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Abstract

We extend results about asymmetric colorings of finite Cartesian prod-

ucts of graphs to strong and direct products of graphs and digraphs. On

the way we shorten proofs for the existence of prime factorizations of fi-

nite digraphs and characterize the structure of the automorphism groups

of strong and direct products. The paper ends with results on asymmetric

colorings of Cartesian products of finite and infinite digraphs.
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1 Introduction

A coloring of the vertex set of a graph is called asymmetric if the identity
automorphism is the only automorphism that preserves it. Such colorings were
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independently studied by several authors, notably Babai [2], Cameron [4], and
also Polat [17] and Sabidussi [18]. After Albertson and Collins [1], unaware of
these developments, introduced the term distinguishing number for the smallest
positive integer d for which an asymmetric coloring of a graph G exists the
subject became more widely known. They introduced the notation D(G) for
this number. We prefer to call it the asymmetric coloring number, but use the
same notation.

This paper extends results of [6], where it was shown that the Cartesian
product of two finite graphs has an asymmetric 2-coloring if the sizes of the
factors do not differ too much. In Section 4 we extend this result to the strong
and the direct product of finite graphs and digraphs. This is possible because
the strong and the direct product of finite graphs share many properties with
the Cartesian product.

Our methods of proof, first of all, rely on the fact that all finite graphs have
prime factorizations with respect to the strong and the direct product, and
that these factorizations are unique under suitable, natural conditions. This
is treated in Section 3.1. Another property which we will heavily use is the
relationship between the automorphism group of a product of prime graphs
with the groups of the factors, see Section 3.2.

The unified treatment of the strong and the direct product in Section 3 is
possible, because both products are instances of the direct product of digraphs
without multiple arcs, which can also be viewed as binary relational structures.
We thus begin with the prime factorization of binary relational structures with
respect to the direct product.

The standard argument is to invoke the so called common refinement prop-
erty, which in turn implies unique prime factorization for finite structures. The
proof of the common refinement property, on the other hand, consists of two
parts. The first is a a result of Chang, Jónsson and Tarski [5], who proved that
it is a consequence of a specific commutativity property of decomposition func-
tions, and the second is due to McKenzie [16], who showed that this property,
see Lemma 1, is satisfied under certain natural conditions.

We use the result of McKenzie, and then prove unique factorization directly,
using neither the results of [5], nor common refinement. Our main tool is The-
orem 5, which we dereive directly from a result of McKenzie [16]. It is the main
result of Section 3.1 and the basis of Section 3.2, where the structure of the
automorphism group of direct products of digraphs is investigated.

The Cartesian product of digraphs is treated in Section 6. Here the re-
striction to finite graphs is not necessary and we can easily extend results from
[6] about asymmetric colorings of finite or infinite Cartesian products to finite
or infinite digraphs with or without loops. This section is independent of the
results in the previous sections.

For an entirely different approach to prime factorization of digraphs with
respect to the direct product see [7, 8, 14, 15, 11, 9]. The approach in these
papers leads to classes of graphs that have the unique prime factorization prop-
erty, but are distinct from the class of graphs with the unique prime factorization
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property of this paper. In other words, that approach secures unique prime fac-
torization of graphs not covered by the methods if this paper, but does not cover
all graphs treated here.

These papers also pave the way to prime factorization algorithms, which is
not the case with the approach we follow here.

2 Preliminaries

A directed graph, or digraph for short, is a pair G = (V,E), where V is a set
and E ⊆ V × V . The elements of V = V (G) are called the vertices and the
elements of E = E(G) the arcs of G. An arc (u, v) will be also be denoted by
uv; if u = v we speak of a loop. We will consider undirected graphs as directed
graphs with the property that uv ∈ E(G) if and only if vu ∈ E(G).

To establish a connection between graphs and binary relational structures
we define a relation R = RG for every digraph G by letting u be in relation R
to v, in symbols uRv, if uv ∈ E(G).1 The inverse relation R̆ is then defined by
vR̆u if and only if uRv, and the pair (V,R) is called a structure GR. We will
often write GR = (V (G), RG), or simply G = (V (G), RG).

