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ABSTRACT

Early Phase 2 tuberculosis (TB) trials are conducted to characterize the early bactericidal ac-

tivity (EBA) of anti-TB drugs. The EBA of anti-TB drugs has conventionally been calculated as

the rate of decline in colony forming unit (CFU) count during the first 14 days of treatment. The

measurement of CFU count, however, is expensive and prone to contamination. Alternatively

to CFU count, time to positivity (TTP), which is a potential biomarker for long-term efficacy of

anti-TB drugs, can be used to characterize EBA. The current Bayesian nonlinear mixed effects

(NLME) regression model for TTP data, however, lacks robustness to gross outliers that often

are present in the data. The conventional way of handling such outliers involves their identifi-

cation by visual inspection and subsequent exclusion from the analysis. However, this process

can be questioned because of its subjective nature. For this reason, we fitted robust versions

of the Bayesian NLME regression model to a wide range of TTP datasets. The performance

of the explored models was assessed through model comparison statistics and a simulation

study. We conclude that fitting a robust model to TTP data obviates the need for explicit iden-

tification and subsequent “deletion” of outliers, but ensures that gross outliers exert no undue

influence on model fits. We recommend that the current practice of fitting conventional normal

theory models be abandoned in favor of fitting robust models to TTP data.
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1. INTRODUCTION

1.1. Tuberculosis surrogate endpoints

The primary endpoints of pivotal Phase 3 tuberculosis (TB) trials are the proportion of patients

with positive sputum culture after 6 months of treatment, and the proportion of patients expe-

riencing relapse within a two-year follow-up period. [1,2] Such trials, therefore, are lengthy and

expensive. [1] In contrast, the use of an appropriate surrogate marker for the effectiveness of TB

treatments can shorten the duration of anti-TB drug development, and might predict efficacy

early during a TB drug’s development phase. [3]

Biomarkers should be able to predict the long-term outcome of the disease, such as

potential relapses. Sputum culture status (“positive” or “negative”) after two months of treat-

ment is considered a potential surrogate marker for the aforementioned primary efficacy TB

endpoints. [4] Limitations of this surrogate marker, however, are that large sample sizes are re-

quired, and its lack of association with relapse within individual patients. [5] Two alternatives to

the two-month culture status surrogate marker are the bactericidal activity as characterized by

the rate of decline in colony forming unit (CFU) count over 56 days of treatment, and bacteri-

cidal activity as characterized by the rate of increase in time to positivity (TTP) over 56 days of

treatment. [5,6]

TTP is the time it takes for a given sputum sample to yield a positive Mycobacteria

Growth Indicator Tube (MGIT) culture. If no positive MGIT culture is reported after a speci-

fied maximum number of hours, the sputum sample status is reported as “no mycobacterial

growth”. [7] The TTP endpoint is considered more sensitive than CFU count in the evaluation

of TB treatments. [8] Moreover, the collection of CFU counts is prone to contamination, and

involves a time consuming and expensive counting process. [9] Early bactericidal activity (EBA)

calculated from TTP data has therefore recently become the preferred surrogate marker (al-

though TTP measurements may also be prone to contamination). [8]
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Recent literature pertaining to the statistical modeling of TTP data includes the following:

Kassir [18] proposed a two-part longitudinal model for the change in TTP over time, and prob-

ability of no mycobacterial growth. Chigutsa et al. [19] introduced a semimechanistic model for

TTP data using a time-to-event modeling approach. Svensson and Karlsson [2] suggested an

approach that simultaneously (i) incorporates a latent variable representing the bacterial load

in the human body, (ii) models the probability of no mycobacterial growth, and (iii) includes a

survival analysis counterpart for TTP data.

1.2. Bactericidal activity trials of tuberculosis drugs

In EBA trials of TB drugs patients are randomized to one of several treatments to be studied

(say, three to five test treatments and a control treatment representing best available care). At

baseline, and during the treatment period serial sputum samples are taken from the patients,

typically over 14 days. TTP is determined for each sputum sample, so that for each patient a

TTP versus time profile is obtained.

