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Abstract

A two-mutation model of carcinogenesis which evolves under the influence of three level random environment on the
production process is formulated and analyzed. A random environment occupies one of the levels 1, 2 and 3 at any
time t according to a Markov process. When the environment is in level 1, a normal cell either divides into two normal
cells or dies; and an intermediate cell divides into two intermediate cells or dies. When the environment is in level 2, a
normal cell either divides into one normal cell and one intermediate cell or dies and an intermediate cell either divides
into one intermediate cell and one malignant cell or dies. When the environment is in level 3, a normal cell either divides
into two intermediate cells or dies and an intermediate cell either divides into two malignant cells or dies. It is assumed
that, once a malignant cell is produced, it generates a malignant tumor with probability 1. We obtain the mean numbers
of normal, intermediate and malignant cells at any time t.

Keywords- Age-dependent two-stage stochastic model, Normal cell, Intermediate cell, Malignant cell, Random
environment.

1. Introduction

Recently there have been an increased interest in the study of age-dependent/ environment-
dependent models of carcinogenesis. Sun et al. (2014) have formulated a model of time scheme for
progression of colorectal cancer based upon maturity and predicted the values of several important
parameters in cancer progression. Tomasetti and VVogelstein (2015) have taken into consideration
random mutations arising during DNA replication in normal, noncancerous stem cells and studied
cancer risk for individuals. Rozhok and DeGregori (2016) have presented a theoretical study of
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age-dependent models of cancer risk. Rozhok et al. (2016) have applied stochastic Monte Carlo
methods to explain the age-dependent incidence of cancer. Reddy et al. (2017) have observed that
during every cell division, some rare events at the genome level such as DNA replication mistakes
take place of which some are of no importance, while some have significance for escaping cell
division control mechanisms. Martincorena et al. (2017) have concluded that cancer risk is
dependent on the random errors occurring in normal cell replication, hereditary defects in critical
genes, and environmental factors including exogenous agents and lifestyle. Hochberg and Noble
(2017) have provided a framework for understanding how natural environmental variation and
human activity impact cancer risk, with potential implications for species ecology. Simulation
studies have been reported in the paper of Rozhok and DeGregori (2019) on a generalized theory
of age-dependent carcinogenesis to demonstarte the impact of key somatic evolutionary
parameters on the performance of Multistage Model of Carcinogenesis. Wolf et al. (2019) have
presented an unified theory of carcinogenesis in which they have considered multi-stage
carcinogenesis models to assess the carcinogenicity of chemicals for risk management and the
public communication. In the above studies, cell division mechanism have either dependance on
random mutations arising during DNA replication in normal cells or on environment or external
agents such as chemical substances or living habits. Mutation dependent stochastic models of
carcinogenesis have been studied in a series of papers (see Nordling, 1953; Armitage and Doll,
1954, 1957 and 1961; Knudson, 1971; Moolgavkar and VVenzon, 1979; Moolgavkar and Knudson,
1981). However, environment dependent stochastic models of carcinogenesis have not been
analytically studied very much in literature. As per the observation of Martincorena et al. (2017),
numerous replication mistakes take place during every cell division and these mistakes might be
due to environmental effects. The paper of Martincorena et al. (2017) has triggered us to model a
cancerous environment as a multi-level and study its impact on mutational process in cell division
mechanism. In a recent paper, Yadavalli et al. (2020) have analyzed a mutation-dependent
stochastic model of carcinogenesis where mutation is inflenced by a two-level environmental
process. As it is very much appropriate to consider the environmental process as a multi-level
process, two-level for environment is only a stringent assumption. Accordingly, we propose and
analyze in the present paper, a two-stage stochastic model of carcinogenesis driven by a three-level
random environment. Here, the random environment occupies one of the levels 1, 2 and 3
according to a Markov process.

When the environment is in level 1, a normal cell either divides into two normal cells with rate L,
or dies with rate D;; and an intermediate cell divides into two intermediate cells with rate a, or
dies with rate u,. When the environment is in level 2, a normal cell either divides into one normal
cell and one intermediate cell with rate L, or dies with rate D,; and an intermediate cell either
divides into one intermediate cell and one malignant cell with rate a, or dies with rate u,. When
the environment is in level 3, a normal cell either divides into two intermediate cells with rate L
or dies with rate D5; and an intermediate cell either divides into two malignant cells with rate a;
or dies with rate u5. It is assumed that, once a malignant cell is produced, it generates a malignant
tumor with probability 1. For this model, we obtain the mean numbers of normal, intermediate and
malignant cells.

