
International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 5, No. 6, 1392-1408, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.6.103 

1392 

A Two-Stage Mutation Stochastic Model of Carcinogenesis Driven by a 

Two Level Random Environment 

 
V. S. S. Yadavalli 

Department of Industrial and System Engineering, 

University of Pretoria, Pretoria 0002, South Africa. 

Corresponding author: Sarma.Yadavalli@up.ac.za 

 

S. Udayabaskaran 
Department of Mathematics, 

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 

Avadi, Chennai 600062, India. 

E-mail: sudayabaskaran@veltech.edu.in 

 

C. T. Dora Pravina 

Department of Mathematics, 

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 

Avadi, Chennai 600062, India. 

E-mail: tdorapravinac@veltech.edu.in 

 

S. Sreelakshmi 
Department of Engineering Mathematics, 

HKBK College of Engineering, Bangalore 560045, India. 

E-mail: sreelakshmi.mt@hkbk.edu.in 

 
(Received May 7, 2020; Accepted June 24, 2020) 

 

 

 

Abstract 

In this paper, we present a two-stage stochastic model of carcinogenesis in a two level random environment. The random 

environment switches between two levels, say, 1 and 2 alternately. When the environment is in level 1, a normal cell 

either divides into two normal cells or dies; and an intermediate cell divides into two intermediate cells or dies. When the 

environment is in level 2, a normal cell either divides into two intermediate cells or divides into one normal cell and one 

intermediate cell or divides into two normal cells or dies; and an intermediate cell either divides into two malignant cells 

or divides into one intermediate cell and one malignant cell or divides into two intermediate cells or dies. It is assumed 

that, once a malignant cell is produced, it generates a malignant tumor with probability 1. We obtain the mean numbers of 

normal, intermediate and malignant cells. 

 

Keywords- Age-dependent two-stage stochastic model, Normal cell, Intermediate cell, Malignant cell, Random 

environment. 

 

 

 

1. Introduction 
Branching processes have been very extensively studied in the past to understand several physical 

and biological processes (see, for example, Harris, 1963; Srinivasan, 1969; Mode, 1971; Athreya 

and Ney, 1972; Assmussen and Hering, 1983). Branching character is inherent in cell division 

processes where in each cell (also called an individual or a particle) lives for some random amount 

of time and then dies, differentiates or splits into two daughter cells. Sometimes, before a normal 

cell splits, it undergoes genetic changes (mutational changes) and then splits into daughter cells 

abnormally different from the characters of their mother. Innumerable genetic changes can take 
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place during cell division and these mutational transformations lead to cancer cells which are quite 

different from normal cells. Usually, it is assumed that all particles behave independently and 

identically; and all particles have a common exponential life-time and a common off-spring 

probability generating function. Sun et al. (2014) have observed that tumorigenesis can be regarded 

as an evolutionary process. They have formulated a new model of time scheme for progression of 

colorectal cancer based upon maturity and predicted the values of several important parameters in 

cancer progression. Tomasetti and Vogelstein (2015) have postulated that cancer risk is due to 

random mutations arising during DNA replication in normal, noncancerous stem cells. Rozhok and 

DeGregori (2019) have presented a theoretical study on the evolution of lifespan and 

age-dependent cancer risk. Rozhok et al. (2016) have applied a stochastic Monte Carlo model to 

explain the age-dependent incidence of cancer. Reddy et al. (2017) have observed that during every 

cell division, some rare events at the genome level such as DNA replication mistakes take place of 

which some are of no importance, while some have significance for escaping cell division control 

mechanisms. Martincorena et al. (2017) have concluded that cancer risk is dependent on the 

random errors occurring in normal cell replication, hereditary defects in critical genes, and 

environmental factors including exogenous agents and lifestyle. Hochberg and Noble (2017) have 

provided a framework for understanding how natural environmental variation and human activity 

impact cancer risk, with potential implications for species ecology. Simulation studies have been 

reported in the paper of Rozhok and DeGregori (2019) on a generalized theory of age-dependent 

carcinogenesis to demonstarte the impact of key somatic evolutionary parameters on the 

performance of Multistage Model of Carcinogenesis. Wolf et al. (2019) have presented an unified 

theory of carcinogenesis in which they have considered multi-stage carcinogenesis models to 

assess the carcinogenicity of chemicals for risk management and the public communication. In the 

above studies, cell division mechanism have either dependance on random mutations arising during 

DNA replication in normal cells or on environment or external agents such as chemical substances 

or living habits. This type of mutation-dependent and environment-dependent cell division 

processes in connection with carcinogenesis has not been studied analytically so far in literature. 

 

The above papers encouraged us to propose and analyze a stochastic model incorporating the 

growth of the cell population in random medium. As in Moolgavkar and Venzon (1979), we 

assume that a normal cell generates malignant cells by two mutations. To be specific, in this paper, 

we present a two-stage stochastic model of carcinogenesis in a two level random environment. The 

random environment switches between two states 1 and 2 alternately. When the environment is in 

level 1, a normal cell either divides into two normal cells with rate 𝐿11 or dies with rate 𝐷11; and 

an intermediate cell either divides into two intermediate cells with rate 𝛼11 or dies with rate 𝜇11. 
When the environment is in level 2, a normal cell either divides into two intermediate cells with rate 

𝐿20 or divides into one normal cell and one intermediate cell with rate 𝐿21 or divides into two 

normal cells with rate 𝐿22 or dies with rate 𝐷22; and an intermediate cell either divides into two 

malignant cells with rate 𝛼20 or divides into one intermediate cell and one malignant cell with rate 

𝛼21 or divides into two intermediate cells with rate 𝛼22 or dies with rate 𝜇22. It is assumed that, 

once a malignant cell is produced, it generates a malignant tumor with probability 1. We obtain the 

mean numbers of normal, intermediate and malignant cells. 

 

The rest of this paper is organised as follows. In section 2, we describe the model. In section 3, we 

write the integral equations satisfied by the conditional probability generating functions of the 

number of normal, intermediate and malignant cells. In section 4, we derive the mean number of 

normal, intermediate and malignant cells in the population. We present a numerical illustration in 

section 5 to highlight the impact of environment on carcinogenesis. We provide a conclusion in 
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section 6. 

 

2. Model Formulation 
We consider a population of cells originating from a single normal cell present at time 𝑡 = 0. As 

time progresses, cell divisions take place and due to mutational changes, malignant cells are 

produced by a two-stage process. That is, a normal cell first splits into intermediate cells 

(pre-malignant cells) and then these intermediate cells split into malignant cells. Hence, after a 

positive time, the cell population will have normal, intermediate and malignant cells. Let 

𝑋(𝑡), 𝑌(𝑡), and 𝑍(𝑡) be the random variables denoting the number of normal, intermediate, and 

malignant cells at time 𝑡 respectively. We define the time duration a cell has lived with out 

splitting since its birth time as the age of the cell. 

