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ABSTRACT 
Numerical investigation of melting of a plane layer with 

transparent and semitransparent boundaries has been carried 

out. The mathematical phase change model is a formulation 

of the One-Phase Stefan problem. The correct statement of 

radiative-conductive heat transfer (RCHT) problem requires 

accounting of optical properties as functions of radiation 

wavelength. To account the selectivity of optical properties 
the model of rectangular bands was applied. In this model 

some rectangular bands are taken in the spectrum with 

constant values of optical coefficients. The algorithm on the 

basis of modified mean fluxes method  has been used for the 

numerical calculation of the radiation transfer equation. The 

energy equations are solved by a finite-difference method.  

The subject of this paper is to study the effect of the 

radiation on the temperature distribution and the velocity of 

the phase change front during melting of  semitransparent 

medium. The first stage of the problem solving is to study 

RCHT in a solid plane layer by radiation and convection 
heating. The second stage is to consider Stefan’s problem. It 

is assumed that liquid phase sublimates and it is removed by 

convection. Numerical results of the temperature 

distribution, radiation fluxes and the position of the phase 

change front are presented in this paper.  The numerical 

results are obtained first for the material with selective 

absorption of radiation with using One-Phase Stefan 

problem. 

 

INTRODUCTION 
Investigations of radiative-conductive heat transfer 

(RCHT) in a semitransparent medium with phase changes 
are important in some practical applications.These problems 

arise in glassmanufacturing, technologies of translucent 

crystal growth, development of effective methods of heat 

protection and under the natural conditions, when 

considering the process of glaciers and ice melting in Arctic. 

In particular, the presented model of melting the translucent 

layer with gray coating under the certain boundary 

conditions simulates the ice melting in the Arctic lake with 

the snow (gray) coating at solar irradiation. 

There are many works simulating the two-phase 

problems in semitransparent material. The experimental and 
numerical studies of melting the translucent material [1] as 

well as pulsed alumina heating and melting by laser 

radiation [2,3] are the expressive examples of these 

problems. The numerical solutions of such problems are 

considered in detail in monographs [4-6].The strict account 

for dependence of absorbance of the medium volume on 

radiation frequency is challenging. To simplify it different 

models are used. One of the most simple and convenient is 

model of rectangular bands. In this case, the absorption 

coefficients and other values that describe the optical 

properties are assumed constant within a certain frequency 

band Δν. The required accuracy is achieved by increasing 

the number of bands and selection of appropriate values of 

optical coefficients in the spectral range [4]. The single-

phase Stefan problem [7-10] as a particular case of the two-

phase problem has the fundamental differences from the 

latter and at the same time,it is more complex. This paper 

reports results of numerical calculation of the single-phase 
Stefan problem for selectively absorbing medium with 

transparent and translucent gray boundaries. Consideration 

of selective conditions of radiation absorption on the right 

boundary is fundamentally important for the single-phase 

Stefan problem modeling the processes of melting of 

translucent crystals. In future it seems possible to simulate 

the thermal state of the water stratum under the action of 

solar radiation. 

NOMENCLATURE 
 

a   [m2
/s]             thermal diffusivity  

 c  [J/kgK]           heat capacity  

h  [W/(m
2
 K)]     heat-transfer coefficient at sample  

A           absorption factor  

D                         transmission factor  

R           reflection coefficient  

n           refraction coefficient  

E  [W/m
2
]           hemispherical density of  radiation flux  

m           coefficient of radiation intensity distribution 

l           coefficient of radiation diffusion  

L0    [m]                initial sample thickness 

L(t) [m]           sample thickness during phase transition  

s           dimensionless thickness  

T      [K]              temperature  

T      [s]           time  

x      [m]              variable coordinate of sample thickness  

 

Greek symbols 

α     [m
-1

]             coefficient of volume absorption  

δ      [m]               infinite small distance from coordinate x 

ε           degree of blackness of sample boundaries  

Ф           dimensionless semispherical density of radiation flux 

η           dimensionless time 

λ    [W/(m K)]    thermal conductivity  

γ     [J/kg]            latent heat of phase transition  

μ           cosine of radiation propagation angle within solid angle     

                               

ϴ          dimensionless temperature 

ρ    [kg/m
3
]        density of semitransparent sample  

σ0   [W/(m
2
 K

4
)] Stefan-Boltzmann constant  

ξ          dimensionless coordinate 

τ          optical thickness 

 

Indexes 

i          left i=1, right i =2 sides of medium 

±          intensities forward (    ) and backwards 

                          (    ) 

f                         phase change 

j                         number of rectangular bands 

ν                        related to frequency 

*                        the incident radiation flux 
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PROBLEM STATEMENT  

In Figure 1, there is the geometrical scheme of the 

problem, which is the three-layer system, where semi-

infinite layers I and III correspond to the external conditions 

with air refractive index n0=1 at corresponding air 

temperatures T1 and Т2, and layer II corresponds to the 

studied solid translucent medium with refractive index n = 

1.5. 