The paper is organized as follows: In section 2, we describe the random environment and
formulate the two-stage mutation model of carcinogenesis driven by the random environment. In
section 3, we write the integral equations satisfied by the conditional probability generating
functions of the number of normal, intermediate and malignant cells. Section 4 obtains the mean
number of normal, intermediate and malignant cells in the population. A numerical illustration is
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provided in Section 5 and a comparison is made with the results of Yadavalli et al. (2020). A
conclusion is presented in Section 6.

2. Model Formulation

We consider a cell population consisting of normal, intermediate and malignant cells. Let
X(t),Y(t) and Z(t) be the random variables denoting the number of normal, intermediate and
malignant cells existing at time t. Let n(t) denote the state of the environment at time t. We call
the time duration a cell has lived without splitting since its birth time as the age of the cell.

2.1 Assumptions
(1) All cells evolve in a cancerous random environment.
(i) At any time t, the random environment is in one of the three levels 1, 2 and 3.

(i) Pln(t + 4t) = 2|n(t) = 1] = y124t + 0(4¢)

(iv)  Pln(t + 4t) = 3|n(t) = 1] = y134t + 0(4t)

(V) P[n(t+4t) = 1n(t) = 1] = 1= (y12 + v13)4t + 0(40)

(i) Pn(t+4t) = 3|n(t) = 2] = y234t + o(4¢)

(vii) P[n(t + At) = 1|n(t) = 2] = y,,4t + o(4t)

(viii)  Pn(t +4t) = 2|n(t) = 2] = 1= (y23 + y21)4t + 0(4t)

(ix) Pln(t + At) = 1|n(t) = 3] = y3,4t + 0(4t)

(x)  Pln(t+4t) = 2|n(t) = 3] = y324t + 0(4¢)

(xi)  Pln(t+4t) =3|n(t) = 3] = 1 = (y31 +v32)4t + 0(4t)

(xii) When the environment is in level 1 at time ¢, a normal cell existing at time teither
divides into two normal cells with probability L,At+ o(At)or dies with
probability D,At + o(4t) in an infinitesimal interval (t,t + At).

(xiii) When the environment is in level 1 at time t, an intermediate cell existing at time t
divides into two intermediate cells with probability a,A4t + o(A4t) or dies with
probability p; At + o(4t) in an infinitesimal interval (t,t + At).

(xiv) When the environment is in level 2 at time ¢, a normal cell existing at time teither
divides into one normal cell and one intermediate cell with probability L,At + o(At) or
dies with probability D,At + o(At) in an infinitesimal interval (¢, t + At).

(xv) When the environment is in level 2 at time t, an intermediate cell existing at time ¢t
either divides into one intermediate cell and one malignant cell with probability
a,At + o(At) or dies with probability u, At + o(At) in an infinitesimal interval (¢, t +
At).

(xvi) When the environment is in state 3 at time ¢, a normal cell existing at timet either
divides into two intermediate cells with probability L;At + o(At) or dies with
probability D;At + o(4t) in an infinitesimal interval (t, t + At).

(xvii) When the environment is in level 3 at time t , an intermediate cell existing at time t
either two malignant cells with probability a;At + o(4t) or dies with Probability
usAt + o(4t) in an infinitesimal interval (t,t + At).

(xviii) Once a malignant cell is produced, it generates a malignant tumor with probability 1.

(Xix) All events are independent and the probability of occurrence of more than one event in
a small interval (¢t,t + At) is o(4t).

3. Governing Equations

We define the conditional probability generating functions for the number of normal, intermediate
and malignant cells at time t as follows:

1470



International Journal of Mathematical, Engineering and Management Sciences u@'ﬂ
Vol. 5, No. 6, 1468-1487, 2020
https://doi.org/10.33889/1IMEMS.2020.5.6.109

Yi(x,y,2,t) = E[xX®yY®2Z0|x(0) = 1,Y(0) = 0,Z(0) = 0,7(0) = j],j = 1,2,3;
¢;(v,2,) = E[yY®zZO|y(0) = 1,2(0) = 0,7(0) =],j = 1,2,3.

In what follows, we hide the variables x,y and z in the functions ¢; and ;, and simply write
¢;(t) and ¥;(t) unless otherwise needed. The function ¢;(t),j = 1,2,3 correspond to one-
mutation model, and v;(¢t),j = 1,2,3 correspond to two-mutation model. In the above definition,
the condition Y(0) = 1, Z(0) = 0 means that we are starting with just one intermediate cell at

time t = 0. It is to be noted that intermediate cells do not contribute to the production of normal
cells.