 

2.1 Assumptions 
(i) All cells evolve in a random environment. 

(ii) At any time 𝑡, the random environment is in one of the two levels, say, 1 and 2. 

(iii) Let 𝛩(𝑡) be the state of the environment at any time 𝑡. Then,  

ℙ[𝛩(𝑡 + 𝛥𝑡) = 2|𝛩(𝑡) = 1] = 𝜆12𝛥𝑡 + 𝑜(𝛥𝑡),  

ℙ[𝛩(𝑡 + 𝛥𝑡) = 1|𝛩(𝑡) = 2] = 𝜆21𝛥𝑡 + 𝑜(𝛥𝑡),  

ℙ[𝛩(𝑡 + 𝛥𝑡) = 1|𝛩(𝑡) = 1] = 1 − 𝜆12𝛥𝑡 + 𝑜(𝛥𝑡), 

ℙ[𝛩(𝑡 + 𝛥𝑡) = 2|𝛩(𝑡) = 2] = 1 − 𝜆21𝛥𝑡 + 𝑜(𝛥𝑡). 

(iv) When the environment is in level 1 at time 𝑡, a normal cell existing at time 𝑡 either divides 

into two normal cells with probability 𝐿11𝛥𝑡 + 𝑜(𝛥𝑡) or dies with probability 𝐷11𝛥𝑡 +

𝑜(𝛥𝑡) in the infinitesimal interval (𝑡, 𝑡 + 𝛥𝑡); 

(v) When the environment is in level 1 at time 𝑡, an intermediate cell existing at time 𝑡 either 

divides into two intermediate cells with probability 𝛼11𝛥𝑡 + 𝑜(𝛥𝑡)  or dies with 

probability 𝜇11𝛥𝑡 + 𝑜(𝛥𝑡) in the infinitesimal interval (𝑡, 𝑡 + 𝛥𝑡); 

(vi) When the environment is in state 2 at time 𝑡, a normal cell existing at time 𝑡 either 

divides into two intermediate cells with probability 𝐿20𝛥𝑡 + 𝑜(𝛥𝑡) or divides into one 

normal cell and one intermediate cell with probability 𝐿21𝛥𝑡 + 𝑜(𝛥𝑡) or divides into two 

normal cells with probability 𝐿22𝛥𝑡 + 𝑜(𝛥𝑡) or dies with probability 𝐷22𝛥𝑡 + 𝑜(𝛥𝑡) in 

the infinitesimal interval (𝑡, 𝑡 + 𝛥𝑡); 

(vii) When the environment is in state 2 at time 𝑡, an intermediate cell existing at time 𝑡 either 

divides into two malignant cells with probability 𝛼20𝛥𝑡 + 𝑜(𝛥𝑡) or divides into one 

intermediate cell and one malignant cell with probability 𝛼21𝛥𝑡 + 𝑜(𝛥𝑡) or divides into 

two intermediate cells with probability 𝛼22𝛥𝑡 + 𝑜(𝛥𝑡) or dies with probability 𝜇22𝛥𝑡 +

𝑜(𝛥𝑡) in the infinitesimal interval (𝑡, 𝑡 + 𝛥𝑡). 

(viii) Once a malignant cell is produced, it generates a malignant tumor with probability 1. 

(ix) All events are independent and the probability of occurrence of more than one event in a 

small interval (𝑡, 𝑡 + 𝛥𝑡) is 𝑜(𝛥𝑡). 
 

3. Governing Equations 
Assume that we start with 1 newly born normal cell and no other cells. Then , we have the condition 
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𝑋(0) = 1, 𝑌(0) = 0, 𝑍(0) = 0  at time 𝑡 = 0.  It is clear that the four-dimensional process 

{(𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), Θ(𝑡)): 𝑡 ≥ 0} is Markov. The state-transition diagram is given in Figure 1 

below:  

 

  

  
 

Figure 1. State transition diagram 

 

 

We define the conditional probability generating functions for the number of normal, intermediate, 

and malignant cells at time 𝑡 initiated by a single normal cell at time 𝑡 = 0 as follows: 

 

𝜓1(𝑥, 𝑦, 𝑧, 𝑡) = 𝔼[𝑥𝑋(𝑡)𝑦𝑌(𝑡)𝑧𝑍(𝑡)|𝑋(0) = 1, 𝑌(0) = 0, 𝑍(0) = 0, 𝛩(0) = 1], 

𝜓2(𝑥, 𝑦, 𝑧, 𝑡) = 𝔼[𝑥𝑋(𝑡)𝑦𝑌(𝑡)𝑧𝑍(𝑡)|𝑋(0) = 1, 𝑌(0) = 0, 𝑍(0) = 0, 𝛩(0) = 2]. 

 

In the same manner, we define the conditional probability generating function for the number of 

intermediate and malignant cells at time 𝑡 initiated by a single intermediate cell at time 𝑡 = 0 as 

follows:  

 

𝜙1(𝑦, 𝑧, 𝑡) = 𝔼[𝑦𝑌(𝑡)𝑧𝑍(𝑡)|𝑌(0) = 1, 𝑍(0) = 0, 𝛩(0) = 1], 

𝜙2(𝑦, 𝑧, 𝑡) = 𝔼[𝑦𝑌(𝑡)𝑧𝑍(𝑡)|𝑌(0) = 1, 𝑍(0) = 0, 𝛩(0) = 2]. 

 

For notational simplicity, we write 𝜓𝑛(𝑥, 𝑦, 𝑧, 𝑡), 𝜙𝑚(𝑦, 𝑧, 𝑡)as 𝜓𝑛(𝑡), 𝑛 = 1,2 and 𝜙𝑚(𝑡), 𝑚 =
1,2 respectively. Considering the first event (if any) happening in the time interval (0, 𝑡) and 

using the invariant imbedding technique (see Bellmann et al.,1960), we obtain integral equations 

for 𝜓𝑛(𝑡)  and 𝜙𝑚(𝑡).  To get 𝜓1(𝑡),  we note that the following mutually exclusive and 

exhaustive cases occur: 
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(i) no event takes place before 𝑡; that is, the environment does not change its level before 𝑡 

and the normal cell with which we started at time 𝑡 = 0 neither splits nor dies before 𝑡; 
(ii) the first event happening in (0, 𝑡) is that the environment changes its level from 1 to 2 in 

the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 
(iii) the first event happening in (0, 𝑡) is that the normal cell with which we started at time 𝑡 =

0 splits into two normal cells in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 
(iv) the first event happening in (0, 𝑡) is that the normal cell with which we started at time 𝑡 =

0 dies (or differentiate) in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡). 
 

Consequently, we have  

 

𝜓1(𝑡) = 𝑥𝑒−𝐴𝑡 + 𝜆12 ∫ 𝑒−𝐴𝑢𝜓2(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 𝐿11 ∫ 𝑒−𝐴𝑢{𝜓1(𝑡 − 𝑢)}2𝑑𝑢 
𝑡

0

 
 

+
𝐷11

𝐴
(1 − 𝑒−𝐴𝑡) 

(1) 

 

where, 𝐴 = 𝜆12 + 𝐿11 + 𝐷11. 
 

