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Abstract—Malicious users (MUs) have the tendency to disrupt
the activities of honest users in the network if not properly
controlled. In a massive cognitive radio network (CRN) with
priority queues, malicious secondary users (SUs) can manipulate
their priority queue requirements and mislead legitimate SUs
to vacate the channels. In this paper, a game theoretic based
signal detection approach is proposed to control the presence
of MUs in CRN. If the received signal strength is less than the
predefined threshold for primary transmissions in the presence
of interference and noise, such a user is marked to be malicious
and its payoff table is updated. Through the mixed strategy Nash
equilibrium method, the payoff table of each user can be updated
to aid removal of MUs from the network. The outcome of the
simulation results shows that such an approach can reduce the
impact of malicious activities in the massive CRN where SUs are
expected to be low-power energy-efficient devices.

Index Terms—Cognitive radio, game theory, payoff, point
process, queuing.

I. INTRODUCTION

Cognitive radio network (CRN) has been proposed as a
suitable paradigm capable of ending the threat of spectrum
scarcity caused by the adoption of the fixed spectrum alloca-
tion policy, which has proven to be inefficient and insufficient
to cope with the next generation of spectrum users. It is, there-
fore, unsurprising that the area has been receiving substantial
attention in the past years. CRN is the paradigm that allows
unlicensed users to access the channels belonging to licensed
users such as digital TV transmitters, provided that such usage
will not disrupt the activities of the licensed users. The channel
access requirements of the unlicensed users can thus be met
while the operations of the licensed users are not affected.
These licensed users are generally called the primary users
(PUs), while the unlicensed users are known as secondary
users (SUs) or cognitive users.

In order to meet the channel usage constraints, especially at
the primary network, all SUs must carry out channel sensing
to obtain the state of the channel. When any PU is active
(i.e. in the ON state) on a particular channel, such a channel
is said to be busy and unavailable for secondary usage. SUs
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must, therefore, wait until the channel is available or switch to
another channel for possible spectrum opportunity. In CRN, a
typical SU can secure transmission opportunity based on the
time (when a PU is inactive), the frequency (when a PU is
transmitting on another frequency band), or space (when a PU
is located far away). A transmission opportunity obtained by
the SUs based on space encourages spatial reuse and is known
to facilitate spectrum usage in a more efficient and effective
manner. In such a network, an SU is allowed to transmit when
the neighboring PUs are not active, though the transmissions
of several SUs, as in a densely populated wireless network, can
result in excessive interference with the primary networks. To
reduce interference associated with spatial reuse, interference
management and control become an important issue if users’
quality of service must be satisfied.

Stochastic geometry (SG) has been proposed as a suitable
approach to control interference in wireless networks [1]– [3].
In [1], [2], the use of protection zones within which SUs are
not allowed to transmit were shown to reduce interference
in the network. Subsequent efforts [4], [5] now consider the
integration of the queueing model into the system modeling
so as to relax the full buffer assumption in the previous works,
while also capturing the spatial-temporal dynamic of the
network. With the adoption of queueing theory along with SG,
PUs are placed in the primary queue, while SUs are placed in
the secondary queue. PUs in the primary queue are considered
to transmit based on their arrival time following first-come-
first-served (FCFS) principle, though PUs’ arrivals are well
structured owing to their delay-sensitive nature. Because of the
pre-emptive priority enjoyed by PUs, no SU can secure access
to transmit within a location except when the primary queue
in such a spatial location is empty. Similar to the primary
queue, SUs gain access to transmit based on their arrival time
following the FCFS principle, provided that the primary queue
is empty.

With the adoption of the spatiotemporal approach in CRN,
malicious SUs (which will be referred to throughout this paper
as malicious users (MUS)) can violate the queueing principle
to deny other SUs opportunities to transmit by staying on
the primary queue, forcing SUs either to switch to another
channel or wait for a longer period (an attack similar to
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a denial of service attack). Similarly, MUs can stay in the
secondary queue and wait for an appropriate transmission
opportunity with the purpose of disrupting the network by
selfishly securing more channel opportunities than specified
for secondary transmissions. Such attacks are common in
all wireless networks and have been subjected to intense
research in the past years. In CRN, MUs are commonly
studied in the form of PU emulation attackers (PUEA) [6]–
[14], jamming attackers [15], jamming learning threats and
secondary spectrum data falsification [6], [16] etc. though
PUEA is the most frequently studied form of attack in the
literature because it is the most dangerous threat to CRN owing
to the difficulty of detecting it.