By the formulation of the model, the four-dimensional stochastic process
{(X (), Y (), Z(t),n(t)|t = 0} is Markov. The state-transition diagram is given in Figure 1 below:
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Figure 1. State transition diagram

Considering the first event happening in the time interval (0, t) and using Bellmann’s invariant
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imbedding technique (see Bellmann et al., 1960), we obtain the following integral equations for

¢;(t) and Y;(t):

Y, (t) = xe 1t + D f e M¥du + L, f(f e MU, (t —wdu + 4, f e~ MU, (t — u)du +
0 0

Vi3 J, e~ s (t — wdu (1)

t

s(8) = xe~%2t 4 D, f e~ du + Ly [* e, (t — u)py (t — w)du +72 f et (¢ —
0 0

wdu + y,3 fot e, (t —w)dy, 2

t t

t

t

Y3 (t) = xe™ 3t + Dy f e~ BUdu+ Ly fot e~ 3% ps(t —u)}du + y3, f e~ B, (t —w)du +
0 0

Va2 f €79, (t — w)du @3)

t

t

$1(D) = yeit + g j e Prdu + ay [ e~P gy (t — wPdu + 74, f e b1, (¢ — w)du +
0 0

Y13 fot e P15 (t —wduy, (4)

t

t t

() = ye™b2t + i, j e b2ldy + a,z fote_bzud)z(t —u)du + ymf e b2%gp. (t —u)du +
0 0

Va3 [, e P23 (t —u)du, 5)

t t

P3(t) = ye ™03t + sy f e bstdy + azz? fot e bstdy + )/31f e bstep, (t —u)du +
0 0

ya2 fy €72, (t — wdu 6)

where,
a1 =YVi2+Viz+Li+Dsa; =Ya3+ Va1 + Ly +Dya3 =vy31 +y3+ L+ Ds;
by =vi2+ Vi3 + @1 +1y;by = Va3 + Va1t ag + Uy by = Y3 H Y3y tag + s

4. Mean Numbers of Cells
We consider the following conditional means:

my; P = EX@®IX(0)=1Y(0)=0,2(0)=0n(0) =/ j=123

my,; P = EY®IX(0)=1Y(0)=02(0)=070)=/l, j=123

mz;P@) = E[Z®OIX(0)=1,Y(0)=0,2(0) =0,n(0) =j1,  j=123;
my,; D) = E[Y¥(®)]Y(0) = 1,Z(0) = 0,7(0) = j] J=123;
mg,; D (6) = E[Z(®)]Y(0) = 1,Z(0) = 0,7(0) =] J=123
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From the definitions of 1;(t)and ¢;(t), we get

my; P(6) = [—adgf)] g D0 = [_allg;t)] ,
x=1,y=1,z=1 x=1y=1,z=1
01;(t)
my,; P(t) = [ 3 ] :
“ aZ x=1,y=1,z=1
mY,j(l) (t) = [(%g;;t)] 'mZ,j(l) (t) = [%} )
y=1,z=1 y=1,z=1

Differentiating (1), (2) and (3) partially with respect to x, and puttingx =1,y =1 andz = 1, we
get respectively

my 1D (t) = et + 2L, fot e~ Umy 1 @ (t —w)du + yq, fot e~ ¥my , @ (t —uw)du +
Y13 fot e~ “%my s (t — u)du (7

my, P (t) = e %t + L, fot e~ %Umy , @ (t —u)du + vy, fot e~ %tmy @ (t —w)du +

Va3 Jy €72 my P (¢ — w)du ®)
my 3B () = e %" +y3y fot e~ %my ) (t — u)du + v, fot e~ %¥my, A (t — u)du. ©)

Differentiating (1), (2) and (3) partially with respect to y, and putting x =1,y =1landz = 1, we
get respectively

my @ () = 2L, fot e~ Umy D (t —u)du +yy, fot e~ M¥my , D (t —wdu +
V13 fot e_alumy,s(z)(t —w)duy, (10)

t t _
my,z(z) ) =1L, fo e azu[my,z(z)(t —u) + my,z(l)(t - u)]du + 721 fo e azumy,l(z)(t -
wdu + ¥,3 fot e~ %Umy ;D (t —w)du (11)

my 3@ (t) = 2L, fot e~ BUmy ;W (t —wdu + 3, fot e~ BUmy @ (t —w)du +
Ya2 Jy €= my, @ (6~ wdu. (12)