Heating and following melting of plane layer II of 

selectively absorbing translucent medium with coefficient of 

volume absorption of radiation  and heat conductivity  

are studied in this work. The boundaries absorb, reflect and 

transmit radiation so that 1,i i iA R D   At that, the validity 

of Kirchhoff law is assumed: ,i iA   

The solution of the problem includes two stages. The 

first stage is reduced to consideration of non-stationary 

radiant-convective heat transfer in the process of heating a 

selective translucent sample with the gray boundaries.  At 

the second step, when the right sample boundary achieves 

the melting point ( ( ), ) fT L t t T , the Stefan problem is 

considered.  At that, the liquid phase formed at the boundary 

is carried away by a convective flow.  

 

 
 

 

 
 

 

Figure 1      Geometrical scheme of the problem 

 

Position of interface L(t)  is determined from the 

solution to the boundary problem, reduced to 

determination of the temperature fields and flow densities 

in a solid phase layer of a variable (from x = 0 to x = L(t)) 

thickness (Fig. 1). 

The equation of energy conservation takes form: 

( , ) ( , )
( , ) .

T x t T x t
c E x t

t x x
 

   
  

   
                (1) 

Here ( , )E x t is the density of resultant radiation flux in 

cross-section x at time t. 

The boundary conditions of energy equation (1) for 

arbitrary time 0t  are written as: 

 

 

1 1 1,

2 2 2,

0, 0,

, ( ),

x
x

x
x

T
h T T E x

x

T L
h T T E x L t

x t









 








     



 
    

 

     (2) 

where 1, 1, (0, ),E E t  2, 2, ( ( ), )E E L t t  are the densities 

of resultant radiation flux at boundary 1 (x = 0) and

02 ( , ( ))x L L t at time t0. , , ( )i iE E x     , ( ),iE x  i 

= 1, 2 is the difference of flux densities of resultant radiation. 

At the layer-medium boundary, x  is the coordinate in 

finitely close to coordinate x; hi  is the coefficient of heat 

transfer with the ambient medium, iT is the temperature of 

the medium, surrounding the flat layer,  is the latent heat 

of melting,  is the density at the phase change temperature

;fT indexes i = 1, 2 correspond to the left and right media 

(layer-sample boundaries). Radiation component ,iE  of 

boundary conditions (2) takes into account the processes of 

radiation reflection and transmission by the sample 

boundaries, and it is written in the form, which considers 

only absorption and radiation of boundaries [12]: 

 

   
   

4 2 4
1, 1 0 1 1 0

* 2 4
2, 2 2 0

1 ( , ),

1 ( , ), (

0

).

,E A E x T n T x t

E A E x E n T x t

x

x L t

 

 

   

  





     
 

      




      

(3) 

It is assumed that the phase transition at boundary 2 

does not affect the optic properties, therefore ,i ,iA iR and

iD are considered constant, and in the second equation of 

system (3) it should be taken into account that ( ) ,fT x T  

x = L(t), t> 0. While considering the first stage of radiant-

conductive heating of a sample, in the second equation of 

boundary conditions (2) ( ),fT T x 0 ,x L . The system of 

equations (1)(3) is added by initial condition 

 

( , 0) ( ),T x f x 0(0) .L L                                        (4) 

 

To solve the radiation part of the problem, the modified 

mean fluxes method for the three-layer system is used. The 

spectral dependences of  absorption coefficient are 

presented in the Table 1. It takes into account high 

absorption in the IR region and transparent in the visible 
region [4]. 

 

Table 1 

Spectral dependences of  absorption coefficient 

j νj 
, 10

14
,Hz λj 

, µm αj 
,m

1 

1 00.6 ∞5 500 

2 0.61.2 52.5 160 

3 1.22.3 2.51.3 5 

4 2.33.84 1.30.78 0.1 

5 3.846 0.780.5 0.2 
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The flux densities are set at the external boundaries of 

the system at n0= 1: 

,I 1

*
,III

0 : ( ),

( ) : ;

j

j

x E B T

x L t E E






  

  
                                       (5) 

in the intermediate layer at n > n0 

 

 

2
0

,II 1 12

2
0

,II 2 22

1 , 0,

1 , ( ),

j j j

j j j

n
E R E R E x

n

n
E R E R E x L t

n

  

  

   

   

                  (6) 

 j is a number of the spectral band ∆ν, Bν is the Planck 

function of black body radiation; the Roman figures in the 

indices indicate the number of layers: I and III are the outer 

layers, II is the intermediate layer, considered by the current 

study (further, we will skip index II). Here, we take into 

account that the reflection coefficient in the intermediate 

layer is determined by total internal reflection, which is 

obtained from relationship 

   2 2
01 1 .i iR n R n                                               (7) 

