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ABSTRACT The visual beauty, self-similarity, and complexity of Mandelbrot sets and Julia sets have made
an attractive field of research. One can find many generalizations of these sets in the literature. One such
generalization is the use of results from fixed-point theory. The aim of this paper is to provide escape
criterion and generate fractals (Julia sets and Mandelbrot sets) via CR iteration scheme with s-convexity.
Many graphics of Mandelbrot sets and Julia sets of the proposed three-step iterative process with s-convexity
are presented. We think that the results of this paper can inspire those who are interested in generating
automatically aesthetic patterns.

INDEX TERMS Iteration schemes, Julia set, Mandelbrot set, escape criterion, s-convexity.

I. INTRODUCTION
Complex graphics of nonlinear dynamical systems is an
inspiring field of interest with various applications in sci-
ences, art, textile industries, engineering and many other
areas of human activity. In 1918, Julia [1] tried to get the
iteration procedure of complex function f (z) = z2 + c
where c be a complex number and obtained a Julia set. Julia
sets are astonishing examples of computational research that
were far ahead of its time. These mathematical objects were
seen when computer graphics became available [2]. On the
other hand, Benoit Mandelbrot introduced the Mandelbrot
set in 1979 by taking c as a complex parameter in complex
quadratic function [3]. Mandelbrot sets and Julia sets are
some of the best known illustrations of a highly complicated
chaotic systems generated by a very simple mathematical
process. Mandelbrot introduced the name “Fractal” for such
self similar structures. Fractals are not just complex shapes
and pretty pictures generated by computers. Anything that
appears random and irregular can be a fractal. Fractals are the
exclusive, random patterns left behind by the unpredictable
movements of the chaotic world at work. The most impor-
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tant use of fractals in computer science is the fractal image
compression. This type of compression uses the fact that
the real world is well described by fractal geometry. In this
way, images are compressed much more than by usual ways
(e.g., JPEG or GIF file formats). Another advantage of fractal
compression is that when the image is enlarged, there is no
pixelization. The picture seems very often better when its size
is increased.

Julia sets and Mandelbrot sets have been generalized in
several different manners. One of these generalizations is
the use of various iteration processes from the fixed point
theory. In the fixed point theory there exist many approximate
methods of finding fixed points of a given mapping that are
based on the use of different feedback iteration processes.
These methods can be used in the generalization of Julia
sets and Mandelbrot sets. In 2004, superior Julia sets and
Mandelbrot sets introduced by Rani and Kumar [4], [5] by
using Mann iteration scheme which is one-step fixed point
iterative process. Rana et al. [6] and Chauhan et al. [7]
presented relative superior Julia sets and Mandelbrot sets
via Ishikawa iteration scheme which is two-step fixed point
iterative procedure. Kang et al. [8], [9] introduced relative
superior Mandelbrot sets and tricorn & multicorns via S-
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iteration scheme. Also, discussed the method of generat-
ing fractal images for S-iteration procedure and proved that
S-iteration scheme converges faster than Ishikawa iteration
scheme in complex plane. Julia sets and Mandelbrot sets
via Noor iteration process, which is a three-step iterative
procedure, are presented in [10].

Convexity and its generalization performs an important
role in many fields of mathematics, essentially in opti-
mization theory. A common generalization of s-convexity,
approximate convexity and consequences of Bernstein and
Doetsch [11] are dealt with presented paper. Breckner and
Orbán [12] introduced the notion of s-convexity and rational
s-convexity. Some new results about Hadamard’s inequality
for s-convex functions are discussed in [?], [13], [14]. Hudzik
and Maligranda [15] discussed a few results connecting with
s-convex functions in second sense. Takahashi [16] first intro-
duced concept of convex metric space, which is more general
space, and each linear normed space is a special example of
the space.

The junction of a s-convex combination [17] and var-
ious iteration schemes was studied in numerous papers.
Mishra et al. [18], [19] established fixed point results for
relative superior Julia sets and tricorn & multicorns by
using Ishikawa iteration with s-convexity. Fixed point
results with s-convexity have been studied extensively by
Kang et al. [20], Nazeer et al. [21], Goyal and Prasad
[22] and Cho et al. [23] for several fixed point iterative
schemes. Recently, Kwun et al. [24], [25] generated fractals
via Jungck-CR and Modified Jungck-S iterations with s-
convexity. In these recently published papers the authors used
Jungck-type iterative procedures to establish escape criterion
and generated few patterns of Julia sets and Mandelbrot sets.
Chugh et al. [26] introduced and proved that CR iteration
converges to a fixed point faster than Mann, Ishikawa, Noor
and S-iteration procedures. A pair of maps is used in Jungck-
type iterative procedures whereas a single map is used in
CR iteration that is main difference between these iterative
processes. In this paper we established escape criterion which
perform important role to generate Mandelbrot sets and Julia
sets in CR orbit with s-convexity and obtained large variety
of these sets that are quite different from those existed in the
literature.

