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1 Introduction

The study of integrability (see e.g. [1, 2] for reviews) has proved to be a very useful direction

in obtaining exact results in AdS/CFT. An important question concerns which gauge theory

systems admit integrability or not. A fruitful approach to this problem from the dual

gravity side has been to apply techniques of analytic non-integrability. The technique,

introduced in [3], consists of finding solutions for classical string motion on the gravitational

background dual to a given gauge theory which can be reduced to a Hamiltonian system on

which one can apply the variational techniques of analytic non-integrability outlined in [4].
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Moreover recently there has been an extensive discussion of chaos in quantum field

theories, which has further potential applications relating the physics of black holes and

quantum information. The Lyapunov exponent λ of out-of-time-ordered correlators has

been proved to be bounded by the temperature T of the theory as λ ≤ 2πT/~ [5] using

shock waves near black hole horizons [6, 7], or by looking at the particle motion near the

horizon [8]. Several interesting properties of chaos were noticed in these works, including

the certain bounds on the Lyapunov coefficients describing the chaotic behaviour. As we

will see, in our work we also observe saturation effects on chaos, although in our case the

source of chaos is due to the presence of virtual flavours at zero temperature and is entirely

different from that in the above papers where it is due to thermal effects and thus requires

finite temperature. This suggests the possibility that such bounds on Lyapunov coefficients

exist in a wide range of quantum field theories and depend on the scales quantifying the

phenomena that source the chaos in each case.

In this work we aim to study, from the dual gravity side, the integrability of theories

with unquenched flavor (see for example [9, 10] and references therein), where the virtual

quark loops are taken into account contributing to the gauge propagators. Moreover we

discuss in detail chaotic string motion on these backgrounds and, at least in the limit we

are working with, we find a convergent Lyapunov exponent to a non-zero value, although

no black hole horizon is present.

We initiate our study in the case of four-dimensional theories with N = 2 supersymme-

try, obtained by adding D7-branes to a D3-brane system as in [11], and taking into account

their backreaction. The background for this system was constructed in [12, 13]. We will

work in the “near-core” regime of [13] where the solution is known analytically. In the

unquenched case the effects of creation and annihilation of virtual quark-anti-quark pairs

on the gauge degrees of freedom are taken into account. On the gravity side, this is trans-

lated as having the Dp-branes backreacting on the “gluonic” pure AdS space. In principle

this happens when the number Nf of flavor branes approaches the number Nc of the color

branes. In this limit the theory located at the D3/D7-brane intersection has positive beta

function and possesses a chiral anomaly. Therefore the gravity dual background ceases to

be conformal as can be naturally found by taking into account the effects of backreaction,

while the axion and the dilaton become non-trivial. The closed string solutions we find are

exactly in the region where the approximation closely follows the exact numerical solution.

We perturb the closed string solutions and apply variational methods to obtain the

Normal Variational Equation (NVE) and show that it does not have Liouvillian solutions.

Therefore we show that string motion is non-integrable on this background. The integra-

bility of our solutions is restored for particle motion or when we switch off the backreaction

of the D7-flavor branes. We moreover examine chaotic string motion in the non-integrable

theory. We find, for the string solutions we examine, that the Lyapunov exponent in the

Veneziano regime is surprisingly saturated to a value and depends weakly on the number of

flavors. The value depends on the energy density of the system and its other parameters.

By pushing the backreacted solution to the limits of its validity by reducing the number of

flavors, we see that the maximum value of the Lyapunov exponent is obtained very quickly

as we increase the flavors. We note that our analysis is done at zero temperature and the
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gravity dual theory has no black hole horizon. Furthermore, looking at the more generic

features of the backreacted Dp-Dq brane geometries, we expect that integrability is broken

in the unquenched flavor limit for a wider class of field theories.

Then we move on to examine the case of adding unquenched flavor to the ABJM

model [14]. This solution is obtained by introducing D6-branes and taking into account

their backreaction. These backgrounds were constructed in [15] for the case with massless

flavors, and extended to the massive case in [16]. Unlike the D3/D7 case, these backgrounds

are exact, while the D6 branes are smeared along the internal space. After reviewing

the solution of [15], we consider the general classical string equations of motion on this

background and truncate them to a consistent ansatz which is suitable for applying analytic

non-integrability techniques. We find analytically closed string solutions and we derive the

NVE to study its solutions using the Kovacic algorithm. We conclude that, as expected and

in agreement with the above D3/D7 analysis, the backreacted flavor deformation breaks the

integrability present in the ABJM case. However we also point out a puzzling case where

for a single string ansatz we do not find Liouvillian solutions of the corresponding NVE

even when the backreaction is switched off — conflicting our expectations of integrability

in that limit. By investigating in depth the geometry we argue that it should be an issue

of the string solution in the particular coordinate system used to obtain the backreaction.

As a byproduct of our study of the unquenched ABJM case, we study integrability

in a range of other theories. There are special values of the parameter that controls the

squashing of the space and the number of flavors, where the background is dual to other

theories as well. For example, these backgrounds also appear as the IR fixed points of D2-

D6 brane system flows. By computing the backreaction of the Nf flavor D6-branes smeared

over a six-dimensional nearly Kähler manifold, to the Nc color branes, it has been found

that the solutions flow to an AdS4 fixed point dual to Chern-Simons matter theory and

which is the special case of the metric we present in section 4 [17]. The family of squashed

CP3 metrics is relevant also for the construction of squashed seven-sphere metrics, which

are S1 bundles over a squashed CP3 base. The special case q = 5 corresponds to an N = 1

supergravity background, being a gravity dual of superconformal Chern-Simons matter

theory with SO(5) × U(1) global symmetry [18]. Therefore, our work applies in certain

cases for different types of theories.

There are several works where non-integrability and/or chaos has been studied in an

AdS/CFT context. In [19] the time evolution of the homogeneous quark condensate in

supersymmetric N = 2 QCD was studied and it was found, by looking at probe D-branes,

that there exists an energy density where the phase space is dominated by chaos. In this

work the dynamics of the D7-branes were examined in the quenched zero temperature

AdS5 × S5 background, and their fluctuations turn out to be reduced to a quartic chaotic

oscillator. Methods similar to analytic non-integrability have been applied to theories such

as AdS5 × T pq [3], Dp-brane backgrounds [20], the Lunin-Maldacena background dual to

the β-deformations of N = 4 SYM [21], confining backgrounds [22, 23], in theories beyond

the planar limit [24] although at special large N limits some integrability does appear [25],

and in non-relativistic theories [26]. Other works along these directions include [27–33].

– 3 –
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Our paper is organised as follows. In section 2, we introduce a very compact notation

to analyse the string equations of motion for a generic metric. In section 3, we study

the integrability of the N = 2 super Yang-Mills theory with Nf hypermultiplets in the

fundamental representation and one in the adjoint representation of the SU(Nc) gauge

group. We present the string solutions, the variational analysis and the proof of non-

integrability. Moreover we examine the chaotic motion by solving the string equations

numerically and we extract the Lyapunov exponent. In the next section 4, we study the

geometry of the ABJM background with backreaction. We present several sting solutions

and the NVE showing non-integrability. Moreover we mention a puzzling string solution

with non-integrable motion even in the zero backreaction limit. The section is supported

by two appendices. In appendix A we present more details of the CP3 geometry, while in

appendix B we show how it is possible that the non-integrable T 11 space can arise as a

foliation of CP3 without conflicting with integrability.

2 String equations of motion for a generic metric

In this section we generate the string equations of motion in a generic framework and study

their simplifications for a particular string parametrisation. The metric may be written as

ds2 = gttdt
2 + giidx

idxi + 2gijdx
idxj ,

where in the last term i < j and the indices i, j = 1, . . . , d with d being the number

of space dimensions and t being the coordinate time. Let’s assume that we have n cyclic

coordinates, such that the labels i ≥ n label the cyclic angles, on which the metric elements

functions are not dependent. The Nambu-Goto action is (using ∂
∂τ := ,̇ ∂∂σ := ′)

S =

∫
dσdτ

(
gttṫ

2 + gii
(
xi′ 2 − ẋi 2

)
+ 2gij

(
xi′xj′ − ẋiẋj

))
:=

∫
dσdτ

(
gttṫ

2 + Ls
)
.