A structure (V,R) is connected,2 if for any two different elements x, y ∈ V
there exists a sequence x0, . . . , xk such that x = x0, y = xk, and xiRxi+1 for
i = 0, . . . , k−1. The concatenation R1|R2 of two relations R1, R2 on V is defined
by setting

x(R1|R2)y

if there exists a z such that xR1z and zR2y. We will mainly consider structures
that are both R|R̆- and R̆|R-connected. This means that for any two vertices u
and v there exist vertices x0, . . . , x2k such that u = x0, v = x2k, x2iRx2i+1 and
x2i+1R̆x2i+2 for i = 0, . . . , k − 1, and vertices y0, . . . , y2k such that u = y0, v =
y2k, y2iR̆y2i+1 and y2i+1Ry2i+2 for i = 0, . . . , k − 1.

By abuse of language we also say a digraph G is R|R̆- and R̆|R-connected if
this is the case for the structure (V (G), RG).

The direct product G×H = {V (G×H), RG×H} of two structures G and H
is defined on V (G ×H) = V (G) × V (H) by setting (g, h)RG×H (g′, h′) if both
g RG g′ and hRH h′ hold. As shown in Figure 1, an arc uv in a structure G and
xy in a structure H thus give rise to an arc (u, x)(v, y) in G × H . The direct
product is also known as cardinal or categorical product. Direct multiplication
is commutative, associative, and the one-element set with a loop is its unit (but
not the one element set without a loop).

If the relation R of a structure G is symmetric, that is, if R = R̆, then there
is an arc vu to every arc uv in G and no loss of information occurs if we represent

1Strictly speaking, if one considers R as the set of ordered pairs u, v for which uRv holds,
then R and E are identical. Nonetheless it makes sense to distinguish the cases when we
consider the pair u, v as being in the relation R from uv being an arc of G.

2If (V,R) is connected the corresponding directed graph G is usually called strongly con-

nected, whereas G is connected if (V,R ∪ R̆) is connected.
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Figure 1: The direct product of an arc by an arc

every pair of arcs vu and uv by an undirected edge between u and v. Hence,
the direct product of undirected graphs is a special case of the direct product
of binary relational structures. Let us recall that one usually defines the direct
product G×H of two undirected graphs G and H as the graph with vertex set
V (G×H) and the edge set

E(G×H) =
{

(x, u)(y, v) | xy ∈ E(G) ∧ uv ∈ E(H)
}

.

We always allow loops when speaking of the direct product.

The strong product G ⊠H is defined for digraphs G and H without loops.
For the definition we add a loop to every vertex of G and to every vertex of H ,
form the direct product, and then delete the loops from the product; see Figure
2. Therefore, we can consider also the strong product as a special case of the
direct product of relational structures.

−→
P2 ×

−→
P2

−→
P2 ⊠

−→
P2

Figure 2: Illustration to the definition of the strong product

For simple graphs, that is, for undirected graphs without loops or multiple edges,
our definition of the strong product is equivalent to the definition of the strong
product G⊠H of simple graphs, where V (G ⊠H) is defined as V (G) × V (H)
and E(G⊠H) as the set of all distinct pairs (x, u)(y, v) of vertices such that

(x, u) 6= (y, v) ∧ (xy ∈ E(G) ∨ x = y) ∧ (uv ∈ E(H) ∨ u = v).

Notice that the one-vertex graph K1 is a unit for the strong product.
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In this paper thinness plays an important role. For its definition we introduce
the concept of neighborhoods. Given a vertex x ∈ V (G) of a graph, we call the
set

N+(x) = {y | xRy}

the open out-neighborhood, or simply the out-neighborhood of x. The open in-
neighborhood N−(x) is defined analogously. Two vertices x, y with the same out-
neighborhoods and the same in-neighborhoods are called equivalent, in symbols
x ≈R y, or simply x ≈ y. The relation ≈ is an equivalence relation, and we call
R thin, if ≈ is trivial.

Similarly we call N+[x] = {x} ∪ N+(x) the closed out-neighborhood of x,
and define N−[x] analogously. We say a structure is S-thin if x 6= y implies
N+[x] 6= N+[y] or N−[x] 6= N−[y]. Thinness is relevant for the direct product
and S-thinness for the strong product.

We also need the Cartesian product G✷H of simple graphs. As for all other
products considered here its vertex set is V (G) × V (H). Its edge set is defined
as

E(G✷H) =
{

(x, u)(y, v) | (xy ∈ E(G) ∧ u = v) ∨ (x = y ∧ uv ∈ E(H))
}

.

Cartesian multiplication is commutative, associative and K1 is a unit. Notice
that

E(G⊠H) = E(G✷H) ∪ E(G×H),

but that the analogous relation for more than two factors need not be true.

The Cartesian product is best understood and there are numerous strong
results about automorphism breaking of Cartesian products. Here we wish to
extend some of them to the strong and direct product of directed and undirected
graphs and to the Cartesian product of digraphs.