To get the equation for 𝜓2(𝑡), we note that the following mutually exclusive and exhaustive cases 

occur: 

(i) no event takes place before 𝑡; that is, the environment does not change its level before 𝑡 

and the normal cell with which we started at time 𝑡 = 0 neither splits nor dies before 𝑡; 
(ii) the first event happening in (0, 𝑡) is that the environment changes its level from 2 to 1 in 

the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 
(iii) the first event happening in (0, 𝑡) is that the normal cell with which we started at time 𝑡 =

0 splits into two normal cells in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 
(iv) the first event happening in (0, 𝑡) is that the normal cell with which we started at time 𝑡 =

0 splits into one normal cell and one intermediate cell in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 
(v) the first event happening in (0, 𝑡) is that the normal cell with which we started at time 𝑡 =

0 splits into two intermediate cells in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 
(vi) the first event happening in (0, 𝑡) is that the normal cell with which we started at time 𝑡 =

0 dies (or differentiate) in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡). 
 

Consequently, we have 

 

𝜓2(𝑡) = 𝑥𝑒−𝐵𝑡 + 𝜆21 ∫ 𝑒−𝐵𝑢𝜓1(𝑡 − 𝑢)𝑑𝑢
𝑡

0
+ 𝐿22 ∫ 𝑒−𝐵𝑢{𝜓2(𝑡 − 𝑢)}2𝑑𝑢

𝑡

0
+ 

 

(2) 

𝐿21 ∫ 𝑒−𝐵𝑢𝜓2(𝑡 − 𝑢)𝜙2(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 𝐿20 ∫ 𝑒−𝐵𝑢{𝜙2(𝑡 − 𝑢)}2𝑑𝑢
𝑡

0

 

+
𝐷22

𝐵
(1 − 𝑒−𝐵𝑡) 

 

where, 𝐵 = 𝜆21 + 𝐿22 + 𝐿21 + 𝐿20 + 𝐷22. 
 

To get the equation for 𝜙1(𝑡), we note that the following mutually exclusive and exhaustive cases 

occur: 
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(i) no event takes place before 𝑡; that is, the environment does not change its level before 𝑡 

and the intermediate cell with which we started at time 𝑡 = 0 neither splits nor dies before 

𝑡; 

(ii) the first event happening in (0, 𝑡) is that the environment changes its level from 1 to 2 in 

the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 

(iii) the first event happening in (0, 𝑡) is that the intermediate cell with which we started at 

time  

(iv) 𝑡 = 0 splits into two intermediate cells in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 

(v) the first event happening in (0, 𝑡) is that the intermediate cell with which we started at 

time  

(vi) 𝑡 = 0 dies (or differentiate) in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡). 

Consequently, we have 
 

𝜙1(𝑡) = 𝑦𝑒−𝑎𝑡 + 𝜆12 ∫ 𝑒−𝑎𝑢𝜙2(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 𝛼11 ∫ 𝑒−𝑎𝑢{𝜙1(𝑡 − 𝑢)}2𝑑𝑢
𝑡

0

  

+
𝜇11

𝑎
(1 − 𝑒−𝑎𝑡) (3) 

 

where, 𝑎 = 𝜆12 + 𝛼11 + 𝜇11. 
 

To get the equation for 𝜙2(𝑡), we note that the following mutually exclusive and exhaustive cases 

occur: 

(i) no event takes place before 𝑡; that is, the environment does not change its level before 𝑡 

and the intermediate cell with which we started at time 𝑡 = 0 neither splits nor dies before 

𝑡; 
(ii) the first event happening in (0, 𝑡) is that the environment changes its level from 2 to 1 in 

the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 
(iii) the first event happening in (0, 𝑡) is that the intermediate cell with which we started at 

time, 𝑡 = 0 splits into two intermediate cells in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 
(iv) the first event happening in (0, 𝑡) is that the intermediate cell with which we started at 

time, 𝑡 = 0 splits into one intermediate cell and one malignant cell in the interval (𝑢, 𝑢 +
𝛥𝑡) ⊆ (0, 𝑡); 

(v) the first event happening in (0, 𝑡) is that the intermediate cell with which we started at 

time, 𝑡 = 0 splits into two malignant cells in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡); 
(vi) the first event happening in (0, 𝑡) is that the intermediate cell with which we started at 

time, 𝑡 = 0 dies (or differentiate) in the interval (𝑢, 𝑢 + 𝛥𝑡) ⊆ (0, 𝑡). 
 

Consequently, we have  

 

𝜙2(𝑡) = 𝑦𝑒−𝑏𝑡 + 𝜆21 ∫ 𝑒−𝑏𝑢𝜙1(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 𝛼22 ∫ 𝑒−𝑏𝑢{𝜙2(𝑡 − 𝑢)}2𝑑𝑢
𝑡

0

 

 

 

+𝑧𝛼21 ∫ 𝑒−𝑏𝑢𝜙2(𝑡 − 𝑢)𝑑𝑢
𝑡

0

 + 𝑧2
𝛼20

𝑏
(1 − 𝑒−𝑏𝑡) +

𝜇22

𝑏
(1 − 𝑒−𝑏𝑡) (4) 
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where, 𝑏 = 𝜆21 + 𝛼22 + 𝛼21 + 𝛼20 + 𝜇22. 
 

4. Mean Numbers of Cells 
We consider the following conditional means: 

𝑚𝑋,𝑗
(0)

(𝑡) = 𝔼[𝑋(𝑡)|𝑋(0) = 1, 𝑌(0) = 0, 𝑍(0) = 0, 𝜂(0) = 𝑗], 𝑗 = 1,2; 

𝑚𝑌,𝑗
(0)

(𝑡) = 𝔼[𝑌(𝑡)|𝑋(0) = 1, 𝑌(0) = 0, 𝑍(0) = 0, 𝜂(0) = 𝑗], 𝑗 = 1,2; 

𝑚𝑍,𝑗
(0)

(𝑡) = 𝔼[𝑍(𝑡)|𝑋(0) = 1, 𝑌(0) = 0, 𝑍(0) = 0, 𝜂(0) = 𝑗], 𝑗 = 1,2; 

𝑚𝑌,𝑗
(1)

(𝑡) = 𝔼[𝑌(𝑡)|𝑌(0) = 1, 𝑍(0) = 0, 𝜂(0) = 𝑗], 𝑗 = 1,2; 

𝑚𝑍,𝑗
(1)

(𝑡) = 𝔼[𝑍(𝑡)|𝑌(0) = 1, 𝑍(0) = 0, 𝜂(0) = 𝑗], 𝑗 = 1,2. 