Two common types of PUEA are selfish and malicious users
[7]. PUEA in the form of MUs pose denial of service threats
[17]. In PUEA, malicious SUs can mislead legitimate SUs to
vacate the channels by mimicking PUs’ signal features [11].
Accurate detection of a PU is, however, very challenging,
hence the need to differentiate between PU and PUEA signals
remains an open issue in CRN [10]. One important require-
ment when detecting MUs in CRN is that such an approach
must be energy-efficient, since SUs are expected to be low-
power energy-efficient devices or users.

The energy detection approach was considered in [10], [18],
though multiple channels were not considered in [18]. Simi-
larly, a trust list table was proposed in [6], while a multipath
fading detection approach was used to detect PUEA in [7]. In
CRN, PUs are generally TV stations, radars and cellular base
stations with signal power strength normally tens to thousands
of times higher than what PUEA can produce [19]; hence, the
signal power of PUs cannot be mimicked by smart attackers.
The detection of PUEA through PU transmission power was
thus considered in [9]. In [14], PUs’ activity patterns were
obtained through the ON and OFF periods of PU signal and
were compared with the activity patterns of any active user to
detect MUs. Such an approach, however, assumed a similar
channel usage pattern (ON and OFF periods) referred to as a
signal activity pattern for all PUs.

Detection approaches based on fingerprint/radiometric fea-
tures, transient pulse shape, geographical information, and
propagation channels have been claimed to be computationally
intensive, hence, to have restricted deployment [20], while the
localization-based approach and fingerprint approach assume
that the locations and identities respectively of PUs are known
to all SUs. In fact, the localization approach is known to
be affected by many factors such as mobility, fading and
shadowing [6]. The belief level approach is proposed in [21]
in which each node’s reputation is obtained through the cluster
head of the group to which such node belongs. Each time, all
nodes carry out channel sensing and forward the outcome to
their neighboring nodes. Such outcomes are also sent to the
cluster head to compute each node’s belief level. The limitation
of such an approach lies in its dependence on the cluster heads
to determine the state of a PU. For instance, a smart attacker
can first build its belief level until it becomes the cluster head
with the aim of compromising the entire network.

In [6], a game theory-based approach is proposed to detect
PUEA in CRN following the approach discussed in [8]. The
work assumed that the existing pattern of PUs is known to
all SUs in the learning phase and that SUs are able to recog-
nize the evacuation signal from the PUEA. Communication
between the sending and receiving nodes, however, occurs
through the multiple cluster heads - an approach that is not
energy-efficient, while interference between PUEAs and SUs
is neglected. An advanced encryption scheme was proposed
in [13], where PUs were assumed to be uniformly distributed,
although the distribution of SUs was not considered. The
adoption of authentication and encryption methods has been
reported to require a high level of computation and overhead
cost [6]. Mitigation of jamming attacks was also considered
in [15].

In this paper, we present a game theoretic based signal
to interference plus noise ratio (SINR) detection approach
to mitigate and detect the activities of MUs in CRN. To
the best of our knowledge, detection of MUs, while still
capturing the spatiotemporal behavior of users in CRN, has not
been considered before. The approach presented in this paper
not only captures the information-theoretic interactions in the
network, but is also shown to be energy-efficient. The closest
effort to our work is [11], in which a queueing game-theoretic
solution was introduced. The work studied the effects of
malicious misbehavior users and selfish misbehavior users in
CRN through the M/M/1 queuing system. The work, however,
considered only a single PU band while SUs still vacate bands
for malicious misbehavior and selfish misbehavior users.

The rest of the paper is structured as follows: In Section
II, we present the details of the network model, while Section
III presents the analysis of the proposed approach. Numerical
results and simulation are presented in Section IV, while
Section V concludes this paper. The following notations are
used throughout this paper: (a, b) is the payoff received by
the SU and MU respectively, x̄ = 1− x and I represents the
identity matrix.

