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Abstract

Many sophisticated signal analysis techniques are developed to efficiently detect, localise and

trend damage in rotating machine components such as bearings and gears for example. How-

ever, these techniques are generally applied without effectively incorporating historical informa-

tion when performing condition monitoring. It is possible to enhance the performance of the

analysis techniques by incorporating historical data from a machine in a reference condition.

In this paper, a methodology is proposed to extract a novel signal i.e. a signal that contains

information that is not present in the historical reference data, from a vibration signal. This is

performed by utilising the available historical data. Sophisticated signal analysis techniques can

subsequently be used on the novel vibration signal to diagnose the machine. The benefits of the

methodology are illustrated on data, generated from phenomenological gearbox model data and

experimental gearbox data, by utilising advanced techniques based on cyclostationary analysis.

The results indicate that the novel vibration signal is more sensitive to damage, which highlights

its potential as a pre-processing technique for rotating machine applications where historical data

are available.
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1. Introduction

Condition-based maintenance uses processed condition monitoring data as basis for main-

tenance decisions and is important to ensure that expensive rotating machines operate cost-

∗Corresponding author.
Email address: stephanschmidt@zoho.com (Stephan Schmidt)

Postprint submitted to Mechanical Systems and Signal Processing February 25, 2019



effectively and reliably [1]. In vibration-based condition monitoring, signal processing and anal-

ysis techniques form an integral part of diagnosing the machine; they are used to highlight

diagnostic information and to attenuate extraneous components. Many traditional signal analy-

sis techniques such as frequency domain analysis are inadequate for incipient fault detection and

therefore more sophisticated techniques are researched for rotating machine diagnostics [2–5].

One of the most powerful approaches to rotating machine diagnostics is based on cyclosta-

tionary analysis. Cyclostationary analysis techniques are well suited for diagnosing rotating

machines, because rotating machine vibration signals are generated by periodic mechanisms

which result in the signals having periodic statistical properties [6]. The vibration signals are

time or angle cyclostationary under stationary operating conditions [6] and the signals are cyclo-

non-stationary under non-stationary speed conditions [7]. The associated analysis techniques are

given in Refs. [3, 7–11]

Envelope analysis is one of the most popular cyclostationary techniques for bearing diagnos-

tics [5, 12, 13]. The Squared Envelope Spectrum (SES) is sensitive to the presence of second-order

cyclostationary vibration components and is therefore ideal for detecting bearing damage. How-

ever, it is necessary to remove interfering signal components from the vibration signal prior to

envelope analysis. This is achieved by either bandpass filtering the signal to retain the infor-

mation pertaining to the excited resonance frequencies or performing envelope analysis on the

residual signal [12, 14].

The optimal properties of the bandpass filter for envelope analysis i.e. the required centre

frequency and the bandwidth are unknown when performed without historical fault data and

need to be estimated from the data. Bearing damage results in the impulsive content of specific

frequency bands to increase, which makes the spectral kurtosis an ideal tool for identifying the

aforementioned frequency bands. The spectral kurtosis provides an estimation of the impulsive-

ness of different frequency bands and is calculated with time-frequency estimators [15]. However,

the estimated spectral kurtosis is sensitive to the frequency resolution of the time-frequency de-

composition. This shortcoming is circumvented with the kurtogram, where time-frequency de-

compositions with different frequency resolutions are performed whereafter the centre frequency

and frequency resolution that maximises the spectral kurtosis are selected [15–17]. The spectral

kurtosis and kurtogram are powerful techniques for detecting faults such as gear [16, 18, 19] and

bearing faults [5, 16].

However, the spectral kurtosis is sensitive to spurious impulsive noise which can result in the

wrong frequency band to be detected and subsequently the wrong bandpass filter to be used for
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envelope analysis [20]. Also, the spectral kurtosis decreases as the repetition rate of the impulses

increases [20]. The aforementioned shortcomings have resulted in many improvements to the

spectral kurtosis to be proposed; for example the protrugram [21], the improved kurtogram

[22], the enhanced kurtogram [23], an optimised spectral kurtosis [24], the sparsogram [25],

informative frequency band selectors [26], the envelope harmonic-to-noise ratio decomposition

[27], the autogram [28] and the infogram [20, 29, 30] can be used as alternatives to the spectral

kurtosis or kurtogram.

These fault diagnosis methods are usually implemented without using historical data. Even

though historical fault data are expensive and often impractical to acquire, historical data of a

healthy machine or a machine in a reference condition can easily be acquired in many circum-

stances. It could be advantageous to use fault diagnosis methods that incorporate information

from historical data or a reference condition into the diagnosis procedure. Randall [31] used the

difference in the spectrum of a gearbox with a rolling element fault and an identical healthy

gearbox to determine a frequency band for envelope analysis. Fernández-Francos et al. [32]

used a support vector machine, optimised on healthy data, to select the frequency band for

envelope analysis. Klein et al. [33] used image processing methods to develop a fault diagnosis

methodology that enhances novel information in a RPM-order representation.

In condition monitoring, the characteristics of the data (e.g. spectral content) are investigated

for changes from a reference condition. However, it could be beneficial to have a signal that only

contains changes from a reference condition i.e. novel information and then to subsequently anal-

yse this signal for potential diagnostic information using conventional fault diagnosis techniques.

Hence, in this paper, a pre-processing methodology is proposed that utilises the available histori-

cal reference data to enhance novel information in the vibration signal. A novel information filter

is designed which passes frequency bands with significant changes in its statistical characteristics

with respect to the reference condition and attenuates frequency bands that do not contain any

novel information. The resulting signal is rich with novel information and is referred to as the

novel signal. The novel signal is then subsequently analysed using signal analysis techniques for

the presence of damage. In this work, cyclostationary analysis techniques are used to analyse

the original and novel signals.

In summary, the benefits of this methodology are:

• Historical reference data can be incorporated as a pre-processing technique, whereafter

conventional fault diagnosis techniques can be applied.
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• The filter is designed by considering the statistical properties of the frequency bands.

This makes the approach sensitive to small changes in the statistical properties of specific

frequency bands.

• It is not necessary to select a single frequency band to perform envelope analysis as done

with the kurtogram and related methods. Multiple frequency bands can automatically be

selected which for example allows envelope analysis to be performed over the full bandwidth

of the novel vibration signal.

In the next section, the methodology is presented, whereafter the methodology is investigated

on phenomenological gearbox data in Section 3 and experimental gearbox data in Section 4.