The radiation flux is determined from relationship 

 
5

1

.j j

j

E E E
 



 
 

Transformation of boundary problem (1)(4) to the 
dimensionless form is performed with the use of Lagrangian 

transformations ( )x L t   [7]. This variable allows 

registration of a coordinate of the phase transition front 

within 0 1,   at that, the front becomes plane-parallel 

(the method of front straightening). Equation system (1), (2) 

and (4), with consideration of (3) is transformed to the 

boundary problem of the following form: 

 

2

2 2

( , )( , ) ( , ) 1 ( , ) 1
,

s

s sNs

          


  

  
  

  

 0 1  ,          (8)                                                                                                             

   
4 4

21
1 1 1 1

(0, ) (0, )
Bi (0, ) 1 0,

4 4

s
s A n

N


   
   




  

               

   (9)                                                 

     
4

* 2
2 2 2 2

(1, ) (1, )
Bi (1, ) (1, ) 1 ,

4 St

s ss
s A F n

N


   
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


 

        
   

       (10) 

( ,0) ( ),f   (0) 1,s  (1, ) 1,                                           (11) 

here ,fT T  ( ),x L t  0( ) ( ) ,s L t L   

 2
0pt c L    is dimensionless time,  3

0 04 fN T L   

is radiant-conductive parameter,  4
0( , ) ( , ) 4 fE x t T       

is dimensionless density of radiation flux,  * * 4
04 fF E T  is 

dimensionless density of radiation flux falling on a plate 

from the right, 0Bii ih L   is the Biot number, s ds d
 

is the velocity of melting front propagation, St f pT c   is 

the Stefan number.  j j

j


      in equations 

(8)(10) are determined from the solution of the radiant 
transfer equation in a plane layer of emitting and absorbing 

medium with the known temperature distribution over the 

layer. 

A wide field of possibilities in terms of solution 

simplicity and efficiency of results is offered by the 

modified method of mean fluxes [4]. In this method, the 

radiation transfer equation is transformed to the system of 

two nonlinear differential equations for a plane layer of 

translucent medium. The differential analogue of transfer 

equation for hemispherical fluxes j
  is written as: 

   

   

2
0( , ) ( , ) ( ) ( , ) ( ) ( , ) ,

( ) ( ) ( , ) ( ) ( ) ( , ) ( , ) ( , ) 0.

j j j j j j
j

j j j j j j j j
j

d
m m n

d

d
m l m l

d

         


           


     

       

       

      

      12) 

The boundary conditions for equation system (11) in the 

dimensionless form are obtained from conditions (5) and (6) 

in the form: 

,I ,I 0 1

*
,III ,III

0 : ( ),

( ) : ,

j j

j jL t F

 







    

   
                                (13) 

 

 

2
0

,II 1 12

2
0

,II 2 22

1 , 0,

1 , ( ).

j j j

j j j

n
R R

n

n
R R L t

n




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  

      

      

                    (14) 

Here  4
0 4 fB T   , j j x    is the optic thickness of 

a layer. In equations (12)-(14), 




 

)0(1

)1(0

4
),(2

4

1
)( 


 



ddI
T

ji

f

jiji

j

 are the 

dimensionless densities of the hemispherical radiation fluxes 

in the band j;  The values of coefficients ,jm  jl  are 

determined from the recurrent relationship obtained by 

means of a formal solution to the equation of radiation 
transfer [4]. 

The solution of the problem is to determine of 

temperature ( , )    and radiation fluxes ( , )    in layer 

II  10 1,0; 0 ,G        .
 
 The position of the phase 

change front ( )s   changes from 1 to 0. Equations (8)(11) 

is solved by the finite-difference method. Implicit finite-

difference scheme was developed by integral-interpolation 
method. The equable mesh was used. The system of finite-

difference equations was solved by method of running with 

method of  iteration. When solving the radiation problem, 

the iterations are used, and at every step of these iterations, 

the equations (12)  (14) is solved by the method of matrix 
factorization. Fast convergence of this method allows us to 

obtain the results with a high degree of accuracy. Numerical 

algorithm was tested on known analytical results and results 

by other authors [4]. 
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RESULTS 
In this section we present the results of numerical 

simulation of heating the sample of a translucent material  

with the following physical parameters: 0 0,1S  m, 

1 300 K,T   2 900 K,T   Tf = 1000 K, E
*
 = 200 kW/m2; the 

thermal-physical properties of this material are close to the 

properties of fluorite and they are as follows:  = 2000 kg/m3, 

 = 1 W/(m·K), 
610a   m

2
/s, latent heat of phase transition 

is  = 500 kJ/kg. Absorption coefficients are presented in 

Table 1. 