The paper is organized as follows: In Sec. II we intro-
duce some basic definitions. In Sec. III we established the
escape criterion for quadratic, cubic and (k + 1)th degree
polynomials. Moreover, we present generalized Mandelbrot
sets and Julia sets in Sec. IV. Finally, in Sec. V we give some
concluding remarks.

II. PRELIMINARIES
Definition 1: (see [27], p255,256) Let f : C −→ C sym-

bolize a polynomial of degree≥ 2. Let Ff be the set of points
inC whose orbits do not converge to the point at infinity. That
is, Ff = {x ∈ C : {|f n(x)| , nvaries from0to∞}is bounded}.
Ff is called as filled Julia set of the polynomial f . The

boundary points of Ff are called as the points of Julia set of
the polynomial f or simply the Julia set.
Definition 2: (see [28], Mandelbrot set) The Mandelbrot

set M consists of all parameters c for which the filled Julia
set of Qc is connected, that is

M = {c ∈ C : K (Qc) is connected }. (1)

In fact,M contains an enormous amount of information about
the structure of Julia sets. The Mandelbrot set M for the
quadratic Qc(z) = z2 + c is defined as the collection of all
c ∈ C for which the orbit of the point 0 is bounded, that is

M = {c ∈ C : {Qnc(0)}; n = 0, 1, 2, ...is bounded}. (2)

We choose the initial point 0, as 0 is the only critical point of
Qc.
Definition 3: Let C be a nonempty set and T : C → C be

a mapping. For any point z0 ∈ C , the Picard’s orbit is defined
as the set of iterates of a point z0, that is;

O(T , z0) = {zn; zn = T (zn−1).n = 1, 2, 3, ...}, (3)

where the orbit O(T , z0) of T at the initial point z0 is the
sequence {T nz0}.
Definition 4: (see [26], CR orbit) Let C be a nonempty set

and T : C → C be a mapping. Consider a sequence {zn} of
iterates for initial point z0 ∈ C such that

zn+1 = (1− λ(1)n )tn + λ
(1)
n Ttn;

tn = (1− λ(2)n )Ttn + λ
(2)
n Twn;

wn = (1− λ(3)n )zn + λ
(3)
n Tzn; n ≥ 0,

(4)

where λ(1)n , λ
(2)
n ∈ (0, 1], λ(3)n ∈ [0, 1] and {λ(1)n }, {λ

(2)
n }, {λ

(3)
n }

are sequences of positive numbers. The above sequence of
iterates is called as CR orbit, which is a function of five tuples
(T , z0, λ

(1)
n , λ

(2)
n , λ

(3)
n ).

Definition 5: (s-convex combination [17]) Let z1, z2, ...,
zn ∈ C and s ∈ (0, 1]. The s-convex combination is defined
in the following way:

λs1z1 + λ
s
2z2 + ...+ λ

s
nzn, (5)

where λk ≥ 0 for k ∈ {1, 2, ..., n} and
n∑

k=1
λk = 1.

It is noticed that for s = 1 the s-convex combination
arrange to the normal convex combination. We shall write the
s-convex combination in the CR iteration. We take z0 = z ∈
C , λ(1)k = λ1, λ

(2)
k = λ2 and λ

(3)
k = λ3 then we can write CR

iteration scheme with s-convexity in the following way where
Qc(zn) be a quadratic, cubic or (k + 1)th degree polynomial,

zn+1 = (1− λ1)stn + λs1Qc(tn)
tn = (1− λ2)sQc(zn)+ λs2Qc(wn)
wn = (1− λ3)szn + λs3Qc(zn), n ≥ 0,

(6)

where λ1, λ2, s ∈ (0, 1] and λ3 ∈ [0, 1].

VOLUME 7, 2019 69987



Y. C. Kwun et al.: Fractal Generation via CR Iteration Scheme With S-Convexity

III. MAIN RESULT
Escape criterion perform an important role in the analysis and
generation of Mandelbrot sets and Julia sets. Now, we define
escape criterion for Mandelbrot sets and Julia sets in CR orbit
with s-convexity.

A. ESCAPE CRITERION FOR QUADRATIC POLYNOMIAL
Theorem 1: Suppose that |z| ≥ |c| > 2

sλ1
, |z| ≥ |c| > 2

sλ2
and |z| ≥ |c| > 2

sλ3
here c be a complex number. Let t◦ =

t,w◦ = w and z◦ = z then sequence {zn} define as
zn+1 = (1− λ1)stn + λs1Qc(tn)
tn = (1− λ2)sQc(zn)+ λs2Qc(wn)
wn = (1− λ3)szn + λs3Qc(zn), n ≥ 0,

(7)

where λ1, λ2, s ∈ (0, 1], λ3 ∈ [0, 1] and Qc(z) = z2+c. Then
|zn| → ∞ as n→∞.

Proof: Consider

|w| =
∣∣(1− λ3)sz+ λs3Qc(z)∣∣ .