II. NETWORK MODEL

We consider a CRN under malicious attack as shown in
Fig. 1, where the network is segmented into different cells or
disks of radius rp,max, each of which represents the coverage
area of PUs. Each of these cells includes PUs and SUs
considered to be located on primary and secondary queues
respectively, based on their arrival times. MUs can be located
in either a primary or secondary queue owing to their ma-
licious features. The distribution of primary transmitters and
secondary transmitters is assumed to follow two independent
Poisson point processes Ψp and Ψs with their respective
intensity given as λp and λs, though such distributions are
better represented as the Matern hole process (MHP). The
approximation was necessary owing to the unavailability of
the probability generating functional (PGFL) for MHP. Note
that in CRN, we have only two users: PUs and SUs. All MUs
that are present can, therefore, be interpreted as SUs with
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Fig. 1. Users’ distribution in CRN under malicious attacks.

malicious intentions and their distributions are captured within
SUs’ distribution.

For any active primary transmitter (PT), its paired primary
receiver is located at a maximum distance Dp ≤ rp,max.
Similarly, for any active secondary transmitter (ST), its paired
secondary receiver is located at a maximum distance of
Ds,∀Ds � Dp. Since Ds � Dp, more than one ST
can be granted access within any cell, depending on the
channel requirements if no PT is active. Each secondary user
coordinator (SC) is assumed to be distributed uniformly within
each cell and is capable of accessing the signal strength and
location of each active user within such a cell at any time
slot via smart channel sensing. Any active PT is located at
a distance rp ∈ [0, rp,max] from its closest SC. Similarly,
any active ST is located at a maximum distance of rs ∈
[0, rs,max],∀rs,max ≤ rp,max from the SC located within
its spatial location. The deployment of SCs is useful in the
detection of MUs and is responsible for user verification in
the network.

The use of a vacation-based Geo/PH/1 discrete-time Markov
chain queuing model was employed for each cell owing to
its simplified memoryless inter-arrival process and its general
departure process that can account for the interference-based
interactions between the primary and secondary queues in the
network [5]. Each PT arrival rate follows a Bernoulli process
with parameter ξp, while each ST arrival rate follows an
independent Bernoulli process with parameter ξs. With such a
model, we considered inter-arrival time at each primary queue
to follow a geometric distribution with parameter ξp ∈ [0, 1]
transmitter per time slot, while inter-arrival time at each sec-
ondary queue is considered to follow an independent geometric
distribution with parameter ξs ∈ [0, 1] transmitter per time slot.

We assumed that both queues have infinite capacities and
that each PT requires a random number of slots to complete
its transmission. STs requiring multiple slots to complete their
transmissions must carry out channel sensing at the beginning
of each time slot.

Owing to the requirement of CRN, a typical ST is required
to vacate the band upon arrival of any user in the primary
queue (because of its low power and processing capabilities,
legitimate STs assume any user in the primary queue is a PU).
The interrupted ST is returned to the head of the secondary
queue. Both primary and secondary priority queues’ vacation
periods can be characterized using PH type distribution. When
the primary queue is not empty, the channel is unavailable for
secondary transmission, hence, to all users in the secondary
queue, the channel is said to be on vacation. However, when
the primary queue is empty, all users in the secondary queue
perceive the channel to have returned from vacation and hence
in the state of absorption.

The detection of malicious activities on the network is thus
discussed as follows: an MU can either be a selfish MU
or a destructive MU. A typical MU is destructive if such a
user secures access to a channel (usually through a secondary
queue) with the purpose of causing interference to neighboring
users. On the other hand, a selfish MU joins the primary queue
with the aim of preventing legitimate SUs from accessing the
channels (an attack known as a denial of service). As shown in
Fig. 2, an SC located within each cell verifies each user on the
channel using the received SINR and the estimated distance to
decide whether such a user is legitimate or an MU. Through
channel sensing, the SC is aware of the SINR pattern of PTs
within its assigned cell under the Rayleigh fading assumption
and unbounded path loss propagation model.

At the beginning of each slot, any ST yk ∈ Ψs at the head
of the secondary queue senses the channel for a window cycle
cw to obtain channel information in the primary queue. If
the primary queue is empty, such an ST proceeds to transmit
on the channel, else the ST waits until the channel becomes
available or switches to other cells with faster transmission
opportunities. Similarly, any typical SC within such a cell
performs channel sensing to obtain the SINR credentials and
the estimated distance of the current channel user. This sensing
is done during a window cycle vw < cw. If the set of the
received SINR during vw falls within the known SINR of
PTs, no ST is allowed to access the channel. However, if the
received SINR does not fall within the known SINR for PTs,
such a user is considered to be malicious. MUs are denied
access by the SC, providing more spectrum opportunities for
the legitimate SUs. With vw < cw, the SC considers any user
besides PUs transmitting within vw to be malicious, since only
PUs are allowed to transmit without sensing. We provide more
details in the next section.