Finally, conclusions are drawn and recommendations are made in Section 5. Appendix A contains

supporting information related to the phenomenological gearbox data in Section 3 and Appendix

B contains additional information related to the proposed quality metrics used in Section 4.

2. Methodology

We desire to extract a novel signal xnovel ∈ RNx×1 from a measured vibration signal x =

[x[0], x[1], . . . x[Nx − 1]]T with Nx samples i.e. x ∈ RNx×1 by using a dataset from the machine

in a reference condition. The reference dataset contains Ntrain measurements and is denoted by{
x
(i)
train

}
, i = 0, . . . Ntrain − 1.

A methodology is presented in Figure 1 to extract the novel signal from a newly acquired

vibration signal. This novel signal represents the deviation between the newly acquired vibration

signal and the vibration signal generated by the healthy gearbox. Therefore, if the gearbox is

damaged, the novel signal would be rich with fault-related information. The methodology consists
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Figure 1: An overview of the methodology

of two main phases, namely a training phase and a testing phase. The training phase is used

to obtain the model parameters through a model optimisation process on the reference dataset.
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The testing phase uses the model parameters to design a filter that is used to extract a novel

signal that corresponds to the input vibration signal.

A detailed overview of each step in the methodology is given in subsequent sections.

2.1. Signal decomposition and feature extraction

We make the assumption that the machine component damage manifests in specific frequency

bands and results in changes in the statistical properties of the associated feature bands e.g. the

damage results in the impulsiveness to increase. Hence, features are extracted from narrowband

signals to detect changes in the statistical properties of the frequency bands.

The first step of the feature extraction procedure is to decompose the signal into a time-

frequency representation. The Short-Time Fourier Transform (STFT) of the signal x ∈ RNx×1,

Sx[n,m; ∆fl] =

Nw−1∑
k=0

x[n · (Nw −No) + k] · υ[k] · e−j2πkm
∆fl
fs (1)

is used for this task. The STFT is calculated for a pre-determined frequency resolution ∆fl

and a corresponding time resolution ∆tl, with the time step and frequency that correspond to

Sx[n,m; ∆fl] given by t = n∆tl and f = m∆fl, respectively. The windowing function υ ∈ RNw×1

can for example be a Hann function, where Nw is the length of the discrete window function

and No denotes the number of samples overlapping between consecutive windows. The sampling

frequency of the signal x is denoted by fs.

The optimal window length for the STFT for machine diagnostics depends on the rotational

speed of the component [19, 21] and therefore under varying speed conditions the optimal window

length becomes difficult to be estimated. Therefore, in this methodology Nl time-frequency

decompositions are investigated to alleviate the influence of varying speed conditions. The novel

information, detected in the different time-frequency distributions, is combined to obtain a single

novel signal with the method discussed in Section 2.4. In the investigations performed in this

paper, a Hann window is used for all decomposition levels, with the following window lengths

{Nw} = {8, 16, 32, 64, 128, 256, 512, 1024, 2048} and a 75% overlap between consecutive windows

being used.

A feature extraction function Ψfeat is used to extract a diagnostic feature U (f,∆fl) from the

temporal signal associated with each centre frequency f = m ·∆fl of the STFT with a frequency

resolution of ∆fl

U (m ·∆fl,∆fl) = Ψfeat (Sx[n,m; ∆fl]) . (2)
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The feature extraction function Ψfeat can be used to extract the kurtosis of the bandlimited

signals, whereafter the kurtogram [15]

U (m ·∆fl,∆fl) =

〈
|Sx[n,m; ∆fl]|4

〉
n〈

|Sx[n,m; ∆fl]|2
〉2
n

− 2, (3)

is obtained. The squared envelope negentropy can also be extracted which results in the squared

envelope infogram [20]

U (m ·∆fl,∆fl) =

〈
|Sx[n,m; ∆fl]|2〈
|Sx[n,m; ∆fl]|2

〉
n

log

 |Sx[n,m; ∆fl]|2〈
|Sx[n,m; ∆fl]|2

〉
n

〉
n

(4)

or the kurtosis and the squared envelope negentropy can for example simultaneously be used as

features. In Equations (3) and (4), 〈·〉n denotes the time averaging operator over Nt time steps

e.g.

〈|Sx[n,m; ∆fl]|〉n =
1

Nt

Nt−1∑
n=0

|Sx[n,m; ∆fl]|. (5)

The Nfeat features extracted from the different frequency bands of the Nl STFT decompositions

are written as a vector u ∈ RNfeat to simplify the notation and computations used in the

subsequent sections. The features that correspond to the reference dataset are denoted by

{u(i)
train}, i = 0, . . . , Ntrain − 1 and is the training dataset that is modelled in the next section.

2.2. Feature modelling

In this step of the process, it is necessary to determine whether the features of specific

frequency bands conform to the expected behaviour governed by the probability density function

of the reference features or whether there is novelty in that region.

The features u are parametrised by the Gaussian Probability Density Function (PDF)

p(u;µu,Σu) =
1

(2π)Nfeat/2
1

|Σu|1/2
exp

(
−1

2
(u− µu)T Σ−1u (u− µu)

)
, (6)

where the mean and covariance of the features are denoted by µu and Σu respectively. The

Gaussian PDF is used because of its simplicity and effectiveness for detecting changes in the

features. It is also sensible to use a Gaussian PDF for the features in this dataset as there can

potentially be many features and only a few training datasets, which increases the difficulty of

estimating the unknown parameters and hyperparameters of complicated models properly.

The naive assumption is made that the features are uncorrelated i.e. the full covariance

matrix reduces to a diagonal matrix with the variances of the respective features being on the
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diagonal of the covariance matrix. This assumption is made to reduce the number of parameters

that need to be estimated from the reference datasets. The mean

µu[k] =
1

Ntrain

Ntrain−1∑
i=0

u
(i)
train[k], (7)

and diagonal covariance matrix

Σu[a, k] =
1

Ntrain − 1

Ntrain−1∑
i=0

(
u
(i)
train[k]− µu[k]

)2
· δ(a− k), (8)

of the Gaussian PDF in Equation (6) are obtained from the healthy features, where δ denotes

the Kronecker delta function i.e. δ(0) = 1 and 0 otherwise.

The parameters of the model are denoted Θ = {µu,Σu} and a novelty detection scoring

function M(u[k]; Θ) is used with an associated threshold βthres[k] to detect novelties in specific

frequency bands i.e. a novelty is detected if M(u[k]; Θ) > βthres[k]. A good novelty detecting

scoring function for a Gaussian PDF is the squared Mahalanobis distance which can be simplified

to

M(u[k]; Θ) =

(
µu[k]− u[k]√

Σu[k, k]

)2

, (9)

for a diagonal covariance matrix.