We parametrise the string in such a way that all the non-cyclic coordinates αi := xi with

i < d−n depend on the world-sheet time τ and therefore the string is localised along those

directions. We also take the string to extend along all the cyclic coordinates φk := xk

with k ≥ n in a way that each of them is linear in the world-sheet space parameter σ with

proportionality constant mk. The equation of motion for the time t, for a static space reads

ṫ =
κ

gtt
, (2.1)

where gtt is a function of τ . The equations of motion for the non-cyclic angles are

∂αiLs + 2∂τ
(
gijα̇

j
)

= 0 . (2.2)

Notice the simplification in the absence of the σ derivatives as a result of the string

parametrisation. The simplest equations for the system are the ones for the U(1) angles

reading

∂0

(
gφiφj φ̇j

)
− ∂1

(
gφiφjφ

′
j

)
= 0 . (2.3)
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For the parametrisation we have considered these are satisfied trivially since the metric

elements depend on the non-cyclic coordinates.

The Virasoro constraints become

gij ẋ
ix′j = 0 , (2.4)

gttṫ
2 + Ls+ = 0 , (2.5)

where Ls+ is derived from the Lagrangian density expression by flipping the negative signs

in front of the kinetic terms to positive ones.

So far the non-trivial equations are (2.1), (2.2) and the Virasoro constraints (2.4)

and (2.5). A further simplification happens when the metric has no non-diagonal terms

between the non-cyclic αi and the cyclic angles φi. Then the Virasoro constraint (2.4) is

satisfied trivially and the equations (2.2) are summed only in the non-cyclic directions.

Below we will apply the general formalism developed in this section to the gravity dual

theories under examination.

3 Backreacted flavors in four dimensions

3.1 Dual geometry to N = 2 SYM with unquenched flavor

In this section we examine the N = 2 super Yang-Mills theory with Nf hypermultiplets

in the fundamental representation and one in the adjoint representation of the SU(Nc)

gauge group. The gravity dual of this background is the near horizon limit of Nc coin-

cident branes with Nf number of D7-branes sharing the four spacetime directions with

the D3-branes and extending along four of the six transverse directions. In the quenched

approximation, where the D7-branes do not backreact on the geometry, the theory was

discussed in [11]. As the geometry in this limit is the same as the case of no flavors,

integrability for closed strings is unaffected. Integrability for the open string sector was

established in [34]. In [19] the dynamics of the probe D7-branes were examined in the

quenched zero temperature AdS5 × S5 background, and their fluctuations were reduced

to a quartic chaotic oscillator, signaling chaos in the time evolution of the homogeneous

quark condensate in supersymmetric N = 2 QCD at certain energy density. Here we are

interested in going beyond the quenched approximation and study integrability of string

motion for the geometry dual to the unquenched theory, where the effects of backreaction

of a large number Nf of flavor branes are included.1 In other words, unlike [19] which

considered fluctuations of the probe D7-branes, here we focus on classical string motion

on the fully backreacted geometry generated by the D7-branes. Building on [37, 38], this

geometry was constructed in [12, 13].

The background has the metric

ds2 = h−1/2(r, ρ)dxµdxµ + h1/2(r, ρ)
(

dr2 + r2dΩ2
3 + eΨ(ρ)

(
dρ2 + ρ2 dψ2

))
, (3.1)

1One way to obtain an exact background with flavors is through an orientifolding procedure, which leads

to an AdS5 × S5/Z2 geometry. Integrability of open strings in this setup was studied in [35, 36]. In this

case the number of flavors is low, far from the Nf ∼ Nc regime that we are interested in.
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where an SO(4)× SO(2) symmetry is present. The warp factor h has been found in terms

of a convergent series2 in [13] following the methodology developed for the Schrödinger

equation of electrons in a logarithmic potential [39]. Around the vicinity of the D7-branes

and in the near horizon limit the warp factor becomes

h(r, ρ) =
QD3

(r2 + ρ2eΨ(ρ))2
, (3.2)

with

QD3 = 4πgsNcl
4
s , Ψ(ρ) = log

(
bf log

ρL
ρ

)
, ρL := e

2πNc
λNf , bf :=

Nf

2π
. (3.3)

The constant ρL is chosen such that in the absence of the flavors eφ = gs. The warp factor

expression is only valid for values away from ρL, as Ψ(ρ) diverges around this value.

In the following sections we will parametrise the S3 of the metric (3.1) as

dΩ2
3 = dθ2 + sin2 θ

(
dα2 + sin2 αdχ2

)
, (3.4)

while the four dimensional spacetime is parametrised as

dxµdxµ = −dt2 + dR2 +R2dφ2 + dz2 , (3.5)

which is a convenient choice to describe circular strings with radius R.3

3.2 String solutions and non-integrability

In order to study (non)-integrability of the theory, we examine classical string solutions

on the above background. We are interested in string solutions that extend along the

cyclic angles (φ, χ, ψ) linearly with the σ string worldsheet parameter, where the linearity

constants are set to be (mφ, mχ, mψ). In other words, the string is wrapping these

angles an amount of times given by the corresponding m. All the other angles, as well

as the coordinate time itself, are only allowed to be functions of the time world-sheet

parameter τ .

The equations of motion are derived by the Nambu-Goto action in the geometry of (3.1)

with the parametrisations (3.4) and (3.5). Our parametrisation ensures that all the cyclic

equations of motion are trivially satisfied, while the time equation of motion gives

ṫ(τ) =
κ

2

√
QD3

|r(t)2 − bf log(ρ(τ)
ρL

)ρ(τ)2|
, (3.6)

where κ is the integration constant. By placing the string on the equators (θ = π/2, α =

π/2) of the S3 internal sphere the two relevant equations are satisfied. Moreover, the z

equation of motion is satisfied by switching off this direction for the string. We are now

2In [37] it was found to a first order approximation in the transverse 2-plane around a fixed point above

the D7-branes.
3In the following, as in [13] and much of the literature on e.g. pulsating string solutions, we will allow R

and r to take negative values, signifying a string of opposite orientation.
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left with the three equations of motion corresponding to (R(τ), r(τ), ρ(τ)) functions and

one non-trivial Virasoro constraint.

It is important to observe that the harmonic function h contains the term

log(ρ(τ))ρ(τ)2 where its derivative with respect to τ or ρ(τ) gives the same factor

1 + 2 log(ρ(τ)). Due to this fact the ρ equation of motion is satisfied for ρ = ρL/
√
e.

Note that this value is within the regime where the background approximation is valid.

The remaining equations of motion are those for R(τ) and r(τ), which read

m2
φ

(
bfρ

2
L + 2er(τ)2

)
R(τ) + 4er(τ)ṙ(τ)Ṙ(τ) +

(
bfρ

2
L + 2er(τ)2

)
R̈(τ) = 0 , (3.7)

2√
QD3(bfρ

2
L + 2er(τ)2)2

(
r(t)

(
−m2

φ

(
bfρ

2
L + 2er(τ)2

)2
R(t)2 + eQD3(−κ2e+ 4em2

χ

+2bfm
2
ψρ

2
L+4er′(t)2)+

(
bfρ

2
L+2er(t)2

)2
R′(t)2

)
− 2eQD3

(
bfρ

2
L+2er(t)2

)
r′′(t)

)
= 0 , (3.8)

while the non-trivial Virasoro equation reads

1

2e
√
QD3(bfρ

2
L + 2er(τ)2)

(
m2
φ(bfρ

2
L + 2er(τ)2)2R(t)2 + eQD3(−κ2e+ 4em2

χ

+2bfm
2
ψρ

2
L + 4er′(t)2) + (bfρ

2
L + 2er(τ)2)2R′(t)2

)
= 0 . (3.9)

A string solution of the above system and its NVE does exist. To simplify the system

significantly without losing generality, we localise the string on the internal sphere by

setting mχ = 0. This allows an analytic r(τ) solution if the string is taken to move in the

R(τ) = 0 plane

r(τ) =

√
κ2e− 2bfm

2
ψρ

2
L

2
√
e

τ + c1 , (3.10)

where c1 is an integration constant. By applying variations along the R(τ) = 0 + η(τ)

direction, the corresponding equation of motion gives an NVE with rational coefficients

η̈(τ) +
2
(
κ2e− 2bfm

2
ψρ

2
L

)
τ

(κ2e− 2bfρ
2
Lm

2
ψ)τ2 + 2bfρ

2
L

η̇(τ) +m2
φη(τ) = 0 , (3.11)

where we set c1 = 0. The above equation does not have Liouvillian solutions and the

Kovacic algorithm fails. Therefore this means that the flavor background in the unquenched

limit is non-integrable and the quark loops destroy the integrability.