 

It is evident from the definitions of 𝜓𝑗(𝑡) and 𝜙𝑗(𝑡) that  

 

𝑚𝑋,𝑗
(0)(𝑡) = [

𝜕𝜓𝑗(𝑡)

𝜕𝑥
]

𝑥=1,𝑦=1,𝑧=1
, 𝑚𝑌,𝑗

(0)(𝑡) = [
𝜕𝜓𝑗(𝑡)

𝜕𝑦
]

𝑥=1,𝑦=1,𝑧=1
,  𝑚𝑍,𝑗

(0)(𝑡) = [
𝜕𝜓𝑗(𝑡)

𝜕𝑧
]

𝑥=1,𝑦=1,𝑧=1
, 

𝑚𝑌,𝑗
(1)

(𝑡) = [
𝜕𝜙𝑗(𝑡)

𝜕𝑦
]

𝑦=1,𝑧=1

, 𝑚𝑍,𝑗
(1)

(𝑡) = [
𝜕𝜙𝑗(𝑡)

𝜕𝑧
]

𝑦=1,𝑧=1

, 𝑗 = 1,2. 

 

Differentiating (1) and (2) partially with respect to 𝑥 and putting 𝑥 = 1, 𝑦 = 1 and  𝑧 = 1, we 

get 

 

𝑚𝑋,1
(0)

(𝑡) = 𝑒−𝐴𝑡 + 𝜆12 ∫ 𝑒−𝐴𝑢𝑚𝑋,2
(0)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 2𝐿11 ∫ 𝑒−𝐴𝑢𝑚𝑋,1
(0)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

 (5) 

 

𝑚𝑋,2
(0)

(𝑡) = 𝑒−𝐵𝑡 + 𝜆21 ∫ 𝑒−𝐵𝑢𝑚𝑋,1
(0)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 2𝐿22 ∫ 𝑒−𝐵𝑢𝑚𝑋,2
(0)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

 

(6) 
+𝐿21 ∫ 𝑒−𝐵𝑢𝑚𝑋,2

(0)
(𝑡 − 𝑢)𝑑𝑢.

𝑡

0

 

 

Differentiating (1) and (2) partially with respect to 𝑦 and putting 𝑥 = 1, 𝑦 = 1, and 𝑧 = 1, we 

get 

 

𝑚𝑌,1
(0)(𝑡) = 𝜆12 ∫ 𝑒−𝐴𝑢𝑚𝑌,2

(0)(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 2𝐿11 ∫ 𝑒−𝐴𝑢𝑚𝑌,1
(0)(𝑡 − 𝑢)𝑑𝑢

𝑡

0

 (7) 

 

𝑚𝑌,2
(0)

(𝑡) = 𝜆21 ∫ 𝑒−𝐵𝑢𝑚𝑌,1
(0)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 2𝐿22 ∫ 𝑒−𝐵𝑢𝑚𝑌,2
(0)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 𝐿21 ∫ 𝑒−𝐵𝑢 [𝑚𝑌,2
(0)

(𝑡 − 𝑢) + 𝑚𝑌,2
(1)

(𝑡 − 𝑢)] 𝑑𝑢
𝑡

0

+ 2𝐿20 ∫ 𝑒−𝐵𝑢𝑚𝑌,2
(1)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

 

 

(8) 
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Differentiating (1) and (2) partially with respect to 𝑧 and putting 𝑥 = 1, 𝑦 = 1, and 𝑧 = 1, we 

get  

 

𝑚𝑍,1
(0)

(𝑡) = 𝜆12 ∫ 𝑒−𝐴𝑢𝑚𝑍,2
(0)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 2𝐿11 ∫ 𝑒−𝐴𝑢𝑚𝑍,1
(0)

(𝑡 − 𝑢)𝑑𝑢  
𝑡

0

 (9) 

 

𝑚𝑍,2
(0)

(𝑡) = 𝜆21 ∫ 𝑒−𝐵𝑢𝑚𝑍,1
(0)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

 + 2𝐿22 ∫ 𝑒−𝐵𝑢𝑚𝑍,2
(0)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

  

+𝐿21 ∫ 𝑒−𝐵𝑢[𝑚𝑍,2
(0)

(𝑡 − 𝑢) + 𝑚𝑍,2
(1)

(𝑡 − 𝑢)]𝑑𝑢
𝑡

0

+ 2𝐿20 ∫ 𝑒−𝐵𝑢𝑚𝑍,2
(1)

(𝑡 − 𝑢)𝑑𝑢.
𝑡

0

 (10) 

 

Differentiating (3) and (4) partially with respect to 𝑦 and, putting 𝑦 = 1 and  𝑧 = 1, we get 

 

𝑚𝑌,1
(1)

(𝑡) = 𝑒−𝑎𝑡 + 𝜆12 ∫ 𝑒−𝑎𝑢𝑚𝑌,2
(1)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 2𝛼11 ∫ 𝑒−𝑎𝑢𝑚𝑌,1
(1)

(𝑡 − 𝑢)𝑑𝑢,
𝑡

0

 (11) 

 

𝑚𝑌,2
(1)(𝑡) = 𝑒−𝑏𝑡 + 𝜆21 ∫ 𝑒−𝑏𝑢𝑚𝑌,1

(1)(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 2𝛼22 ∫ 𝑒−𝑏𝑢𝑚𝑌,2
(1)(𝑡 − 𝑢)𝑑𝑢

𝑡

0

   

+𝛼21 ∫ 𝑒−𝑏𝑢𝑚𝑌,2
(1)

(𝑡 − 𝑢)𝑑𝑢.
𝑡

0

 (12) 

 

Differentiating (3) and (4) partially with respect to z  and, putting 𝑦 = 1 and 𝑧 = 1, we get  

 

𝑚𝑍,1
(1)(𝑡) = 𝜆12 ∫ 𝑒−𝑎𝑢𝑚𝑍,2

(1)(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 2𝛼11 ∫ 𝑒−𝑎𝑢𝑚𝑍,1
(1)(𝑡 − 𝑢)𝑑𝑢,

𝑡

0

 (13) 

 

𝑚𝑍,2
(1)

(𝑡) = 𝜆21 ∫ 𝑒−𝑏𝑢𝑚𝑍,1
(1)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

+ 2𝛼22 ∫ 𝑒−𝑏𝑢𝑚𝑍,2
(1)

(𝑡 − 𝑢)𝑑𝑢
𝑡

0

  

+𝛼21 ∫ 𝑒−𝑏𝑢𝑚𝑍,2
(1)(𝑡 − 𝑢)𝑑𝑢

𝑡

0

+
𝛼21

𝑏
(1 − 𝑒−𝑏𝑡) + 2

𝛼20

𝑏
(1 − 𝑒−𝑏𝑡). (14) 

 

Taking Laplace transform on both sides of (5) and (6), we get 

 

[(𝑠 + 𝐴) − 2𝐿11]𝑚𝑋,1
(0)∗(𝑠) − 𝜆12𝑚𝑋,2

(0)∗(𝑠) = 1 (15) 

 

−𝜆21𝑚𝑋,1
(0)∗(𝑠) + [(𝑠 + 𝐵) − 2𝐿22 − 𝐿21]𝑚𝑋,2

(0)∗(𝑠) = 1. (16) 

 

Solving (15) and (16), we get, 

 

𝑚𝑋,1
(0)∗(𝑠) =

𝑠 + 𝜆12 + 𝜆21 + 𝑝2

𝐷(𝑠)
 (17) 

 

𝑚𝑋,2
(0)∗(𝑠) =

𝑠 + 𝜆12 + 𝜆21 − 𝑝1

𝐷(𝑠)
 (18) 
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where, 

𝑝1 = 𝐿11 − 𝐷11, 𝑝2 = 𝐿20 + 𝐷22 − 𝐿22, 
𝐷(𝑠) = 𝑠2 + 𝑠(𝜆12 − 𝑝1 + 𝜆21 + 𝑝2) + 𝜆12𝑝2 − 𝜆21𝑝1 − 𝑝1𝑝2. 