3 The direct product of digraphs

In this section we study prime factorizations of graphs and digraphs with respect
to the direct product and characterize the structure of the automorphism group
of the direct product of indecomposable factors.

3.1 Decomposition functions vs. factorizations

We begin with several definitions that apply to all products that are defined on
the Cartesian product of the vertex sets of the factors. Let ∗ denote a symbol in
{✷ ,×,⊠}, let G be the productG = G1∗G2∗· · ·∗Gk of k graphs and let i be any
index. The map pGi

: G1 ∗G2 ∗· · ·∗Gk → Gi defined by pGi
(x1, x2, . . . , xk) = xi

is called the ith projection map. Usually we abbreviate it by pi.

For any fixed vertex a = (a1, a2, . . . , ak) of a product G = G1 ∗G2 ∗ · · · ∗Gk

of k graphs, and for any index i, the Gi-layer (or i-layer) through a is the
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subgraph Ga
i of G induced by the set {(a1, a2, . . . , xi, . . . , ak) | xi ∈ V (Gi)} of

vertices of G. The projection pGx

i
(y) : G → Gx

i is then defined by pGx

i
: y 7→

(x1, . . . , xi−1, yi, xi+1, . . . , xk).

Note that the i-layers through two vertices a and b are equal, in symbols
Ga

i = Gb
i , if and only if the jth projection satisfies pj(a) = pj(b) for every index

j 6= i. We call two layers Ga
i , G

b
j parallel if i = j, and note that any two layers

Ga
i , G

b
j are either identical, disjoint, or share exactly one vertex.

A graph G is prime, or irreducible, with respect to the product ∗ if G has at
least two vertices and if G = G1 ∗G2 implies that G1 or G2 is isomorphic to G
(and the other factor is the unit with respect to ∗).

We also need the concept of a decomposition function, as defined in [5].

Definition 1 Let G = G1 × G2. Then the function f : V (G)2 → V (G) that
maps (x, y) into the projection of y into the layer Gx

2 is called the decomposition
function of G with respect to the decomposition G1 ×G2.

Note that with x = (x1, x2) and y = (y1, y2), we have that f(x, y) =
f((x1, x2), (y1, y2)) = (x1, y2) and, similarly, f(y, x) = (y1, x2). The function f
can also be used to define two functions of a single variable:

fd
x : V (G) → V (G) is defined by fd

x(y) = f(x, y), and

fx : V (G) → V (G) is defined by fx(y) = f(y, x).

Observe that, for a given decomposition function g, the function gd, defined by
gd(x, y) = g(y, x), is also a decomposition function.

In Section 6.1 of [10] the concept of a box is defined for the Cartesian product.
Generalizing this concept to arbitrary products we define a box as a subproduct
U1 ∗ U2 ∗ · · · ∗ Uk of a product G = G1 ∗G2 ∗ · · · ∗Gk, where Ui ⊆ Gi. A box is
trivial if all Ui but one have only one vertex. The vertices x, f(y, x), y, f(x, y)
determined by a decomposition function f as described above clearly constitute
a box in G1 ×G2. Furthermore, a subgraph S of G1 ×G2 is a box in G1 ×G2

if and only if x, y ∈ V (S) implies that f(x, y) and f(y, x) are also in V (S).

We are now ready to formulate the following basic result of McKenzie on
decomposition functions, namely Lemma 3.1 of [16].

Lemma 1 Let f, g be decomposition functions of a structure (V,R) that is R|R̆-
and R̆|R-connected. Then fxgx ≈ gxfx for all x ∈ V .

Recall that a structure is thin if the equivalence classes of ≈ are one-element
sets. Hence, for thin structures Lemma 1 implies that fxgx = gxfx.

McKenzie then invokes Theorem 5.6 of Chang, Jónsson and Tarski [5] that
asserts that the validity of the conclusion of Lemma 1 implies the so-called
common refinement property, which in turn yields unique prime factorization
for finite R|R̆- and R̆|R-connected digraphs.
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We follow a more direct approach that also enables us to describe the struc-
ture of the automorphisms groups of products of prime graphs that are thin
andR|R̆- and R̆|R-connected. We first show that Lemma 1 implies that layers
in a product representation of such graphs are boxes in any other representation.

Lemma 2 Let A×B and C ×D be two representations of a graph G which is
thin, R|R̆-connected and R̆|R-connected. Then every layer of G with respect to
A or B is a box in the representation C ×D of G.