Differentiating (1), (2) and (3) partially with respectto z, and puttingx =1,y =1 and z = 1, we
get respectively

t
mz 1@ (t) = 2L, fot e~ M%my D (t —wdu + ;5 fo e~ M%my , @D (t —w)du +
t
Y13 fo e~ m, 3 (t —w)du, (13)
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t t
mz, P () = L, fo e~ my, D (t —u) + mz, Wt —w)]du + vz, fo e~%2¥my, (¢ -

w)du + y,3 fot e~ %%m, ;D (t — w)duy, (14)

mz ;P (t) = 2L, fot e~ %my s (D (t — w)du + ya; fot e~ %%my D (t —w)du +

Y32 fot e~%¥my, A (¢t — w)du. (15)
Differentiating (4), (5) and (6) partially with respect to y, and putting y = 1andz = 1, we get
respectively
my V() = e b1t + 2a, fot e b1umy Wt —w)du + yq, J: e Pumy, , W (t —w)du +

t
Y13 fo e P1¥my, (D (t —w)du, (16)

t t
my, V() = et + a, fo e P2tmy , W (t — uw)du + y44 fo e~ b2%my, W (t —w)du +

t
Y23 fo e P2tmy ;M (t — u)du 17)

t t
my ;M) = et 4y, fo e sty ;W (t —u)du + 3, _[0 e sty , M (t — u)du (18)

Differentiating (4), (5) and (6) partially with respect to z, and putting y =1 and z = 1, we get
respectively

t t
mz V() = 2e4 fo e P1¥m, Wt —w)du + vy, -[0 e P1¥m, , W (t — u)du +

t
Y13 fo e P1m, (D (t —u)du, (19)

t
mz, V(@) = a, fot e b2ldu + a, J.Ot e P2um, , (WD (t —w)du + y,, f e b2my, W (t —w)du +
0
t
Y23 fo e~b2tm, ;W (¢t —u)du (20)

t t

e bstdy + 5, f e bsUmy W (t —uw)du +
0

t
Y32 fo e 3tmy, M (t — u)du (21)

my ;W () = 2053_[
0

The system of integral equations (7) — (21) are inter-connected. Taking Laplace transform on
both sides of (19), (20) and (21), we get

[(s+by) — 2051]’”2,1(1)*(5) - Y12mz,2(1)*(5) - V13mz,3(1)*(5) =0, (22)

_V21mz,1(1)*(5) +[(s + b2) — az]mz,z(l)*(s) - V23mz,3(1)*(5) = %, (23)
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—Y31mz,1(1)*(5) - V32mz,2(1)*(5) +(s+ bs)mz,s(l)*(s) =

Solving (22), (23) and (24), we get

* A31(s) " A32(s)
mz,1(1) (s) — 431l8) 22(1) (s) — 43208)

sA(s)
where,
s+by—2a —Y12 —Y13
A(s) = —Y21 S+by—a; —V3|,
~Y31 ~Y32 s+ b
0 —V12 —Y13
Az1(s)=|ay s+by—a; =3
2a3 —Y32 S+ bs
s+b;—204 0 —Y13
A3, (s) = —V21 az —Y23 |,
—Y31 2a3 S+ b3
s+by—2a —Y12 0
A33(s) = ~Y21 S+b,—a; ay|.
—V31 £Y) 2a3

(1)= _
SA(S) 'mZ,3 (S) -

2a3
S

A33(s)

sA(s)’

Let w4, w,,and wsbe the roots of the cubic equation A(s) = 0. Then, we have

W* ey — 434(s)
Mmz1(8) = e s

(1)* _ A35(s)
Mz2 " (8) = e own)

D+ (g) = 4535
mgz3 (S) s(s—w1)(s—wz)(s—w3)’

Splitting into partial fractions, and then taking inverse Laplace transform, equations (30) —

yield
(1) — 1 M Wyt
mz 1+ (t) = D10y 0n [431(0) t oreo@s-wn® T
_ @1wa43,(w3) w3t]
(w3—w1)(Wr2—w3) ’
(1) — 1 M Wyt
my, (L) = D10y 0n [432(0) t or-wo@s-wn® T

W1wyA3,(w3) €w3t

(w3—w)(wz—w3) ’

1475

w3w143q1(w3)

(w1—wz) (W —w3)

W3w143;(w3)

(w1—wz)(wy—w3)

e®2t +

e®2t +

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(32)

(33)

(34)
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W)= 1 Wpw3d33(W1) gt @3Wid33(W3) gt
mg 3+ (t) oo, [A3)3(0) t oo e e e e+
wW1wyA33(wW3 w3t
(w3—w1)(w2—w3) € ] (35)

Taking Laplace transform on both sides of (16), (17) and (18), we get

(s+by — 2“1)my,1(1)*(5) - V12my,2(1)*(5) - Y13mY,3(1)*(5) =1, (36)
—Y21mY,1(1)*(5) + (s + b, — az)my,z(l)*(s) - Y23my,3(1)*(5) =1, (37)
—V31my,1(1)*(5) - V32mY,2(1)*(5) +(s+ b3)mY,3(1)*(S) =1 (38)

Solving (36), (37) and (38), we get

(1)* A31(s) Az2(s) Ay3(s)