The EBA parameter calculated from a TTP versus time profile has been expressed as

the daily percentage change in TTP over a certain time interval as follows [10]:

EBA(t1 − t2) = 100

(
10

f̂(t2)−f̂(t1)
t2−t1 − 1

)

where f(t) is a suitable regression function for TTP, on the logarithmic scale to the base of 10,

against time. The associated fitted values at Day t1 and Day t2 are respectively f̂(t1) and f̂(t2).

1.3. Need for robust models for time to positivity

Burger and Schall [11] proposed a biphasic Bayesian nonlinear mixed effects (NLME) regres-

sion model for log10(CFU) count which is more flexible than previously fitted regression models.

This Bayesian NLME regression model has also successfully been fitted to TTP datasets of re-

cently published EBA trials. [3,6,10] The regression model fitted to these TTP datasets, however,
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assumed normally distributed random coefficients and residuals.

Investigation of a large number of TTP datasets showed that most individual TTP versus

time profiles follow the model very closely, so that the model residuals are small in the majority

of such profiles (see Section 3). Occasionally, however, data profiles contain gross outliers that

severely deviate both from the pattern set by the majority of data profiles, and from the pattern

set by the majority of data points within the profile in question (therefore suggesting that the

distribution of TTP data may be heavy tailed and skewed). Many of these deviations are so

large that they are biologically highly implausible, or even not possible. As an alternative to the

specification of the conventional normal distribution, the Student t, skew Student t, slash and

contaminated normal distribution may provide more robust fits for such heavy tailed data. [12–14]

In past EBA studies (e.g. Diacon et al. [15]) outliers in TTP data were manually identified

during blind data review meetings, on a case-by-case basis, and excluded from the statistical

analysis. Such processes, however, are not satisfactory and can be questioned because of

the subjective decisions involved; regulatory guidelines generally advise against any removal

of data from the analysis. [16] On the other hand, it seems clearly unsatisfactory to fit a fairly

intricate model to data points which medical experts consider biologically implausible.

In this paper we propose the fit of robust models to TTP data. Doing so both obviates

the need for “deletion” of outliers (or even their explicit identification), and ensures that gross

outliers exert no undue influence on the model fit. Specifically, the robust regression models

of Burger and Schall [17] are applied to TTP data, in order to accommodate outliers and po-

tential skewness in the distribution of the data. The empirical performance of the proposed

methodology is investigated in an extensive range of datasets.

1.4. Outline of present paper

Section 2 briefly presents the NLME regression models introduced by Burger and Schall [17]

for log10(CFU) count, and formulates them in terms of TTP data. In Section 3 the models

presented in Section 2 are fitted to various TTP datasets of recently published clinical trials:
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In particular, the regression models are fitted to six 14-day datasets (EBA; Phase 2a), and

one 56-day dataset (extended bactericidal activity; Phase 2b). Section 4 presents a simulation

study to compare the performance of the regression models. Section 5 discusses the findings

of the paper.

2. BAYESIAN MIXED EFFECTS REGRESSION MODELS

The investigation of TTP data versus time profiles has suggested that log10(TTP) increases

linearly or bilinearly during the first few weeks of treatment. [15] The Bayesian NLME regression

model proposed by Burger and Schall [17], now formulated in terms of TTP data, is as follows:

log10(yijk) = αij + β1ij · tijk + β2ij · γij · log

e tijk−κijγij + e
−
tijk−κij

γij

e
κij
γij + e

−
κij
γij

+ εijk (1)

where yijk is the TTP measurement for patient i = 1, . . . , Nj in treatment group j = 1, . . . , J

at timepoint k = 1, . . . , Tij , and tijk ≥ 0 is the corresponding measurement time. Here, αij

denote the random intercepts, β1ij , β2ij the two random slopes (governing the rate of change

over time), κij the inflection point (at which transition from one slope to another occurs), γij

the “smoothness" parameters (governing the “speed" of transition), and εijk are the residuals.

The terms αij , β1ij , β2ij , κij and γij are the sums of fixed effects and associated random

coefficients, namely:

µij =


αij

β1ij

β2ij

 =


αj

β1j

β2j

+


u0ij

u1ij

u2ij

 = µj +


u0ij

u1ij

u2ij


and κij

γij

 =

κj
γj

+

u3ij

u4ij
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where µij and µj are respectively the vectors of random and mean intercepts and slopes, and

(κij, γij)
′ and (κj, γj)

′ are respectively the vectors of random and mean nodes and smoothness

parameters.