In fact one may even further simplify the string solution and the corresponding NVE

and still show non-integrability. The string may be localised consistently in the transverse

SO(2) plane, parametrised by (ρ, ψ), by setting mψ = 0. Choosing the appropriate initial

conditions we get an invariant plane solution R(τ) = 0 with r(τ) = κ τ , and the variation

of R(τ) = 0 + η(τ) leads to

η̈(τ) +
2κ2eτ

2bfρ
2
L + eκ2τ2

η̇(τ) +m2
φη(τ) = 0 , (3.12)

– 7 –
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which can be also obtained directly from (3.11). The minimal string NVE (3.12) does

not have a Liouvillian solution proving non-integrability in the strong coupling limit flavor

backreacted backgrounds.

Integrability is recovered for particle motion (mφ = 0) where the NVE admits Liouvil-

lian solutions

η(τ) = c3 + c4

arctan

(
κ
√
eτ√

2bfρL

)
κ
√

2ebfρL
, (3.13)

where c3 and c4 are the integration constants.

A comment is in order for the quenched limit of our solution. The expression

bfρ
2
L =

Nf

2π
e

2πNc
λNf , (3.14)

is infinite both for small and for large number of flavors, while for Nf = 2πNc/λ the

function has a minimum at eNc/λ, depending on the number of colors (and flavors) as

well as the choice of the t’Hooft coupling. Moreover the string position in this limit goes

deeply in the IR as ρ→∞ when considering the t’Hooft limit. As a result the NVE (3.11)

for Nf = 0 does not have a smooth limit to the unquenched approximation. This limit

may be recovered only together with the point-like string motion giving the integrable

motion (3.13).

To summarise this section, we showed the existence of non-integrable string solutions

in the flavor-backreacted D3/D7 background of [13]. Integrability is recovered for particle

motion, a situation that has been observed in several other non-integrable theories. In the

next section we study the existence of chaos in the flavor backreacted system.

3.3 Chaotic string motion

Having shown analytically the non-integrability of string motion on the backreacted D3/D7

background, we examine the presence of chaos in this background. To do this, we consider

the same string ansatz as above but without choosing any specific solution for R(τ). So

the fields that will have a nontrivial motion are r(τ) and R(τ), corresponding to a time

evolution of a boundary operator. In terms of the Hamiltonian the system is reduced to a

particle motion with four dynamical variables (r,R, ṙ, Ṙ) and certain constant parameters.

The conserved quantity of the system is the total energy. We look for chaos by varying

the initial conditions and the theory parameters resulting in modifying the energy density,

and each time we integrate the equations of motion numerically.

Let us fix the value of the ’t Hooft coupling λ and examine the appearance of chaos as

a function of Nc/Nf . We solve the system of differential equations (3.7) and (3.8), with the

energy constrained by (3.9). The 3-dimensional string motion with two neighbouring initial

conditions is presented in figure 1, where the chaotic nature starts to become apparent as

the time evolves. In figure 2 we project the string motion to one dimension r(τ) where the

chaotic nature also begins to be apparent.

The chaotic motion can be quantified in terms of Nc, Nf and λ, parameters that

our system and the equations of motion depends on through bfρ
2
L and is equal to (3.14).

– 8 –
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R(τ)/5

0
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20

30

τ

Figure 1. The evolution of string motion

along the holographic direction and its ra-

dius. The two strings have close initial con-

ditions while the final endpoints begin to

differ significantly. We simulate the motion

until the initial moments of the chaos ap-

pearance. The axes have been rescaled for

better optical results.

5 10 15 20 25 30 35
τ

-6

-4

-2

2

4

6

8

r(τ)

Figure 2. The evolution of the strings along the

direction r for the same initial conditions as in fig-

ure 1. Notice that the negative values of r(τ) and

R(τ) correspond to radii of |r(τ)| and |R(τ)| with

changed string orientation comparing to the pos-

itive values. Both plots have Nf/Nc ∼ 0.3, λ =

12, where the values have chosen for best optical

results. Higher values of Nf/Nc give a similar pat-

tern and make the chaotic oscillations more severe

and observed at earlier times.

The integrability of our equation is recovered in the limit Nc/(λNf ) = 1/(2π) with Nf ∼
Nc/λ → 0, which is beyond the regime of validity of our background. A way to observe

how chaos depends on the parameters of the system is by the construction of the Poincaré

sections which are presented in figure 3 for an increasing number of flavors. The choice

of the constant κ plays a crucial role in the energy density and has to be chosen in such

a way as to allow consistent initial conditions. We are already in the chaotic region and

therefore we cannot clearly observe the destruction of tori. However by slightly extending

our analysis outside the appropriate limit for Nf/Nc and considering a low number of

flavors we get a picture of how chaos starts to form.

To quantify the sensitivity of our system to the initial conditions we compute the

leading Lyapunov exponent. We obtain the exponent by a long-time numerical calculation

of two initially neighboring trajectories, where each time we measure the exponent, we

rescale the distance in order to keep the nearby trajectory separation within the linearised

flow range. Our main finding is that when Nf ∼ Nc the Lyapunov coefficient depends

weakly on the increase of the number of flavors with a slow increasing trend. It almost

converges to a value depending on the energy of the system. In the computation we vary

Nf by pushing again the limits of our background validity. This is tempting since we find

that for low values of flavor numbers we see lower Lyapunov coefficient, which nevertheless

quickly converge to the particular value. The Lyapunov exponent in terms of the ratio

Nf/Nc can be well approximated with shifted sigmoid functions like the arctan.
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Figure 3. The Poincaré sections for the flavor backreacted theory. The section is chosen such that

r(τ) = 0. The constant κ = 140, the winding number m = 1 and λ/Nc is around unity. The bottom

right plot is the Poincaré section for Nf/Nc ∼ 1 where the chaos is obvious. The other three plots

from top left to right correspond to Nf/Nc = 0.094, 0.096, 0.098. Note that at this limit the range

of the validity of the gravity solution is already challenged. However we allow ourselves to push

towards this limit to illustrate the formation of chaos.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Nf

Nc
0.0

0.1

0.2

0.3

0.4
λ

Figure 4. The leading Lyapunov exponent in terms of number of flavors over number of colors.

The main result is that in the region Nf ∼ Nc the exponent quantifying the chaotic motion is

weakly depending on the number of flavors. It is tempting to extend our computation for lower

values of flavor pushing the limits of the validity of our background. Starting from small values of

Nf/Nc and increasing, we see that the exponent quickly converges to the constant value already at

Nf ∼ 0.4Nc.
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4 Backreacted flavors in three dimensions

In this section we consider the integrability of string motion on backgrounds dual to three-

dimensional gauge theories with unquenched flavor. These backgrounds arise by adding

branes to the N = 6 ABJM Chern-Simons-matter theory, which is known to be integrable

(see [40, 41] for the Lax-pair construction for the string sigma model), and allowing them to

backreact. In the following we review the geometry of the ABJM background and discuss

how to obtain the deformation corresponding to backreacted flavor, before turning to the

study of string solutions relevant for the study of integrability.

4.1 The ABJM background

The ABJM background [14] is given by

ds2 = L2ds2
AdS4

+ 4L2ds2
CP3 , (4.1)

where L4 = 2π2Nc
k , and the dilaton, RR 2- and 4-form field strengths are given by

eφ =
2L

k
= 2
√
π

(
2N

k5

) 1
4

, F2 = 2kJ , F4 =
3

2
kL2ΩAdS4 =

3π√
2

√
kNΩAdS4 , (4.2)

where J is the Kähler form of CP3 and λ = Nc/k is the t’Hooft coupling. This is dual

to a Chern-Simons-matter theory, of rank Nc and at level k, in the limit N
1
5
c � k � Nc,

corresponding to large AdS radius and small string coupling.