In the numerical experiment, it was assumed that heat 

transfer from the layer boundaries corresponds to the 

conditions of natural convection: h1,2= 8 W/(m2·K) at 1,2 = 

0 and 0.1, heat transfer on the left boundary at 1,2 = 0.2 was 

assumed to be h1=30 W/(m
2
·K),at 1,2 = 0.3 h1 = 

80 W/(m
2
·K). Heat transfer coefficient on the right 

boundary h2 remained unchanged. These values have been 

chosen considering the fact that at heat transfer h1 = 80 

W/(m2·K) and high density of radiation flux the temperature 

of the left boundary undergoes uncharacteristic with 

increasing its emissivity. The values of emissivity 1,2  = 0.3 

were chosen assuming that inner reflection coefficient 1,2R , 

derived from relationship (7), equals 0.6. The inner 

transmittance according Kirchhoff law takes value 

1,2 1,2 1,21 0,1.D A R       At 1,2  > 0.4 the boundaries of 

the considered medium becomes not transmitting, but it 

reflects and absorbs radiation. 

A temperature increase of the left boundary is shown in 

Figure 2a. For 1,2 < 0.2, the growth dynamics can be 

characterized by three stages: to a certain level a rapid 

increase in temperature was observed, then there was a slow 

increase, and then to the end of the process there was a rapid 

temperature increase to reaching the phase change 

temperature. The temperature increase of the left boundary 

at 1,2 > 0.2 is restrained by more intensity heat transfer, and 

the melting process decelerates, and leads to the fact that the 

layer is melted incompletely (Figure 2b). 

 

 
 

Figure 2      The temperature on the left boundary (а) and 

change of the plane layer thickness (b) with time at different 

values of emissivity and heat transfer coefficient. 

1  1,2 = 0, h1 = 8 W/(m2K), 2  1,2 = 0.1, h1 = 8 

W/(m2K),  

3  1,2 = 0.2, h1 = 30 W/(m2K), 4  1,2 = 0.3, h1 = 80 

W/(m2K). 

 

 

 

 
 

Figure 3    Temperature distribution (а) and motion of the 

melting front (b) for models of selectively absorbing 

medium (solid lines) and gray medium (dashed lines). 

1- θ(1, η) = 0.4, 2 - θ(1, η) =  1, 3-  s(η) = 0.3, 4 - s(η) - final. 
 

The model of selectively absorbing medium is compared 

with the model of gray medium at 1,2  0.1 in Figure 3. 

Absorption coefficient of the gray medium was chosen by 

means of the numerical experiment and it was assumed  = 

40 m
1

. The temperature field of the gray medium (Figure 
3а) at the stage of heating (dashed lines 1 and 2) differs 

significantly in the medium volume, and that the boundary 

temperatures coincide. In the model of gray medium, the 

temperature increase in the volume is higher than in a layer 

with selective optical properties, and this is explained by the 
difference of the optical thicknesses of the medium. At the 

stage of phase transition (curve 3), the temperature increase 

for the model with selective radiation is higher than for the 

model of gray medium, and almost equals it by the end of 

phase transition. The melting process is two times faster in 

the gray medium (Figure 3b). 

 

 

CONCLUSION 
The numerical results are obtained first for the material 

with selective absorption of radiation. To solve the radiant 

part of the problem, the modified method of mean fluxes for 
the three-layer system was used. At that, the optic properties 

were assumed artificially combined: the studied layer of the 

medium (solid phase) was assumed selective and its 

boundaries were assumed gray.  

Calculation of the temperature on the left boundary of a 

plane layer showed that the temperature increase of the left 

boundary at increasing degree of blackness (1,2 > 0.2) is 

restrained by more intensity heat transfer, and the melting 

process decelerates, and leads to the fact that the layer is 

melted incompletely. This simulation is may be important at 

flood forecast in the north. 

Numerical results of the temperature distribution and 

motion of the melting front are compared for models of 

selectively absorbing medium and gray medium. The 

temperature fields differ significantly in the medium 

volume, and that the boundary temperatures almost 

coincide. The melting process is two times faster in the gray 

medium 
Comparison obtained numerical results points at the 

importance to take  into account selective radiation 

absorption by the medium, when comparing the numerical 

results with experimental data. 
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On the process of phase transition overheating of the 

solid layer  near the right boundary is observed, which does 

not exceed 5% of the melting point at front position near s  

0.7. Overheating of the solid phase is determined by heat 

exchange at a fixed temperature of phase change, as well as 

the independence of the determining parameters on the 

temperature. By the end of the melting process the 

temperature gradient decreases, the layer becomes almost 

isothermal. The temperature field around the left boundary 

depends essentially on heat transfer, which prevents surface 

overheating. 
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