Proof. Let f be the decomposition function for A×B and g the one for C×D.
Clearly fxgx = gxfx by Lemma 1, because G is thin.

It suffices to show that every A-layer is a box. That means, for any two
distinct vertices x, y in an A-layer Av through a vertex v we have to show that
gx(y) and gdx(y) are also in Av. To facilitate the proof, note that z ∈ Av if and
only if z = fx(z).

Let a = gx(y) and b = gdx(y). Applying Lemma 1 to f and g we infer that

a = gx(y) = gx(fx(y)) = gxfx(y) = fxgx(y) = fx(gx(y)) = fx(a),

which implies that a ∈ Av. Similarly, but now by application of Lemma 1 to f
and gd, we have that

b = gdx(y) = gdx(fx(y)) = gdxfx(y) = fxg
d
x(y) = fx(g

d
x(y)) = fx(b).

Hence b ∈ Av. �

This immediately yields the following unique prime factorization theorem,
first proved by McKenzie [16] by invoking results from [5].

Theorem 1 Let G be a finite digraph that is thin, R|R̆- and R̆|R-connected.
Then G is representable as a direct product of prime graphs, and this presenta-
tion is unique up to isomorphisms and the order of the factors.

Proof. Because G is finite, there must be a representation of G as a product
of factors with at least two vertices and a maximum number of factors. Clearly
these factors have to be prime, otherwise the number of factors would not be
maximal. Hence there always exists a prime factorization.

To prove uniqueness consider two prime factorizations

G ∼= P1 × · · · × Pk
∼= Q1 × · · · ×Ql,

and let ϕ be the isomorphism between them. Choose a vertex v ∈ V (G) and
an index i ∈ {1, . . . , k}. By Lemma 2, ϕ(P v

i ) is a box in Q1 × · · · ×Ql. It must
be trivial, because Pi is prime, and thus contained in a Qj-layer for some j. In

symbols, ϕ(P v
i ) ⊆ Q

ϕ(v)
j .

For the same reason, ϕ−1(Q
ϕ(v)
j ) ⊆ P v

r for some r. We wish to show that
r = i. To see this we first observe that Pi has at least two vertices. Hence, there
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must be another vertex besides v in P v
i , say u. Clearly both ϕ(v) and ϕ(u) are

in Q
ϕ(v)
j . But then both u and v are in ϕ−1(Q

ϕ(v)
j ) ⊆ P v

r . Since they are also

in P v
i we infer that r = i, and therefore ϕ(P v

i ) = Q
ϕ(v)
j .

This means that to any i ∈ {1, . . . , k} there is a π(i) ∈ {1, . . . , ℓ} such that

ϕ(P v
i ) = Q

ϕ(v)
π(i) . If i 6= i′ and i′ ∈ {1, . . . , k}, then π(i) 6= π(i′), because P v

i 6= P v
i′ ,

and hence also Q
ϕ(v)
π(i) 6= Q

ϕ(v)
π(i′). This implies that π is injective, and so k ≤ ℓ.

Reversing the argument we see that k = ℓ and that π is a permutation.

Because Pi
∼= P v

i
∼= Q

ϕ(v)
π(i)

∼= Qπ(i) the prime factorization is unique up to

isomorphisms and the order of the factors. �

For the Cartesian product unique prime factorization holds for connected
graphs as has been shown first by Sabidussi [19] and then by Vizing [20]. There
are many different ways to prove it, but we wish to remark that the proof of the
Sabidussi-Vizing Theorem in [10] is similar to the proof of Theorem 1. The proof
in [10] uses the fact that convex subgraphs are boxes in Cartesian products. For
Cartesian products this implies that layers are boxes, which is used here.

3.2 Automorphisms of direct products of digraphs

The following theorem describes the structure of the automorphism group of
the direct product of prime graphs under the above thinness and connectivity
conditions. It is exactly the same as the structure of the groups of Cartesian
products of connected, prime graphs, see [10, Theorem 6.10].

The key is to prove that the permutation π whose existence was shown in
Theorem 1, and which might depend on the choice of v, is actually independent
of v.

Theorem 2 Suppose ϕ is an automorphism of a thin, R|R̆- and R̆|R-connected
finite digraph G with prime factorization G = G1 ×G2 × · · · ×Gr. Then there
exists a permutation π of {1, 2, . . . , r} and an isomorphism ϕi : Gπ(i) → Gi for
every i such that

ϕ(x1, x2, . . . , xr) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕr(xπ(r))), (1)

for every vertex (x1, x2, . . . , xr) ∈ V (G).