 

The zeros of 𝐷(𝑠) are real and distinct, since the discriminant of 𝐷(𝑠) is given by 

 

 Discriminant   = [(𝜆12 − 𝑝1) − (𝜆21 + 𝑝2)]2 + 4𝜆12𝜆21 > 0. 
 

Let 𝜃1 and 𝜃2 be the zeros of 𝐷(𝑠). Then, we have 

 

𝜃1, 𝜃2 =
−(𝜆12 − 𝑝1 + 𝜆21 + 𝑝2) ± √[(𝜆12 − 𝑝1) − (𝜆21 + 𝑝2)]2 + 4𝜆12𝜆21

2
, 

 

𝜃1 + 𝜃2 = 𝑝1 − 𝑝2 − 𝜆12 − 𝜆21,     𝜃1𝜃2 = 𝜆12𝑝2 − 𝜆21𝑝1 − 𝑝1𝑝2, 
 

𝑚𝑋,1
(0)∗(𝑠) =

𝑠 + 𝑝1 − 𝜃1 − 𝜃2

(𝑠 − 𝜃1)(𝑠 − 𝜃2)
,         𝑚𝑋,2

(0)∗
(𝑠) =

𝑠 − 𝑝2 − 𝜃1 − 𝜃2

(𝑠 − 𝜃1)(𝑠 − 𝜃2)
. 

 

Splitting into partial fractions, we obtain 

 

𝑚𝑋,1
(0)∗(𝑠) =

1

(𝜃1 − 𝜃2)
[

𝑝1 − 𝜃2

(𝑠 − 𝜃1)
−

𝑝1 − 𝜃1

(𝑠 − 𝜃2)
] (19) 

 

𝑚𝑋,2
(0)∗(𝑠) =

1

(𝜃1 − 𝜃2)
[

𝑝2 + 𝜃1

(𝑠 − 𝜃2)
−

𝑝2 + 𝜃2

(𝑠 − 𝜃1)
] (20) 

 

Taking inverse Laplace transform on both sides of (19) and (20), we get 

 

𝑚𝑋,1
(0)

(𝑡) =
1

(𝜃1 − 𝜃2)
[(𝑝1 − 𝜃2)𝑒𝜃1𝑡 − (𝑝1 − 𝜃1)𝑒𝜃2𝑡] (21) 

 

𝑚𝑋,2
(0)(𝑡) =

1

(𝜃1 − 𝜃2)
[(𝑝2 + 𝜃1)𝑒𝜃2𝑡 − (𝑝2 + 𝜃2)𝑒𝜃1𝑡] (22) 

 

To compute 𝑚𝑌,1
(0)

(𝑡)  and 𝑚𝑍,1
(0)

(𝑡),  we require 𝑚𝑌,1
(1)

(𝑡) , 𝑚𝑌,2
(1)

(𝑡) , 𝑚𝑍,1
(1)

(𝑡) , and  𝑚𝑍,2
(1)

(𝑡) . To 

obtain 𝑚𝑌,1
(1)

(𝑡), and 𝑚𝑌,2
(1)

(𝑡), we take Laplace transform on both sides of (11) and (12), and get  

 

(𝑠 + 𝑎 − 2𝛼11)𝑚𝑌,1
(1)∗(𝑠) − 𝜆12𝑚𝑌,2

(1)∗(𝑠) = 1 (23) 

 

−𝜆21𝑚𝑌,1
(1)∗(𝑠) + (𝑠 + 𝑏 − 2𝛼22 − 𝛼21)𝑚𝑌,2

(1)∗(𝑠) = 1 (24) 

 

Solving (23) and (24), we get  

 

𝑚𝑌,1
(1)∗(𝑠) =

𝑠 + 𝜆12 + 𝜆21 + 𝛼20 + 𝜇22 − 𝛼22

𝛥(𝑠)
 (25) 
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𝑚𝑌,2
(1)∗(𝑠) =

𝑠 + 𝜆12 + 𝜆21 + 𝜇11 − 𝛼11

𝛥(𝑠)
 (26) 

 

where, 

𝑞1 = 𝛼11 − 𝜇11, 𝑞2 = 𝛼20 + 𝜇22 − 𝛼22,                  

𝛥(𝑠) = 𝑠2 + (𝜆12 + 𝜆21 − 𝑞1 + 𝑞2) + (𝜆12 − 𝑞1)(𝜆21 + 𝑞2) − 𝜆12𝜆21. 
 

The zeros of 𝛥(𝑠) are real and distinct, since the discriminant of 𝛥(𝑠) is given by 

 

 Discriminant   = [(𝜆12 − 𝑞1) − (𝜆21 + 𝑞2)]2 + 4𝜆12𝜆21 > 0. 
 

Let 𝜔1 and 𝜔2 be the zeros of 𝛥(𝑠). Then, we have 

 

𝜔1, 𝜔2 =
−(𝜆12 − 𝑞1 + 𝜆21 + 𝑞2) ± √[(𝜆12 − 𝑞1) − (𝜆21 + 𝑞2)]2 + 4𝜆12𝜆21

2
, 

 

𝜔1 + 𝜔2 = 𝑞1 − 𝑞2 − 𝜆12 − 𝜆21, 𝜔1𝜔2 = 𝜆12𝑞2 − 𝜆21𝑞1 − 𝑞1𝑞2, 
 

𝑚𝑌,1
(1)∗(𝑠) =

𝑠 + 𝑞1 − 𝜔1 − 𝜔2

(𝑠 − 𝜔1)(𝑠 − 𝜔2)
, 𝑚𝑌,2

(1)∗
(𝑠) =

𝑠 − 𝑞2 − 𝜔1 − 𝜔2

(𝑠 − 𝜔1)(𝑠 − 𝜔2)
. 