_ (D)= _ (1) _
my 4 (s) = A(5) yMy > (s) = A05) y My 3 (s) = A(5) (39)
where, A(s) is given by (26), and
1 —Y12 —Y13
A1) =1 s+by—a, —Va3| (40)
1 —Y32 S+ b
S+bi—2a; 1 —yi3
Apy(s) = ~Y21 1 =Vas |, (41)
_]/31 1 S + b3
s+b;—24 —Y12 1
Ay3(s) = —Y21 S+by—a, 1. (42)
—V31 —VY32 1
Since A(s) = (s — w1)(s — w,) (s — w3), equations in (39) yield
(1)* _ A31(8)
My (8) = G Gmw) G-y (43)
mi*(s) = A22(5) (44)
Y2 (s—w1)(5—w5) (s—w3)’
mi) (s) = 423(5) (45)

(s—w1)(s—wy)(s—w3)

Splitting into partial fractions, and then taking inverse Laplace transform, (43), (44) and (45) give

(0 — 4z1(wq) wqt 431 (w3) wot A3:(w3) w3t

my'l(t) (w1-w3)(w1—w3) (w2—-wq1)(wy-w3) (w3—w1)(W3—w3) € ! (46)
(1 — A3z (w1) w4t 433 (w3) wyt Az (w3) w3t

My 2 (t) (w1—w2)(w1-w3) (w2—w1)(wz2—w3) (wz—w1)(w3-w3) ¢ ’ (47)
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(1)(t) = Aw@) et + _ A33(@) st + 4z3(w3)

- (w1~wz)(w1—w3) (wz—w1)(wy—-w3) (w3—w)(wz—w3)

Taking Laplace transform on both sides of (13), (14) and (15), we get
(s +ay = 2LOmEY () = yiamiy () = yasmi (s) = 0,

—Yaami () + (s + ag — LI () = y2ami3 (5) = Lym$) (s),
—yam$ (s) = yazmyy () + (s + aIm{y (s) = 2Lam3 (s).
Solving (49),(50) and (51), we get

* H() * H() * n()
mgi(): 31(s (2)()_ 32(s (2)()_ 33(s

nes) ’ nes) '’ e’
where,
s+a, — 2L, —Y12 —Y13
1(s) = —Y21 S+a;—L; —Vu3 |,
~Y31 —V32 s+as
0 —Y12 —V13
I3,(s) = Lzm(l)*(s) sta;—L, —Va3|,
2L3m(1)*(s) —¥32 s+as
s+a; — 2L, 0 —Y13
1)*
II3,(s) = Y21 Lzm( ) () —Va3|,
—¥31 2L3m(1) (s) s+as
s+a; — 2L, —Y12 0
1)*
I55(s) = —Y21 S+a;— Ly Lzm( () |.
—Y31 —V32 2L3m(1)*(s)

Substituting (31) and (32) in (54),(55) and (56) and simplifying, we get

H31(S) — p31(s)

s(s—w1)(s—wz)(s—w3)’

H32(S) — p32(s)

s(s—w1)(s—wz)(s—w3)’

(s)
I135(s) = Paz >

s(s—w1)(s—wz)(s—w3)

where,
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P31(S) = L435(S)[y12(s + a3) + V13V32] + 2L3435(5)[V12V23 + V13(s + az — L3)],

P32(8) = LpA3,(s)[(s + a; — 2L1)(s + a3) — ¥13¥31] + 2L3433(s)[v23(s + a; — 2L
+ Y1321l

P33(S) = LpA35(5)[y32(s + a; — 2Ly) + ¥12¥31] + 2L3A33(s)[(s + a; — 2Ly)(s + az — Ly)
= Y12Y21]-

Let k4, k,,and k3 be the roots of the cubic equation I1(s) = 0.

Then, we have I1(s) = (s — k1)(s — k) (s — k3) and hence (52) gives

* i(s ,
mézj) (S) - S(S—wﬂ(S—a’z)(S—p:;;g(z—’ﬁ)(s—’cz)(s—’cs)'] - 1’2’3' (60)
Splitting into partial fractions, and then taking inverse Laplace transform, equation (60) gives
m®(e) = p3;(0) N p3j(wq) pnt
Z W1Wyw3K1KKs  w1(w — W) (W — w3) (W1 — Kky) (w1 — k) (w1 — K3)
p3j(w3) o2t
w2 (wz — w1) (W — w3)(wy — K1) (Wy — Kz) (W, — K3)
p3j(w3) o3t
w3(w3 — w1) (w3 — W) (w3 — K1) (W3 — Kz) (W3 — K3)
n p3; (K1) ot
K1 (k1 — w1) (ke — w3) (e — w3) (req — k) (Kq — K3)
p3;(K2) oot
Kp (Kp — 1) (K — w2)(Ky — w3) (ke — Ky ) (K2 — K3)
Paj(2) efst j =123, (61)