For Qc(z) = z2 + c,

|w| =
∣∣∣(1− λ3)sz+ λs3(z2 + c)∣∣∣

=

∣∣∣(1− λ3)sz+ (1− (1− λ3))s(z2 + c)
∣∣∣ .

As 1− s+ sλ3 ≥ sλ3 and |z| ≥ |c|, so by binomial expansion
upto linear terms of λ3 and (1− λ3), we obtain

|w| ≥
∣∣∣(1− sλ3)z+ (1− s(1− λ3))(z2 + c)

∣∣∣ ,
≥

∣∣∣(1− sλ3)z+ (1− s+ sλ3)(z2 + c)
∣∣∣ ,

≥

∣∣∣(1− sλ3)z+ sλ3(z2 + c)∣∣∣ ,
≥

∣∣∣sλ3z2 + (1− sλ3)z
∣∣∣− |sλ3c| ,

≥

∣∣∣sλ3z2 + (1− sλ3)z
∣∣∣− |sλ3z| ,

≥

∣∣∣sλ3z2∣∣∣− |(1− sλ3)z| − |sλ3z| ,
≥

∣∣∣sλ3z2∣∣∣− |z| + |sλ3z| − |sλ3z| ,
≥ |z| (sλ3 |z| − 1). (8)

And

|t| =
∣∣(1− λ2)sQc(z)+ λs2Qc(w)∣∣

=

∣∣∣(1− λ2)s(z2 + c)+ (1− (1− λ2))s(w2
+ c)

∣∣∣ . (9)
As 1− s+ sλ2 ≥ sλ2, so by binomial expansion upto linear
terms of λ2 and (1− λ2), we obtain

|t| ≥
∣∣∣(1− sλ2)(z2 + c)+ (1− s(1− λ2))(w2

+ c)
∣∣∣ ,

≥

∣∣∣(1− sλ2)(z2 + c)+ (1− s+ sλ2)(w2
+ c)

∣∣∣ ,
≥

∣∣∣(1−sλ2)(z2+c)+sλ2((|z| (sλ3 |z|−1))2+c)∣∣∣ . (10)

Since |z| > 2
sλ3

implies sλ3 |z|−1 > 1 and |z|2 (sλ3 |z|−1)2 >
|z|2 using this in (10) and |z| ≥ |c| we have

|t| ≥
∣∣∣(1− sλ2)(z2 + c)+ sλ2(|z|2 + c)∣∣∣ ,
≥

∣∣∣(1− sλ2)z2 + (1− sλ2)c+ sλ2 |z|2 + sλ2c
∣∣∣ ,

≥

∣∣∣z2 + c∣∣∣ ,
≥

∣∣∣z2∣∣∣− |c| ,
≥

∣∣∣z2∣∣∣− |z| ,
≥ |z| (|z| − 1). (11)

Also for

z1 = (1− λ1)st + λs1Qc(t)

|z1| =
∣∣∣(1− λ1)st + (1− (1− λ1))s(t2 + c)

∣∣∣ .
As 1− s+ sλ1 ≥ sλ1 and |z| ≥ |c|, so by binomial expansion
upto linear terms of λ1 and (1− λ1), we obtain

|z1| =
∣∣∣(1− sλ1)t + (1− s(1− λ1))(t2 + c)

∣∣∣
≥

∣∣∣(1− sλ1) |z| (|z| − 1)

+ (1− s+ sλ1)((|z| (|z| − 1))2 + c)
∣∣∣

≥

∣∣∣(1− sλ1) |z| + sλ1(|z|2 + c)∣∣∣ ,
≥

∣∣∣(1− sλ1) |z| + sλ1 |z|2∣∣∣− |sλ1c|
≥

∣∣∣sλ1 |z|2 + (1− sλ1) |z|
∣∣∣− |sλ1z| ,

≥

∣∣∣sλ1 |z|2∣∣∣− |(1− sλ1) |z|| − |sλ1z|
≥ sλ1

∣∣∣z2∣∣∣− |z| + sλ1 |z| − sλ1 |z|
≥ |z| (sλ1 |z| − 1).

Since |z| > 2
sλ1

implies sλ1 |z| − 1 > 1, there exist a number
δ > 0, such that sλ1|z| − 1 > 1+ δ > 1. Therefore

|z1| > (1+ δ) |z| ,

|z2| > (1+ δ)2 |z| ,
...

|zn| > (1+ δ)n |z| .

Hence |zn| −→ ∞ as n→∞ and proved. �
Corollary 1: Suppose that |c| > 2

sλ1
, |c| > 2

sλ2
and

|c| > 2
sλ3
, then, the orbit CRSO(Qc, 0, sλ1, sλ2, sλ3) escapes

to infinity.
Corollary 2: (Escape Criterion): Suppose that |z| >

max{|c| , 2
sλ1
, 2
sλ2
, 2
sλ3
}, then |zn| > (1+λ)n |z| and |zn| −→

∞ as n→∞.