 

Splitting into partial fractions, (25) and (26) yield 

 

𝑚𝑌,1
(1)∗(𝑠) =

1

(𝜔1 − 𝜔2)
[

𝑞1 − 𝜔2

(𝑠 − 𝜔1)
−

𝑞1 − 𝜔1

(𝑠 − 𝜔2)
] (27) 

 

𝑚𝑌,2
(1)∗(𝑠) =

1

(𝜔1 − 𝜔2)
[

𝑞2 + 𝜔1

(𝑠 − 𝜔2)
−

𝑞2 + 𝜔2

(𝑠 − 𝜔1)
] (28) 

 

Taking inverse Laplace transform on both sides of (27) and (28), we get 

 

𝑚𝑌,1
(1)(𝑡) =

1

(𝜔1 − 𝜔2)
[(𝑞1 − 𝜔2)𝑒𝜔1𝑡 − (𝑞1 − 𝜔1)𝑒𝜔2𝑡] (29) 

 

𝑚𝑌,2
(1)(𝑡) =

1

(𝜔1 − 𝜔2)
[(𝑞2 + 𝜔1)𝑒𝜔2𝑡 − (𝑞2 + 𝜔2)𝑒𝜔1𝑡] (30) 

 

Next, to find 𝑚𝑍,1
(1)

(𝑡) and 𝑚𝑍,2
(1)

(𝑡), we take Laplace transform on both sides of (13) and (14) and 

obtain the following equations: 

 

(𝑠 + 𝑎 − 2𝛼11)𝑚𝑍,1
(1)∗(𝑠) − 𝜆12𝑚𝑍,2

(1)∗(𝑠) = 0 (31) 

 

−𝜆21𝑚𝑍,1
(1)∗(𝑠) + (𝑠 + 𝑏 − 2𝛼22 − 𝛼21)𝑚𝑍,2

(1)∗(𝑠) = =
𝛼21 + 2𝛼20

𝑠
 (32) 
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Solving (31) and (32), we obtain 

 

𝑚𝑍,1
(1)∗(𝑠) =

𝜆12(𝛼21 + 2𝛼20)

𝑠(𝑠 − 𝜔1)(𝑠 − 𝜔2)
 (33) 

 

𝑚𝑍,2
(1)∗(𝑠) =

(𝛼21 + 2𝛼20)(𝑠 + 𝜆12 + 𝜇11 − 𝛼11)

𝑠(𝑠 − 𝜔1)(𝑠 − 𝜔2)
 (34) 

 

Taking inverse Laplace transform on both sides of (33) and (34), we obtain 

 

𝑚𝑍,1
(1)

(𝑡) =
𝜆12(𝛼21 + 2𝛼20)

𝜔1𝜔2
[1 +

1

𝜔1 − 𝜔2

{𝜔2𝑒𝜔1𝑡 − 𝜔1𝑒𝜔2𝑡}] (35) 

 

𝑚𝑍,2
(1)(𝑡) =

𝛼21 + 2𝛼20

𝜔1𝜔2

[(𝜆12 − 𝑞1) +
𝜔2(𝜔1 + 𝜆12 − 𝑞1)𝑒𝜔1𝑡

(𝜔1 − 𝜔2)
−

𝜔1(𝜔2 + 𝜆12 − 𝑞1)𝑒𝜔2𝑡

(𝜔1 − 𝜔2)
] (36) 

 

Now, we are in a position to find 𝑚𝑌,1
(0)

(𝑡) , 𝑚𝑌,2
(0)

(𝑡) , 𝑚𝑍,1
(0)

(𝑡) and 𝑚𝑍,2
(0)

(𝑡).  Taking Laplace 

transform on both sides of (7) and (8), we get  

 

(𝑠 + 𝐴 − 2𝐿11)𝑚𝑌,1
(0)∗(𝑠) − 𝜆12𝑚𝑌,2

(0)∗(𝑠) = 0 (37) 

 

−𝜆21𝑚𝑌,1
(0)∗(𝑠) + (𝑠 + 𝐵 − 2𝐿22 − 𝐿21)𝑚𝑌,2

(0)∗(𝑠) = (𝐿21 + 2𝐿20)𝑚𝑌,2
(1)∗(𝑠) (38) 

 

Solving (37) and (38), we get  

 

𝑚𝑌,1
(0)∗(𝑠) =

𝜆12(𝐿21 + 2𝐿20)

(𝑠 − 𝜃1)(𝑠 − 𝜃2)
𝑚𝑌,2

(1)∗(𝑠) (39) 

 

𝑚𝑌,2
(0)∗(𝑠) =

(𝐿21 + 2𝐿20)(𝑠 + 𝜆12 − 𝑝1)

(𝑠 − 𝜃1)(𝑠 − 𝜃2)
𝑚𝑌,2

(1)∗(𝑠) (40) 

 

Taking inverse Laplace transform on both sides of (39) and (40), we get  

 

𝑚𝑌,1
(0)

(𝑡) =
𝜆12(𝐿21 + 2𝐿20)

(𝜃1 − 𝜃2)(𝜔1 − 𝜔2)
[(𝑞2 + 𝜔1) {

𝑒𝜃1𝑡 − 𝑒𝜔2𝑡

𝜃1 − 𝜔2
−

𝑒𝜃2𝑡 − 𝑒𝜔2𝑡

𝜃2 − 𝜔2
} 

 

−(𝑞2 + 𝜔2) {
𝑒𝜃1𝑡 − 𝑒𝜔1𝑡

𝜃1 − 𝜔1
−

𝑒𝜃2𝑡 − 𝑒𝜔1𝑡

𝜃2 − 𝜔1
}] (41) 

 

𝑚𝑌,2
(0)(𝑡) =

(𝐿21 + 2𝐿20)

(𝜃1 − 𝜃2)(𝜔1 − 𝜔2)
[(𝑞2 + 𝜔1) {(𝜃1 + 𝜆12 − 𝑝1) (

𝑒𝜃1𝑡 − 𝑒𝜔2𝑡

𝜃1 − 𝜔2
)  

−(𝜃2 + 𝜆12 − 𝑝1) (
𝑒𝜃2𝑡 − 𝑒𝜔2𝑡

𝜃2 − 𝜔2
)} − (𝑞2 + 𝜔2) {(𝜃1 + 𝜆12 − 𝑝1) (

𝑒𝜃1𝑡 − 𝑒𝜔1𝑡

𝜃1 − 𝜔1
)  
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−(𝜃2 + 𝜆12 − 𝑝1) (
𝑒𝜃2𝑡 − 𝑒𝜔1𝑡

𝜃2 − 𝜔1
)}] (42) 

 

Replacing 𝑌 by 𝑍 in (7) and (8), we get (9) and (10). Consequently, the expressions for 𝑚𝑍,1
(0)

(𝑡) 

and  𝑚𝑍,2
(0)

(𝑡) are obtained along the similar lines of (41) and (42) and we have 

 

𝑚𝑍,1
(0)

(𝑡) =
𝜆12(𝐿21 + 2𝐿20)(𝛼21 + 2𝛼20)