2.3. Filter design to enhance novel information

It is desired to retain the frequency bands which contain novel information in the novel

vibration signal. This is achieved by using the novelty detection score M(u[k]; Θ) and the

associated threshold βthres[k] to find the filter coefficient h[k] associated with feature u[k]

h[k] =

 1.0 if M(u[k]; Θ) > βthres[k],

0.0 if M(u[k]; Θ) ≤ βthres[k].
(10)

The filter coefficient is equal to unity if a novelty is detected and zero if not. The filter has a

similar form to the filter proposed by Combet and Gelman [19], where informative frequency

bands are identified and amplified by the square root of the spectral kurtosis. However, in

the aforementioned paper, the informative frequency bands were determined from a uniform

statistical threshold and did not use historical data in the process. The threshold in Equation (10)

is βthres[k] = 9 for k = 0, . . . , Nfeat − 1. The motivation for the threshold is that it corresponds

to µ ± 3σ when M(u[k]; Θ) = βthres[k], which covers 99.7% of the probability density function

of a Gaussian distribution.
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In Equation (10), it is possible to use a more sophisticated filter as well; for example, if

a novelty is detected h[k] = M(u[k]; Θ) i.e. the novel information is amplified proportionally

to its novelty score. However, the binary filter is investigated here to reduce the number of

hyperparameters in the model.

2.4. Novel signal estimation

The novel signal is estimated from the novelty filter in two steps. Firstly, each frequency

band m of the time-frequency representations of the different window lengths l are scaled by the

novelty filter

S̃x[n,m; ∆fl] = h[κ(m, l)] · Sx[n,m; ∆fl] (11)

where S̃x[n,m; ∆fl] denotes the scaled time-frequency representation Sx[n,m; ∆fl]. The filter

coefficient associated with the centre frequency m · ∆fl and decomposition level l is given by

h[κ(m, l)], where κ(m, l) is a function which relates the centre frequency and decomposition level

to the index of a filter coefficient. In the second step, the inverse transform of the time-scale

distribution at level l, S−1x , is calculated by the scaled time-frequency representation to obtain

an estimation of the novel signal

x̂novel[n; ∆fl] = S−1x (S̃x[n,m; ∆fl]). (12)

The ·̂ makes it explicit that an estimate of the novel signal is obtained. The inverse STFT S−1x

can be used to perfectly reconstruct the signal if constant overlap-add constraint is satisfied [34].

The dependence of the estimation on the frequency resolution ∆fl of the time-frequency

decomposition is emphasised in Equation (12). It is ideal to use an estimate that does not

depend on the frequency resolution i.e. to use x̂novel[n] instead of x̂novel[n; ∆fl]. This can be

approximated with a weighted sum of the novel signals associated with each decomposition l

x̂novel[n] =

Nl−1∑
l=0

x̂novel[n; ∆fl] · w[l], (13)

where w ∈ RNl×1 denotes the weight vector, which has the following constraint
∑Nl−1

k=0 w[k] = 1.

There are many potential methods to select the elements of the weight vectorw, with the simplest

being to assign an equal weight to each frequency band, which results in

x̂novel[n] =
1

Nl

Nl−1∑
l=0

x̂novel[n; ∆fl]. (14)
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Figure 2: The proposed methodology is illustrated to obtain a novel vibration signal x̂novel from a vibration signal

x. In the training phase, the reference dataset is used to obtain the model parameters, whereafter a novel signal

is extracted from the vibration signal in the testing phase.

Finally, the estimated novel signal can for example be analysed using cyclostationary tech-

niques for the presence of damage in the machine components. Different techniques are investi-

gated for the datasets and described in the following sections.

The methodology, discussed in Section 2.1 to Section 2.4, is summarised in Figure 2 to clarify

the steps followed in the training and testing phases.

3. Phenomenological gearbox model

A phenomenological gearbox model is investigated to generate data of a gearbox operating

in various machine conditions under constant loads and varying speed conditions. The model is

based on the model used by Abboud et al. [12].
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3.1. Model

The phenomenological gearbox model is used to generate data in a reference condition, where-

after additional inner and outer race bearing damage is simulated in the gearbox. The gearbox

signal in its reference condition consists of a gear mesh component xgmc, a noise component xn

and a distributed gear damage component xdgd, with the corresponding casing vibration signal

given by

xc(t) = xgmc(t) + xdgd(t) + xn(t). (15)

The condition of the gearbox in its reference condition is changed by introducing localised outer

race damage xblo(t) and localised inner race damage xbli(t) with the updated casing vibration

signal given by

xc(t) = xgmc(t) + xdgd(t) + FSblo · xblo(t) + FSbli · xbli(t) + xn(t). (16)

The fault severity factors FSi help to explicitly change the magnitude of the bearing damage

components with respect to the other signal components e.g. FSi = 0 indicates that the associ-

ated signal component is not present in the signal.

The gear mesh component of the gearbox

xgmc(t) = M (ω(t)) · hgmc(t)⊗

Ngmc∑
k=1

A(i)
gmc · sin

(
k ·Nteeth ·

∫ t

0
ω(τ)dτ + ϕ(k)

gmc

) , (17)

consists of a component that alters the magnitude of the signal as the rotational speed ω[rad/s]

changes i.e. M (ω(t)), while A
(k)
gmc and ϕ

(k)
gmc are the magnitude and phase of the kth harmonic

component of the Ngmc gear mesh components. The single degree-of-freedom impulse response

function of the gear mesh component is denoted as hgmc(t). The number of teeth on the gear con-

nected to the reference shaft is denoted by Nteeth, where the instantaneous gear mesh frequency

in rad/s is given by Nteeth · ω(t).