Table 1 lists the various specifications of the Bayesian mixed effects regression model

in Equation (1). [17] In particular, the Student t distribution is specified for the residuals and

random coefficients, so as to yield a robust analysis of potentially skewed and heavy tailed TTP

data. Detail on the corresponding distributions specified for residuals and random coefficients,

including the corresponding noninformative prior distributions, is provided in the original paper,

and summarized in the appendix of the present paper.

3. APPLICATION

3.1. Computational issues

The regression models were fitted using OpenBUGS. [20] Posterior samples were monitored

using iteration and autocorrelation plots, [21] and Brooks-Gelman-Rubin statistics of parallel

chains. [22] Model discrimination statistics, namely the deviance information criterion (DIC)

statistic and compound Laplace-Metropolis marginal likelihood (CLMML), were calculated in

SAS R© and the R project. The multidimensional integration library “R2Cuba” of the R project

was used to approximate the Laplace integrals. [23] It should be noted that DIC statistics com-

pare the regression models conditional on the random effects, whereas CLMMLs compare

models on a marginal basis.

3.2. Early bactericidal activity

3.2.1. Datasets

The regression models listed in Table 1 were fitted to a wide range of 14-day EBA datasets,

namely data from the following six clinical trials (Phase 2a): CL001 [24]: 5 treatments, 68 pa-
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tients; CL007 [25]: 5 treatments, 69 patients; CL010 [26]: 5 treatments, 69 patients; NC001 [15]:

6 treatments, 85 patients; NC002 (EBA sub-study) [6]: 4 treatments, 46 patients; and NC003 [10]:

7 treatments, 101 patients (total: 6 datasets, 32 treatments groups, 438 patients). Results from

the regression models, fitted jointly to the data of all patients (per trial), are presented below.

As mentioned above, TTP values might be reported as “no mycobacterial growth". The

manufacturer’s recommended incubation time before reporting a result as “no mycobacterial

growth" is 42 days (or 1008 hours). [15] Thus the largest possible numeric TTP value that can

be observed is 1008 hours. In the context of the above model, when regressing log10(TTP)

against time, a “no mycobacterial growth” TTP value on the logarithmic scale to the base of 10

is specified as a right censored value of log10 (1008).

3.2.2. Illustration of robustness of fits

Plots of observed log10(TTP) versus time profiles, together with fits of regression models RNCN

and RSTCT, are included in Figure 1 and Figure 2 for eight patients in the NC003 trial (thus

comparing fits of the most general (robust) regression model versus its non-robust counter-

part). Figure 1 shows four typical profiles where the data points closely match the fitted curve;

in fact, the log10(TTP) versus time profiles of the majority of patients have this property. In

contrast, Figure 2 shows four examples of profiles that contain gross outliers; here regression

model RSTCT provides robust fits of the regression curve, with little weight given to the various

clinically implausible (or even impossible) TTP values.

For all treatment groups and all example datasets (that is, 32 treatment groups in to-

tal), we calculated Bayesian point and interval estimates for the primary efficacy parameter,

mean EBATTPj (0–14). (We reported the mean and 2.5th & 97.5th percentile of posterior dis-

tributions to respectively serve as Bayesian point and interval estimates.) Figure 3 presents

the Bland-Altman plot of the posterior estimates of mean EBATTPj (0–14) for regression mod-

els RNCN and RSTCT. The Bland-Altman plot shows differences between RNCN and RSTCT in

the posterior estimates of mean EBATTPj (0–14) ranging from −0.363 to 0.174 (hence minor
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differences). For the robust regression models RTCN, RSTCN and RSTCT, Figure 4 shows box-

and-whisker plots of the ratio of the width of the 95% Bayesian credibility intervals (BCIs) for

mean EBATTPj (0–14), relative to the non-robust model RNCN. A ratio of less than 1 indicates

that the width of the 95% BCI for the robust regression model in question is narrower than that

of the non-robust model (RNCN). The box-and-whisker plots show that the robust 95% BCIs

are narrower than their non-robust counterpart in at least 75% of cases (about 5% narrower

on average). The posterior estimates and corresponding 95% BCIs for mean EBATTPj (0–14)

are similar for regression models RTCN, RSTCN and RSTCT (data not shown).