K3(k3—w1)(K3—w2)(K3—w3)(K3—K1)(K3—K3)

Taking Laplace transform on both sides of (10), (11) and (12), we get

(s +ay — 2L)ME(s) = y1am¥y ' (s) — y13m¥3 (s) = 0, (62)
~Yarm$(s) + (5 + az — L)m (s) — ya3miy (s) = Lymyy (s), (63)
~¥31m$(s) — y3m (s) + (s + az)m$A (s) = 2LymYY" (s). (64)

Solving (62),(63) and (64), we get

* I * 1 * I1
miZ(s) = 22, mZ)(s) = T2, mZ'(s) = 2 (65)

where, I1(s) is same as (53) and
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0 V12 —Vi3
,,(s) = Lzm(l)*(s) sta;—L; Va3, (66)
2L3m}(,2 (s) —V32 s+as
S + al - 2L1 0 _)/13
,,(s) = —Y21 Lzm(l)*(s) Y23 |, (67)
—Y31 2L3m(1) (s) s+as
s+a; — 2L, —VY12 0
I,5(s) = —Y21 s+a; =L, Lzm(l)*(s) (68)
—V31 —V32 2L3m(1)*(s)

Substituting (47) and (48) in (66), (67) and (68), and simplifying, we get
Iy, (s) = 421() (69)

(s—w1)(s—wz)(s—w3)’

I, (s) = 422(5) (70)

(s—w1)(s—wz)(s—w3)’

II53(s) = 425 () (71)

(S—w1)(5—wz)(5—w3)'

where,
q21(8) = La[y12(s + a3) + V13¥32]422(S) + 2L3[y12Y23 + Y13(s + az — L3)]423(s),

G22(s) = Lp[(s + a; — 2L1)(s + a3) — ¥13Y¥311422(s) + 2L3[(s + a; — 2Lq)y23 +

Y13Y21]423(5),

q23(S) = Ly[(s + a; — 2L1)y32 + V12V311422(8) + 2L3[(s + a; — 2L1)(s + a; — L) —
Y12Y211423(5).

Since I1(s) = (s — k1) (s — k3) (s — Kk3), equation (65) yields

m®’ (s) = /) J=123. (72)

(s—w1)(s—wz)(s—w3)(s—K1)(s—K2)(s—K3)

Splitting into partial fractions and then taking inverse Laplace transform, equation (72) yields

(z)(t) _ q2j(w1) pnt
(w1 — W) (w1 — w3) (W1 — K1) (Wg — K2) (w1 — K3)
" q2j(w7) o3t
(w2 — W) (W — w3)(Wy — K )(Wy — Kz) (W — K3)
" q2j(ws3) o@st

(w3 — w1 (w3 — W) (W3 — K1) (w3 — Kz) (W3 — K3)
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Q2j(K1)

(6 — w1) (1 — W) (6 — W) (g — k) (s —K3) -

+

q2j(x2) kot
(k2 — w1)(Ky — W2) (K — w3)(Ky — K1) (K — K3)

qzj(x3) €K3t,j — 1’2’3.

(k3—w1)(K3—w2)(K3—w3)(K3—K1)(K3—K3)

Taking Laplace transform on both sides of (7), (8) and (9), we get
(s +ay = 2L)mEY () = vimi) () — viamiy () = 1,

~Y2a1m$E) (s) + (s + az — L)mEY (s) — yazmey () = 1,

—Y3mEr (5) — Vaamey (s) + (s + az)mey’ (s) = 1.

Solving (74), (75) and (76), we get

(2)* _ 1711(5) (2)* _ 1712(5) (2)* _ 013(5)

where, T1(s) is same as (53) and

—V12 —Y13
M1(s) =11 s+a;—L, —va3|
1 —Y32 s+aj
S + al - 2L1 1 _]/13
I115(s) = —Y21 1 =y,
_y31 1 S + a3
s+a;— 2L, —Y12 1
I1;3(s) = —Y21 s+a,—L, 1]
—Y31 —VY32 1

Since I1(s) = (s — k1) (s — k) (s — Kk3), equation (77) yields

4j(s)
(s—11)(s—K3)(s—K3)

m¢y (s) = j=1,23.

