
University of Wollongong University of Wollongong 

Research Online Research Online 

Resource Operators Conference Faculty of Engineering and Information 
Sciences 

2022 

The environmentally induced corrosion failure of cable bolts in The environmentally induced corrosion failure of cable bolts in 

underground coal mines underground coal mines 

Honghao Chen 

Önder Kimyon 

Cindy Gunawan 

Hamed Lamei Ramandi 

Serkan Saydam 

Follow this and additional works at: https://ro.uow.edu.au/coal 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/coal
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/coal?utm_source=ro.uow.edu.au%2Fcoal%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages


                                        

                                          2022 Resource Operators Conference (ROC 2022)   

 University of Wollongong, University of Southern Queensland, February 2022            177    

 

THE ENVIRONMENTALLY INDUCED CORROSION 
FAILURE OF CABLE BOLTS IN UNDERGROUND 

COAL MINES 

Honghao Chen1*, Önder Kimyon2, Cindy Gunawan3, Hamed Lamei 
Ramandi1 and Serkan Saydam1 

ABSTRACT: The failure of cable bolts, made from high carbon cold-drawn steel wires, is frequently 

observed in underground coal mines. Hydrogen-induced stress corrosion cracking (HISCC) is known to 

be the main mechanism of such a failure. The groundwater and geomaterials (mixture of coal and clay) 

collected from the affected mines have not been found to be corrosive. In this study, we examine the 

effect of sulfate-reducing bacteria (SRB), which exist in affected mines, on the failure of cable bolts. We 

make stressed coupons from cable bolt wires and test the coupons in different solutions containing SRB. 

We find that the hydrogen sulfide produced by SRB promote hydrogen diffusion into the steel and causes 

HISCC while the steel is under constant load. The fractures in failed coupons show similar features to 

those failed in underground coal mines. This study provides insights into the role of microorganisms in 

the failure of underground structures. We recommend future studies to develop prevention measures to 

stop hydrogen diffusion into steel or microbial activities around the bolts.  

INTRODUCTION 

Cable bolts are made from high-carbon cold drawn wires and, thus, have higher strength and flexibility 

than conventional rockbolts. Due to the excellent flexibility of cable bolts, they can have lengths larger 

than the height of roadway. They are generally manufactured in 8-10 meters length and anchor to deep 

stable rocks. In Australia, the cable bolts are usually installed as secondary support, and their integrity 

is critical to the safety of the mine site. 

Although cable bolting technology has been continuously advanced since its first application, failures of 

cable bolts are still observed. The failure can occur within the grout, cable-grout interface, grout-rock 

interface, and the cable bolts themselves. Several underground mines have reported the corrosion 

failure of both rockbolts and cable bolts due to stress corrosion cracking (SCC) (Wu et al., 2018c, Wu 

et al., 2018a, Crosky et al., 2012, Vandermaat et al., 2016, Chen et al., 2018, Kang et al., 2013, Wu et 

al., 2018b, Smith et al., Hebblewhite et al., 2003, Gamboa and Atrens, 2003). It was found that the 

failure has occurred through environmentally assisted hydrogen cracking, i.e., HISCC (Windsor and 

Thompson, 1994, Chen et al., 2016).  

Microbiologically influenced corrosion (MIC) is corrosion due to microbial activities (Hadley, 1948). 

According to AlAbbas et al. (2013), one in every five corrosion failures worldwide is related to MIC. 

Generally, the environment for such corrosion activity is complex. The biomass in the surrounding rock 

strata, fluid and other deposits make the determination and observation of MIC very difficult. (Parkins, 

1982). Sulphate-reducing bacteria (SRB) is one of the most well-known bacteria causing MIC. It was 

first noticed in 1934 (Li et al., 2001). Since then, a substantial amount of research has been conducted 

on SRB related corrosion failures (Stipaničev et al., 2013, King and Miller, 1971, Rajala et al., 2019, Jia 

et al., 2018). However, further research is still required to fully understand the role of SRB on other 

microorganisms in the failure of bolts.  

In this study, we use materials from an underground coal mine to mimic the service environment of the 

cable bolt. The stressed cable bolt specimen (specially designed consistent with the loading within the 

mine tunnels) is tested in solutions containing the mine geomaterials and microorganisms. The pH and 

sulphate concentrations are monitored to understand the microbial reactions. The microscopic analysis 

is also conducted on the fractured specimen to confirm the mode of failure. 
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EXPERIMENTAL PROCEDURES 

The cable bolt coupons are made from the king-wire of the cable bolts. The wire diameter is 6 mm, and 

its surface is smooth. It has ~ 0.85% carbon, and its yield strength is 1650 MPa. The wire is cut into ~ 

150 mm sections to make stressed coupons. The chemical composition and mechanical properties as 

provided by the supplier are reported in Chen et al. (2021). 