We will mostly be concerned with the internal CP3 space, so we will provide some de-

tails on its geometry. The form of CP3 which is convenient for introducing the backreaction

is as an S2-bundle over S4, using the self-dual SU(2) instanton on the four-sphere

ds2
CP3 =

1

4

(
ds2

S4 +
(

dxi + εijkAjxk
)2
)
. (4.3)

Here the xi are the Cartesian coordinates of the S2 satisfying x2
i = 1 and Ai is the non-

abelian one-form connection of the SU(2) instanton. The metric of the four-sphere reads4

ds2
S4 =

[
dα2 +

1

4
sin2 α

3∑
i=1

(ωi)2

]
, (4.4)

where the range of α is 0 ≤ α ≤ π and the ωi are SU(2) left-invariant forms satisfying

dωi = 1
2εijkω

j ∧ ωk. We will write them explicitly in terms of angular coordinates as

ω1 = cosψ1 dθ1 + sinψ1 sin θ1 dϕ1 , (4.5)

ω2 = sinψ1 dθ1 − cosψ1 sin θ1 dϕ1 , (4.6)

ω3 = dψ1 + cos θ1 dϕ1 . (4.7)

4In the parametrisation of [15] a coordinate ξ is used instead of α, with the relation between these

coordinates being sinα = 2ξ
1+ξ2

, or ξ = tan α
2

.
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Then the one-forms Ai are expressed as

Ai = − sin2 α

2
ωi , (4.8)

while the xi are parametrised with the spherical angles θ and ϕ giving
(
dxi + εijkAjxk

)2
=(

E1
)2

+
(
E2
)2

. The E1 and E2 are two one-forms that can be written as

E1 = dθ + sin2 α

2

(
sinϕ ω1 − cosϕ ω2

)
, (4.9)

E2 = sin θ
(

dϕ− sin2 α

2
ω3
)

+ sin2 α

2
cos θ

(
cosϕω1 + sinϕω2

)
. (4.10)

The RR two-form can be written as

F2 =
k

2

(
E1 ∧ E2 −

(
Sα ∧ S3 + S1 ∧ S2

))
, (4.11)

where

Sα = dα , Si =
sinα

2
Si ,

S1 = sinϕω1 − cosϕω2 , S2 = sin θω3 − cos θ
(
cosϕω1 + sinϕω2

)
,

S3 = − cos θω3 − sin θ
(
cosϕω1 + sinϕω2

)
. (4.12)

The addition of flavor D6 branes to the ABJM background, in the probe approximation,

was considered in [42–47]. The D6-branes are wrapped around an RP3 subspace of CP3,

with the configuration preserving N = 3 supersymmetry. The integrability of the corre-

sponding gauge theory (taking into account open spin chains corresponding to operators

with fundamental fields) was recently discussed in [48]. In this work we are interested in

the geometry arising when the backreaction of the flavor branes is taken into account, cor-

responding to unquenched flavors in the ABJM gauge theory. We will discuss the resulting

geometry in the next section.

4.2 The flavor-backreacted background

The deformed AdS4 × CP3 metric derived in [15] is

ds2
10 = L2

(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

2

)
+
L2

b2
(
qds2

S4 + (E1)2 + (E2)2
)
, (4.13)

where the AdS4 metric is written in global coordinates and q and b are constants measuring

the degree of the deformation from the original metric, by changing the size of the S4

compared with S2 of the CP3 manifold. The special case of q = 1 corresponds to the

undeformed N = 6 supersymmetric ABJM background, while for all other values of q the

space is squashed. The other special case q = 5 corresponds to an N = 1 supergravity

background, dual to superconformal Chern-Simons matter theory with SO(5)×U(1) global

symmetry [18]. The parameter b can be thought as the scaling of the energy of a localised

observable in the AdS space.
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The flavored AdS solutions for constant parameters are given by the solution of the

BPS conditions as

q = 3 +
3

2
ε̂± 2

√
1 + ε̂+

9

16
ε̂2 , b =

2q

q + 1
, (4.14)

where ε̂ is the usual Veneziano parameter reading

ε̂ =
3

4

Nf

Nc
λ . (4.15)

The branch with the minus sign extends from q = 1 to 5/3 and is the flavored backreacted

ABJM, since q = 1 is included. The branch with positive sign extends from q = 5 upwards

and corresponds to the flavored version of the deformed N = 1 CS matter theory, since

the value q = 5 is included.

The mentioned backgrounds appear also as the IR fixed points of D2-D6 brane system

flows. By computing the backreaction of the Nf flavor D6-branes smeared over a six-

dimensional nearly Kähler manifold, to the Nc color branes, it has been found that the

solutions flow to an AdS4 fixed point dual to Chern-Simons-matter theory and which is the

special case of the metric (4.13) for a specific q-value and a squashing parameter appearing

in the two-form [17].

It is important to note that the flavor-backreacted geometry contains an AdS4 factor,

as the addition of fundamental flavors to ABJM does not generically break conformal

invariance (see [49, 50] for perturbative gauge theory considerations). This is unlike the

four-dimensional case discussed above and of course results in a much simpler geometric

background.

Since the construction of the above background involved smearing D6-branes with

different orientations, the resulting supersymmetry is N = 1 in three dimensions, instead

of N = 3, which would only be expected for the supergravity solution with localised flavor

branes [15].

4.3 String Solutions on the backreacted metric

In this section we explore the integrability of string motion on the flavor backreacted ABJM

background above. We will consider three ansätze, which are distinguished by whether we

set θ = 0 (θ being the angle of the S2), θ = π/2, or θ1 = 0 (θ1 being the angle of the S4).

4.3.1 Static string on S2

We will now consider an ansatz for string motion which will turn out to be suitable for the

application of analytic non-integrability techniques. We choose:

t = κτ , α = α(τ) , θ = 0 , θ1 = θ1(τ) , ϕ1 = mσ , ϕ =
π

2
, ψ1 =

π

2
. (4.16)

As this parametrisation is contained within the general analysis of section 2, it is immediate

to analyse the equations of motion. Doing this we find that the only non-trivial equations
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of motion are those for θ1 and α

∂αLs + 2∂0(gααα̇) = 0 ,

∂θ1Ls + 2∂0

(
gθ1θ1 θ̇1

)
= 0 ,

gttṫ
2 + Ls+ = 0 .

(4.17)

Writing these out more explicitly, we obtain

qα̈− 1

4
θ̇2

1 sinα(1 + cosα(q − 1)) +
1

4
m2 sinα

(
q cosα+ (1− cosα) sin2 θ1

)
= 0 (4.18)

and

θ̈1(1+q sin2 α+cos2 α−2 cosα)+2θ̇1α̇ sinα(1+(q−1) cosα)+m2 sin θ1 cos θ1(cosα−1)2 = 0 .

(4.19)

The two equations of motion may be thought as coming from an effective particle lagrangian

Leff = b2κ2 +
q

4
α̇2 +

1

16

(
4 sin4 α

2
+ q sin2 α

)
θ̇2

1 −
m2

16

(
4 sin2 θ1 sin4 α

2
+ q sin2 α

)
. (4.20)

Converting to the Hamiltonian using pα = ∂Leff/∂α̇, pθ1 = ∂Leff/∂θ̇1, we obtain

H =
p2
α

q
+

4p2
θ1

4 sin4 α
2 + q sin2 α

− b2κ2 +
m2

16

(
4 sin2 θ1 sin4 α

2
+ q sin2 α

)
. (4.21)

The Virasoro constraint sets the energy to zero, which must be imposed on the dynamics of

this Hamiltonian. Using these formulas we can treat the system as one of particle motion

and construct the Poincaré maps as in figure 5, which presents different values of q. We

find that, at least for the initial conditions we have considered, there is only weak evidence

of chaotic behaviour in this parameter space. This is confirmed by a computation of the

Lyapunov exponent, which, although positive, turns out to be small and not significant

enough to make a conclusive statement about chaos in this system.

In the following we will turn to the techniques of analytic non-integrability, for which

we need to choose an invariant plane. We will consider two cases.

Case I: the θ1 = 0 plane. On this plane, the only non-trivial equation of motion is

for α(τ):

α̈+
1

4
m2 sinα cosα = 0 (4.22)

which, using the Virasoro constraint, gives

α̇2 =
1

4q

(
16b2κ2 −m2q sin2 α

)
. (4.23)

To obtain the NVE, we expand θ1(τ) = 0 + η(τ) and arrive at

1

2
η̈ sin2 α

2
(1 + q + (q − 1) cosα) +

1

2
η̇α̇ sinα(1 + (q − 1) cosα) +m2 sin4 α

2
η = 0 . (4.24)
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Figure 5. Sample Poincaré plots for the ansatz (4.16), here plotted for m = 1, κ = 0.6, and

varying values of the deformation parameter q. (a) q = 1, (b) q = 1.1 and (c) q = 1.65. The total

energy is restricted to H = 0 due to the Virasoro constraint.