B. ESCAPE CRITERION FOR CUBIC POLYNOMIALS
We shall prove the following result for the cubic polynomial
Qc(z) = z3 + c, where c be a complex number, in CR orbit
with s-convexity.
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Theorem 2: Suppose that |z| ≥ |c| > ( 2
sλ1

)
1
2 , |z| ≥ |c| >

( 2
sλ2

)
1
2 and |z| ≥ |c| > ( 2

sλ3
)
1
2 here c be a complex number.

Let t◦ = t,w◦ = w and z◦ = z then sequence {zn} define as
zn+1 = (1− λ1)stn + λs1Qc(tn)
tn = (1− λ2)sQc(zn)+ λs2Qc(wn)
wn = (1− λ3)szn + λs3Qc(zn), n ≥ 0,

(12)

where λ1, λ2, s ∈ (0, 1], λ3 ∈ [0, 1] and Qc(z) = z3+c. Then
|zn| → ∞ as n→∞.

Proof: Consider

|w| =
∣∣(1− λ3)sz+ λs3Qc(z)∣∣ .

For Qc(z) = z3 + c,

|w| =
∣∣∣(1− λ3)sz+ λs3(z3 + c)∣∣∣

=

∣∣∣(1− λ3)sz+ (1− (1− λ3))s(z3 + c)
∣∣∣ .

As 1− s+ sλ3 ≥ sλ3 and |z| ≥ |c|, so by binomial expansion
upto linear terms of λ3 and (1− λ3), we obtain

|w| ≥
∣∣∣(1− sλ3)z+ (1− s(1− λ3))(z3 + c)

∣∣∣
≥

∣∣∣(1− sλ3)z+ (1− s+ sλ3)(z3 + c)
∣∣∣

≥

∣∣∣(1− sλ3)z+ sλ3(z3 + c)∣∣∣ ,
≥

∣∣∣sλ3z3 + (1− sλ3)z
∣∣∣− |sλ3c|

≥

∣∣∣sλ3z3 + (1− sλ3)z
∣∣∣− |sλ3z| ,

≥

∣∣∣sλ3z3∣∣∣− |(1− sλ3)z| − |sλ3z|
≥

∣∣∣sλ3z3∣∣∣− |z| + |sλ3z| − |sλ3z|
≥ |z| (sλ3 |z|2 − 1). (13)

And

|t| =
∣∣(1− λ2)sQc(z)+ λs2Qc(w)∣∣

=

∣∣∣(1−λ2)s(z3+c)+(1−(1− λ2))s(w3
+ c)

∣∣∣ . (14)

As 1− s+ sλ2 ≥ sλ2, so by binomial expansion upto linear
terms of λ2 and (1− λ2), we obtain

|t| ≥
∣∣∣(1− sλ2)(z3 + c)+ (1− s(1− λ2))(w3

+ c)
∣∣∣

≥

∣∣∣(1− sλ2)(z3 + c)+ (1− s+ sλ2)(w3
+ c)

∣∣∣
≥

∣∣∣(1−sλ2)(z3+c)+sλ2((|z| (sλ3 |z|2−1))3+c)∣∣∣ . (15)

Since |z| > ( 2
sλ3

)
1
2 implies sλ3 |z|2−1 > 1 and |z|3 (sλ3 |z|2−

1)3 > |z|3 using this in (15) and |z| ≥ |c| we have

|t| ≥
∣∣∣(1− sλ2)(z3 + c)+ sλ2(|z|3 + c)∣∣∣
≥

∣∣∣(1− sλ2)z3 + (1− sλ2)c+ sλ2 |z|3 + sλ2c
∣∣∣

≥

∣∣∣z3 + c∣∣∣
≥

∣∣∣z3∣∣∣− |c|

≥

∣∣∣z3∣∣∣− |z| ,
≥ |z| (|z|2 − 1). (16)

Also for

z1 = (1− λ1)st + λs1Qc(t)

|z1| =
∣∣∣(1− λ1)st + (1− (1− λ1))s(t3 + c)

∣∣∣ .
Since 1−s+sλ ≥ sλ and |z| ≥ |c|, so by binomial expansion
upto linear terms of λ1 and (1− λ1), we obtain

|z1| =
∣∣∣(1− sλ1)t + (1− s(1− λ1))(t3 + c)

∣∣∣
≥

∣∣∣(1−sλ1) |z| (|z|−1)+(1−s+sλ1)((|z| (|z|−1))3+c)∣∣∣
≥

∣∣∣(1− sλ1) |z| + sλ1(|z|3 + c)∣∣∣ ,
≥

∣∣∣(1− sλ1) |z| + sλ1 |z|3∣∣∣− |sλ1c|
≥

∣∣∣sλ1 |z|3 + (1− sλ1) |z|
∣∣∣− |sλ1z| ,

≥

∣∣∣sλ1 |z|3∣∣∣− |(1− sλ1) |z|| − |sλ1z|
≥ sλ1

∣∣∣z3∣∣∣− |z| + sλ1 |z| − sλ1 |z|
≥ |z| (sλ1 |z|2 − 1).

