardless of the volume of gas mixtures in the Driver of the ABS (i.e., 
detonation chamber) 

Figure 7 presents examples of blast wave records for the laboratory ABS exit pressures of 70 kPa 

(Figure 7a) and 170 kPa (Figure 7b) at varying distances from the ABS exit along the centreline. The 

records illustrate that peak static overpressure reduces considerably as blast wave propagates away 

from the ABS exit. 

  

(a) (b) 

Figure 7: Experimental records recorded at the ABS exit and several locations away from the 
exit along the centreline: (a) 1.75 L Driver; 70 kPa portal; (b) 7 L Driver; 170 kPa portal 

Figure 8 compares the blast wave records taken at various angles with respect to the ABS centreline 1 

m from the ABS exit. The 90˚ record is taken from a pressure transducer mounted on the vertical flange 

which represents a highwall. The plots indicate that the most severe conditions are generated along the 

centreline axis (i.e., 0˚) with peak overpressure reducing according to the azimuth angle. Interestingly, 

while the least severe conditions were generated at the 90˚ angle, the blast or explosion overpressure 

wave appears to arrive soonest at the 90˚ and latest along the centreline (i.e., 0˚). 

The preliminary experimental results presented in this section will be correlated with the numerical 

models in the next sections. 
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Figure 8: Comparison of blast wave records generated with a 1.75 L Driver and measured at 

different azimuth angles from the ABS centreline. All angles are at 1 m from the exit 

Numerical Simulation of Blast Waves Emanating from Mine Openings 

Numerical models based on Computational Fluid Dynamics (CFD) were developed with the Viper::Blast 

software (Stirling Simulation Services Limited 2020) (Figure 9). The models were based on the 

laboratory ABS described in the previous section and were employed to correlate the experimental 

results, validate the scalability of the results to full-scale dimensions of coal mine infrastructure, and 

develop visualisations of blast pressure contour maps for characterising the blast environment outside 

different mine openings and configurations (Table 1). 

 

 

Figure 9: Pressure contours from CFD model showing blast wave propagation from ABS exit 
(representing mine portal) at snapshots up to 12 ms after detonation 
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Table 1: Configurations tested to evaluate external blast environment from different openings 
Mine Opening Type Configuration Applicable For: 

Square Portal 

Portal into highwall 
Drifts, slopes, etc 

Rectangular Portal 

Round Portal 

Square Portal Standalone portal 

Shaft Shaft without ventilation infrastructure Shafts, boreholes, etc 

 

The CFD results were validated with small-scale laboratory experimental testing and existing empirical 

relationships of blast wave parameters given as a function of azimuth angle and distance from the tunnel 

exit taken from previous research on underground munition storage explosions from the open literature 

and military documents. Figure 10 compares results for pressure ratio 𝑃/𝑃𝑝𝑜𝑟𝑡𝑎𝑙  vs. distance ratio 

𝑅/𝐷𝑝𝑜𝑟𝑡𝑎𝑙 generated with the CFD model for standalone square portal with existing empirical equations 

(Helseth 1985; Kingery 1989; Skjeltorp et al. 1977; Swisdak and Ward 2000) along the centreline of the 

tunnel (0˚). This figure demonstrates that the CFD model correlates well with other existing equations 

and the experimental results in this paper. 

 
Figure 10: Comparison of CFD model and experimental results in this study with empirical 

equations from previous studies of blast propagation from ammunition storage tunnels 

The scalability of the results generated by the 0.3 m x 0.3 m ABS was also confirmed and validated. 

CFD models with an adit cross-section of 0.3 m x 0.3 m and 3 m x 3 m to represent small-scale and full-

scale dimensions of mines, respectively were used to generate contours of peak static overpressure. 

When the results were divided with the portal exit pressure and effective portal diameters, all differences 

resulting from the length scales become cancelled out and identical contours are generated. This 

confirms that the results generated from the 0.3 m x 0.3 m ABS model are valid and applicable for 

characterising the blast environment of full-scale mine openings. 

Generation of External Blast Environments in Proximity to Different Mine Openings 

This section investigates the external blast environment in proximity to different types of common mine 

openings generated with the CFD models. Where applicable, the results in this paper are provided as 

ratios of effective portal diameters (𝑅/𝐷𝑝𝑜𝑟𝑡𝑎𝑙) and ratios of portal pressures (𝑃/𝑃𝑝𝑜𝑟𝑡𝑎𝑙). This enables 

external blast environments to be characterised for a wide range of mine openings of different diameters, 

shapes, and portal conditions. Results can then be calculated and read in meters and kPa (pressure) 

by multiplying lengths with effective portal diameters and portal pressures. 

Figures 11 to 14 present contours of blast overpressures that characterise the blast environment 

outside of different mine opening types and scenarios. In these figures, it can be observed that blast 
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pressures dissipate with distance away from the mine opening. The contours visualise the effect of 

directionality with the most severe blast environment occurring along the centreline of the opening and 

decreasing in severity with azimuth angle at the same distance. 