Splitting into partial fractions, and then taking inverse Laplace transform, equation (81) yields

(2)(1:) = 171]—(161) Kyt HU—(KZ) Kot 11 (k3) efat j= 123

(11 —k2) (11 —K3) (rep—x1) (k2 —K3) (rk3—K1) (K3—K3)
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5. A Numerical Illustration
For the purpose of illustration, we fix the values of the parameters based on Moolgavkar and
Venzon (1979) as follows:

Y12 = 06, Y13 = 03, Y21 = 04‘, Y23 = 08, Y31 = 07, Y32 = 05,
L =03; D, = 0.5; L, =04 D, = 0.4; L, =0.5; Dy = 0.3;
a, = 0.7; Ui = 0.5; a, = 0.6; Uy = 0.6; az = 0.5; U3z = 0.7

For the above values of the parameters, the zeros of A(s) are given by w; = —2.7618; w, =
—1.868; w; = —0.2702 and the zeros of I1(s) are given by k; = —2.3708; k, = —1.9185; k3 =
—0.4107. We have computed the mean number of malignant cells in the case of single mutation
(see Table 1, Table 2 and Table 3), and depicted the graphs of m3\) (), m$ (), and m$2(e) in
Figure 2, Figure 3 and Figure 4. In all these three graphs, we find that the mean number of
malignant cells increases in all the three levels of environment and it crosses the threshold value 1
as early as in 5.0 units of time in level 1, 7.0 units of time in level 2, and 9.0 units of time in level
3.

Table 1. Environment level 1 dependent growth of maligant cells (One mutation)

t O t HO) t mii () t mga ()
0.5 0.0607 5.5 1.0384 10.5 1.3183 15.5 1.3908
1.0 0.1834 6.0 1.0861 11.0 1.3306 16.0 1.3940
1.5 0.3195 6.5 1.1278 11.5 1.3414 16.5 1.3968
2.0 0.4502 7.0 1.1643 12.0 1.3509 17.0 1.3992
2.5 0.5692 7.5 1.1961 12.5 1.3591 17.5 1.4013
3.0 0.6750 8.0 1.2239 13.0 1.3663 18.0 1.4032
3.5 0.7681 8.5 1.2482 13.5 1.3726 18.5 1.4048
4.0 0.8498 9.0 1.2694 14.0 1.3781 19.0 1.4063
4.5 0.9213 9.5 1.2879 14.5 1.3829 19.5 1.4075
5.0 0.9838 10.0 1.3041 15.0 1.3871 20.0 1.4086

Table 2. Environment level 2 dependent growth of maligant cells (One mutation)

t mih(©) t m® t meh(®) t mgh ()
0.5 0.2560 5.5 0.9339 10.5 1.0722 15.5 1.1080
1.0 0.4275 6.0 0.9575 11.0 1.0783 16.0 1.1096
1.5 0.5439 6.5 0.9781 11.5 1.0837 16.5 1.1110
2.0 0.6292 7.0 0.9961 12.0 1.0883 17.0 1.1122
2.5 0.6965 7.5 1.0119 12.5 1.0924 17.5 1.1132
3.0 0.7521 8.0 1.0256 13.0 1.0959 18.0 1.1142
3.5 0.7995 8.5 1.0376 13.5 1.0991 18.5 1.1150
4.0 0.8404 9.0 1.0481 14.0 1.1018 19.0 1.1157
4.5 0.8760 9.5 1.0572 14.5 1.1041 19.5 1.1163
5.0 0.9069 10.0 1.0652 15.0 1.1062 20.0 1.1168
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Table 3. Environment level 3 dependent growth of maligant cells (One mutation)

oD

t mga (o) t mg () t mg () t mg (o)
0.5 0.3203 5.5 0.8952 10.5 1.0197 15.5 1.0519
1.0 0.4675 6.0 0.9164 11.0 1.0252 16.0 1.0533
1.5 0.5588 6.5 0.9350 11.5 1.0300 16.5 1.0546
2.0 0.6276 7.0 0.9512 12.0 1.0341 17.0 1.0556
2.5 0.6843 7.5 0.9653 12.5 1.0378 17.5 1.0566
3.0 0.7327 8.0 0.9777 13.0 1.0410 18.0 1.0574
3.5 0.7747 8.5 0.9885 13.5 1.0438 18.5 1.0581
4.0 0.8112 9.0 0.9979 14.0 1.0463 19.0 1.0588
4.5 0.8431 9.5 1.0062 14.5 1.0484 19.5 1.0593
5.0 0.8709 10.0 1.0134 15.0 1.0503 20.0 1.0598
1
15 T T T T T
- Graph aof mg:[ti
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= £
-..-Ell .:,l
ost ,-“ J
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Figure 2. Graph of m;;(t)
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=
E
0.6 :,f" p
0.4 _-'. E
0z _‘. L
o 2 4 &} 10 12 14 16 20
t
; (€]
Figure 3. Graph of m; ;(t)
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Figure 4. Graph of m$)(t)

For the same numerical values of the parameters, we have computed the mean number of
malignant cells in the case of two mutation (see Table 4, table 5 and Table 6), and depicted the
graphs of m(z)(t) m(z)(t) and m (t) in Figure 5, Figure 6 and Figure 7. In each of these
graphs, we find that the mean number of malignant cells increases initially in level 1 of
environment, but it has almost reached a steady state as early as in 42.1 units of time in level 1. On
the other hand, the mean number of malignant cells increases for all time and crosses 1 in 13.7
units of time in level 2, and 10.5 units of time in level 3. In other words, environment level 3
induces the appearance of malignant cells in the population.