Since |z| > ( 2
sλ1

)
1
2 implies sλ1 |z|2 − 1 > 1, there exist a

number δ > 0, such that sλ1|z|2 − 1 > 1+ δ > 1. Therefore

|z1| > (1+ δ) |z| ,

|z2| > (1+ δ)2 |z| ,
...

|zn| > (1+ δ)n |z| .

Hence |zn| −→ ∞ as n→∞ and proved. �
Corollary 3: (Escape criterion): Let Qc(z) = z3 +

c, where c be a complex number. Suppose |z| >

max{|c| , ( 2
sλ1

)
1
2 , ( 2

sλ2
)
1
2 , ( 2

sλ3
)
1
2 } then |zn| → ∞ as n→∞.

C. ESCAPE CRITERION FOR HIGHER
DEGREE POLYNOMIALS
We shall obtain escape criterion for higher degree polynomi-
als of the form Qc(z) = zk+1 + c, k = 1, 2, 3, ... in CR orbit
with s-convexity.
Theorem 3: Suppose that |z| ≥ |c| > ( 2

sλ1
)
1
k , |z| ≥ |c| >

( 2
sλ2

)
1
k and |z| ≥ |c| > ( 2

sλ3
)
1
k here c be a complex number.

Let t◦ = t,w◦ = w and z◦ = z then sequence {zn} define as
zn+1 = (1− λ1)stn + λs1Qc(tn)

tn = (1− λ2)sQc(zn)+ λs2Qc(wn)

wn = (1− λ3)szn + λs3Qc(zn), n ≥ 0,

(17)

where λ1, λ2, s ∈ (0, 1], λ3 ∈ [0, 1] and Qc(z) = zk+1 +
c, k = 1, 2, 3, .... Then |zn| → ∞ as n→∞.

Proof: Consider

|w| =
∣∣(1− λ3)sz+ λs3Qc(z)∣∣ .
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For Qc(z) = zk+1 + c, k = 1, 2, 3, ...

|w| =
∣∣∣(1− λ3)sz+ λs3(zk+1 + c)∣∣∣

=

∣∣∣(1− λ3)sz+ (1− (1− λ3))s(zk+1 + c)
∣∣∣ .

Since 1 − s + sλ3 ≥ sλ3 and |z| ≥ |c|, so by binomial
expansion upto linear terms of λ3 and (1− λ3), we obtain

|w| ≥
∣∣∣(1− sλ3)z+ (1− s(1− λ3))(zk+1 + c)

∣∣∣
≥

∣∣∣(1− sλ3)z+ (1− s+ sλ3)(zk+1 + c)
∣∣∣

≥

∣∣∣(1− sλ3)z+ sλ3(zk+1 + c)∣∣∣ ,
≥

∣∣∣sλ3zk+1 + (1− sλ3)z
∣∣∣− |sλ3c|

≥

∣∣∣sλ3zk+1 + (1− sλ3)z
∣∣∣− |sλ3z| ,

≥

∣∣∣sλ3zk+1∣∣∣− |(1− sλ3)z| − |sλ3z|
≥

∣∣∣sλ3zk+1∣∣∣− |z| + |sλ3z| − |sλ3z|
≥ |z| (sλ3 |z|k − 1). (18)

And

|t| =
∣∣(1− λ2)sQc(z)+ λs2Qc(w)∣∣

=

∣∣∣(1−λ2)s(zk+1+c)+(1−(1−λ2))s(wk+1 + c)∣∣∣ . (19)

Since 1−s+sλ2 ≥ sλ2 so, by binomial expansion upto linear
terms of λ2 and (1− λ2), we obtain

|t| ≥
∣∣∣(1− sλ2)(zk+1 + c)+ (1− s(1− λ2))(wk+1 + c)

∣∣∣
≥

∣∣∣(1− sλ2)(zk+1 + c)+ (1− s+ sλ2)(wk+1 + c)
∣∣∣

≥

∣∣∣(1−sλ2)(zk+1+ c)+ sλ2((|z| (sλ3 |z|−1))k+1+c)∣∣∣ .
(20)

Since |z| > ( 2
sλ3

)
1
k implies sλ3 |z|k − 1 > 1 and

|z|k+1 (sλ3 |z|−1)k+1 > |z|k+1 using this in (20) and |z| ≥ |c|,
we have

|t| ≥
∣∣∣(1− sλ2)(zk+1 + c)+ sλ2(|z|k+1 + c)∣∣∣
≥

∣∣∣(1− sλ2)zk+1 + (1− sλ2)c+ sλ2 |z|k+1 + sλ2c
∣∣∣

≥

∣∣∣zk+1 + c∣∣∣
≥

∣∣∣zk+1∣∣∣− |c|
≥

∣∣∣zk+1∣∣∣− |z| ,
≥ |z| (|z|k − 1). (21)