We need to bring this equation into a form suitable for applying the Kovacic algorithm. In

particular it needs to be an ODE with rational coefficients. We can achieve this by making

the substitution z = cosα, after which we find the NVE5

η′′(z − 1)2(z + 1)((q − 1)z + q + 1)
(
m2q(z2 − 1) + 16b2κ2

)
+ 2η′(z − 1)

(
m2q(z2 − 1)

·(1 + z + 2qz + 2(q − 1)z2) + 8b2κ2(2 + z + 3qz + 3(q − 1)z2)
)

+ 4ηqm2(z−1)2 = 0 .

Applying the Kovacic algorithm we find that this NVE does not admit integrable solutions

for generic q,m. However, specialising to m = 0 (the point-like limit) or q = 1 (the

undeformed CP3 limit) we find an integrable NVE. This is consistent with the integrability

of geodesic motion on the backreacted backgrounds as well as the integrability of the

ABJM theory.

Case II: the θ1 = π
2

plane. The other invariant plane in our problem is θ1 = π
2 . On

this plane the α equations of motion become

α̈ = −m
2 sinα

4q
(1 + (q − 1) cosα) . (4.25)

Expanding θ1 = π
2 + η(τ) and changing variables to z = cosα, we find the NVE

η′′(z + 1)(z − 1)2(1 + q + z(q − 1))(16b2κ2 +m2(z − 1)(1 + q + z(q − 1))

+ η′(z − 1) ·
(

16κ2b2
(
2 + z + 3qz + 3(q − 1)z2

)
+m2(z − 1)(1 + q + (q − 1)z)

·
(
3 + z + 4qz + 4(q − 1)z2

))
− 4m2q(z − 1)2η = 0 .

(4.26)

As above, we find that the Kovacic algorithm concludes for m = 0 and for q = 1, while it

does not conclude with Liouvillian solutions in the generic case. We see that the backreacted

background (q > 1) of [15] is non-integrable, while for q = 1 integrability appears to be

recovered, for this string solution at least. In the next section we present the analysis of a

string moving in a CP2 subspace of CP3.

5Primes denote ∂
∂z

.
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4.3.2 The string on CP2

Let us now consider an ansatz corresponding to string motion purely on the CP2 part of

the deformed CP3 spacetime. As discussed in appendix A.4, the restriction to the subspace

defined by θ = φ = π/2, of the undeformed CP3 metric (in the S2 → CP3 → S4 fibration

picture, where θ, φ are the coordinates of the S2) leaves us with the Fubini-Study metric on

CP2. It is thus interesting to consider strings moving in this subspace both in the quenched

and unquenched limit.

The string is parametrised as

t = κτ , θ = φ =
π

2
, α = α(τ), θ1 = θ1(τ), φ1 = mσ, ψ1 =

π

2
, (4.27)

giving non-trivial equations of motion for α and θ1 which are

− q

2
α̈+

q

8
sinα cosαθ̇2

1 −
qm2

8
sinα cosα− m2

8
(1− cosα) sinα = 0 , (4.28)

while the θ1 EOM:

− 1

8
sin2 αθ̈1 −

1

4
sinα cosαα̇θ̇1 = 0 . (4.29)

We note that q does not enter into this equation.

The system can be reduced to a particle one with effective lagrangian reading

Leff =
q

4
α̇2 +

q

16
sin2 αθ̇2

1 + b2κ2 − qm2

16
sin2 α− m2

16
(1− cosα)2 (4.30)

and the corresponding Hamiltonian

H =
1

q
p2
α +

4

q sin2 α
p2
θ1 − b

2κ2 +
qm2

16
sin2 α+

m2

16
(1− cosα)2 , (4.31)

where we note that θ1 does not appear, only its conjugate momentum. Having these we

can look at two nearby trajectories. From figure 6 we see that motion on CP2 is consistent

with integrability, as expected. This is true for both q = 1 and q 6= 1 in this simple string

solution.

We now proceed to choose an invariant plane and check the non-integrability analyt-

ically. We take θ1 = 0. The θ1 equation of motion is automatically satisfied, while the α

equation of motion becomes:

α̈ = −m
2

4q
sinα((q − 1) cosα+ 1) (4.32)

and from the Virasoro constraints we find

α̇2 = − 1

4q

(
m2(q sin2 α+ cos2 α− 2 cosα+ 1)− 16b2κ2

)
. (4.33)

Expanding θ1(τ) = 0 + η(τ), keeping the first order in η, changing variables from η(τ) to

η(z), where z = cosα, and substituting the above, we finally find the NVE:

(z − 1)(z + 1)
(
m2(z − 1)(qz + q − z + 1) + 16bκ2

)
η̈(z)

+
(
(z − 1)(4qz2 + 4qz − 4z2 + 3z + 1)m2 + 48b2κ2z

)
η̇(z) = 0 .

(4.34)
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Figure 6. Phase space trajectories with nearby initial conditions for the CP2 ansatz, here plotted

for m = 1, κ = 5, and varying values of the deformation parameter q. (a) q = 1, (b) q = 3/2 and

(c) q = 5/3. The total energy is restricted to H = 0 due to the Virasoro constraint.

Applying the Kovacic algorithm to this NVE, we find that it completes, consistent with

string motion on the θ = φ = π/2 subspace being integrable for any q, as the numerical

results above also indicate. For q = 1 this agrees with our expectations of integrability, but

of course for q 6= 1 this could just be an artifact of our string ansatz being too simple to

show any non-integrability. To actually prove integrability on this subspace one would need

to construct a Lax pair for the metric (A.25), similarly to [40, 41]. It would be interesting to

study string motion on this deformed CP2 further in order to prove or disprove integrability.

In the next section we present the analysis of a different ansatz for string motion on the

backreacted background, which exhibits puzzling behavior in the undeformed CP3 limit.

4.3.3 The localised string on S2

In this section we consider a generic parametrisation of string motion such that the “in-

duced” SU(2) left-invariant forms are ω2 = ω3 = 0 , while ω3 = dϕ1. The metric effectively

becomes

ds2 =− cosh2 ρ dt2 +
1

b2

(
dθ2 + qdα2 + sin2 θdϕ2 +

(q
4

sin2 α+ sin4 α

2
sin2 θ

)
dϕ2

1

− 2 sin2 α

2
sin2 θdϕdϕ1

)
.

(4.35)

To restrict the string motion consistently to the above space we localise the string in AdS at

ρ = 0 and set θ1 = ψ1 = 0 and for further convenience ϕ = 0. By applying the formalism

of section 2 to the full system of equations using the above parametrisation we may specify

for the trivial part of the solution

t = κτ , α = α(τ) , θ = θ(τ) , ϕ1 = mσ . (4.36)
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To specify the remaining functions α and θ we look at their equations of motion (2.2)

α̈+
m2

4q

(
q cosα+ 2 sin2 α

2
sin2 θ

)
= 0 , (4.37)

θ̈ +
m2

2
sin4 α

2
sin 2θ = 0 , (4.38)

where the first equation can be integrated to obtain the Virasoro constraint

qα̇2 + θ̇2 +m2
(q

4
sin2 α+ sin4 α

2
sin2 θ

)
− 4κ2b2 = 0 . (4.39)

Case I: the θ = 0 plane. We may choose to localise the string solution in the θ = 0

plane. The motion can be mapped to a solution of the undeformed theory with a different

energy. The deformation parameters are absorbed in the energy of the solution by redefining

it as

κ̃ =
κb
√
q

(4.40)

and the motion along the angle α is given by the inverse of the elliptic integral of first

kind. Nevertheless, the solution we obtain by departing from θ = 0 can not be related to

the undeformed system. By varying the solution in the invariant plane θ = pθ = 0 of the

effective Hamiltonian we get

η′′(z)
(
16κ2 +m2q(z2 − 1)

)
(z2 − 1) + η′(z)2z

(
8κ2 +m2q(z2 − 1)

)
−m2q(1− z)2η(z) = 0 ,

(4.41)

where we have expressed everything in terms of z = cos(α(τ)) to get a differential equation

with rational coefficients. It turns out that the NVE does not have Liouvillian solutions

for any value of q, even for q = 1. We expect that string motion on CP3 is integrable,

and indeed we have performed the analogous analysis for several string solutions on round

CP3 (expressed, for instance, using the metrics (A.15) or (A.17)). As expected, no signs

of non-integrability were found.