3.2.3. Distribution of residuals: Heavy tailed and skewed

Again for all treatment groups and all example datasets (32 treatment groups in total), we

calculated Bayesian estimates of the residual degrees of freedom and skewness parameters

under the robust regression model (RSTCT). Figure 5a and Figure 5b respectively present

those estimates, and provide evidence that the distribution of the model residuals often is

heavy tailed and slightly skewed: Figure 5a shows that the estimates of degrees of freedom

are below 10 in 25 out of 32 cases (suggesting a heavy tailed distribution of the residuals),

and Figure 5b shows that the estimates of the skewness parameter are above 0 in 21 out of

32 cases (suggesting slight skewness to the right). In contrast, estimates for the degrees of

freedom of the vectors of random intercepts and slopes are above 30 in 31 out of 32 cases

(data not shown), which suggests that their distributions are not heavy tailed (that is, for all

practical purposes follow normal distributions).

3.2.4. Model comparison

Model comparison statistics for the various Bayesian NLME regression models fitted are pro-

vided in Table 2. The results presented in Table 2 suggest the following:

• Both model comparison statistics, namely DIC statistics and CLMMLs, select models

with Student t distributed residuals (RTCN) over the normal distribution (RNCN) in all
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cases.

• The DIC statistics mainly select the skew Student t distribution (RSTCN and RSTCT) for

the residuals over the standard (symmetric) Student t distribution (RTCN), whereas the

CLMMLs generally select the standard Student t distribution (RTCN).

• Regarding random intercepts and slopes, the DIC statistics and CLMMLs in most cases

indicate no distinct preference for the Student t distribution (RSTCT) over the normal

distribution (RSTCN) (the DIC and CLMML differences are negligible).

Overall, the model comparison statistics prefer regression model RTCN in 8 out of 12 cases.

3.2.5. Sensitivity analysis

The regression model recommended in Section 3.2.4 introduces one parameter in addition to

the regression model published by Dawson et al. (normal versus Student t). [6] In a sensitivity

analysis we therefore investigated the influence of the prior specification of the degrees of

freedom on the inference about the EBA of treatments. In its basic form, regression model

RTCN specified uniform prior distributions for the degrees of freedom, namely vj ∼ U (2, 100)

(see appendix). Alternatively, the vj were assigned weakly informative truncated gamma prior

distributions, namely vj ∼ G (2, 0.01) I (vj ≥ 2), for which the density function is written as [27]:

f (vj) =


20.01

Γ(0.01)
e−2(vj−2) (vj − 2)0.01−1 vj ≥ 2

0 vj < 2

It turns out that the inferences about the EBA of the 32 treatment groups are almost identical

under both prior specifications of vj (data not shown). We therefore conclude that the EBA is

not sensitive to the two types of prior specifications of vj .
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3.3. Extended bactericidal activity

In addition to fitting the robust regression models to TTP data from EBA trials, we applied the

robust methodology to TTP data from an extended bactericidal activity trial, NC002 (Phase 2b). [6]

In this trial, drug-sensitive TB patients were randomized to receive 56-day combination ther-

apy of either moxifloxacin, PA-824 (100 mg) and pyrazinamide (M-PA100-Z; 60 patients); or

moxifloxacin, PA-824 (200 mg) and pyrazinamide (M-PA200-Z; 62 patients); or Rifafour (59

patients); whereas multi-drug resistant (MDR) TB patients were assigned to receive 56-day

combination therapy of moxifloxacin, PA-824 (200 mg) and pyrazinamide (M-PA200-Z-MDR;

26 patients).

The posterior estimates and corresponding 95% BCIs for mean EBATTPj (0–56) from

models RNCN and RTCN are presented in Table 3. The posterior estimates and 95% BCIs of

mean log10(TTP) are shown in Figure 6 by treatment group and day. The estimates from re-

gression model RTCN are larger than those of regression model RNCN, while the 95% BCIs for

regression model RTCN are narrower than those of regression model RNCN. The DIC statistic

and CLMML for regression model RNCN are respectively −863.60 and −27.48, and those for

regression model RTCN are respectively −1899.00 and 267.03. Thus both the DIC statistic and

CLMML favor the model with Student t distributed residuals (RTCN) over those with normally

distributed residuals (RNCN).