Proof. Let ϕ be an automorphism of G = G1 × G2 × · · · × Gr. It is an
isomorphism from G1 × G2 × · · · × Gr to itself and by Theorem 1 there is a

permutation πv for every v ∈ V (G) such that ϕ(Gv
i ) = G

ϕ(v)
πv

for every i ∈
{1, . . . , r}.

We show first that πv = πv′ if v, v′ differ in exactly one coordinate, say in
coordinate t. Suppose l = πv(i) 6= πv′(i) = m. Consider a vertex x ∈ Gv

i and

the vertex x′ ∈ Gv′

i with x′
i = xi. Since xt = vt and x′

t = v′t we infer that
xt 6= x′

t. All other coordinates are the same, hence x, x′ ∈ Gx
t , and ϕ(x), ϕ(x′)
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are in ϕ(Gx
t ), hence ϕ(x), ϕ(x′) differ only in coordinate, namely πx(t), which

contradicts

ϕ(x)l 6= ϕ(v)l = ϕ(v′)l = ϕ(x′)l, ϕ(x)m = ϕ(v)m = ϕ(v′)m 6= ϕ(x′)m,

unless l = πv(i) = πv′(i) = m. Hence πv = πv′ if v, v′ differ in exactly one
coordinate. Because to any two vertices u, v there is a sequence of vertices
u = u0, u1, . . . , ur = v, where successive elements differ in only one coordinate,
we infer that π is independent of v.

We also observe that ϕ(x)j = ϕ(x′)j if j 6= πx(t) = π(t).

Suppose x and x′ have the same ith coordinate, xi = x′
i. Then there is

a chain x = u0, u1, . . . , ur = x′, where successive elements have the same ith
coordinate, but otherwise differ in only one coordinate. By the above, ϕ(x)π(i) =
ϕ(x′)π(i). This means, if xi = x′

i, then ϕ(x)π(i) = ϕ(x′)π(i). If we now define

ϕπ−1(i) : xπ−1(i) 7→ ϕ(x′)i

then
ϕ(x1, x2, . . . , xr) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕr(xπ(r))).

To show that ϕi is an isomorphism from Gπ(i) to Gi consider an arc wz ∈
E(Gπ(i)). There are elements xy in E(G) with xπ(i) = w and yπ(i) = z. ϕ maps
xy into ϕ(x)ϕ(y) ∈ E(G) and so ϕ(x)iϕ(y)i ∈ E(Gi). The observation that
ϕ(x)i = ϕi(xπ(i)) = ϕi(w) and ϕ(y)i = ϕi(yπ(i)) = ϕi(z) completes the proof.
�

We remark that the factors in a representation G = G1 ×G2 × · · · ×Gr are
thin and R|R̆- and R̆|R-connected if and only if this is the case for G.

We continue with the special cases of the direct product of graphs and the
strong product of graphs and digraphs.

3.3 The direct product of graphs

Suppose that G is a graph3 whose corresponding structure is thin and R|R̆- and
R̆|R-connected. Then G has to be thin and there must be a path of even length
between any two vertices of G, which is only possible if G is nonbipartite.

This means that Theorems 1 and 2 also hold for the direct product of thin
graphs that are connected and nonbipartite.

3.4 The strong product of graphs and digraphs

As already mentioned, the strong product G⊠H of two graphs or digraphs G
and H without loops can be obtained by addition of a loop to every vertex of

3We allowed loops in the case of directed graphs. We also have to allow them here, otherwise
we could not use the results about the direct product of directed graphs.
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G and H , formation of the direct product of the new graphs or digraphs, and
subsequent deletion of the loops from the product.

Let L(G) and L(H) be obtained from G and H by the addition of loops.
Clearly Theorems 1 and 2 hold when L(G) and L(H) are thin and R|R̆- and
R̆|R-connected.

Let us consider thinness first. Clearly the in- or out-neighborhood of a vertex
x in L(G) is the closed in- or out-neighborhood of x in G. Hence, two vertices
x and y have the same in- or out-neighborhoods in L(G) if and and only if they
have the same closed in- or out-neighborhoods in G. This implies that L(G) is
thin if and only if G is S-thin.

Now suppose that xRy holds in G. Then xRyR̆y and xR̆yRy holds in L(G),
which means that x is R|R̆- and R̆|R-connected to y in L(G). Similarly one
shows that this is also valid if xR̆y holds.

Therefore the graph or digraph G is S-thin and connected4 if and only if
L(G) is thin and R|R̆- and R̆|R-connected.