The distributed gear damage component

xdgd(t) = M(ω(t)) · hdgd ⊗

εσ(t) ·
Ndgd∑
k=1

A
(k)
dgd · sin

(
k ·
∫ t

0
ω(τ)dτ + ϕ

(k)
dgd

) , (18)

has a similar form as the gear mesh component in Equation (17); the only differences are the

random sample from a zero mean Gaussian distribution with unit variance denoted by εσ(t) and

the fundamental frequency of the distributed gear damage that is associated with the rotational

speed of the shaft as opposed to the gear mesh frequency.
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The outer race bearing damage component

xblo(t) = M(ω(t)) · hblo(t)⊗

Nimp∑
k=0

A
(k)
blo · δ

(
t− T (k)

blo

) , (19)

consists of a train of Dirac impulses δ convolved with the impulse response function hblo(t). The

impulses are random in magnitude, captured by the random variable A
(k)
blo , and are modulated

by the rotational speed of the system with the function M(ω(t)) as well. The time-of-arrival

of bearing impulse k, denoted by T
(k)
blo , is influenced by the rotational speed of the system as

well as by slip [10]. Hence, the instantaneous phase of the shaft is used to relate the angle and

time of the impulses whereafter slippage effects are introduced by adding noise from a uniform

distribution to the time of arrival of the impulses.

The inner race damage component

xbli(t) = zstribeck

(∫ t

0
ω(τ)dτ

)
·M(ω(t)) · hbli ⊗

Nimp∑
k=0

A
(k)
bli · δ

(
t− T (k)

bli

) , (20)

has a similar form as the outer race component, except for the presence of the Stribeck equation

[35]

zstribeck(ϕ) =

 z0 ·
(
1− 1

2ε (1− cos(ϕ))
)cstr for |wrp(ϕ)| < ϕmax

0 otherwise,
(21)

which simulates the damaged portion of the inner ring moving in-and-out of the load zone. The

wrap function, denoted by wrp(ϕ), returns the phase of the shaft ϕ in the domain of [−π, π].

The constants associated with the Stribeck equation is selected as [35]: cstr = 3/2, ε = 0.49,

ϕmax = 0.99π/2rad, and z0 = 1.

The last component of the casing vibration signal is the noise signal

xn(t) = σn · εσ(t) ·M(ω(t)), (22)

which contains a sample from a zero mean, unit variance Gaussian function εσ(t), which is scaled

by a constant factor σn and with the function M(ω(t)). The dependence of each vibration

component on the rotational speed of the system is governed by the same function M(ω(t)) = ω2

for the sake of simplicity.

An overview of the parameters used in the dataset is given in Appendix A, with the vibration

signals presented as well. However, it is important to highlight the model characteristics that

assist with interpreting the results; the ball-pass outer race and inner race orders of the bearing

are 4.12 and 5.88, while, the natural frequencies being excited by the outer race damage and

inner race damage are 7.0 kHz and 5.5 kHz, respectively.
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Figure 3: The rotational speeds used for the phenomenological gearbox model are presented, with the rotational

speed associated with a specific measurement obtained from ω(t) = at + b. The parameters a and b are sampled

from a normal distribution with unit variance, with E{ω(t)} = 10π · t+ 30π rad/s.
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Figure 4: The Squared Envelope Spectrum (SES) of the original casing vibration signal from the phenomenological

gearbox model that contains outer race bearing damage and inner race damage, are presented. The analytical

fault frequencies and their harmonics are superimposed on the spectra as well.

The rotational speeds for all casing vibration signals are linear ramp-ups, with the initial

rotational speed and the gradient determined from a normal distribution. The random rotational

speed profiles are presented in Figure 3.

3.2. Results with raw data

The Squared Envelope Spectrum (SES) is one of the most powerful tools in bearing diag-

nostics [12] and therefore it is investigated on the casing vibration signals. In Figure 4(i), the

SES is presented of the raw vibration signal, which corresponds to the bearing with outer race

damage. In Figure 4(ii), the SES of the raw vibrations signal, which corresponds to the bearing

with inner race damage is presented. The distributed gear damage manifests at the shaft orders

and their harmonics are clearly seen, while the gear mesh component is prominent at 20 shaft

orders. The bearing damage signal components’ are not seen in Figure 4 for both cases. Usually,

the SES of the random part is calculated i.e. where the deterministic components such as the

12



(i) Outer race damage: FSblo = 1 (ii) Inner race damage: FSbli = 1

Figure 5: The squared envelope infogram of the raw casing vibration signal of the phenomenological gearbox model

that contains outer race and inner race damage respectively, is presented. The infogram in Figure 5(i) corresponds

to the SES in Figure 4(i) and the infogram in Figure 5(ii) corresponds to the SES in Figure 4(ii).

gear mesh components are attenuated [36], but the distributed gear damage will not be removed

due to the statistical nature of its characteristics i.e. it is second-order cyclo-non-stationary. The

complete signal, as opposed to the residual signal, is used in all analyses to illustrate the ability

of the proposed methodology to remove the healthy characteristics from the data.

It is possible to design a bandpass filter by selecting the centre frequency band and the

frequency resolution that maximise the SE infogram shown in Figure 5(i) for the outer race

damage and in Figure 5(ii) for the inner race damage. However, the distributed gear damage

signal components dominate the feature plane which results in the wrong bandpass filter to

be designed i.e. the resulting bandlimited signal only contains the distributed gear damage

information. Hence, it is sensible to use the proposed methodology to incorporate the information

of the historical data of the machine in a reference condition into the signal analysis procedure

to assist with diagnosing the gearbox. The proposed methodology is investigated in the next

section.

3.3. Results with proposed methodology

Twenty datasets of the gearbox in its reference condition are generated with Equation (15)

and used in the training phase of the methodology. The squared envelope infogram given by

Equation (4) is used as the features in this investigation, however other features could also be

investigated as alternatives as discussed in Section 2.1. The model parameters are obtained from

the features of the reference dataset using the procedure described in Section 2.2.

In the testing phase, the vibration data of the phenomenological gearbox model that contains
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(i) Outer race damage: FSblo = 1 (ii) Inner race damage: FSbli = 1

Figure 6: The squared envelope infogram of the estimated novel signal of the phenomenological gearbox model

that contains outer race and inner race damage respectively, is presented. The raw signal counterpart of Figure

5(i) is presented in Figure 6(i), while the raw signal counterpart of Figure 5(ii) is presented in Figure 6(ii).

either inner race or outer race damage are considered. Different magnitudes of the signal compo-

nents associated with the damaged bearing are investigated by changing FSi in Equation (16).

This is performed to ensure that it is possible to not only detect and localise the bearing damage,

but that it is also possible to infer changes in the condition of the bearing. The methodology is

applied on the datasets by using the same feature extraction procedure, whereafter the model is

used to assign a novelty score to each feature in the feature map with Equation (9). This is used

with the threshold to design the filter given by Equation (10), whereafter the estimated novel

signal is obtained with the procedure described in Section 2.4.