4. SIMULATION STUDY

We conducted a simulation study to assess the consequences of fitting (i) conventional normal

theory regression models to TTP data containing outliers, and (ii) robust regression models to

TTP data containing no outliers. Datasets were simulated from regression models RNCN and

RTCN where model parameters were chosen to mimic TTP data of treatments that exhibit low

and moderate levels of bactericidal activity.

The slope parameters for the two treatments were chosen as β11 = 0.0115, β21 = −0.002,
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β12 = 0.0398 and β22 = −0.002, while the following parameter values were chosen for both

treatments (where applicable) (j = 1, 2): αj = 2, κj = 5, γj = 1, vj = 2, σ2
εj

= 0.12 and

Ωµj =


0.5 0.0001 0.0001

0.0001 0.01 −0.0001

0.0001 −0.0001 0.01


Here, the EBA of the two treatments is EBATTP1 (0–14) = 1.0989 and EBATTP2 (0–14) = 4.0008.

The accuracy and precision characteristics bias, standard error (SE), and root mean

square error (RMSE) of the EBATTPj (0–14) estimates for the two treatments were calculated.

The corresponding empirical coverage probability of the 95% BCIs was also calculated.

Regression models RNCN and RTCN were fitted to 1500 simulated datasets (simulated

from RNCN and RTCN), each dataset consisting of 15 patient profiles per treatment. For simplic-

ity (to reduce computational burden), the regression models fitted κij and γij as fixed effects

(i.e. κij = κj and γij = γj).

From Table 4, we observe that the bias of EBATTPj (0–14) estimates is small for both

models (whether the data are simulated from RNCN or RTCN). When the data are simulated

from RTCN, the SE and RMSE suggest that the robust regression model (RTCN) performs

better than the conventional normal regression model (RNCN), whereas the SE and RMSE are

similar for the two models when the data are simulated from RNCN. Similarly, for RTCN data, the

coverage probability of the 95% BCI of the conventional normal regression model (RNCN) is

higher than the nominal value (the 95% BCIs are conservative), whereas the robust regression

model (RTCN) yields coverage probabilities that are closer to the nominal value. For RTCN data,

the average length of the 95% BCIs from the conventional normal regression model (RNCN)

is approximately 16% larger than that of 95% BCIs from the robust regression model (RTCN).

For RNCN data, the coverage probability of the 95% BCIs from both models (RNCN and RTCN)

is higher than the nominal value.

In summary, the robust regression model is competitive with and performs similarly to its
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non-robust counterpart when the TTP data come from RNCN, but the robust regression model

performs better than its non-robust counterpart when the TTP data come from RTCN.

5. DISCUSSION

Phase 2a and Phase 2b TB trials are conducted to respectively characterize the EBA and

extended bactericidal activity of anti-TB drugs, before treatments enter the pivotal stages of

drug development (i.e. Phase 3 trials to demonstrate long-term efficacy). EBA calculated from

TTP data has recently become the preferred biomarker for the efficacy of such drugs.

The Bayesian NLME regression model of Burger and Schall [11], which assumes nor-

mally distributed random coefficients and residuals, lacks robustness to gross outliers that

often are present in the data. In this paper we fitted the robust regression models of Burger

and Schall [17] with different specifications of distributions for the residuals and random coeffi-

cients to a wide range of TTP datasets, spanning both 14-day EBA trials and 56-day extended

bactericidal activity trials. When the performance of those regression models was assessed

through model comparison statistics the DIC statistics and CLMMLs preferred the robust ver-

sions of the regression models in all cases. The estimates of the degrees of freedom and

skewness parameters showed that the distribution of the model residuals is in most cases

heavy tailed, and slightly skewed to the right. In all cases the robust models produced satisfac-

tory fits to the data profiles. However, the datasets suggest that the skewness in the residuals,

and magnitude of outliers in the vectors of random intercepts and slopes, are negligible. The

specification of (symmetric) Student t distributions for residuals, and multivariate normal distri-

butions for vectors of random intercepts and slopes, therefore seems adequate.