Also for

z1 = (1− λ1)st + λs1Qc(t)

|z1| =
∣∣∣(1− λ1)st + (1− (1− λ1))s(tk+1 + c)

∣∣∣ .
Since 1 − s + sλ1 ≥ sλ1 and |z| ≥ |c|, so by binomial
expansion upto linear terms of λ1 and (1− λ1), we obtain

|z1| =
∣∣∣(1− sλ1)t + (1− s(1− λ1))(tk+1 + c)

∣∣∣

≥

∣∣∣(1− sλ1) |z| (|z| − 1)

+ (1− s+ sλ1)((|z| (|z| − 1))k+1 + c)
∣∣∣

≥

∣∣∣(1− sλ1) |z| + sλ1(|z|k+1 + c)∣∣∣ ,
≥

∣∣∣(1− sλ1) |z| + sλ1 |z|k+1∣∣∣− |sλ1c|
≥

∣∣∣sλ1 |z|k+1 + (1− sλ1) |z|
∣∣∣− |sλ1z| ,

≥

∣∣∣sλ1 |z|k+1∣∣∣− |(1− sλ1) |z|| − |sλ1z|
≥ sλ1 |z|k+1 − |z| + sλ1 |z| − sλ1 |z|
≥ |z| (sλ1 |z|k − 1).

Since |z| > ( 2
sλ1

)
1
k implies sλ1 |z|k − 1 > 1, there exist a

number δ > 0, such that sλ1|z|k − 1 > 1+ δ > 1. Therefore

|z1| > (1+ δ) |z| ,
|z2| > (1+ δ)2 |z| ,
...

|zn| > (1+ δ)n |z| .

Hence |zn| −→ ∞ as n→∞ and proved. �
Corollary 4: Suppose that |c| > ( 2

sλ1
)
1
k , |c| > ( 2

sλ2
)
1
k and

|c| > ( 2
sλ3

)
1
k exists, then the orbit CRSO(Qc, 0, sλ1, sλ2, sλ3)

escape to infinity.
This corollary gives an algorithm for computing the Julia

sets andMandelbrot sets for the functions of the formGc(z) =
zk+1 + c, k = 1, 2, 3, ...
Corollary 5: (Escape criterion): Let Qc(z) = zk+1 +

c, k = 1, 2, 3, ..., where c be a complex number. Suppose
|z| > max{|c| , ( 2

sλ1
)
1
k , ( 2

sλ2
)
1
k , ( 2

sλ3
)
1
k } then |zn| → ∞ as

n→∞.

IV. GENERATION OF FRACTALS
In this section Mandelbrot sets are presented for quadratic,
cubic and bi-quadratic functions. Also, Julia sets are pre-
sented for quadratic and cubic functions. Pseudo code of the
Mandelbrot set generation algorithm is presented in Algo-
rithm 1, whereas Algorithm 2 presents the pseudo code for
the Julia set generation algorithm. To generate the images
we used the escape time algorithm with the escape criterion
attained in above section and implemented in Mathematica 9.

A. MANDELBROT SETS FOR THE QUADRATIC FUNCTION
QC (z) = z2 + c
In Figs. 1–6, quadratic Mandelbrot sets are presented in CR
orbit with s-convexity by using maximum number of itera-
tions 50, s = 0.5 and varying parameters are following:
• Fig. 1: λ3 = λ2 = λ1 = 0.3 and A = [−3.1, 0.9] ×
[−2.4, 2.4],

• Fig. 2: λ3 = 0.6, λ2 = 0.5, λ1 = 0.4 and A =
[−2.8, 0.6]× [−1.8, 1.8],

• Fig. 3: λ3 = 0.3, λ2 = 0.2, λ1 = 0.6 and A =
[−2.8, 0.6]× [−1.8, 1.8],

• Fig. 4: λ3 = λ2 = λ1 = 0.6 and A = [−3.1, 0.9] ×
[−2.3, 2.3],
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Algorithm 1 Mandelbrot Set Generation

Input: Qc(z) = zk+1 + c, where c ∈ C and k = 1, 2, . . .,
A ⊂ C – area, K – the maximum number of
iterations, λ1, λ2, s ∈ (0, 1], λ3 ∈ [0, 1] –
parameters for the CR iteration with s-convexity,
colourmap[0..C − 1] – with C colours.

Output: Mandelbrot set for the area A.

1 for c ∈ A do
2 R = max{|c|, (2/(sλ1))

1
k , (2/(sλ2))

1
k , (2/(sλ3))

1
k }

3 n = 0
4 z0 = 0
5 while n ≤ K do
6 wn = (1− λ3)szn + λs3Qc(zn)
7 tn = (1− λ2)sQc(zn)+ λs2Qc(wn)
8 zn+1 = (1− λ1)stn + λs1Qc(tn)
9 if |zn+1| > R then
10 break

11 n = n+ 1

12 i = b(C − 1) nK c
13 color c with colourmap[i]

Algorithm 2 Julia Set Generation

Input: Qc(z) = zk+1 + c, where k = 1, 2, . . ., c ∈ C –
parameter, A ⊂ C – area, K – the maximum
number of iterations,
λ1, λ2, s ∈ (0, 1], λ3 ∈ [0, 1] – parameters for the
CR iteration with s-convexity,
colourmap[0..C − 1] – with C colours.