III. ANALYSIS

The analysis for the proposed CRN followed a two-level
PH type distribution of the initial probability vector βn and
transient matrix Sn, where n ∈ [p, s] for PUs and SUs. The
transient matrix Sn is defined as the sub-stochastic matrix
representing the transient states’ transitions and it captures
transitions until service completion [22]. For any real-life
queuing system modeled in discrete time, it is possible to
come up with quasi-birth-and-death (QBD) types of Markov
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chains for such a system [23]. The QBD model suitable to
characterize such a model can be derived as

Pn =


B1,n Cn
En A1,n A0,n

A2,n A1,n A0,n

A2,n A1,n A0,n

. . . . . . . . .

 , (1)

where B1,n = 1− ξn, En = (1− ξn)sn, Cn = ξnβn, A0,n =
ξnSn, A1,n = ξnsnβn + (1− ξn)Sn, A2,n = (1− ξ)snβn and
sn = 1−Sn1. 1 is the column vector of ones. From [22], we
know that

Rn = A0,n[I −A1,n −A0,n1βn]−1. (2)

The stationary distribution of this system can be obtained,
knowing that

xn = xnPn, xn1 = 1, (3)

with the boundary equations given as

xn,0 = xn,0(1− ξn) + xn,1(1− ξn)sn, xn,1 = xn,0ξnβn+

xn,1(A1,n +RnA2,n), (4)

and the normalization equation

xn,0 + xn,1(I −Rn)−11 = 1. (5)

In order to control the presence of MUs within a spatial
location, verification of users’ identities is important. Let zk
be the SC located on the cell Ck, then at zk, the SINR pattern
of PTs within the cell Ck ∈ R2 can be obtained from

SINRzk =
PpGX |zxk |−µ

ϕ+ Ipc + Isc
, (6)

where Pp is the PTs’ transmit power, ϕ is the thermal noise
signal power, GX is the channel gain between any tagged PT
xk ∈ Ψp and the SC within Ck and |zxk |−µ gives the Euclidean
distance between the tagged PT and the SC with path loss
exponent µ. Ipc and Isc are the inter-cell interference from

other active PTs and interference from active STs (including
possible active MUs) respectively at the zk. The probability
that the user currently transmitting in Ck is a PT is the
probability that the SINR received at the SC zk is greater
than the pre-defined threshold Tp. This can be obtained as

P (PT ) = P

(
PpGX |zxk |−µ

ϕ+ Ipc + Isc
> Tp

)
, (7)

= P

(
GX >

Tp(ϕ+ Ipc + Isc)

Pp|zxk |−µ

)
.

With Rayleigh fading assumption,

P (PT ) = exp
(
− ϕ Tp

Pp|zxk |−µ
)
LIpc

( Tp
Pp|zxk |−µ

)
LIsc

( Tp
Pp|zxk |−µ

)
,

(8)
where LI(s) is the Laplace transform of I at point s.
Under the scenario considered, the interference from other PTs
is generated from PTs located outside Ck of radius rp,max. Let

s =
Tp

Ppr
−µ
p

, by applying the PGFL of PPP,

LIpc(s) = exp

{
−2π2λpξp(sPp)

2
µ

µ sin( 2π
µ )

}
. (9)

Similarly, interference from STs is generated from STs located
outside Ck given as

LIsc(s) = exp

{
−2πλsξsχi

∫ ∞
rp,max

TpPs

TpPs + rµPpr
−µ
p

rdr

}
,

(10)
where χi = xp,0 is the probability that the primary queue
in cell Ci is empty, obtained from the solutions of (2)–(5),
a parameter that depends on the service completion rate of
PTs. Ps ≤ Pmaxs � Pp is the SUs’ transmit signal power,
with Pmaxs being the maximum allowable transmit power for
any secondary node. Under the Rayleigh fading assumption
and with the path loss propagation model, the SINR pattern
of PTs within the cell Ck ∈ R2 is obtained within the range
rp = [0, rp,max]. Hence, the upper bound of P (PT ) is obtained
when rp = 0 while the lower bound of P (PT ) is obtained at
rp = rp,max. The probability received at each rp = [0, rp,max]
forms the reference value Rp for future verifications.