The squared envelope infogram is presented in Figure 6 for the novel signals corresponding

to the squared envelope infogram in Figure 5. It is evident that the bearing damage located

in the higher frequency bands are retained in the filtering process, while the distributed gear

damage components are not dominating the feature plane any longer. It is also observed that

some spurious frequency bands are retained in the higher decomposition levels. This is possibly

attributed to the statistics being improperly estimated due to the poor time resolution. However,

with the averaging approach in Equation (14), the effect of the spurious components is attenuated.

The SES of the novel signals are presented in Figure 7. A significant improvement is observed

in Figure 7 compared to the results in Figure 4 for a FSi = 1. The bearing fault frequencies and

the associated modulations are prominent in the spectra of the novel signals, which is in contrast

to the SES of the raw signals where the distributed gear damage and the fundamental gear mesh

frequency dominated the lower frequency range of the spectrum. The squared envelope spectra

14



(i) Outer race damage: FSblo = 1

5 10 15 20 25
Shaft orders

0.00

0.05

S
E

S

Fault char. freq.

(ii) Inner race damage: FSbli = 1

5 10 15 20 25
Shaft orders

0

1

S
E

S

×10−2

Fault char. freq.

(iii) Outer race damage: FSblo = 4

5 10 15 20 25
Shaft orders

0

5

S
E

S

Fault char. freq.

(iv) Inner race damage: FSbli = 4

5 10 15 20 25
Shaft orders

0.0

0.5

S
E

S

Fault char. freq.

Figure 7: The Squared Envelope Spectrum (SES) of the novel vibration signals for different levels of outer race

and inner race bearing damage are shown.
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in Figure 7 also indicate that changes in the condition of the bearings can be detected i.e. an

increase in FSi results in an increase in the amplitudes of the fault components.

The vibration signals are cyclo-non-stationary under varying speed conditions, while the

bearing vibration signal can be approximated as an angle-time cyclostationary signal. This

makes the Order-Frequency Spectral Correlation (OFSC) [7]

SC(αθ, f) = lim
T→∞

1

θ(T )
E
{
FT (x(t))∗FT

(
x(t)e−jαθθ(t)ω(t)

)}
, (23)

a powerful tool for analysing the vibration signals. The spectral correlation in Equation (23) is

defined over the cyclic order αθ and spectral frequency f for a continuous signal of time x(t),

where T is the time duration of the signal. The instantaneous phase of the shaft in radians is

given by θ(t) =
∫ t
0 ω(τ)dτ . The Fourier transform of a continuous function is defined as FT (·) and

E is the expectation operator. The OFSC is estimated with the Averaged Cyclic Periodogram

(ACP) for the considered discrete signals [7].

The spectral correlation is presented for a bearing with outer race damage in Figure 8(i) and

Figure 8(ii) for the original and estimated novel signals respectively. As opposed to the results in

Figure 8(i) that are dominated by the gear components at 20 shaft orders, the bearing damage

can be seen at the spectral frequency of 7 kHz, spaced at cyclic orders of 4.12 in Figure 8(ii).

The Enhanced Envelope Spectrum (EES), estimated with the Spectral Correlation (SC)

EESSC(αθ) =

∫
|SC(αθ, f)|df (24)

highlights the spectral frequency components that are present in the OFSC and is presented in

Figure 8(iii) and Figure 8(iv) for the spectral correlation of the original and novel signals investi-

gated in Figure 8(i) and Figure 8(ii). The EESSC of the original vibration signal is dominated by

the distributed damage and the gear mesh component, while the EESSC of the novel vibration

signal is similar to the results seen in the squared envelope spectrum in Figure 7(iii). Hence, by

using the estimated novel vibration signal of the vibration signal, the novel information associated

with the bearing damage is highlighted, while the historical information is attenuated. Similar

conclusions were drawn from the inner race damage signal results and therefore the results are

excluded for the sake of brevity.

The Order-Frequency Spectral Coherence (OFSCoh) is another useful quantity for analysing

second-order cyclo-non-stationary signals. The OFSCoh [36]

γ(αt, f) =
SC(αt, f)

(SC(0, f)SC(0, f + αt))
1/2

, (25)
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(i) OFSC of original signal (ii) OFSC of novel signal

(iii) EESSC of original signal
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Figure 8: The magnitude of the spectral correlation of the gearbox with outer race damage is presented in Figure

8(i) for the original signal and 8(ii) for the estimated novel signal. The corresponding Enhanced Envelope Spectrum

based on the Spectral Correlation EESSC is shown in Figure 8(iii) for the original signal and Figure 8(iv) for the

novel signals.
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(i) OFSCoh of original signal (ii) OFSCoh of novel signal

(iii) EESSCoh of original signal

5 10 15 20
Cyclic orders

20

40

60

E
E

S
S

C
oh

(iv) EESSCoh of novel signal

5 10 15 20
Cyclic orders

20

40

60

E
E

S
S

C
oh

Figure 9: The magnitude of the Order-Frequency Spectral Coherence (OFSCoh) is shown for the original signal

with outer race damage in Figure 9(i) and the estimated novel signal in Figure 9(ii). This corresponds to the

Order-Frequency Spectral Correlation (OFSC) in Figure 8(i) and Figure 8(ii). The Enhanced Envelope Spectrum

(EESSCoh) is shown in Figure 9(iii) for the OFSCoh in Figure 9(i) and the EES is shown in Figure 9(iv) for the

OFSCoh in Figure 9(ii).

is a normalised representation of the SC, which helps to amplify small second-order components.

The Enhanced Envelope Spectrum (EESSCoh) based on the Spectral Coherence (SCoh) [37]

EESSCoh(αt) =

∫
|γ(αt, f)|df (26)

is calculated from the OFSCoh and is another useful quantity to detect small second-order

cyclostationary components. The OFSCoh is presented in Figure 9(i) and Figure 9(ii) for the

original and the estimated novel vibration signals also investigated in Figure 8. The attenuated

gear components are more prominent in the OFSCoh as opposed to the OFSC. This is attributed

to the fact that the OFSCoh enhances small signal components, which is also verified by the

EESSCoh of the signals, which shows that the attenuated gear components are enhanced. The

bearing damage is more prominent with respect to the gear components in Figure 9(iv) than

in Figure 9(iii). This illustrates two important points that while the OFSCoh and the EESSCoh

are very powerful and important for detecting small second-order cyclostationary components in
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Figure 10: The experimental setup used to generate the experimental gearbox dataset.

vibration signals, these techniques do not accurately convey the novel information content of the

vibration signal (i.e. they amplify the information that was previously attenuated).