Hence Theorems 1 and 2 also hold for the strong product of S-thin, connected
graphs and digraphs.

4 Asymmetric colorings of strong and direct

products

In this section we extend two theorems for Cartesian products to the direct and
the strong product of finite graphs. The first one is the main result of [6].

Theorem 3 [6, Theorem 6] Let G and H be connected graphs such that

|G| ≤ |H | ≤ 2|G| − |G|+ 1. (2)

Then D(G✷H) ≤ 2 unless G✷H ∈ {K ✷,2
2 ,K ✷,2

3 }.5

Actually Theorem 6 in [6] also lists K3
2 as an exception, but strictly speaking

this is not correct, because the product G✷H does not satisfy Equation 2 if
G = K2 and H = K ✷,2

2 .

However, K ✷,3
2 is a proper exception in the second theorem that we will

generalize. It comprises Theorem 1.1 of [13] and the remarks following it.

Theorem 4 [13] Let G be a connected graph and k ≥ 2. Then D(G✷,k) = 2
except for the graphs K ✷,2

2 , K ✷,3
2 and K ✷,2

3 , whose asymmetric coloring number
is three.

The key idea in this section is that, given a direct or strong product G of
prime graphs or digraphs, there is a Cartesian product H of complete graphs

4Recall that G is connected if the corresponding structure (V,R) is R ∪ R̆ connected.
5Here G✷,k denotes the k-th power of G with respect to the Cartesian product.
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with the same set of vertices such that Aut(G) is a subgroup of Aut(H), both
groups being considered as permutation groups. In this case, every asymmetric
coloring of the vertices of H also is an asymmetric coloring of G.

To see this, let G = G1 ×G2 × · · · ×Gr be a prime factorization of a thin,
R|R̆- and R̆|R-connected digraph. Replace every Gi by an undirected complete
graph KGi

on the same set of vertices as Gi. Since complete graphs are prime
and because the automorphism group of the complete graph on a set V is the
full symmetric group on V, Theorem 2 ensures that Aut(G) ≤ Aut(KG), where
KG = KG1

✷KG2
✷ · · · ✷KGr

. We formulate this as a lemma.

Lemma 3 Let G = G1 × G2 × · · · × Gr be a prime factorization of a thin,
R|R̆- and R̆|R-connected digraph and KGi

be the complete graph with vertex set
V (Gi). Then

Aut(G1 ×G2 × · · · ×Gr) ≤ Aut(KG1
✷KG2

✷ · · · ✷KGr
).

Clearly the lemma also holds when the Gi are thin, connected non-bipartite
graphs. It also holds for the strong product G1 ⊠ · · · ⊠ Gr, when the Gi are
S-thin connected graphs or digraphs.

We first extend Theorem 3 when |V (G)| · |V (H)| ≥ 10. Its proof uses the
prime factorizations of G = G1 ✷ · · · ✷Gr and H = H1 ✷ · · · ✷Hs and also
holds when all factors are complete, because complete graphs are prime with
respect to the Cartesian product.

This means, if G = G1 × · · · × Gr and H = H1 × · · · ×Hs are the unique
prime factorizations of G and H , where G and H are thin digraphs whose
corresponding structures are R|R̆- and R̆|R-connected then

Aut(G×H) ≤ Aut(KG1
✷ · · · ✷KGr

✷KH1
✷ · · · ✷KHs

).

If G,H satisfy (2) and |V (G×H)| ≥ 10, then

KG1
✷ · · · ✷KGr

✷KH1
✷ · · · ✷KHs

is 2-distinguishable, and hence also G×H . We thus infer the following lemma.

Lemma 4 Let G, H be be thin, R|R̆- and R̆|R-connected digraphs that satisfy
(2). If |V (G×H)| ≥ 10, then D(G×H) ≤ 2.

Again, the lemma also holds for thin, connected non-bipartite graphs and
with respect to the strong product of S-thin connected graphs or digraphs.

We now consider the case when |V (G)| · |V (H)| ≤ 9 and G and H satisfy
(2). This means that (|V (G)|, |V (H)|) ∈ {(2, 2), (2, 3), (3, 3)}.

We begin with a consideration of all thin, R|R̆- and R̆|R-connected digraphs
on 2 and 3 vertices. For two vertices there are two such graphs, one consists of
an arc with loops at both ends, say L, and the other of an edge and a loop at
one endpoint, say K. Both graphs are asymmetric.