To understand this puzzling behaviour, it is useful to re-express the specific string

ansatz above in one of these other coordinate systems, which of course can only be done

for q = 1. In appendix A.3 it is shown how to convert to the coordinate system (A.17).

Examining the equations of motion for this ansatz in the new coordinate system, we find

that there are three non-trivial equations of motion instead of two in our original coordinate

system, for our two functions (θ(τ), α(τ)).6 It thus appears that, after converting to the

round-type coordinate system (A.17), the restriction of string motion to the space (4.35)

has certain peculiarities, at least for q = 1. It would be very interesting to study this

further and understand, directly in the original coordinate system, whether there is indeed

an inconsistency or instability, and whether it affects only the case q = 1 (where we are

able to map the string to the round CP3 metric) or the whole solution.

We point out that, as usual, integrability is recovered for point-like particle motion.

6This is unlike, for instance, the CP2 ansatz of the previous section which, when converted to the

coordinate system (A.17) using (A.23) leads to just two non-trivial equations, whose NVE analysis is

consistent with integrability.
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Case II: the θ = π
2

plane. To elaborate further on the puzzling behavior above we can

also localise the string at the equator of the sphere θ = π
2 . The equation of motion for θ is

satisfied and we remain with the equation of α (4.37) or its equivalent (4.39). To find the

NVE we perturb along the solution θ = π
2 + η(t) to get

η′′(z)
(
16κ2 +m2(z − 1)(1 + q + (q − 1)z)(z2 − 1)

)
(4.42)

+η′(z)
(
16κ2z +m2(z − 1)

(
1 + z + 2qz + 2(q − 1)z2

))
+m2q(z − 1)2η(z) = 0 .

This equation again does not admit Liouvillian solutions for any q as in (4.41) giving the

same puzzling behavior for the same reasons discussed there.

5 Conclusions and outlook

In this work we considered two classes of AdS/CFT backgrounds dual to gauge theories with

backreacted flavors. We have shown that the corresponding theories at zero temperature

are not integrable, at least in the sector dual to semiclassical strings, and we have studied

the existence of chaos for string motion on these backgrounds.

In the case of four-dimensional theories with N = 2 supersymmetry, corresponding to

the D3/D7 gravity backreacted gravity background, we have found evidence that shows

the non-integrability of the theory. We find analytically closed string solutions that are

not integrable, with the integrability restored in the point-like limit for particle motion

or when we switch off the backreaction of the D7-flavor branes. This is also the case in

the backreacted flavor solution of the D6-branes in the ABJM theory. We conclude that

the backreacted flavor deformation breaks the integrability present in the three and four

dimensional theories. We have also discussed a puzzling behavior where for a certain string

ansatz we did not find Liouvillian solutions of the corresponding NVE even when switching

off the backreaction, where the background is just CP3. As discussed in section 4.3.3,

although this puzzling string solution appears valid in our original coordinate system (which

is adapted to introducing backreaction), it has some unwelcome features after mapping it

to a different metric on CP3. So we interpret the non-integrable behaviour at q = 1 as an

inconsistency of our string ansatz, and not as a sign of non-integrability of the background.

It would be interesting to further study this issue, as it could provide insight into additional

(and not previously noticed in the literature) requirements on string solutions, in order for

the analytic non-integrability method to be applicable.

In this work we considered two backgrounds with backreacted flavor, one with localised

flavor branes and one with the flavor branes smeared along the internal direction. Our belief

is that we should expect to see similar behaviours for an even wider class of theories where

the virtual quark loops are taken into account and contribute to the gauge propagators.

Integrability for these theories should be lost. A strong argument, is that the Hamiltonian of

the strings in our methods written in the phase space coordinates capturing the information

of non-integrability and chaos, is expected always to be involved enough in the case of

backreacting flavor geometries. Given the sensibility of non-integrability and chaos to the

Hamiltonian, and in direct analogy to mechanical systems, we can expect that integrability

is lost in the presence of unquenched flavors for generic theories.
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An important portion of our work consists of analyzing the presence of chaos in the fla-

vor backreacted theories. We have quantified the chaotic motion by computing the leading

Lyapunov exponent and observing its dependence on the Nc, Nf and ’t Hooft parameters

of the theory. Interestingly we find that the Lyapunov exponent in the Veneziano regime

converges to a certain value which depends on the energy density of the system and the

parameters of the theory, but depends weakly on the number of flavors. We then reduce

the number of flavors and, being a bit optimistic regarding the range of validity of the back-

reacted solution, we see that the maximum value of the Lyapunov exponent is obtained

very quickly as we increase the flavors. Independent phenomena related to properties of

the bound states of heavy quarks have been found to be weakly dependent on the numbers

of flavors or colors beyond a certain low number, exactly like the strength of chaos we

studied here. It would be interesting if one could establish any connection or common

explanation for those phenomena and our observations regarding the chaos. We also note

that our analysis is done in zero temperature and the gravity dual theory has no black hole

horizon. Moreover, our results suggest the possibility that similar bounds on Lyapunov

coefficients may exist in a wide range of quantum field theories, and will depend on the

scales quantifying the specific phenomena that are responsible for the chaotic behaviour.

We should emphasise that although both of the cases we consider are very good models

for backreacted flavor backgrounds and have been used widely in the literature, neither of

them is exactly dual to a gauge theory with unquenched flavor: in the D3/D7 case we work

in the “near-core” region, where the background admits a tractable analytic solution. In

the D2/D6 case we work with the background of [15] which was obtained by considering

a smeared distribution of D6 branes instead of a localised one. This leads to a simple

squashed CP3 internal space instead of the much more involved tri-Sasaki space of the

localised case, and an associated reduction of supersymmetry from N = 3 to N = 1.

In both cases the full, localised backgrounds are significantly more complicated and it is

natural to expect that the loss of integrability seen in our simpler cases will be a feature

of those models as well. In general it is interesting to ask to what extent the analytic

non-integrability method, applied to non-exactly known dual backgrounds, can reliably

capture the physics of the full gauge theory. Our work can be considered as providing two

such examples, which can possibly be validated by further future work going beyond the

approximations discussed above.

Our study of the unquenched ABJM theory can act as a starting point for several

other studies. For special values of the parameter that controls the squashing of the space

and the number of flavors, the background appears in other gauge/gravity dualities. The

backreaction of the Nf flavor D6-branes, smeared over a six-dimensional nearly Kähler

manifold on the Nc color branes, flows to an AdS4 fixed point dual to Chern-Simons

matter theory and which is the special case of our metric [17]. The special case q = 5

corresponds to an N = 1 supergravity background, being a gravity dual of superconformal

Chern-Simons matter theory with SO(5) ×U(1) global symmetry [18].

It should also be mentioned that a full study of analytic non-integrability in flavor

backgrounds (whether backreacted or not) should also include the open-string sector, dual

to gauge theory operators with fundamental fields at the endpoints instead of traces of
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adjoint fields. The analytic non-integrability studies performed so far in the literature

have been based on closed string solutions, and extending the method to open strings

would open up several new avenues for the study of non-integrability. Beyond theories

with flavors, this might also include the sector of open strings attached to giant graviton

operators, as well as defect CFTs, where the study of integrability was recently initiated

in [51]. It would be interesting to apply our methods to this sector.
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A The geometry of CP3

The internal part of the metric of [15] for generic values of the deformation parameter q,

is that of a squashed CP3. This is a coset Sp(2)/U(2). In this appendix we will review

some aspects of this geometry, focusing also on the limit q = 1 where the metric becomes

just CP3.

A.1 The squashed CP3 metric

Let us start from the metric describing an SU(2) instanton on S4:

ds2 = q
dwadw̄

a

(1 + waw̄a)2
+

(du+A)(dū+ Ā)

(1 + uū)2
, (A.1)

where the wa, w̄
a are coordinates on the S4 and u is the projective coordinate on S2 (thought

of as a CP1). A is an SU(2) instanton given by

A =
(w̄1 + w2u)(udw1 − dw̄2) + (w̄2 − w1u)(udw2 + dw̄1)

1 + waw̄a
, (A.2)

while q is the squashing parameter which controls the length of the fibre.7 It is known

(e.g. [52]) that there are two special values of q, which are distinguished by the metric

being Einstein: at q = 1 the metric is equivalent to the standard Fubini-Study metric on

7We note that in most of the literature the squashing parameter is placed in front of the second term

in (A.1) and denoted λ2. Therefore, effectively our q corresponds to 1/λ2.
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CP3, which is of course Kähler. At q = 2, the metric is instead nearly-Kähler. For all other

values of q the metric is not Einstein.