The coupons are made using the 3-point bending method (Figure 1) to recreate the service condition 

loading (Wu et al., 2019). Coupons are fabricated by tightly joining two parallel wires and securing the 

ends with a retention ring. The loading pin made from the same cable bolt material is pushed in by a 

hydraulic press to create the load on the outer surface of the coupon. The load on the coupons is ~ 90% 

of the material yield strength. 

An underground mine in NSW is investigated to determine the failure environment for bolts. Water 

samples are collected from the dripping roof water where the failure occurred. The groundwater analysis 

of the mine water show that the concentration of corrosive ions is low, and the pH is near neutral (Chen 

et al., 2021). The water sample is used in the SRB immersion tests. 

DNA extraction and sequencing are conducted on 25 mL of the groundwater sample according to 

Bürgmann and Lee’s method (Luk et al., 2018). The samples are analysed at the Ramaciotti Centre for 

Genomics, UNSW Sydney, Australia. The community analysis finds a number of bacteria known to 

cause MIC, including Thiobacillus, Desulfovibrio, Desulfotomaculum and Sulfurospirillum (Chen et al., 

2021). Desulfovibrio and Desulfotomaculum are SRBs known to produce MIC in steel (Ilhan-Sungur et 

al., 2007, Cetin and Aksu, 2009). Therefore, a Desulfovibrio species, D. vulgaris, is used to create 

sulphate reduction activity.  

Five different test solutions representing different environments were prepared in triplicate. Solution 1 

and solution 2 are non-bacterial control with distilled water and groundwater. Solution 3 has 5%, v/v 

D.vulgaris; solution 4 has 15 %, v/v D.vulgaris as the accelerated environment; Solution 5 has 5%, v/v 

D.vulgaris with geomaterials (mixture of coal and clay). The detail of the preparation process can be 

found in the study by Chen. et al. (Chen et al., 2021). 

The imaging of bacteria on the coupon surface is done using a DeltaVision Elite inverted fluorescence 

microscope. The fractographic and detached biomass analyses are conducted using a Hitachi S3400 

scanning electron microscope (SEM) unit. 

 

RESULTS AND DISCUSSION 

All coupons in solution 4, which has the highest concentration of SRB (the accelerated condition), fail in 

the three months duration of the experiment. Other than solution 4, none of the coupons is fractured by 

the end of the experiment. The SEM analyses of the fractured surfaces of all three failed coupons 

indicate that they all have similar features. Figure 2 exemplifies one of the fracture surfaces. The fracture 

origin, highlighted in blue, is approximately 300 μm (Figure 2a). The high magnification images on the 

fracture origin (Figure 2b) shows a tearing topography surface (TTS) feature, which is known as a 

characteristic of HISCC (Toribio et al., 1992, Wu et al., 2018c, Ramandi et al., 2018). The fast fracture 

region (Figure 2c) shows a stepwise appearance that follows the material's microstructure (Toribio and 

Vasseur, 1997). 
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length 

Loading pin 
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Figure 1: Design of coupon. 
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The sulphate concentration of all solutions containing bacteria is examined during the experiment 

(Figure 3). The initial sulphate concentration in solution 5 (with geomaterials) is the highest among all 

solutions. This suggests that the geomaterials in the cable bolt location can potentially have some roles 

in sourcing sulphate in underground mines. Solution 3 and 5 have an insignificant sulphate reduction 

over the first two weeks. In contrast, there is a much higher sulphate reduction in solution 4, which 

contain a high amount of bacteria and extra organic materials (lactate). The high sulphate reduction is 

due to the D. vulgaris activities: oxidising the organic material (lactate) and reducing sulphate (SO4
2-) to 

sulphide (S2-) (Enning and Garrelfs, 2014, Coetser and Cloete, 2005, Straub and Schink, 2004, Biezma, 

2001, Beech and Sunner, 2007). Therefore, the overall metabolism of the SRB generates H2S by 

producing (S2- ) and then reacting with (H+) in the environment. Such a reaction increases the pH of the 

environment (Chen et al., 2021), which is also observed in solutions 3, 4 and 5. 

The main reason for the occurrence of failure only in solution 4 is concluded to be the high concentration 

of SRB. The extra organic compound (lactate) potentially accelerates the biofilm growth rate on steel 

surfaces resulting in severe MIC (Enning and Garrelfs, 2014). This also results in high H2S 

concentration, leading to HISCC. The other solutions, despite no fractures, also show sulphate 

consumption and pH increases, indicating that a lower concentration of D. vulgaris and the native 

microbes can also produce H2S. 