Portal into Highwall (Plan View) vs. Shaft (Side View) 

 

  

 

(a) (b) 

Figure 11: Comparison of peak static overpressure contours for (a) portal into highwall (plan 
view) and (b) vertical shaft without infrastructure (side view) 

The blast pressure contours of portals differ from shafts in terms of the orientation of the opening. Portals 

are typically oriented along the horizontal ground surface while shafts are oriented vertically. Their 

distinctions can be best visualised by comparing the contours in Figure 11. As the most hazardous blast 

environments are most critical along the centreline of the opening, shafts generate a smaller danger 

zone as compared to portals. This is because the most severe blast conditions occur along the centreline 

of the mine opening. The centreline of a shaft opening is directed upwards away from the ground level. 

Blast pressures dissipate quickly away along horizontal (ground) distance from shafts, where it would 

only take 2 to 3 shaft diameters to dissipate blast pressures to 10% from the conditions at the exit. In 

contrast with portals, about 5 portal diameters are required to dissipate blast waves to 10% of portal 

conditions. Note that the present study conservatively considers exhaust shafts without the ventilation 

infrastructure (e.g., elbows, collars, connections, etc) and simply as a vertical opening in the ground) 

due to complexity and unknowns to the connection strengths. Several CFD modelling studies have been 

carried out by the coal mining operators for the shaft exhaust fan infrastructure to qualitatively 

understand the likely impact of blast overpressures on the main fans and the applicability of the 70 kPa 

recommendations (B Belle, 2012, Personal Communication, Anglo American Coal). 

A portal could be a standalone structure or surrounded by a surface. Figure 12 evaluates the influence 

of the surrounding surface around a portal on the resulting static blast pressure contours. The 

surrounding surface appears to influence only the distribution of pressures in the direction perpendicular 

to the portal and in close proximity from the portal. The results generated along the centreline of the 

portal are unaffected by the surrounding surface. 

The effects of different portal shapes on the blast environment are also evaluated in Figure 13. Nearly 

identical blast pressure contours are produced when the distances are divided with the effective portal 

diameters. This validates the use of the effective diameter of portal openings as a single parameter to 

characterise other portal shapes. For example, the effective diameter for a rectangular portal of 4 m x 6 

m cross-section would be 5 m. While the variation between the contours is insignificant, the square 

portals generate the most conservative results overall while the circular portals generate the least severe 

blast pressure conditions. 

 

 

Plan View 

Highwall 

Side View 

Ground Level 
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Portal into Highwall vs. Standalone Portal 

 

       

(a) (b) 

Figure 12: Comparison of peak static overpressure contours for (a) portal into highwall and (b) 
standalone portal 

 

Square vs. Rectangular vs. Round Portals 

 
  

(a) (b) (c) 

Figure 13: Comparison of peak static overpressure contours for (a) square portal, (b) 
rectangular portal, and (c) round portal 

Figure 14 compares the influence of different portal pressures (i.e., 70 kPa vs. 170 kPa) on the blast 

pressure contours. As the blast pressure contours have been divided with the pressures at the portal, 

the resulting contours become nearly identical. This demonstrates that, as a technical guidance, it is 

appropriate to employ these scaled contours to determine outside blast environments of mine openings 

with other pressures (i.e., by multiplying with new mine opening pressures). 

The presented results validate the robustness of the methodology of using scaled blast pressure 

contours given as ratios as they can be scaled for different shapes, dimensions, and portal exit 

pressures. A case study will be provided later to demonstrate the application of the scaled blast pressure 

contours for developing safety distances. 

 

Plan View 

Highwall 

Plan View 

Highwall Highwall Highwall 
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70 kPa Portal vs. 170 kPa Portal 

  

(a) (b) 

Figure 14: Comparison of peak static overpressure contours for (a) 70 kPa portal and (b) 170 
kPa portal 

Development of Exclusion Zones for Projectiles and Debris Throw from Mine Opening 

In addition to hazards associated with the effects of blast waves as discussed in the previous sections, 

an underground mine explosion could also cause lethal debris and fragments to be propelled over a 

significant distance from a mine opening.  

Guidelines to develop exclusion zones for lethal debris projectiles from an opening of an underground 

facility can be found in the NATO manual for safety principles of storage of military ammunition and 

explosives in Part III, Chapter 3, Section IV-2 (AASTP-1 2010). The debris defined by NATO consists of 

parts of ammunition and its packaging, technical installations such as ventilation equipment, doors and 

firefighting installations, chamber and adit lining and other reinforced concrete construction elements as 

well as of rock rubble produced by the explosion effects. In the absence of any previous mining specific 

methane or coal dust explosion references, these military ammunition storage guidelines could be 

credibly adopted in the interim for underground mine facilities due to similarities in the adit/portal 

configuration and type of debris. 

The NATO manual provides empirical equations which consider the magnitude of the explosion, length 

of the adit, and average adit diameter to determine the spread of lethal fragments as a clover leaf-

shaped contour line. The contour line describes a range containing 1 hazardous fragment (≥ 80 J) per 

56 m2 (see Figure 15). By combining the clover-shaped contour line plotted using NATO’s methodology 

for debris throw with the blast pressure contours provided in the previous sections, a comprehensive 

exclusion zone from a mine opening that considers both the effects of blast waves and projectiles/ejecta 

could be developed. This will be discussed in the next section. 