We conclude, therefore, that fitting a robust model to TTP data obviates the need for

explicit identification and “deletion” of outliers, but nevertheless ensures that gross outliers

exert no undue influence on the model fit. Furthermore, doing so considerably shortens and

simplifies the blind data review before analysis starts. Thus we consider robust analysis as

proposed here the preferred alternative to the explicit identification and removal of outliers from
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analyses. Furthermore, we found that 95% BCIs for EBA were generally somewhat narrower

for the robust models than for their non-robust counterparts, so that the robust methodology

yields some gain in statistical power.

Given the importance of TTP as a surrogate marker for the efficacy TB treatments, ro-

bust versions of the Bayesian NLME regression model for TTP data (in particular, regression

model RTCN) should be fitted. Furthermore, the simulation study showed that heavy tailed

distributions can better accommodate outliers in TTP data than the conventional normal dis-

tribution, resulting in more accurate EBA estimates, and credibility interval coverage closer to

the nominal value. For future TB research, we recommend that the current practice of fitting

conventional normal theory models (after exclusion of outliers) is abandoned in favor of fitting

robust models to TTP data.

APPENDIX

The corresponding distributions specified for residuals and random coefficients (see Table 1)

are discussed below in detail.

Regression Model 1 (RNCN): Residuals: Normal

Random Coefficients: Multivariate Normal

The regression model incorporates the assumption that the residuals follow i.i.d. normal distri-

butions, i.e.:

εijk|σ2
εj
∼ N(0, σ2

εj
)

where 0 and σ2
εj are the mean and residual variances, respectively. The residual variances σ2

εj

are assigned inverse gamma prior distributions, namely:

σ2
εj ∼ IG (0.0001, 0.0001)
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The random coefficients µij were assumed to follow tri-variate normal distributions, and

truncated normal distributions were specified for κij and γij , namely:

µij ∼ N (µj ,Ωµj)

κij ∼ TN
(
κj, σ

2
κj

)
I (2 ≤ κij ≤ 11)

γij ∼ TN
(
γj, σ

2
γj

)
I (0.1 ≤ γij ≤ 2)

where Ωµj , σ2
κj

and σ2
γj

are respectively the covariance matrices of µij , and scale parameters

of κij and γij . Here, I (x) denotes an indicator function taking the value 1 if x is true, and

0 otherwise. Tri-variate normal and Wishart prior distributions are specified for µj and Ω−1
µj ,

namely:

µj ∼ N3

(
0, 104 × I3

)
Ω−1
µj ∼ W (3, 3×Rj)

where 0 = (0, 0, 0)′ and I3 denotes the 3 × 3 identity matrix. Rj represent 3 × 3 inverse

scale matrices. The methods by Kass and Natarajan [28] were used for the choice of Rj . The

parameters κj , γj , σ2
κj

and σ2
γj

are assumed to follow uniform prior distributions, namely:

κj ∼ U (2, 11)

γj ∼ U (0.1, 2)

σ2
κj
∼ U (0.01, 30)

σ2
γj
∼ U (0.01, 5)

The bounds for κj and γj were chosen in such a way to avoid overfit of the first few and last

few observations within the 14-day period of an EBA trial, and to allow for smooth transition

between a few successive data points. [11]
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Regression Model 2 (RTCN): Residuals: Student t

Random Coefficients: Multivariate Normal

The regression model incorporates the assumption that the residuals follow i.i.d. Student t

distributions, i.e.:

εijk|σ2
εj
, vj ∼ T (0, σ2

εj
, vj)

where 0, σ2
εj and vj are the mean, scale parameters and degrees of freedom, respectively. The

degrees of freedom vj are assigned uniform prior distributions, namely:

vj ∼ U (2, 100)

The prior distributions are specified similarly to those of regression model RNCN.

The supplementary material provides OpenBUGS code for the implementation of regres-

sion model RTCN for a conventional 14-day EBA study.

Regression Model 3 (RSTCN): Residuals: Skew Student t

Random Coefficients: Multivariate Normal

The regression model incorporates the assumption that the residuals follow i.i.d. skew Stu-

dent t distributions, [29] i.e.:

εijk|σ2
εj
, δj, vj ∼ ST (0, σ2

εj
, δj, vj)

where 0, σ2
εj , δj and vj are the mean, scale and skewness parameters, and degrees of free-

dom, respectively. The skew Student t distribution is specified as a mixture of normal, trun-

cated normal and gamma distributions (see Sahu et al. [29]). The skewness parameters δj are

assigned normal prior distributions, namely:

δj ∼ N
(
0, 104

)
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The prior distributions are specified similarly to those of regression model RTCN.