𝜔1𝜔2(𝜃1 − 𝜃2)
[(𝜆12 − 𝑞1) {(

𝑒𝜃1𝑡 − 1

𝜃1
) − (

𝑒𝜃2𝑡 − 1

𝜃2
)}  

+
𝜔2(𝜔1 + 𝜆12 − 𝑞1)

𝜔1 − 𝜔2
{(

𝑒𝜃1𝑡 − 𝑒𝜔1𝑡

𝜃1 − 𝜔1
) − (

𝑒𝜃2𝑡 − 𝑒𝜔1𝑡

𝜃2 − 𝜔1
)}  

−
𝜔1(𝜔2 + 𝜆12 − 𝑞1)

𝜔1 − 𝜔2
{(

𝑒𝜃1𝑡 − 𝑒𝜔2𝑡

𝜃1 − 𝜔2
) − (

𝑒𝜃2𝑡 − 𝑒𝜔2𝑡

𝜃2 − 𝜔2
)}] (43) 

 

𝑚𝑍,2
(0)(𝑡) =

(𝐿21 + 2𝐿20)(𝛼21 + 2𝛼20)

𝜔1𝜔2(𝜃1 − 𝜃2)
[(𝜆12 − 𝑞1) {(𝜃1 + 𝜆12 − 𝑝1) (

𝑒𝜃1𝑡 − 1

𝜃1
)  

−(𝜃2 + 𝜆12 − 𝑝1) (
𝑒𝜃2𝑡 − 1

𝜃2
)}  

+
𝜔2(𝜔1 + 𝜆12 − 𝑞1)

(𝜔1 − 𝜔2)
{(𝜃1 + 𝜆12 − 𝑝1) (

𝑒𝜃1𝑡 − 𝑒𝜔1𝑡

(𝜃1 − 𝜔1)
) −(𝜃2 + 𝜆12 − 𝑝1) (

𝑒𝜃2𝑡 − 𝑒𝜔1𝑡

(𝜃2 − 𝜔1)
)}  

𝜔1(𝜔2 + 𝜆12 − 𝑞1)

(𝜔1 − 𝜔2)
{(𝜃1 + 𝜆12 − 𝑝1) (

𝑒𝜃1𝑡 − 𝑒𝜔2𝑡

(𝜃1 − 𝜔2)
) −(𝜃2 + 𝜆12 − 𝑝1) (

𝑒𝜃2𝑡 − 𝑒𝜔2𝑡

(𝜃2 − 𝜔2)
)}] (44) 

 

Equations 21, 22, 29, 30, 35,36, 41, 42, 43 and 44 provide explicitly the mean values of the number 

of normal, intermediate, and malignant cells which are present at time .t  If we fix the threshold 

value for the emergence of a malignant cell as 1, then, by solving the equation 𝜈1𝑚𝑍,1
(0)

(𝑡) +

𝜈2𝑚𝑍,2
(0)

(𝑡) = 1 for 𝑡, we can have a rough estimate of the time of occurrence of a malignant cell in 

the population. 

 

5. A Numerical Illustration 
For the purpose of illustration, we fix the parameters as follows: 

 

𝜆12 = 0.6; 𝜆21 = 0.3; 𝐿11 = 0.7; 𝐿20 = 0.6; 𝐿21 = 0.7; 𝐿22 = 0.8; 𝐷11 = 0.2; 𝐷22 = 0.4; 
 𝛼11 = 0.7; 𝛼20 = 0.5; 𝛼21 = 0.6; 𝛼22 = 0.7; 𝜇11 = 0.3; 𝜇22 = 0.2. 
 

5.1 Two Mutation Model 
We have computed the mean number of normal cells in the case of two mutation model for times 

varying from 0.1 to 1.5 in both levels of the environment and depicted the growth in Figure 2. In 

Table 1, we have exhibited a comparative picture for the growth of the normal cells in both levels of 

the environment. It is seen from  Table 1 as well as from Figure 2 that the growth is inhibited in 

level 2. We also find from Table 1 that when the population is initiated with 1 normal cell in level 1 

of the environment at time 𝑡 = 0, the population of normal cells shows an increasing trend right 

from the time 𝑡 = 0. On the other hand, when the population is initiated with 1 normal cell in level 

2 of the environment at time 𝑡 = 0, the population of normal cells shows a decreasing trend in the 
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beginning and then an increasing trend right from the time 𝑡 = 1.4 onwards. This is so because the 

rates in environment level 1 are higher than those in level 2. 
 

 

Table 1. Two mutation: comparison of growth of normal cell 
 

𝑡 𝑚𝑋,1
(0)

(𝑡) 𝑚𝑋,2
(0)

(𝑡) 𝑡 𝑚𝑋,1
(0)

(𝑡) 𝑚𝑋,2
(0)

(𝑡) 𝑡 𝑚𝑋,1
(0)

(𝑡) 𝑚𝑋,2
(0)

(𝑡) 

0.1 1.0492 0.98122 0.6 1.2748 0.91935 1.1 1.4779 0.89939 

0.2 1.0968 0.96477 0.7 1.3168 0.91243 1.2 1.5168 0.89935 

0.3 1.1431 0.9505 0.8 1.358 0.90708 1.3 1.5555 0.90044 

0.4 1.1881 0.93826 0.9 1.3985 0.90318 1.4 1.5938 0.90261 

0.5 1.2319 0.92792 1.0 1.4384 0.90064 1.5 1.6319 0.90579 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2. Graphs of 𝑚𝑋,𝑗
(0)

(𝑡), 𝑗 = 1,2 

 

 

Next, we computed the mean number of intermediate cells in the case of two mutation model for 

times varying from 0.1 to 1.5 in both levels of the environment and depicted the growth in Figure 3. 

In Table 2, we have exhibited a comparative picture for the growth of the intermediate cells in both 

levels of the environment. It is seen from Table 2 as well as from Figure 3 that the growth rate of 

intermediate cells is slightly more when we start with environment in level 1 than the growth rate of 

intermediate cells when we start with environment in level 2; but, after time point 3.3, this growth 

rate is lowered for the case in which the environment begins in level 2. This is so because the rates 

in environment 1 are greater than those in level 2. 