In a typical slot t, the zk verifies whether the SINR pattern
received from any transmitting user is from PT or MU. The
average SINR pattern of such an unknown user u ∈ Ψ,∀Ψ =
{Ψp ∪ Ψs} within the cell Ck ∈ R2 can be obtained within
the cycle vw as

SINRu =
1

B

B∑
b=1

(
PuGx|zuk |−µ

ϕ+ Ipc + Isc

)
, (11)

where B is the number of times SINR was sampled during
vw, Pu � Pp is the transmit power and Gx is the channel
gain between user u and the SC within Ck. The probability
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that the SINR received at zk is greater than the pre-defined
threshold Tp, and hence, from the PT is given as

P (Pu) = P

(
1

B

B∑
b=1

(
PuGx|zuk |−µ

ϕ+ Ipc + Isc

)
> Tp

)
. (12)

At B = 1, such a probability is simplified as

P (Pu) = exp
(
− ϕ Tp

Pu|zuk |−µ
)
LIpc

( Tp
Pu|zuk |−µ

)
LIsc

( Tp
Pu|zuk |−µ

)
.

(13)
If P (Pu) ∈ Rp at the estimated rp, then the presence of PT
is determined, else the presence of MU is confirmed. Such a
user is denied access, while the payoff table for such a user
is updated. A time-invariant channel is assumed during vw.

At the beginning of any time slot and within a typical cell,
only the ST at the head of such a secondary queue performs
channel sensing, while other STs in the queue reduce their
energy consumption while waiting. Since STs and MUs are
not aware of the arrival rate of PTs, only the received SINR
during the sensing window slot is used to determine the state
of the channel. While the primary intention of any SU is to
maximize the usage of the available white space, any typical
MU is interested in disrupting the network or deny SUs service
opportunities. We hence incorporated a game theory approach
via the mixed strategy Nash equilibrium to aid the removal of
MUs from the network. Based on the received SINR pattern
at the SCs, users’ payoff tables are updated at every attempt to
transmit and every completed transmission. Users with lower
payoff are malicious and can be removed from the network.
Following the analysis presented in [8], the game constraints
for any typical SU are derived as,

CQ > CI > G > cs; RQ > RI > cs, (14)

where CQ is the penalty for either joining the primary queue
or violating queue constraints, CI is the penalty for causing
excessive interference on the network, while G is the gain
received for accessing the channel. Also, RQ is the benefit
received by the SU for obeying the queueing constraints,
RI is the benefit received for managing interference in the
network by vacating the channel upon arrival of any PU and by
transmitting with the recommended signal power Ps ≤ Pmaxs

for secondary transmission and cs is the cost of switching
channels to access the unused channels (or cost of staying
and waiting for spectrum opportunity).

For any typical MU, the game constraints can be expressed
as

G > cm; CA > cm, (15)

where cm is the cost of emulating PUs’ behavior for the
purpose of deceiving SUs or causing interference by gen-
erating signal power Pm > Ps and CA is the benefit of
causing interference in the network. The condition CQ > CI
is necessary to discourage violation of queueing constraints by

Fig. 3. Game tree in a typical slot.

the SUs, CI > G is necessary to prevent SUs from causing
inference in the network, encouraging them to transmit at
the specified transmit power while vacating the channel upon
arrival of any PU. G > cs is useful to encourage SUs to
switch between channels so as to occupy the unused spaces in
the network. Also, the condition RQ > RI is useful to reward
SUs that obey queueing principles, while RI > cs is necessary
to encourage SUs to switch channels or withhold transmission
upon arrival of any PU.

Similarly, the constraint G > cm shows that an MU
benefits more from securing access to a channel through
deceptive means than the cost of emulating PUs’ behavior,
while CA > cm shows more reward for an attacker when
causing interference in the network. Generally, the benefit is
in the form of spectrum opportunity, while the penalty is in
the form of removal or blockage from the network.

Considering a typical slot, users’ actions can be depicted
using payoff chat, as shown in Table I.