The results in this investigation illustrate the potential of the proposed methodology. It is

possible to attenuate the historical information from different interfering sources, which results in

the novel damage information to be enhanced. The implication is that non-diagnostic frequency

bands that dominate the signal and impede the fault diagnosis process, are automatically atten-

uated based on a statistical criterion.

4. Experimental gearbox dataset

4.1. Experimental setup

The experimental gearbox dataset was acquired from a gearbox setup in the Centre for Asset

Integrity Management laboratory at the University of Pretoria. The gearbox setup presented

in Figure 10 consists of three gearboxes, an electrical motor which can be controlled with a

personal computer to induce varying speed conditions and an alternator which can be controlled

to apply varying loads to the system. The test gearbox in a healthy condition was used to collect

vibration data for the reference dataset, whereafter the test gearbox was disassembled, a gear

tooth was damaged and the test gearbox was reassembled with the damaged gear. The gearbox

was damaged by seeding a slot in a single tooth of the gear, whereafter the gearbox was operated

until the gear tooth ultimately failed.

The gear of the test gearbox with the damaged gear tooth in its initial condition and the same

gear in its final condition are presented in Figure 11. A hundred measurements between the two

conditions in Figure 11 are used in the investigations. The actual condition of the gear was only

known for the first measurement and the last measurement. This is because the condition of the

gears could only be inspected by disassembling the gearbox, which would have compromised the

integrity of the data if performed during the fatigue experiments.
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(i) Before (ii) After

Figure 11: The damaged gear in its initial condition before the experiment started and the damaged gear after

the experiment was completed are presented in Figure 11(i) and Figure 11(ii), respectively.
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Figure 12: The operating conditions i.e. load and speed, present at the input shaft of the test gearbox, are

presented.

The operating conditions that were present when the healthy and the damaged datasets were

acquired are presented in Figure 12.

The axial component of a tri-axial accelerometer located on the bearing housing of the test

gearbox is used in this investigation. The spectrogram of the vibration signal of the gearbox with

localised gear damage is presented in Figure 13(i) where the vertical lines indicate the approxi-

mate spectral frequencies where the gear damage can be observed. The time varying frequency

components, attributed to the gear mesh interactions, are proportional to the rotational speed

of the input shaft presented in Figure 12, and clearly seen throughout the spectrogram of the

signal. The time invariant frequency components are also clearly seen.

The benefit of using features of narrowband signals as opposed to calculating the difference

between spectra is illustrated in Figure 13(ii), with the vertical lines being used to make the

comparison easier between the two plots in Figure 13(ii) and the spectrogram in Figure 13(i). It

is evident that the largest value for ∆SE negentropy between the SE negentropy of the damaged
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Figure 13: The spectrogram of a gearbox with localised damage under variable operating conditions is presented

in Figure 13(i). The benefits for using the statistics of narrowband signals (in this case the spectral negentropy)

as opposed to the amplitudes of the frequency components for detecting frequency bands with novel information

are illustrated in Figure 13(ii).

gearbox signal and the averaged SE negentropy of the healthy gearbox signals occurs in the

frequency bands where the damage is observed in Figure 13(i) i.e. they are highlighted with

the vertical lines. This is in contrast to the results of ∆ Amplitude; the amplitude difference

is very sensitive to the operating conditions and the time-invariant frequency content seen at

approximately 1100Hz. This supports using features, extracted from bandlimited signals, in the

methodology as opposed to differences in spectra for designing the novel filter.

The methodology is further motivated by:

• The damage results in significant changes in the SE negentropy in two distinct frequency

bands in Figure 13(ii) as indicated by the vertical lines. This emphasises that more than

one frequency band can potentially be used for demodulation for example. This is contrast

to the methods in literature where only a single frequency band is selected for further

analyses.

• The ∆SE infogram in Figure 13(ii) can be difficult to interpret manually, especially if many

window lengths are investigated for the STFT decomposition, which is why an automatic

statistical approach to incorporate the information of the different frequency bands into a

single signal which can be used for further analyses, is required.
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Figure 14: The synchronous averages of two measurements of the damaged gear dataset are presented.

4.2. Results

The proposed methodology is implemented as in the previous datasets. The SE infogram

is used as features for consistency, whereafter a Gaussian model is used to describe the model

parameters of the healthy dataset. The healthy dataset consists of 30 measurements. The novel

information filter is designed using the proposed procedure and compared to the original signal

using different signal processing techniques for different measurements.

4.2.1. Results with conventional methods

A popular signal analysis technique for gear diagnosis is the synchronous average of the vi-

bration signal [38, 39]. The synchronous average is adversely affected by the modulation induced

by varying operating conditions, but the load and speed variations are non-synchronous with

respect to the shaft rotations and their influence are attenuated by the synchronous averaging

process [39].

The synchronous averages for an original vibration signal and the corresponding novel vi-

bration signal are presented for two measurements in Figure 14. Note that a total of 100 mea-

surements are used between the two gear conditions shown in Figure 11, e.g. Measurement 75
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Figure 15: The synchronous averages of the squared envelope of two measurements of the damaged gear dataset

are presented.

means that 75% of the experimental time has elapsed. The gear damage was less developed for

the measurement used in Figures 14(i) and 14(ii) compared to the measurement used in Figures

14(iii) and 14(iv) which resulted in vibration signals with larger amplitudes in the latter results

for the novel signal. This is not evident in the original signal. Even though the synchronous

averages of the raw vibration signals in Figure 14(i) and Figure 14(iii) do not clearly highlight

the fact that only localised gear damage at approximately 135 degrees is present, the results

are improved when calculating the synchronous average of the novel vibration signals shown in

Figure 14(ii) and Figure 14(iv). In the novel vibration results, the damage component is more

prominent with fewer spurious impulses that impede the condition inference process.

The squared envelope of the vibration signal indicates the instantaneous power of the vibra-

tion signal over time and can highlight potential impulses induced by damage. The localised gear

damage results in periodical, localised changes in the power of the vibration signal and therefore

the synchronous average of the squared envelope is investigated as well. The synchronous aver-

ages of the square envelope corresponding to the signals in Figure 14 are presented in Figure 15.

It is evident from the results that the synchronous average of the instantaneous power highlights
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Figure 16: The Squared Envelope Spectrum (SES) is presented for the damaged gearbox data, with different y-axis

scales being used. The SES presented in this figure corresponds to the results in Figure 15.

the localised damage better for the original and the novel cases as opposed to the synchronous

average of the vibration signals. However, a significant improvement is seen in the novel vibration

signals’ results in Figure 15(ii) and Figure 15(iv) when compared to the corresponding original

vibration signals’ results in Figure 15(i) and Figure 15(iii). This highlights that the proposed

pre-processing methodology is capable of highlighting the diagnostic information better and it

also leads to results that are easier to analyse.