11



To treat the case with three vertices we introduce the concept of the shadow
Gs of a directed graph G.6 It is a simple graph with the same vertex set as
G, where two vertices x and y are adjacent whenever xRy or xR̆y holds in
the structure corresponding to G. Clearly Aut(G) ≤ Aut(Gs), and therefore
D(G) ≤ D(Gs).

The shadow Gs of a connected digraph G on three vertices is a path of length
2 or a K3. In the first case Gs is 2-distinguishable, and thus also G. In the
second case G is 2-distinguishable if there is at least one pair of vertices x, y
where xRy or xR̆y, but not both. Hence, G must be undirected unless it is
2-distinguishable. If it has two or three loops, then it is not thin, if it has only
one loop, then it is 2-distinguishable.

Thus K3 is the only thin, R|R̆- and R̆|R-connected digraph that is not 2-
distinguishable.

Let us now consider products G ×H of type (2, 2). Both factors are prime
and asymmetric. By Equation (1) a nontrivial automorphism must interchange
the factors. If we color the vertices of one G-layer black and the vertices of
the other white, this is not possible any more. Hence all such products are
2-distinguishable.

For products G × H of type (2, 3) it is clear that the factors cannot be
interchanged and that the H-layers must be preserved because G is asymmetric.
We now color the three G-layers such that one has no black vertex, the second
one black vertex, and the third two. This breaks all automorphisms and G×H
is 2-distinguishable.

Now to products G × H of type (3, 3). Suppose one factor, say G, is 2-
distinguishable. Then G has a distinguishing 2-coloring with one black and two
white vertices. We use this coloring for one G-layer. In one of the two other
G-layers we color the two vertices black whose H-layer does not contain the
black vertex of the first layer. In the third all vertices are left white. Hence
there is a G-layer with no black vertex, but all H-layers have a black vertex.
This ensures that the set of G layers cannot be mapped into the set of H-layers.
It is easy to see now that this is an asymmetric 2-coloring.

The only case left is K3 ×K3. Its automorphism group is the same as that
of K3 ✷K3, and it is well known (and easy to see) that D(K3 ✷K3) = 3.

We have thus shown that the direct product G ×H of two thin, R|R̆- and
R̆|R-connected digraphs that has at most nine vertices and satisfies (2) is 2-
distinguishable unless G×H = K3 ×K3.

If we consider graphs instead of digraphs, we have the same exception. Com-
bining this with Lemma 4 and the observation that the lemma also holds for
thin, connected non-bipartite graphs, we obtain the following theorem.

Theorem 5 Let G and H be thin, R|R̆- and R̆|R-connected digraphs, or thin,
connected non-bipartite graphs, such that

|G| ≤ |H | ≤ 2|G| − |G|+ 1.

6We will use this concept again in the next section.
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Then D(G×H) ≤ 2, unless G×H = K3 ×K3. �

Strong product of digraphs and graphs. Here we only have to observe
that K3 is not S-thin. Hence we have no exceptions in this case. Together with
the observation that Lemma 4 also holds with respect to the strong product for
S-thin, connected graphs and digraphs we obtain the following result.

Theorem 6 Let G and H be S-thin, connected digraphs or graphs such that

|G| ≤ |H | ≤ 2|G| − |G|+ 1.

Then D(G⊠H) ≤ 2. �

Powers of direct and strong products. We wish to extend Theorem 4
to the direct and the strong product. The theorem asserts that all powers of
connected graphs with respect to the Cartesian product are 2-distinguishable,
except for the graphs K ✷,2

2 ,K ✷,3
2 ,K ✷,2

3 , whose asymmetric coloring number is
3. It turns out that only one exception remains and that the following theorem
holds. It is new for digraphs, for graphs it has been shown in [13].

Theorem 7 Let G be a thin, R|R̆- and R̆|R-connected digraph, or a thin, con-
nected non-bipartite graph. Then any power of G with respect to the direct
product that is different from K3 ×K3 is 2-distinguishable.

If G is S-thin and connected, then all powers of G with respect to the strong
product are 2-distinguishable.

Proof. By Lemma 4 we only have to consider the exceptional cases, that is,
the second power of graphs on two and three vertices, and the third power of
graphs on two vertices. The first cases are already covered by Theorems 5, 6
and yield the exception K3 ×K3.