Regression Model 4 (RSTCT): Residuals: Skew Student t

Random Coefficients: Multivariate Student t

The regression model incorporates the assumption that the vectors of random intercepts and

slopes follow i.i.d. tri-variate Student t distributions, i.e.:

µij|µj ,Ωµj, wj ∼ T3(µj ,Ωµj, wj)

where µj are the vectors of mean intercepts and slopes, and Ωµj and wj are scale matrices

and degrees of freedom, respectively. The degrees of freedom wj are assigned uniform prior

distributions, namely:

wj ∼ U (2, 100)

The prior distributions are specified similarly to those of regression model RSTCN.
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Table 1: Model Specifications for Bayesian Mixed Effects Regression Models

Distributions

Regression Model No. Residuals Random Coefficients

RNCN 1 Normal Multivariate normal

RTCN 2 Student t Multivariate normal

RSTCN 3 Skew Student t Multivariate normal

RSTCT 4 Skew Student t Multivariate Student t
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Table 2: Comparison of Bayesian NLME Regression Models Using DIC Statistics and
CLMMLs

Regression Model

Trial Statistic RNCN RTCN RSTCN RSTCT

CL001 DIC -2022{4} -2249{1,2} -2247{3} -2249{1,2}

CLMML 386.36{4} 456.09{1} 410.01{3} 417.45{2}

CL007 DIC -1335{4} -1629{3} -1636{2} -1638{1}

CLMML 86.29{4} 198.62{1} 164.56{3} 166.27{2}

CL010 DIC -1933{4} -2174{3} -2189{1,2} -2189{1,2}

CLMML 285.98{4} 427.86{1} 371.15{3} 375.87{2}

NC001 DIC -3303{4} -3768{1} -3767{2} -3764{3}

CLMML 874.11{4} 1022.18{1} 970.83{3} 973.46{2}

NC002 DIC -752{4} -1038{2} -1047{1} -1037{3}

CLMML -54.65{4} 22.61{1} -6.29{3} -3.13{2}

NC003 DIC NE -4653{3} -4676{1} -4677{2}

CLMML 837.14{4} 1239.65{1} 1211.02{2} 1203.87{3}

Note: RNCN: Residuals and random coefficients assumed to follow normal distributions.

RTCN: Residuals and random coefficients respectively assumed to follow Student t and tri-

variate normal distributions. RSTCN: Residuals and random coefficients respectively assumed

to follow skew Student t and tri-variate normal distributions. RSTCT: Residuals and random co-

efficients respectively assumed to follow skew Student t and tri-variate Student t distributions.

DIC: Deviance information criterion. CLMML: Compound Laplace-Metropolis marginal likeli-

hood on the logarithmic scale. NE: Not estimable. NLME: Nonlinear mixed effects. Superscripts

indicate the ranking of model comparison statistics from most favored to least favored.
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Table 3: Posterior Estimates and 95% BCIs of Mean EBATTPj (0–56): RNCN and RTCN –
NC002 Trial

Regression Model

RNCN RTCN

Treatment Group Point Estimate 95% BCI Point Estimate 95% BCI

M-PA100-Z 1.840 [1.506; 2.163] 2.012 [1.755; 2.274]

M-PA200-Z 1.918 [1.670; 2.159] 2.007 [1.813; 2.201]

M-PA200-Z-MDR 1.572 [0.809; 2.240] 1.683 [0.872; 2.408]

Rifafour 1.582 [1.341; 1.822] 1.712 [1.508; 1.908]

Note: RNCN: Residuals and random coefficients assumed to follow normal distributions.