The SES is also investigated and presented in Figure 16 for the different signals being consid-

ered. Even though the SES is useful for characterising pure second-order cyclostationary signals,

it is useful to quantify periodic changes in the instantaneous power of the vibration signal in-

duced by the localised gear damage. The damaged gear is located on the shaft with the zebra

tape shaft encoder and therefore the damage occurs at one shaft order and its harmonics. It is

evident from the results in Figure 16(i) and Figure 16(iii) that the modulation induced by the

localised gear damage is not prevalent in the original vibration signal. The signal component at

9.12 shaft orders is attributed to the shaft at the alternator being slightly unbalanced. This is in

contrast to the SES of the novel vibration signals in Figure 16(ii) and Figure 16(iii). The signal
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Figure 17: The waterfall plots of the smoothed Synchronous Average (SA) of the vibration signals, the smoothed

Synchronous Average of the Squared Envelope (SA of SE) of the vibration signals and the smoothed Squared

Envelope Spectrum (SES) are presented. The arrow indicates an increase in measurement number.

components at the shaft harmonics due to the gear damage are clearly visible and dominate the

SES. This further validates that the novel vibration signal highlights the diagnostic information

in the vibration signal, with the periodicity of the damage clearly detected.

It is reassuring to show that the results presented in Figures 14, 15 and 16 were not obtained

by cherry picking and therefore the results are presented for all measurements used in this

investigation. The results for the 100 damaged measurements, spaced throughout the life of

the damaged gear i.e. from Figure 11(i) to Figure 11(ii), are presented in Figure 17. The

results in Figure 17 are obtained by adding a vertical offset to each measurement, with the

offset increasing linearly with measurement number. It is clear from the results of the smoothed

synchronous averages of the squared envelope i.e. SA of SE and the smoothed SES, that the

novel signal is more sensitive to damage. The damage component and the change in the severity

of the damage component in the final stages of the gears’ life are very prominent when compared
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to the original signal. The smoothing, calculated from a second averaging process suggested by

[40], is permissible for data acquired over a long time and is used to remove spurious noise which

makes the results difficult to interrogate.

4.2.2. Quantification of performance

It is difficult to compare the performance of the methodology to the raw signal from Figure 17.

Therefore, it is advantageous to use quantitative measures as basis of comparison and therefore

three performance metrics are used on this dataset. The first metric is the kurtosis of the

vibration signal x ∈ RNx

kurtosis(x) =
1
Nx

∑Nx
i=1 (x[i]− x̄)4(

1
Nx

∑Nx
i=1 (x[i]− x̄)2

)2 − 3, (27)

which is popular for incipient fault detection. In Equation (27), the mean of the vibration data x

is denoted by x̄. The kurtosis, as defined in Equation (27), is zero for Gaussian data and increases

as the tails of the distribution increase e.g. as the impulsiveness of the dataset increase.

The second metric under consideration is the Quality Measure (QM) of the SES and given

by

QMSES = 10 log

(
SESdamaged (x)

SESnoise (x)

)
. (28)

In Equation (28), SESdamaged(x) denotes the average of the damage components in the SES and

SESnoise(x) is an estimate of the noise floor of the SES. Hence, it is desired to obtain a SES

which maximises the QM for the SES i.e. QMSES. The calculation procedure is illustrated in

Figure B.1 in Appendix B.

The QM of the synchronous average

QMSA(x) = 10 log

(
P SA
damaged(x)

P SA
healthy(x)

)
, (29)

is the last metric that is investigated. The QM of the synchronous average is a function of the

ratio of the average power of the damaged portion P SA
damaged(x) and the power of the healthy

portion P SA
healthy(x) of the synchronous average of the signal x. A large QMSA(x) indicates that

the synchronous averaged x’s average power of the damaged portion is more significant than

the average power of the healthy portion. This healthy portion and the damaged portions are

calculated with the procedure given in Appendix B. The metric is used for the synchronous

averaged vibration signals as well as the synchronously averaged square envelope.

The four metrics are presented in Figure 18 for the damaged measurements, with the kurtosis

of the synchronous averaged signals shown. It is evident from the various metrics that the novel
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Figure 18: Different metrics of the healthy and the damaged vibration signals are compared for the original and

novel signals. The raw metrics, denoted by (Raw) in the legend, are calculated by using Equation (27), (28) and

(29) on each measurement, where the smoothed estimate is calculated with a moving average with length eight

and an overlap of six.
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(i) Original signal: Measurement 15 (ii) Novel signal: Measurement 15

Figure 19: The Angle-Frequency Instantaneous Power Spectrum (AF-IPS) for the vibration signal of a damaged

gearbox is presented. Figure 19(i) contains the AF-IPS of the raw vibration signal and Figure 19(ii) contains the

AF-IPS for the corresponding novel signal. The two plots are not on the same scales to highlight the dominant

components better.

signal is more sensitive to damage when compared to the original signal. However, the quality of

the novel signal can vary over time, depending on the noise characteristics of the signal. If the

long term data are effectively used i.e. by smoothing the results, it is evident from the results

that the novel signal is significantly more sensitive to damage.

4.2.3. Additional analyses

The Instantaneous Power Spectrum (IPS) is also a powerful cyclostationary analysis tool

which has been successful for gearbox diagnostics under varying operating conditions [41–43].

The spectrogram estimator of the time-frequency IPS, given by [11]

ITF-IPS[n,m] =
1

fs ·Nx ·
∑Nw−1

a=0 υ[a]

∣∣∣∣∣
Nw−1∑
k=0

υ[k] · x[k + n · (Nw −No)] · e−j2πkm/Nw
∣∣∣∣∣
2

, (30)

is inappropriate for varying speed conditions and therefore the Angle-Frequency IPS (AF-IPS),

obtained from order tracking each frequency band of the time-frequency IPS separately [11]

IAF-IPS[a,m] = OTn→a (ITF-IPS[n,m]) (31)

where OTn→a(·) indicates that the time index n is converted to an angle index a through order

tracking [44, 45]. The AF-IPS is presented in Figure 19 for the original vibration signal of the

damaged gearbox and its corresponding novel vibration signal. Two frequency bands, centred

approximately at 400Hz and 1100Hz, are highlighted in the IPS of the original signal in Figure
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19(i). The non-diagnostic frequency band at 1100Hz dominates the IPS and makes the diagnostic

rich frequency band difficult to identify. This is in contrast to the results of the novel signal

in Figure 19(ii). The non-diagnostic frequency band at 1100Hz is attenuated, because it was

excited in the reference condition and therefore only the diagnostic rich frequency band, which

contains the impulses due to the gear damage, is seen in the IPS.