 

Figure 4a shows the biomass attachment on the coupon—the blue colour indicates the microbial 

colonies formed by microorganisms present in the groundwater, including D. vulgaris. Figure 4b 

demonstrates the high magnification image of bacteria from the biomass. Overall, the findings suggest 

that SRB can be one of the main causes of the HISCC failure of the cable bolt through H2S production 

in the underground environment.  

2 mm 100 µm 500 µm 

Figure 2: Fracture surface of failed coupon; a) fracture surface overview; b) high 
magnification imge on fracture origin (blue box in a); c) high magnification image on fast 

fracture region (red boex in a). 
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Figure 3: Sulphate quantification of all solutions during the experiment. 
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CONCLUSIONS 

 SRB in the groundwater environment can cause the HISCC of cable bolt wires.  

 Failure requires a critical concentration of hydrogen sulphide produced by the microorganisms.  

 Groundwater and geomaterials in underground coal mines support the metabolism of 

microorganisms.  

 HISCC may occur in anaerobic underground mining locations where sulphate and organic 

matter are present. 

REFERENCES 

ALABBAS, F. M., WILLIAMSON, C., BHOLA, S. M., SPEAR, J. R., OLSON, D. L., MISHRA, B. and 
KAKPOVBIA, A. E. 2013. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-
alloy, high-strength steel (API-5L X80). International Biodeterioration and Biodegradation, 78, 34-42. 

BEECH, I. B. and SUNNER, J. 2007. Sulphate-reducing bacteria and their role in corrosion of ferrous 
materials. Sulphate-Reducing Bacteria–Environmental and Engineered Systems. 

BIEZMA, M. V. 2001. The role of hydrogen in microbiologically influenced corrosion and stress corrosion 
cracking. International Journal of Hydrogen Energy, 26, 515-520. 

CETIN, D. and AKSU, M. L. 2009. Corrosion behavior of low-alloy steel in the presence of 
Desulfotomaculum sp. Corrosion Science, 51, 1584-1588. 

CHEN, H., KIMYON, Ö., RAMANDI, H. L., CRAIG, P., GUNAWAN, C., WU, S., MANEFIELD, M., 
CROSKY, A. and SAYDAM, S. 2021. Microbiologically influenced stress corrosion cracking 
responsible for catastrophic failure of cable bolts. Engineering Failure Analysis, 105884. 

CHEN, H., LAMEI RAMANDI, H., WALKER, J., CROSKY, A. and SAYDAM, S. 2018. Failure of the 
threaded region of rockbolts in underground coal mines. Mining Technology, 1-9. 

CHEN, J., HAGAN, P. C. and SAYDAM, S. 2016. Load Transfer Behavior of Fully Grouted Cable Bolts 
Reinforced in Weak Rocks Under Tensile Loading Conditions. 

COETSER, S. and CLOETE, T. E. 2005. Biofouling and biocorrosion in industrial water systems. Critical 
reviews in microbiology, 31, 213-232. 

CROSKY, A., SMITH, B., ELIAS, E., CHEN, H., CRAIG, P., HAGAN, P., VANDERMAAT, D., SAYDAM, 
S. and HEBBLEWHITE, B. 2012. Stress corrosion cracking failure of rockbolts in underground mines 
in Australia.  7th international symposium on rockbolting and rock mechanics in mining, Aachen, 
2012 May 30 - 31 2012 Aachen, Germany. 

ENNING, D. and GARRELFS, J. 2014. Corrosion of iron by sulfate-reducing bacteria: new views of an 
old problem. Appl. Environ. Microbiol., 80, 1226-1236. 

GAMBOA, E. and ATRENS, A. 2003. Laboratory testing of rock bolt stress corrosion cracking. 

50 µm 2 µm 

Figure 4: a) Biomass on the coupon surface; b) SEM image of detached biomass. 

a b 



                                        

                                          2022 Resource Operators Conference (ROC 2022)   

 University of Wollongong, University of Southern Queensland, February 2022            181    

 

HADLEY, R. 1948. Corrosion by micro-organisms in aqueous and soil environments. Corrosion 
handbook. John Wiley, New York, 466-481. 

HEBBLEWHITE, B., FABJANCZYK, M. and GRAY, P. 2003. Investigations into premature rock bolt 
failures in the Australian coal mining industry. 

ILHAN-SUNGUR, E., CANSEVER, N. and COTUK, A. 2007. Microbial corrosion of galvanized steel by 
a freshwater strain of sulphate reducing bacteria (Desulfovibrio sp.). Corrosion Science, 49, 1097-
1109. 