 
Table 2. Two mutation: comparison of growth of intermediate cells 

 

𝑡 𝑚𝑌,1
(0)

(𝑡) 𝑚𝑌,2
(0)

(𝑡) 𝑡 𝑚𝑌,1
(0)

(𝑡) 𝑚𝑌,2
(0)

(𝑡) 𝑡 𝑚𝑌,1
(0)

(𝑡) 𝑚𝑌,2
(0)

(𝑡) 

0.5 0.12943 0.84456 3.0 3.2114 3.4871 3.5 4.1391 3.9212 

1.0 0.47378 1.5241 3.1 3.3902 3.5738 4.0 5.1496 4.3636 

1.5 0.98277 2.0932 3.2 3.5724 3.6604 4.5 6.2428 4.8241 

2.0 1.6222 2.5919 3.3 3.758 3.7471 5.0 7.421 5.3102 

2.5 2.3698 3.0494 3.4 3.9469 3.834 5.5 8.6885 5.8285 
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Figure 3. Graphs of 𝑚𝑌,𝑗
(0)

(𝑡), 𝑗 = 1,2 

 

In Table 3, we have exhibited a comparative picture for the growth of the malignant cells in both 

levels of the environment. It is seen from Table 3 as well as from Figure 4 that the growth rate of 

intermediate cells is slightly more when we start with environment in level 1 than the growth rate of 

intermediate cells when we start with environment in level 2; but, after time point 3.3, this growth 

rate is lowered for the case in which the environment begins in level 2. This is so because the rates 

in environment 1 are greater than those in level 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 4. Graphs of 𝑚𝑍,𝑗
(0)

(𝑡), 𝑗 = 1,2 

 

 

Table 3. Two mutation: comparison of growth of malignant cells 
 

 𝑡 𝑚𝑍,1
(0)

(𝑡) 𝑚𝑍,2
(0)

(𝑡) 𝑡 𝑚𝑍,1
(0)

(𝑡) 𝑚𝑍,2
(0)

(𝑡) 𝑡 𝑚𝑍,1
(0)

(𝑡) 𝑚𝑍,2
(0)

(𝑡) 

0.5 0.032089 0.30879 3.0 3.5234 5.1745 4.4 8.4743 8.6361 

1.0 0.21934 1.0225 3.5 5.0385 6.3541 4.5 8.9136 8.905 

1.5 0.63979 1.9401 4.0 6.8333 7.5932 4.6 9.3647 9.1773 

2.0 1.3252 2.9619 4.2 7.6308 8.1084 5.0 11.2888 10.3039 

2.5 2.2858 4.0445 4.3 8.0467 8.3706 5.5 13.9722 11.8049 
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5.2 One Mutation Model 
We have computed the mean number of normal cells and malignant cells in the case of one 

mutation model for times varying from 0.1 to 1.5 in both levels of the environment and depicted the 

growth in Figure 5 and Figure 6. 

 
Table 4. One mutation: comparison of growth of normal cells 

 

𝑡 𝑚𝑌,1
(1)

(𝑡) 𝑚𝑌,2
(1)

(𝑡) 𝑡 𝑚𝑌,1
(1)

(𝑡) 𝑚𝑌,2
(1)

(𝑡) 𝑡 𝑚𝑌,1
(1)

(𝑡) 𝑚𝑌,2
(1)

(𝑡) 

0.1 1.0377 0.99967 1.8 1.2583 0.93587 4.4 1.1183 0.78633 

0.3 1.1008 0.99725 1.9 1.2577 0.93038 4.6 1.1035 0.77519 

0.5 1.1498 0.99282 2.0 1.2563 0.92483 4.8 1.0888 0.76417 

0.7 1.187 0.98677 2.4 1.2446 0.90203 5.0 1.0741 0.75327 

0.9 1.2146 0.97939 2.5 1.2404 0.89624 5.2 1.0594 0.74251 

1.1 1.2343 0.97096 3.0 1.2143 0.86702 5.4 1.0447 0.73189 

1.3 1.2473 0.96169 3.2 1.2021 0.8553 5.6 1.0302 0.7214 

1.5 1.255 0.95174 3.6 1.1756 0.83199 5.8 1.0158 0.71104 

1.6 1.257 0.94656 4.0 1.1474 0.80896 5.9 1.0086 0.70592 

1.7 1.2581 0.94126 4.2 1.1329 0.79759 6.0 1.0015 0.70083 

 

In Table 4, we have exhibited a comparative picture for the growth of normal cells in both levels of 

the environment. It is seen from Table 4 as well as from Figure 5 that the growth rate of normal 

cells is always more when we start with environment in level 1 than the growth rate of normal cells 

when we start with environment in level 2. This is so because the rates in environment 1 are higher 

than those in level 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

Figure 5. Graphs of 𝑚𝑌,𝑗
(1)

(𝑡), 𝑗 = 1,2 

 

In Table 5, we have exhibited a comparative picture for the growth of malignant cells in both levels 

of the environment. It is seen from Table 5 as well as from Figure 6 that the growth rate of 

malignant cells is slightly higher up to time point 3.2 when we start with environment in level 1 at 

time 𝑡 = 0 than the growth rate of malignant cells when we start with environment in level 2 at 

time 𝑡 = 0. After the time point 3.3, this growth rate is lowered for the case in which the 

environment begins in level 2. This is so because the rates in environment 1 are higher than those in 

level 2. 
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Table 5. One mutation: comparison of growth of malignant cells 
 

𝑡 𝑚𝑍,1
(1)

(𝑡) 𝑚𝑍,2
(1)

(𝑡) 𝑡 𝑚𝑍,1
(1)

(𝑡) 𝑚𝑍,2
(1)

(𝑡) 𝑡 𝑚𝑍,1
(1)

(𝑡) 𝑚𝑍,2
(1)

(𝑡) 

0.1 0.0046437 0.15379 2.3 1.3113 1.7991 4.5 3.1183 2.3601 

0.3 0.039166 0.42733 2.5 1.4757 1.8686 4.7 3.2759 2.398 

0.5 0.10213 0.66183 2.7 1.6415 1.9325 4.9 3.4318 2.4348 

0.7 0.18823 0.86381 2.9 1.808 1.9916 5.1 3.5857 2.4706 

0.9 0.29305 1.0387 3.1 1.9747 2.0468 5.3 3.7378 2.5054 

1.1 0.41296 1.1909 3.3 2.1411 2.0986 5.5 3.888 2.5394 

1.3 0.54491 1.3242 3.5 2.3069 2.1475 5.7 4.0362 2.5726 

1.5 0.68641 1.4417 3.7 2.4719 2.1938 5.9 4.1825 2.6051 

1.7 0.83537 1.5459 3.9 2.6356 2.238 6.0 4.2549 2.621 

1.9 0.99009 1.6391 4.1 2.7981 2.2803 6.1 4.3268 2.6369 

2.1 1.1491 1.723 4.3 2.959 2.3209 6.2 4.3983 2.6526 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Graph of 𝑚𝑍,𝑗
(1)

(𝑡), 𝑗 = 1,2 

 

 

6. Conclusion 
In the present paper, we studied a two-stage mutation stochastic model of carcinogenesis in a two 

level random environment. For the values of the growth parameters already available in the earlier 

papers, we computed the mean values of the number of normal cells, intermediate cells and 

malignant cells in the population at any time 𝑡. We found that the appearance of malignant cells is 

delayed in the two-stage model in comparison with the one-mutation model. Further, we also found 

that the appearance of malignant cells is quicker in environment level 2 than in environment level 

1. This observation justifies the fact that environment has a definite influence in carcinogenesis. In 

a future research, an attempt would be made to include more levels in the environment in order to 

highlight the influence of different levels of environment on the mutational behavior of normal and 

intermediate cells and compare the changes in the production of malignant cells with the results 

obtained in the present paper. 
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