For the remaining case we recall that there are only two thin, R|R̆- and
R̆|R-connected digraphs, namely a single edge with a loop at one endpoint and
a single arc with loops at both endpoints. We named them L and K. Let G
be a product of three factors G1, G2, G3 ∈ {K,L}. Let the vertex set of both
K and L be {0, 1}, where vertex 1 carries the loop in K, and where it is the
origin of the arc in L. To obtain an asymmetric 2-coloring of G1 × G2 × G3

it suffices to color the vertices (1, 0, 0), (0, 1, 0), (0, 1, 1) black and to leave the
others white. Hence there is no further exception for the direct product, and
thus also not for the strong product as it can be considered as a subcase of the
direct product. �
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5 Graphs that are not thin

A graph G is not thin if it at least one equivalence class of ≈ is nontrivial. If
ũ is such a class, then any two elements x, y ∈ ũ have the same neighbors, and
the permutation of V (G) that interchanges x, y and fixes all other vertices is
an automorphism. In order to break it by a vertex coloring, x and y must be
assigned different colors. Hence, the asymmetric coloring number D(G) is at
least maxx∈V (G) |x̃|. We denote this number by b(G).

Such a coloring may not break all automorphism of G, because Aut(G) may
permute equivalence classes of ≈. Hence we need extra colors to distinguish the
orbits of the action of Aut(G) on the equivalence classes of ≈. This number is
clearly bounded by D(G/≈), that is, by the asymmetric coloring number of the
quotient of G by ≈. This is the graph whose vertices are the equivalence classes
of G by ≈, where x̃, ỹ ∈ E(G/≈) if xy ∈ E(G). Hence

b(G) ≤ D(G) ≤ b(G) + k,

where k is the smallest nonnegative integer for which

D(G/≈) ≤

(

b(G) + k

b(G)

)

.

If G is a strong or direct product of one of our classes of graphs, then D(G/≈)
also is a direct od strong product. As D(G/≈) is thin, we can use the above
estimates of the asymmetric coloring number of D(G/≈) for an estimate of
D(G).

Let us mention in passing that under our connectivity assumptions unique
prime factorization of D(G/≈) implies unique prime factorization of G.

6 Asymmetric colorings of Cartesian products

of digraphs

For the definition of the Cartesian product of digraphs, with or without loops, we
can verbatim use the definition of the Cartesian product for undirected graphs
given in Section 2. It has K1 as a unit, and is commutative and associative.
Prime factorization of connected graphs is unique, if they have at least one
vertex without a loop, see [3].

Here we extend three theorems about the asymmetric coloring number of
Cartesian products to Cartesian products of digraphs. The first one is a theo-
rem about the Cartesian product of infinite graphs [6, Theorem 9]: It asserts
that the Cartesian product of two countably infinite connected graphs is 2-
distinguishable. The other two are Theorems 3 and 4.

The extension is based on two main properties of the Cartesian products of
digraphs. The first is that the automorphism group of a directed graph G is a
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subgroup of the automorphism of its shadow Gs, that is, Aut(G) ≤ Aut(Gs).
Hence D(G) ≤ D(Gs). The second that (G✷H)s = Gs

✷Hs.

Combining these remarks we infer that D(G✷H) ≤ D(Gs
✷Hs), which

immediately yields Theorem 8 as a generalization of [6, Theorem 9].

We wish to remark that the results we invoke use unique prime factorizations
for the shadows Gs and Hs, but not of G and H . Hence, we do not have to
require that G and H have at least one vertex without a loop.

Theorem 8 Let G and H be countably infinite, connected digraphs with or
without loops. Then D(G✷H) ≤ 2.

For the extension of the other results it remains to investigate the cases
when the shadow is K ✷,2

2 , K ✷,3
2 or K ✷,2

3 . It is easily seen that a directed graph
whose shadow is K2 or K3 is 2-distinguishable unless it is K2, K3, L(K2) or
L(K3). One also readily shows that products of these 2-distinguishable (and
prime) graphs are also 2-distinguishable. This yields the following theorems.

Theorem 9 Let G and H be two digraphs (possibly with loops) such that

|G| ≤ |H | ≤ 2|G| − |G|+ 1.

Then D(G✷H) ≤ 2 unless G,H ∈ {K2,L(K2)} or G,H ∈ {K3,L(K3)}.

Theorem 10 Let G be a connected digraph and k ≥ 2. Then D(G✷,k) = 2
except for the second and third power of the graphs K2, L(K2) and the second
power of the graphs K3, L(K3). In the exceptional cases the asymmetric coloring
number is three.

We conclude with the remark that Theorem 4 was extended to countably
infinite graphs and infinite powers in [6], and that these generalizations hold
verbatim for digraphs too, thereby extending Theorem 10.
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