Table 4. Environment level 1 dependent growth of maligant cells (Two mutation)

t WHO! t W) t A 0) t WHO
1.0 0.0334 11.0 0.7729 21.0 0.8631 31.0 0.8698
2.0 0.1339 12.0 0.7947 22.0 0.8648 32.0 0.8699
3.0 0.2527 13.0 0.8118 23.0 0.8661 33.0 0.8700
4.0 0.3644 14.0 0.8251 24.0 0.8671 34.0 0.8701
5.0 0.4617 15.0 0.8354 25.0 0.8678 35.0 0.8701
6.0 0.5437 16.0 0.8434 26.0 0.8684 36.0 0.8701
7.0 0.6112 17.0 0.8496 27.0 0.8689 37.0 0.8702
8.0 0.6661 18.0 0.8544 28.0 0.8692 38.0 0.8702
9.0 0.7101 19.0 0.8581 29.0 0.8695 39.0 0.8702
10.0 0.7452 20.0 0.8609 30.0 0.8696 40.0 0.8702
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Table 5. Environment level 2 dependent growth of maligant cells (Two mutation)

oD

t mA(©) t mZ() t WHO) t mZ(6)
0.5 0.0299 5.5 0.6843 10.5 0.9402 15.5 1.0174
1.0 0.1006 6.0 0.7244 11.0 0.9529 16.0 1.0210
1.5 0.1835 6.5 0.7604 11.5 0.9642 16.5 1.0242
2.0 0.2654 7.0 0.7928 12.0 0.9741 17.0 1.0270
2.5 0.3420 7.5 0.8218 12.5 0.9829 17.5 1.0294
3.0 0.4127 8.0 0.8477 13.0 0.9906 18.0 1.0315
3.5 0.4775 8.5 0.8708 13.5 0.9974 18.5 1.0334
4.0 0.5367 9.0 0.8914 14.0 1.0034 19.0 1.0350
4.5 0.5908 95 0.9096 14.5 1.0087 19.5 1.0365
5.0 0.6398 10.0 0.9258 15.0 1.0134 20.0 1.0377

Table 6. Environment level 3 dependent growth of maligant cells (Two mutation)

t mZ)(6) t mA© t mA© t mA )
0.5 0.0688 5.5 0.7548 10.5 0.9981 15.5 1.0706
1.0 0.1713 6.0 0.7932 11.0 1.0101 16.0 1.0740
1.5 0.2648 6.5 0.8277 11.5 1.0207 16.5 1.0769
2.0 0.3480 7.0 0.8586 12.0 1.0300 17.0 1.0795
2.5 0.4234 75 0.8861 12.5 1.0382 17.5 1.0818
3.0 0.4922 8.0 0.9107 13.0 1.0455 18.0 1.0838
3.5 0.5551 8.5 0.9326 13.5 1.0519 18.5 1.0855
4.0 0.6125 9.0 0.9520 14.0 1.0575 19.0 1.0870
4.5 0.6648 9.5 0.9693 14.5 1.0624 19.5 1.0884
5.0 0.7121 10.0 0.9846 15.0 1.0668 20.0 1.0896

S
E _
——— Graph of mf_ﬂ[i*
40 50 B0 0 a0 a0 100

Figure 5. Graph of mézi ®
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We present now a comparison between the results of the present model on three-level environment
with the results of Yadavalli et al. (2020) on two-level environment. When there are only two
levels for environmental changes, the onset of malignant cells for one mutation model is quicker
(between 1.9 — 2.0 units of time) than when there are three level for environmental changes
(between 5.1 — 5.2 units of time) . We also find that when there are only two levels for
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environmental changes, the onset of malignant cells for two mutation model is quicker (between
1.9 — 2.0 units of time) than when there are three level for environmental changes (between
13.7 — 13.8 units of time). This is because of the fact that when the favourable conditions for
mutation are available in a higher level, the transitions from one level to another level of the
environment affect the time of progression of malignant cells.

6. Conclusion

We proposed an environment dependent two mutation model for carcinogenesis. We assumed
three levels for the environment in which the third level is favourable for mutation into malignant
cells. Based upon the numerical illustration, we are able to conclude that two mutation model
shows that malignant cells occur delayed in time compared to the single mutation model. Further
more, it is observed that environment level 3 is favourable for the production of malignant cells.
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