To bring (A.1) into the form of the flavor backreacted metric of [15], we can start by

choosing coordinates for the S4 part as

w1 = tan
α

2
ei
ψ1+ϕ1

2 cos
θ1

2
, w2 = − tan

α

2
ei
ψ1−ϕ1

2 sin
θ1

2
. (A.3)

Then we find that

d2
S4 =

1

4

(
dα2 +

1

4
sin2 α

∑
i

ω2
i

)
, (A.4)

where the SU(2) left-invariant forms we use were given in (4.5)–(4.7). Turning to the S2

part, we express

u = −i cot
θ

2
e−iϕ (A.5)

such that
dudū

(1 + uū)2
=

1

4

(
dθ2 + sin2 θdϕ2

)
. (A.6)

Combining these substitutions we can straightforwardly check that (A.1) takes the form

ds2
CP3 =

1

4

(
q

(
dα2 +

1

4
sin2 α

∑
i

ω2
i

)
+ E2

1 + E2
2

)
, (A.7)

with the Ei defined in section 4.1. We see that the flavor-backreacted metric of [15] is

equivalent to the squashed CP3 metric. It should be noted, however, that the physics of

the backreacted flavor construction restricts q to take the values discussed below (4.14),

which do not include the nearly-Kähler case q = 2.

As mentioned, taking q = 1 in (A.1) one obtains undeformed CP3, with the instanton-

type metric that appears, for instance, in the twistor construction. We will call this the

“twistor metric” for CP3. Its explicit symmetries are those of the coset Sp(2)/U(2). It will

be useful to compare it with the “round” SU(4)/U(3) metric on CP3, which we will do in

the following.

A.2 The Fubini-Study metric on CP3

We start by reviewing the Fubini-Study metric on CP3, which is the one that has been

used in studies of the ABJM geometry in the literature.

Since CP3 is a Kähler manifold, a metric on it can be found through a potential:

ds2 = ∂∂K =
1

2
gī
(
dzi ⊗ dz̄ ̄ + dz̄ ̄ ⊗ dzi

)
, (A.8)

with

gī =
∂2

∂zi∂z̄ ̄
K , (A.9)

where z, z̄ are complex coordinates on the manifold.
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The Kähler potential can be expressed in terms of inhomogeneous coordinates ZI ,

I = 1 . . . 4, as

K = ln Z̄IZI . (A.10)

This makes explicit the SU(4) symmetry of CP3. However, it is usually convenient to

rewrite the metric in terms of homogeneous coordinates zi, i = 1 . . . 3, defined as z1 =

Z2/Z1, z2 = Z3/Z1, z3 = Z4/Z1, so that K becomes:

K = ln
(
1 + z̄izi

)
. (A.11)

Starting from this potential one obtains the Fubini-Study metric as

ds2
CP3 =

dzidz̄i

1 + zkz̄k
− (z̄idzi)(zjdz̄j)

(1 + zkz̄k)2
, (A.12)

while the Kähler form is given by

ω =
i

1 + z̄kzk
dzi ∧ dz̄i − i

(1 + z̄kzk)2
z̄idzi ∧ zjdz̄j . (A.13)

For applications to string motion, it is convenient to parametrise these coordinates in terms

of angles. One commonly used parametrisation (see e.g. [53]) is

z1 = tan
θ

2
sinα sin

θ1

2
ei

(ψ−χ)
2 eiφ ,

z2 = tan
θ

2
sinα cos

θ1

2
ei

(ψ+χ)
2 eiφ ,

z3 = tan
θ

2
cosαeiφ ,

(A.14)

where 0 ≤ θ, θ1 ≤ π, 0 ≤ φ, χ ≤ 2π, 0 ≤ α ≤ π
2 , 0 ≤ ψ ≤ 4π. The metric becomes

ds2 = sin2 θ

2

(
dα2 +

1

4
sin2 α

(
ω2

1 + ω2
2 + cos2 αω2

3

))
+

1

4

(
dθ2 + sin2 θ

(
dφ+

1

2
sin2 αω3

)2
)
,

(A.15)

where the ωi are as in (4.5) with the substitutions ψ1 → ψ, φ1 → χ.

Another frequently used metric can be obtained from (A.12) through the substitution

(e.g. [54])

z1 = cot
θ2

2
eiφ2 , z2 =

cot ξ cos θ12 e
− i

2
(ψ−φ1−φ2)

sin θ2
2

, z3 =
cot ξ sin θ1

2 e
− i

2
(ψ+φ1−φ2)

sin θ2
2

,

(A.16)

leading to

ds2 = dξ2 +
1

4
cos2 ξ(dθ2

1 + sin2 θ1dφ2
1) +

1

4
sin2 ξ(dθ2

2 + sin2 θ2dφ2
2)

+
1

4
sin2 ξ cos2 ξ(dψ − cos θ1dφ1 + cos θ1dφ2)2 .

(A.17)

This parametrisation is used e.g. in [55]. In the next section we show how some of our

anzätze for string motion, written in the twistor-like coordinate system which is appropriate

for squashing, can be expressed in this metric, and we will also make use of it in appendix B,

where we study integrability on a T 11 subspace of CP3.
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A.3 From the Fubini-Study metric to the twistor metric

The relation between the Fubini-Study metric (A.12) and the twistor metric ((A.1) with

q = 1) has been discussed in [56] in the context of relating the Hall mechanics of a particle

on S4 and CP3 (see also [57] for more details and generalisations). The relation is simply

the following:

z1 = w1u− w̄2 , z2 = w2u+ w̄1 , z3 = u . (A.18)

Performing this coordinate change and substituting (A.3) and (A.5), it can be checked that

one obtains the twistor metric, while, as also mentioned in [15], the Kähler form (A.13)

can be expressed in terms of the E1,2,Sα and Si forms defined in section 4.1 as

ω =
1

2

(
E1 ∧ E2 − Sα ∧ S3 − S1 ∧ S2

)
. (A.19)

Of course, in order to compare explicit string solutions we would like to go beyond the

identification (A.18) and relate angle coordinates for the Fubini-Study metric to those for

the twistor metric. Although this is not straightforward to do in full generality, it can be

done if we restrict to specific subspaces of CP3.

One such case concerns the ansatz discussed in section 4.3.3, which we repeat here for

convenience:

α = α(τ) , θ = 0 , φ1 = mσ , φ =
π

2
, θ1 = θ1(τ) , ψ1 =

π

2
. (A.20)

Combining the expressions (A.3), (A.5) and (A.18) we find that this corresponds to the

following choice for the zi coordinates:

z1 = −i e
imσ
2 tan

α(τ)

2
cot

θ(τ)

2
, z2 = e−

imσ
2 tan

α(τ)

2
, z3 = −i cos

θ(τ)

2
. (A.21)

Let us now convert the above parametrisation to the coordinate system (A.17), which

is commonly used in studies of CP3. To do so, we make the following identification of

coordinates:

ξ(τ) =
α(τ)− π

2
, θ1(τ) = θ(τ), θ2(τ) = θ(τ), φ1 = mσ +

3π

2
, φ2 = −π

2
, ψ = 0 .

(A.22)

With this choice, and also redefining (A.16) as z1 → z3, z2 → z2, z3 → z2, the inhomoge-

neous coordinates (A.16) become equal to (A.21).

For completeness, let us also mention how the CP2 ansatz (4.27) can be written in

the coordinates of (A.17). One redefines the zi as above, this time with the following

identifications:

ξ(τ) =
α(τ)− π

2
, θ1 = θ2 =

π

2
, φ1 = mσ − π

2
, φ2 = π, ψ(τ) = −θ1(τ) . (A.23)
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A.4 Restriction to CP2

As noted in [15], an interesting subspace of the S2-bundle over S4 that we have been

discussing arises when the two-sphere angles take the values

θ =
π

2
, ϕ =

π

2
, (A.24)

giving the four-dimensional metric

ds2 =
1

4

(
qdα2 +

1

2
(1 + q + (1− q) cosα) sin2 α

2

(
ω2

1 + ω2
3

)
+
q sin2 α

4
ω2

2

)
. (A.25)

If we turn off the backreaction by setting q = 1, this metric is

ds2
CP 2 =

1

4

(
dα2 + sin2 α

2

(
ω2

1 + ω2
3

)
+

sin2 α

4
ω2

2

)
. (A.26)

This is the Fubini-Study metric on CP2. As string motion on CP2 is expected to be

integrable, it is worthwhile to perform an analysis of integrability on this subspace, for

q 6= 1 as well. This is addressed in section 4.3.2.