JIA, R., TAN, J. L., JIN, P., BLACKWOOD, D. J., XU, D. and GU, T. 2018. Effects of biogenic H2S on 
the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio 
vulgaris biofilm. Corrosion Science, 130, 1-11. 

KANG, H., WU, Y., GAO, F., LIN, J. and JIANG, P. 2013. Fracture characteristics in rock bolts in 
underground coal mine roadways. International Journal of Rock Mechanics and Mining Sciences, 
62, 105-112. 

KING, R. and MILLER, J. 1971. Corrosion by the sulphate-reducing bacteria. Nature, 233, 491. 
LI, S., KIM, Y., JEON, K., KHO, Y. and KANG, T. 2001. Microbiologically influenced corrosion of carbon 

steel exposed to anaerobic soil. Corrosion, 57, 815-828. 
LUK, A. W., BECKMANN, S. and MANEFIELD, M. 2018. Dependency of DNA extraction efficiency on 

cell concentration confounds molecular quantification of microorganisms in groundwater. FEMS 
microbiology ecology, 94, fiy146. 

PARKINS, R. N. 1982. Corrosion processes, Applied Science. Sole distributor in the USA and Canada. 
Elsevier Science Pub., Co. 

RAJALA, P., HUTTUNEN-SAARIVIRTA, E., BOMBERG, M. and CARPÉN, L. 2019. Corrosion and 
biofouling tendency of carbon steel in anoxic groundwater containing sulphate reducing bacteria and 
methanogenic archaea. Corrosion Science, 159, 108148. 

RAMANDI, L. H., CHEN, H., CROSKY, A. and SAYDAM, S. 2018. Interactions of stress corrosion cracks 
in cold drawn pearlitic steel wires: An X-ray micro-computed tomography study. Corrosion Science, 
145, 170-179. 

SMITH, J. A., RAMANDI, H. L., ZHANG, C. and TIMMS, W. Analysis of the influence of groundwater 
and the stress regime on bolt behaviour in underground coal mines. International Journal of Coal 
Science and Technology, 1-15. 

STIPANIČEV, M., TURCU, F., ESNAULT, L., SCHWEITZER, E. W., KILIAN, R. and BASSEGUY, R. 
2013. Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater 
environment. Electrochimica Acta, 113, 390-406. 

STRAUB, K. L. and SCHINK, B. 2004. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum 
through electron transfer via sulfur cycling. Appl. Environ. Microbiol., 70, 5744-5749. 

TORIBIO, J., LANCHA, A. and ELICES, M. 1992. The tearing topography surface as the zone 
associated with hydrogen embrittlement processes in pearlitic steel. Metallurgical Transactions A, 
23, 1573-1584. 

TORIBIO, J. and VASSEUR, E. 1997. Hydrogen-assisted micro-damage evolution in pearlitic steel. 
Journal of materials science letters, 16, 1345-1348. 

VANDERMAAT, D., SAYDAM, S., HAGAN, P. and CROSKY, A. 2016. Examination of rockbolt stress 
corrosion cracking utilising full size rockbolts in a controlled mine environment. International Journal 
of Rock Mechanics and Mining Sciences, 81, 86-95. 

WINDSOR, C. R. and THOMPSON, A. G. 1994. Rock reinforcement—technology, testing, design and 
evaluation. Comprehensive rock engineering, 4, 451-484. 

WU, S., CHEN, H., CRAIG, P., RAMANDI, H. L., TIMMS, W., HAGAN, P. C., CROSKY, A., 
HEBBLEWHITE, B. and SAYDAM, S. 2018a. An experimental framework for simulating stress 
corrosion cracking in cable bolts. Tunnelling and Underground Space Technology, 76, 121-132. 

WU, S., CHEN, H., LAMEI RAMANDI, H., HAGAN, P. C., HEBBLEWHITE, B., CROSKY, A. and 
SAYDAM, S. 2018b. Investigation of cable bolts for stress corrosion cracking failure. Construction 
and Building Materials, 187, 1224-1231. 

WU, S., CHEN, H., RAMANDI, H. L., HAGAN, P. C., CROSKY, A. and SAYDAM, S. 2018c. Effects of 
environmental factors on stress corrosion cracking of cold-drawn high-carbon steel wires. Corrosion 
Science, 132, 234-243. 

WU, S., RAMANDI, H. L., CHEN, H., CROSKY, A., HAGAN, P. and SAYDAM, S. 2019. Mineralogically 
influenced stress corrosion cracking of rockbolts and cable bolts in underground mines. International 
Journal of Rock Mechanics and Mining Sciences, 119, 109-116. 

  


	The environmentally induced corrosion failure of cable bolts in underground coal mines
	tmp.1646286350.pdf.LtQgE