Output: Julia set for the area A.

1 R = max{|c|, (2/(sλ1))
1
k , (2/(sλ2))

1
k , (2/(sλ3))

1
k }

2 for z0 ∈ A do
3 n = 0
4 while n ≤ K do
5 wn = (1− λ3)szn + λs3Qc(zn)
6 tn = (1− λ2)sQc(zn)+ λs2Qc(wn)
7 zn+1 = (1− λ1)stn + λs1Qc(tn)
8 if |zn+1| > R then
9 break

10 n = n+ 1

11 i = b(C − 1) nK c
12 color z0 with colourmap[i]

• Fig. 5: λ3 = λ2 = λ1 = 0.8 and A = [−2.5, 0.6] ×
[−1.8, 1.8],

• Fig. 6: λ3 = λ2 = λ2 = 0.9 and A = [−2.5, 0.6] ×
[−1.8, 1.8].

FIGURE 1. Quadratic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 2. Quadratic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 3. Quadratic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 4. Quadratic Mandelbrot set generated via CR iteration with
s-convexity.
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FIGURE 5. Quadratic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 6. Quadratic Mandelbrot set generated via CR iteration with
s-convexity.

B. MANDELBROT SETS FOR THE CUBIC FUNCTION
QC (z) = z3 + c
In Figs. 7–12, cubicMandelbrot sets are presented in CR orbit
with s-convexity by using maximum number of iterations 50,
s = 0.7 and varying parameters are following:

• Fig. 7: λ3 = λ2 = λ1 = 0.2 and A = [−1.4, 1.4] ×
[−2, 2],

• Fig. 8: λ3 = λ2 = λ1 = 0.4 and A = [−1.4, 1.4] ×
[−2.3, 2.3],

• Fig. 9: λ3 = λ2 = λ1 = 0.5 and A = [−1.4, 1.4] ×
[−2.3, 2.3],

FIGURE 7. Cubic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 8. Cubic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 9. Cubic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 10. Cubic Mandelbrot set generated via CR iteration with
s-convexity.

• Fig. 10: λ3 = 0.3, λ2 = 0.2, λ1 = 0.6 and A =
[−1.1, 1.1]× [−1.8, 1.8],

• Fig. 11: λ3 = λ2 = λ1 = 0.7 and A = [−1.2, 1.2] ×
[−2, 2],

• Fig. 12: λ3 = λ2 = λ1 = 0.8 and A = [−1.2, 1.2] ×
[−2, 2].

C. MANDELBROT SETS FOR THE FUNCTION
QC (z) = zk+1 + c WHERE k = 3
In Figs. 13–18, Mandelbrot sets for the function Qc(z) =
zk+1 + c where k = 3 are presented in CR orbit with
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FIGURE 11. Cubic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 12. Cubic Mandelbrot set generated via CR iteration with
s-convexity.

s-convexity by using maximum number of iterations 50, s =
0.4 and varying parameters are following:
• Fig. 13: λ1 = 0.2, λ2 = 0.3, λ3 = 0.2 and A =
[−1.6, 1]× [−1.5, 1.5]

• Fig. 14: λ3 = 0.5, λ2 = 0.3, λ1 = 0.4 and A =
[−1.6, 1]× [−1.5, 1.5]

• Fig. 15: λ3 = 0.4, λ2 = 0.2, λ1 = 0.5 and A =
[−1.5, 1]× [−1.5, 1.5]

• Fig. 16: λ3 = 0.4, λ2 = 0.8, λ1 = 0.6 and A =
[−1.5, 1]× [−1.4, 1.4]

• Fig. 17: λ3 = 0.2, λ2 = 0.3, λ1 = 0.7 and A =
[−1.5, 1]× [−1.5, 1.5]

FIGURE 13. Biquadratic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 14. Biquadratic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 15. Biquadratic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 16. Biquadratic Mandelbrot set generated via CR iteration with
s-convexity.

FIGURE 17. Biquadratic Mandelbrot set generated via CR iteration with
s-convexity.

VOLUME 7, 2019 69993



Y. C. Kwun et al.: Fractal Generation via CR Iteration Scheme With S-Convexity

FIGURE 18. Biquadratic Mandelbrot set generated via CR iteration with
s-convexity.

• Fig. 18: λ3 = λ2 = λ1 = 0.8 and A = [−1.3, 1] ×
[−1.3, 1.3].