 
Figure 15: Clover-shaped contour line describing the range of lethal fragments from a portal. 

Adapted from AASTP-1 (2010) 

Plan View 

Highwall Highwall 
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Methodology for Developing Exclusion Zones Around Mine Opening 

This section aims to consolidate the lessons of the previous sections and introduce a step-by-step 

methodology for developing exclusion zones from mine openings which accounts for both the effects of 

blast and projectiles/ejecta of material, debris and objects. 

In summary, the steps to generate appropriate guidance on safety distances from underground mine 

openings are as follows: 

1) Select realistic scenario and appropriate blast pressure contour for scenario (i.e., for a portal 

into highwall or standalone portal) (see Figures 11 to 14). Multiply x and y axes (i.e., Distance 

/ Effective Portal Diameter) by effective portal diameter. Multiply shaded contour area with portal 

pressure; 

2) Develop clover-leaf shaped contour line to determine lethal fragment/projectile range using 

NATO manual (AASTP-1 2010) (see Figure 15); 

3) Combine contours of blast wave effects and lethal fragment/projectile range; 

4) Estimate possible damage and injury according to determined blast overpressure levels and 

industry-approved guidelines or standards for evaluating explosion hazards; 

5) Develop exclusion zone according to explosion risk and damage/injury criteria. 

A case study for a 70 kPa blast pressure at the portal with a 1 km long adit with a 3 m x 3 m cross-

section is used as an example. For plotting the lethal fragment range, a 100 kg TNT was used as input 

to generate a 70 kPa portal pressure 1 km away from the charge. The charge size was estimated with 

a CFD model of a 1 km long square tunnel with a 3 m x 3 m cross-section to generate a 70 kPa portal 

pressure. Figure 16 illustrates the exclusion zone developed for this case based on the physics of blast 

propagation and projectile throw predictions. Straight lines were used for the conservative definition of 

the exclusion zone to identify zones of blast and projectile risks.  

 
Figure 16: Proposed science-based exclusion zone for a portal with 70 kPa exit pressure 

As a comparison to the proposed exclusion zone illustrated in Figure 16, Figure 17 presents the current 

QMRS-established High Risk Zone defined around mine portals and shafts in the QMRS Inertisation 

(MIU) Operational Procedure (MIU-931 2019). The High Risk Zone is defined to be: 

1) The area at 90 degrees from the portal entrance, for 250 m, extending out 1000m; 

2) 150 m in all directions for vertical shafts greater than 2 m in diameter and 500 m upward; 

3) 50 m in all directions for vertical boreholes/shafts from 0.5 m up to 2 m in diameter and 250 m 

upward unless a blast shield is fitted; 

4) 5 m in all directions for vertical boreholes under 0.5 m in diameter and 250 m upward. 

It should be noted that this exclusion zone recommendation is only implemented for GAG operations 

and does not extend to other cases even when an explosion risk is likely present before the 
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commencement of the GAG operations. Parcell (2014) provided a review of the high-risk zone illustrated 

in Figure 17 with the main criticism given for misleading and confusing dimensions and that the width 

of the portal being excessive; however, still recommending the adoption of this standard in the interim 

considering a current lack of a scientifically established high risk zone. The methodology for scientifically 

determining exclusion zones around mine openings proposed in this paper aims to be employed as a 

scientific evidence based approach to develop appropriate exclusion zones for future mine safety 

guidelines around mine openings. 

 
Figure 17: High risk zones as presented in the QMRS Inertisation (MIU) Operational Procedure 

(MIU-931 2019) 
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CONCLUSION 

There exists a significant gap in existing mining safety standards resulting in the usage of highly 

conservative safety distances/exclusion zones due to a lack of understanding or scientific-driven 

guidelines. This study aims to address this with the development of a methodology to predict explosion 

risk and appropriate exclusion zones from different mine entries (i.e., a portal into highwall, standalone 

portals, and shafts). A 0.3 m x 0.3 m Advanced Blast Simulator was fabricated and employed to conduct 

experiments of blast overpressure wave propagating from different types of mine openings into the open 

space. The results collected from pressure gauges were used to calibrate Computational Fluid 

Dynamics models developed for correlating the experimental results, validating that the results could be 

scaled up to full-scale dimensions of actual coal mine infrastructure, and develop blast contour maps to 

visualise the outside blast environment beyond the mine openings. It was demonstrated that when the 

results were given in the form of ratios of effective mine opening diameters and ratios of mine opening 

pressures, the scaled contours could represent and predict outside blast environments of different 

opening shapes, dimensions, and pressures at the mine opening. The models indicate that the most 
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severe outside blast environment would be generated from square portals into highwall while the least 

severe would be from mine shafts. The findings from the study were consolidated with steps given to 

generate exclusion zones from mine openings from the risk of blast waves and projectiles as a result of 

underground mine gas or coal dust explosions. A case study was provided towards the end of the paper 

as an example. 
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