The instantaneous power spectra in Figure 19 provide additional insights into the performance

of the original and the novel signals. In the novel signal, the dominant frequency band without

diagnostic information is attenuated, while only the frequency band that is rich with diagnostic

information is retained. This makes it more sensitive to changes in the condition of the machine.

Even though the IPS is a very powerful representation, it can be difficult to interpret and therefore

a more intuitive representation is investigated next.

Urbanek et al. [42] illustrated the efficiency of the synchronous averaged IPS to perform

bearing diagnostics under varying operating conditions. This reduced the influence of varying

operating conditions and non-synchronous components and therefore highlighted the repetitive

diagnostic information. Therefore, the marginal synchronous average of the IPS i.e. by marginal-

ising over the Nf spectral frequency bands

īAF-IPS[a] =
1

Nrot ·Nf

Nf−1∑
m=0

Nrot−1∑
k=0

IAF-IPS[a+Ns · k,m] (32)

is investigated to highlight the localised gear damage and it makes it easier to illustrate the

benefits of using the novel signal as opposed to the original signal. The marginal synchronous

average of the IPS is presented in Figure 20 for the corresponding results presented in Figure 19(i)

and Figure 19(ii). Clearly, the presence of the frequency band that does not contain diagnostic

information in Figure 19(i) adversely influences the ability to detect the localised gear damage in

Figures 20(i) and 20(iii). In the marginal IPS of the novel signal, presented in Figures 20(ii) and

20(iv), the damage is very prominent and clear, with the non-diagnostic information attenuated.

Hence, it is evident from the results that there are considerable benefits in incorporating

historical information in the diagnosis procedure. Hence, it is possible to enhance the ability of

existing signal processing techniques to detect damage, characterise damage and trend damage

for gear diagnostics under varying operating conditions.

5. Conclusion and recommendations

A methodology is proposed in this paper to extract a novel signal from a vibration signal

acquired from a rotating machine. The novel signal is calculated by enhancing the novel infor-
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Figure 20: The marginal synchronous averages of the instantaneous power spectra shown in Figure 19 are presented.

mation i.e. the new information that is not present in the available historical reference data, and

with the benefit that the novel signal can be processed with standard vibration analysis tech-

niques. It is illustrated on numerical gearbox data and experimental gearbox data that the novel

vibration signal is more sensitive to the presence of damage than the original vibration signal.

Hence, the methodology can be used as a pre-processing technique to conveniently incorporate

historical information into the analysis procedure, without restricting the analysis techniques

that could be used.

The methodology is dependent on the availability of historical data in a reference condition,

the quality of the features that are used, and the ability to model the features that are used.

Hence, future work should focus on making the methodology more robust by optimising each step

of the methodology. In summary, these are potential future avenues that could be investigated:

• A faster decomposition of the signal into the feature plane by using an equivalent procedure

as the fast kurtogram [17].

• An investigation of using different features e.g. the SES infogram and by simultaneously

using a combination of features in the modelling procedure.
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• More sophisticated feature modelling procedures need to be investigated to see how much

the results can be improved.

• Different novelty detection filters could be investigated where the magnitude of the nar-

rowband signal increases as the degree of novelty in the frequency band increases.

• Investigations should be performed on more datasets to further validate the methodology.
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Appendix A. Phenomenological gearbox model

The signal components are presented in Figure A.1 over measurement time. The amplitude

modulation due to the rotational speed variation is clearly observed for the signal components.

The Signal-to-Noise Ratio (SNR) of the different signal components are presented in Table A.1

Figure A.1: The casing (xc), gear mesh (xgmc), distributed gear damage (xdgd) and the inner bearing damage

(xbli) signal components are presented for the bearing in the following condition: FSbli = 1 and FSblo = 0.

for the different bearing conditions.

The natural frequencies and the damping ratios of the single degree-of-freedom impulse re-

sponse functions used in Equation (17), Equation (18), Equation (19) and Equation (20) are

presented in Table A.2.
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Table A.1: The Signal-to-Noise Ratio (SNR) in decibels is given of the each signal component in Equation (16).

The casing vibration signal’s SNR is the average SNR for all considered bearing conditions.

xc(t) xgmc(t) xgdd(t) FSbli · xbli(t) FSbli · xbli(t) FSblo · xblo(t) FSblo · xblo(t)
(FSbli = 1) (FSbli = 4 ) (FSblo = 1) (FSblo = 1)

SNRdb 12.893 10.748 8.142 -11.163 1.137 -6.847 5.284

Table A.2: The natural frequency and damping ratio associated with the single degree-of-freedom impulse response

function hi of each component i.

Natural frequency [Hz] Damping ratio

Gear mesh component 1000 0.05

Distributed gear damage component 1300 0.05

Inner race bearing component 5500 0.05

Outer race bearing component 7000 0.05

Appendix B. Calculating the SES and SA quality metrics

The calculation of the quality metrics used in Section 4 are presented in Figure B.1. The

Quality Metric (QM) of the Squared Envelope Spectrum (SES) is calculated with Equation (28)

where the average component of the fault frequency components shown in Figure B.1 is denoted

by SESdamaged. The SES of the noise floor is calculated by calculating the median of the SES in

the frequency range shown in Figure B.1, with the identified fault frequency amplitudes ignored.

The QM of the synchronous average is calculated with Equation 29. The healthy and damaged

portions are known beforehand as shown in Figure B.1. Therefore, the power of the healthy and

damaged portions shown in Figure B.1 can easily be calculated and is used in Equation (29).
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Table A.3: The amplitude and phase of the gear mesh component and the distributed gear damage component.

The i can denote the distributed gear damage component gdd in Equation (18) or the gear mesh component gmc

in Equation (17).

k 1 2 3

A
(k)
i 1 2 3

ϕ
(k)
i 0 0 0

B: Signal of damaged portion

A and C: Signal of healthy portion

A

B

C

Amplitudes of damage components 

Estimated noise floor
Average amplitude of the damage components

Figure B.1: A supplementary figure to illustrate how the quality of the synchronous average and of the squared

envelope spectrum is calculated.
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