A.5 Seven-sphere lift

The family of squashed CP3 metrics is also relevant for the construction of squashed seven-

sphere metrics, which are S1 bundles over a squashed CP3 base. The round metric on S7 is

equivalent to the metric obtained via an S1 bundle over the q = 1 CP3 metric. There is one

other value of q for which the squashed S7 space is Einstein, which is q = 5: even though

the squashed CP3 metric is not Einstein for this value, the corresponding squashed seven-

sphere is. The AdS/CFT dual theory to this squashed sphere has been considered in [18].

Let us briefly discuss the uplift of CP3 (for q = 1) to S7, following the discussion

in [15]. Calling the additional direction ψ, and recalling that θ and ϕ are the S2 angles, we

introduce a new set of left-invariant forms,

ω̃1 = − sinϕdθ + cosϕ sin θdψ ,

ω̃2 = cosϕdθ + sinϕ sin θdψ ,

ω̃3 = dϕ+ cos θdψ ,

(A.27)

in terms of which the S7 metric is8

ds2 =
1

4

(
ds2

S4 +
3∑
i=1

(
ω̃i +Ai

)2)
, (A.28)

where we recall that Ai = − sin2 α
2ω

i = −1−cosα
2 ωi. We see that the uplift of the twistor

metric of CP3 naturally exhibits S7 as an S3 (Hopf) fibration over S4.

Similarly to the discussion above for CP3, there is a question of how to show the

equivalence of the above S7 metric to the more usual round metric on S7. This is addressed

8For the actual uplift of ABJM to M-theory one also needs to perform a Zk orbifold of the ψ angle.

– 25 –



J
H
E
P
1
0
(
2
0
1
7
)
0
4
2

e.g. in [58]. For completeness we sketch their construction below, while referring to their

work for additional details. Let us start by writing (A.28) more explicitly (also suppressing

the summation symbol) as

ds2 =
1

4
dα2 +

1

16
sin2 αω2

i +
1

4
(ω̃i +Ai)

2 , (A.29)

in order to better exhibit the roles of the two sets of left-invariant forms. Let us now write

ωi = ωi − ω̃i + ω̃i = νi + ω̃i , (A.30)

i.e. we have defined a new one-form νi = ωi − ω̃i. Then

sin2 α

16
ω2
i =

sin2 α

16
(ν2
i + 2νiω̃i + ω̃2

i ) , (A.31)

while(
ω̃i −

1− cosα

2
ωi

)2

= cosαω̃2
i − (1− cosα)ω̃iνi +

(1− cosα)2

4
(ν2
i + 2νiω̃i + ω̃2

i ) . (A.32)

Adding these terms, and also substituting α = 2α̂, a short calculation leads to

1

4
dα2 +

1

16
sin2 αω2

i +
1

4
(ω̃i +Ai)

2 = dα̂2 +
1

4
sin2 α̂ ν2

i +
1

4
cos2 α̂ ω̃2

i . (A.33)

The right-hand side is what is commonly considered as the round metric on S7. For

more details on how this relation between the metrics is derived, we refer to [58]. Of

course, although (A.30) is suggestive, the actual identification of angles that implements

this transformation is not straightforward.

B Strings on the T 11 restriction of CP3

An interesting feature of the round CP3 metric is that it admits a restriction to a 5-

dimensional T 11 space. This can be most clearly seen starting from the metric (A.17) [55].

The constant ξ surfaces are U(1) bundles on S2×S2, and as such the restriction of (A.17) to

constant ξ has the geometric features of T 11. However, the metric one obtains by taking ξ

constant is not the Einstein metric on T 11, which requires relations between the coefficients

of the three factors that cannot be satisfied for any choice of ξ.

Integrability of string motion on T 11 (and its generalisations with arbitrary coefficients

for the three factors) was considered in [3], where it was established that these backgrounds

are not integrable. So one can wonder how they can arise as foliations of the integrable CP3

geometry. We can examine this question by considering string motion on CP3, parametrised

as in (A.17), and choosing an ansatz for a string that lives at constant ξ:

t(τ, σ) = kτ , ξ(τ, σ) = ξ , θ1(τ, σ) = θ1(τ) , φ1(τ, σ) = mσ ,

θ2(τ, σ) = θ2(τ) , φ2(τ, σ) = nσ , ψ(τ, σ) = 0 . (B.1)
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While most equations of motion following from this ansatz are equivalent to those of [3],

there is an additional equation coming from the ξ equation of motion:

θ̇2
1 − θ̇2

2 + (cos2 ξ − sin2 ξ)(m cos θ1 − n cos θ2)2 −m2 sin2 θ1 + n2 sin θ2 . (B.2)

Following [3], we take our straight line solution to be θ2 = 0. It turns out that the additional

equation of motion then restricts θ1 to take a constant value:

θ̄1 = arccos

(
2

3

(2 cos2 ξ − 1)n

m cos2 ξ

)
. (B.3)

Perturbing θ2(τ) = 0 + η(τ), linearising and substituting the solution for θ1, we find

the NVE

η̈ +
n2

3
(1 + cos2 ξ) = 0 . (B.4)

This is integrable, unlike the NVE found for T 11 in [3] (where θ1 was a function of τ). So it

appears that the additional EOM has led us to a simpler NVE which does not exhibit non-

integrable behaviour. This is of course consistent with our expectations from integrability

of the CP3 sigma model.
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[55] M. Cvetič, H. Lü and C.N. Pope, Consistent warped space Kaluza-Klein reductions, half

maximal gauged supergravities and CPn constructions, Nucl. Phys. B 597 (2001) 172

[hep-th/0007109] [INSPIRE].

[56] S. Bellucci, P.-Y. Casteill and A. Nersessian, Four-dimensional Hall mechanics as a particle

on CP 3, Phys. Lett. B 574 (2003) 121 [hep-th/0306277] [INSPIRE].

[57] S. Krivonos, HPn σ-model and instanton, talk at Supersymmetry in Integrable Systems

(SIS’12), Yerevan Armenia (2012),

http://theorphyslab.ysu.am/sis12/Presentations/Krivonos.pdf

[58] M. Hatsuda and S. Tomizawa, Coset for Hopf fibration and Squashing, Class. Quant. Grav.

26 (2009) 225007 [arXiv:0906.1025] [INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP05(2010)106
https://arxiv.org/abs/0912.4282
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4282
https://doi.org/10.1007/JHEP08(2015)098
https://arxiv.org/abs/1506.06958
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06958
https://doi.org/10.1088/1126-6708/2008/02/086
https://arxiv.org/abs/0712.1021
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1021
https://doi.org/10.1016/0370-2693(85)90992-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B150,352%22
https://doi.org/10.1088/1126-6708/2009/04/136
https://arxiv.org/abs/0811.2423
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.2423
https://doi.org/10.1016/S0550-3213(00)00708-2
https://arxiv.org/abs/hep-th/0007109
https://inspirehep.net/search?p=find+EPRINT+hep-th/0007109
https://doi.org/10.1016/j.physletb.2003.09.008
https://arxiv.org/abs/hep-th/0306277
https://inspirehep.net/search?p=find+EPRINT+hep-th/0306277
http://theorphyslab.ysu.am/sis12/Presentations/Krivonos.pdf
https://doi.org/10.1088/0264-9381/26/22/225007
https://doi.org/10.1088/0264-9381/26/22/225007
https://arxiv.org/abs/0906.1025
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1025

	Introduction
	String equations of motion for a generic metric
	Backreacted flavors in four dimensions
	Dual geometry to N=2 SYM with unquenched flavor
	String solutions and non-integrability
	Chaotic string motion

	Backreacted flavors in three dimensions
	The ABJM background
	The flavor-backreacted background
	String Solutions on the backreacted metric
	Static string on S*2
	The string on CP*2
	The localised string on S*2


	Conclusions and outlook
	The geometry of CP*3
	The squashed CP*3 metric
	The Fubini-Study metric on CP*3
	From the Fubini-Study metric to the twistor metric
	Restriction to CP*2
	Seven-sphere lift

	Strings on the T*11 restriction of CP*3