D. JULIA SETS FOR THE QUADRATIC FUNCTION
QC (z) = z2 + c
Julia sets for the function Qc(z) = z2 + c are presented in
CR orbit with s-convexity in Figs. 19–24. The usual param-
eters to generate the images are the following: K = 50,
λ3 = 0.6, λ2 = 0.5, λ1 = 0.7 and c = −1.45. Whereas,
the varying parameters are the following:
• Fig. 19: A = [−2.1, 1.4]× [−1.3, 1.3], s = 0.1,
• Fig. 20: A = [−2.1, 1.4]× [−1.8, 1.8], s = 0.2,

FIGURE 19. Quadratic Julia set generated via CR iteration with
s-convexity.

FIGURE 20. Quadratic Julia set generated via CR iteration with
s-convexity.

FIGURE 21. Quadratic Julia set generated via CR iteration with
s-convexity.

FIGURE 22. Quadratic Julia set generated via CR iteration with
s-convexity.

FIGURE 23. Quadratic Julia set generated via CR iteration with
s-convexity.

• Fig. 21: A = [−2.3, 1.7]× [−2, 2], s = 0.3,
• Fig. 22: A = [−2.3, 1.7]× [−2, 2], s = 0.4,
• Fig. 23: A = [−2.3, 1.7]× [−2, 2], s = 0.5,
• Fig. 24: A = [−2.3, 1.7]× [−2, 2], s = 0.6.

E. JULIA SETS FOR THE CUBIC FUNCTION QC (z) = z3 + c
Julia sets for the function Qc(z) = z3+ c are presented in CR
orbit with s-convexity in Figs. 25–30. The usual parameters
to generate the images are the following: K = 50, λ3 =
0.4, λ2 = 0.7, λ1 = 0.3 and c = −0.02 + 1.0i. Whereas,
the varying parameters are the following:

• Fig. 25: A = [−1.1, 1.1]× [−1.6, 1.8], s = 0.4,
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FIGURE 24. Quadratic Julia set generated via CR iteration with
s-convexity.

FIGURE 25. Cubic Julia set generated via CR iteration with s-convexity.

FIGURE 26. Cubic Julia set generated via CR iteration with s-convexity.

FIGURE 27. Cubic Julia set generated via CR iteration with s-convexity.

FIGURE 28. Cubic Julia set generated via CR iteration with s-convexity.

FIGURE 29. Cubic Julia set generated via CR iteration with s-convexity.

FIGURE 30. Cubic Julia set generated via CR iteration with s-convexity.

• Fig. 26: A = [−1.2, 1.2]× [−1.7, 1.9], s = 0.5,
• Fig. 27: A = [−1.3, 1.3]× [−1.8, 2], s = 0.6,
• Fig. 28: A = [−1.4, 1.4]× [−1.9, 2.1], s = 0.7,
• Fig. 29: A = [−1.5, 1.5]× [−2, 2.2], s = 0.8,
• Fig. 30: A = [−1.5, 1.5]× [−2, 2.2], s = 0.9.

V. CONCLUSIONS
Approximate fractals found in nature display self-similarity
over extended, but finite, scale ranges. The connection
between fractals and leaves, for instance, is currently being
used to determine how much carbon is contained in trees.
Recently, fractal analysis has been used to achieve a 93%
success rate in distinguishing real from imitation Pollocks.
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Cognitive neuroscientists have shown that Pollock’s fractals
induce the same stress-reduction in observers as computer-
generated fractals and Nature’s fractals. Fractals are used
everywhere in technology, for example: Fractal antennas,
Fractal transistor, Fractal heat exchangers, Digital imaging
Architecture’ Urban growth, Enzymes (Michaelis-Menten
kinetics), Generation of new music. Signal and image com-
pression. Creation of digital photographic enlargements.
Fractal in soil mechanics, Computer and video game design,
Computer Graphics, Organic environments, Procedural gen-
eration, Fractography and fracture mechanics, Small angle
scattering theory of fractally rough systems, T-shirts and
other fashion, Generation of patterns for camouflage, such as
MARPAT, Digital sundial, Technical analysis of price series,
Fractals in networks, Medicine, Neuroscience, Diagnostic
Imaging, Pathology, Geology, Geography, Archaeology, Soil
mechanics, Seismology, Search and rescue, Technical anal-
ysis,and many more. In this paper we have presented escape
criterion for quadratic, cubic and (k+1)th degree polynomials
to generate Mandelbrot sets and Julia sets via CR iteration
scheme with s-convexity. We obtained new fractals for com-
plex functions in CR orbit with s-convexity that are totally
different from those introduced in [24], [25]. Presented results
are applications of s-convexity. By using different values of
λ1, λ2, λ3 and s we obtained interesting Mandelbrot sets and
Julia sets. A few examples of Mandelbrot sets have been
presented for complex quadratic, cubic and (k + 1)th degree
polynomials. Very fascinating changing can be seen in Man-
delbrot sets for different values of λ1, λ2 and λ3. Also, Julia
sets have been explored for quadratic and cubic polynomials.
Very interesting changes in Julia sets can be seen when s
varies from lowest to higher values.
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