RTCN: Residuals and random coefficients respectively assumed to follow Student t and tri-

variate normal distributions. BCI: Bayesian credibility interval. EBATTPj (t1–t2): Daily percent-

age change in TTP from Day t1 to Day t2 of treatment group j. TTP: Time to positivity.
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Table 4: Simulation Study of Bayesian NLME Regression Models: Accuracy and Precision of
EBATTPj (0–14) Estimates, and Coverage of 95% BCIs

Regression Model

Simulated From RNCN Simulated From RTCN

EBATTPj
(0–14) Statistic RNCN RTCN RNCN RTCN

1.0989 Bias 0.11 0.14 −0.03 −0.09

SE 2.7552 2.7298 3.3067 2.8409

RMSE 2.7563 2.7324 3.3058 2.8415

95% BCI coverage (%) 96.67 97.53 97.07 95.80

4.0008 Bias 0.01 0.04 0.19 0.15

SE 2.7891 2.8028 3.7035 2.8701

RMSE 2.7882 2.8022 3.7070 2.8733

95% BCI coverage (%) 97.20 96.60 96.93 95.93

Note: RNCN: Residuals and random coefficients assumed to follow normal distributions.

RTCN: Residuals and random coefficients respectively assumed to follow Student t and tri-

variate normal distributions. BCI: Bayesian credibility interval. EBATTPj (t1–t2): Daily percent-

age change in TTP from Day t1 to Day t2 of treatment group j. NLME: Nonlinear mixed effects.

RMSE: Root mean square error. SE: Standard error. TTP: Time to positivity.
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Figure 1: Observed and Fitted log10(TTP) vs. Time Profiles Containing No Outliers: RNCN and
RSTCT – NC003 Trial
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Note: RNCN: Residuals and random coefficients assumed to follow normal distributions.
RSTCT: Residuals and random coefficients respectively assumed to follow skew Student t and
tri-variate Student t distributions. TTP: Time to positivity. Censored: TTP specified as right-
censored values on the logarithmic scale to the base of 10.
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Figure 2: Observed and Fitted log10(TTP) vs. Time Profiles Containing Gross Outliers: RNCN

and RSTCT – NC003 Trial
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Note: RNCN: Residuals and random coefficients assumed to follow normal distributions.
RSTCT: Residuals and random coefficients respectively assumed to follow skew Student t and
tri-variate Student t distributions. TTP: Time to positivity. Censored: TTP specified as right-
censored values on the logarithmic scale to the base of 10.
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Figure 3: Bland-Altman Plot of Posterior Estimates of Mean EBATTPj (0–14): RNCN vs. RSTCT
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Note: Differences between RNCN versus RSTCT in the posterior estimates of mean
EBATTPj (0–14) plotted against the corresponding averages (32 treatment groups). Horizon-
tal lines denote the point estimate and 95% CI of associated differences. RNCN: Residuals and
random coefficients assumed to follow normal distributions. RSTCT: Residuals and random co-
efficients respectively assumed to follow skew Student t and tri-variate Student t distributions.
CI: Confidence interval. EBATTPj (t1–t2): Daily percentage change in TTP from Day t1 to Day t2
of treatment group j. TTP: Time to positivity.
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Figure 4: Ratio of Width of 95% BCI for Mean EBATTPj (0–14): RTCN, RSTCN and RSTCT vs.
RNCN
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Note: Shown are ratios from 32 treatment groups. RNCN: Residuals and random coefficients
assumed to follow normal distributions. RTCN: Residuals and random coefficients respectively
assumed to follow Student t and tri-variate normal distributions. RSTCN: Residuals and random
coefficients respectively assumed to follow skew Student t and tri-variate normal distributions.
RSTCT: Residuals and random coefficients respectively assumed to follow skew Student t and
tri-variate Student t distributions. BCI: Bayesian credibility interval. EBATTPj (t1–t2): Daily per-
centage change in TTP from Day t1 to Day t2 of treatment group j. TTP: Time to positivity.
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Figure 5: Posterior Estimates of Residual Degrees of Freedom and Skewness Parameters:
RSTCT
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Note: Shown are estimates from 32 treatment groups. RSTCT: Residuals and random coeffi-
cients respectively assumed to follow skew Student t and tri-variate Student t distributions.
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Figure 6: Posterior Estimates and 95% BCIs of Mean log10(TTP): RNCN and RTCN – NC002
Trial
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(b) M-PA200-Z
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(c) M-PA200-Z-MDR
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Note: RNCN: Residuals and random coefficients assumed to follow normal distributions.
RTCN: Residuals and random coefficients respectively assumed to follow Student t and tri-
variate normal distributions. BCI: Bayesian credibility interval. TTP: Time to positivity.
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