TABLE I
PAYOFF MATRIX FOR THE GAME IN A TYPICAL SLOT

Case 1: PU active (ξp)
(SU, MU) Attack No Attack
Transmit −CQ − CI , CA − cm −CQ − CI , 0
Withhold RQ +RI − cs,−cm RQ +RI − cs, 0

Case 2: PU inactive (1− ξp)
(SU, MU) Attack No Attack
Transmit G,−cm G, 0
Withhold −cs, G− cm −

Table I can be summarized as shown in Fig. 3. Let µs and
µm represent the service completion rate of any typical ST and
MU respectively. The expected reward of such an ST and MU
in the absence of PU is given in (16) and (17) respectively.

E[RST ] = µsG+ (1− µs)(−cs). (16)

E[RMU ] = µm(G− cm). (17)

As shown in Fig. 3, the actions of all users are not pre-
dictable, hence, the mixed strategy Nash equilibrium method
can be used to analyse the expected payoff of SUs and MUs
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[6], [8]. Let γ be the probability that a tagged ST withholds
its transmission on a typical channel and γ̄ be the probability
that such an SU transmits; we can similarly define θ as the
probability that a tagged MU attacks the typical channel or θ̄
if it decides not to attack the channel. The expected payoff of
the SU is given as

E[S] = ξp[γ(RQ +RI + CQ + CI − cs)− CQ − CI ]+

(1− ξp)[G− θγ(cs +G)]. (18)

Similarly, the expected payoff of the MU is given as

E[M ] = ξpθ[CA(1− γ)− cm] + (1− ξp)θ[γG− cm]. (19)

IV. NUMERICAL RESULTS AND SIMULATION

We now present the simulations of the analysis presented
in this paper. Except when stated otherwise, the following
parameters were used for simulations: λs = 0.3, λp = 0.03,
Tp = 10dB, rp,max = 1.2m, Pp = 0dB, Ps = −32dB,
µ = 4 and ϕ = −180dB. Also, for the mixed strategy
Nash equilibrium obtained during one slot, we used G = 50,
CQ = 65, CI = 60, CA = 40, RQ = 25, RI = 20, cs = 15
and cm = 25. We carried out Monte Carlo simulation averaged
over 10 000 simulations to validate our analysis.

Fig. 4 shows the relationship between the received signal
probability and the distance of the active user from the SC.
At each estimated distance, the SC confirms whether the
estimated distance and the obtained SINR signal correspond
with their respective values in the reference table. If such
values correspond, a PU is detected, else a malicious operation
is detected. Fig. 5 shows that under the considered scenario, it
is difficult for any typical MU to match the known reference
signal at the SC. The PU signal can only be matched when MU
transmits with a transmit power equal to that of PU, a situation
which is unlikely, owing to the transmission capability of PUs
in CRN.

The expected SU and MU payoffs are presented in Fig. 6
and Fig. 7. In Fig. 6, the expected payoff is shown to increase
when legitimate SUs desist from transmitting either by waiting
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until the primary queue is empty or by switching to another
channel with an empty primary queue. With an increase in
PTs’ arrival rate, SUs are penalized for transmitting on a
busy channel, as that will generate interference in the primary
network. The low expected payoff of the MUs signifies the
level of penalty suffered by MUs for not obeying queue and
transmission requirements. With more attacks launched, the
SC updates the MU payoff table and can make subsequent
decisions to remove or block such a user from future access
to the channel.

Users’ payoff serves as a good metric for channel access.
Any legitimate SU can be marked as malicious if its activities
suggest a turn away from the required activities for legitimate
users. Our approach similarly prevents spectrum sensing data
falsification attack - an attack in which an MU sends false
sensing results to the other nodes in the network in order to
either deny them spectrum opportunities or increase interfer-
ence in the network.

V. CONCLUSION

In this paper, we present a game theoretic based SINR
detection approach to control the presence of MUs in CRN.
The spatiotemporal behavior of the system was captured using
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Fig. 7. The expected MU payoff.

the tools of SG and queueing models. The use of a vacation-
based Geo/PH/1 discrete-time Markov chain queuing model
was employed for each cell owing to its simplified memoryless
inter-arrival process and its general departure process that can
account for the interference-based interactions between the
primary and secondary queues in the network. MUs were
penalized for violating queuing and interference requirements
in the network. Through SCs, the activities of every active
user can be verified through the reference table, containing
the reference PU SINR and the corresponding distances. We
assumed that SC is able to estimate the location of each active
user while also capturing the SINR received. In the proposed
approach, SUs can go into hibernation when they are not at the
head of the secondary queue in order to reduce energy-wasting
while waiting.
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