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Abstract 

Some low power wide area network (LPWAN) developers such as Sigfox, Weightless, and 
Nwave, have recently commenced the integration of cognitive radio (CR) techniques in their 
respective LPWAN technologies, generally termed CR‐LPWAN systems. Their objective is 
to overcome specific limitations associated with LPWANs such as spectra congestion and 
interference, which in turn will improve the performance of many Internet of Things (IoT)‐
based applications. However, in order to be effective under dynamic sensing conditions, CR‐
LPWAN systems are typically required to adopt adaptive threshold techniques (ATTs) in 
order to improve their sensing performance. Consequently, in this article, we have 
investigated some of these notable ATTs to determine their suitability for CR‐LPWAN 
systems. To accomplish this goal, first, we describe a network architecture and physical layer 
model suitable for the effective integration of CR in LPWAN. Then, some specific ATTs 
were investigated following this model based on an experimental setup constructed using the 
B200 Universal Software Radio Peripheral kit. Several tests were conducted, and our findings 
suggest that no single ATT was able to perform best under all sensing conditions. Thus, CR‐
LPWAN developers may be required to select a suitable ATT only based on the specific 
condition(s) for which the IoT application is designed. Nevertheless, some ATTs such as the 
forward consecutive mean excision algorithm, the histogram partitioning algorithm and the 
nonparametric amplitude quantization method achieved noteworthy performances under a 
broad range of tested conditions. Our findings will be beneficial to developers who may be 
interested in deploying effective ATTs for CR‐LPWAN systems. 

1. INTRODUCTION

In recent times, many Internet of Things (IoT)‐based applications, for example, smart 
metering, smart homes, and smart city architectures, depend on different low power wide area 
network (LPWAN) technologies to guarantee effective communication between end‐nodes. 
LPWAN technologies are suitable for many of these IoT‐based applications because they 
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permit relatively long single‐hop communication range at minimal power consumption rates 
(long battery life‐time), low device cost, albeit at low data rates.1 Nevertheless, since most 
LPWANs are widely deployed in the relatively congested Industrial, Scientific, and Medical 
(ISM) band, they are thus prone to problems associated with spectral congestion in the ISM 
band, such as interference, limited transmission range, and low data rates.2 Consequently, 
many LPWAN developers, for example, Sigfox, Nwave, and Weightless are presently 
addressing these problems by integrating different cognitive radio (CR) technologies in their 
respective designs and products.3 For example, Sigfox has integrated CR into some of its base 
stations and they have connected them to their end servers via an IP‐based network.3 Thus, 
Sigfox networks are presently able to attain very high capacities (now connecting over three 
million devices) simply by integrating CR techniques in their designs.3

Essentially, CR refers a radio technology that can automatically detect unused channels 
(white spaces) in a wireless spectrum and then change its transceiver parameters in order to 
communicate opportunistically, while preventing interference to surrounding primary user 
(PU) transceivers.4, 5 Following the IEEE 802.22 standard, CR aims at improving the 
communication and radio operating behavior of end‐nodes within a number of networks, 
including cellular, WiFi (IEEE 802.15.2), and LPWAN networks. However, our focus in the 
present article is on the integration of CR in LPWAN.  

In this regard, some recent research efforts are noted regarding the effective integration of CR 
in LPWAN (termed CR‐LPWAN). Most of these works were conducted to address specific 
problems associated with LPWANs such as interference, spectrum underutilization, and 
limited transmission range. For example, Saifullah et al6 developed a new technology called 
sensor network over white spaces (SNOW), wherein they deployed an innovative physical 
(PHY) layer design called distributed orthogonal frequency division multiplexing (D‐OFDM) 
to ensure multiple access and bidirectional communication in LPWAN. They extended their 
work in another article toward improving LPWAN communication over white spaces.7 
Similarly, Chen et al8 introduced cognitive‐LPWAN (C‐LPWAN) based on an artificial 
intelligence (AI)‐enabled cognitive engine . They suggested that C‐LPWAN performs better 
than some known LPWAN technologies such as LoRa (Long Range), NB‐IoT, and LTE‐M in 
terms of its delay reduction and minimal energy consumption rates. The OpenChirp 
technology was introduced by Dongare et al in Reference 9 as a LPWAN architecture and a 
gateway (GW) technology integrated with software defined radio (SDR) to explore white 
spaces. They suggested that their new LPWAN platform offers a cost‐effective and highly 
deployable mechanism, which is based on LoRaWAN technology. In a similar effort, Moon10 
proposed a dynamic spectrum access strategy for CR‐LPWAN toward maximizing the 
spectrum capacity of CR‐LPWAN systems. He showed via numerical analysis that CR‐
LPWAN systems may achieve better blocking probability than existing LPWAN 
technologies.  

The efforts mentioned above regarding CR‐LPWAN systems are few; however, they are 
pioneering since the study of CR‐LPWAN systems is only a relatively new and budding area 
of research. Consequently, it is pertinent to address existing CR‐based problems in order to 
guarantee the effective development of CR‐LPWAN systems. Thus, our concern in the 
present article pertains to the selection of effective adaptive threshold techniques (ATTs) 
suited for CR‐LPWAN systems. It is envisioned that such effective ATTs will be required in 
most CR‐LPWAN technologies, particularly for those that depend on spectrum sensing (SS) 
in order to identify white spaces. Essentially, an ATT computes an accurate and useful 
threshold value per input dataset used by a typical CR‐LPWAN system to determine whether 
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a band is free or not for opportunistic communication. If wrong threshold values are 
estimated by an ATT, then CR‐LPWAN systems will be vulnerable to interference, especially 
toward interfering with close‐by cochannel PU transceivers. Furthermore, wrongly estimated 
threshold values may lead to the underutilization of spectrum by CR‐LPWAN systems. 
Consequently, the development of effective and accurate ATTs has been well studied in the 
literature; nevertheless, the present article differs by conducting a unique study of different 
candidate ATTs that may be deployable for CR‐LPWAN systems. Prior to the present article, 
there has been no investigation in this regard, particularly for such an area that contributes 
greatly to the successful development of CR‐LPWAN systems. 

The present article contributes in this regard by investigating a CR‐LPWAN PHY front‐end 
model, which incorporates the use of ATTs. This objective differentiates the present article 
from other articles on ATTs. Furthermore, the present article contributes by proposing a PHY 
layer front‐end model for CR‐LPWAN systems, which was investigated based on an 
experimental setup that comprised of the B200 Universal Software Radio Peripheral (USRP) 
kit. We also investigated different conditions under which some candidate ATTs will either 
best or least perform in a CR‐LPWAN system, while postulating reasons for their respective 
performances. Indeed, the need for empirical investigations is essential toward supporting 
potential engineering designs for the effective deployment of CR‐LPWAN systems for IoT‐
based applications. Thus, the contributions of the present article are concisely summarized as 
follows:  

• This article proposes a network architecture suited for the effective deployment of
CR‐LPWAN systems as well as a PHY layer front‐end model that incorporates SS for
use in CR‐LPWAN systems.

• An experimental setup was constructed to investigate and identify ATTs suited for
CR‐LPWAN systems. This was achieved based on a USRP device used to model the
PHY layer front‐end of an emulated CR‐LPWAN GW, operated under different
spectra conditions.

• We have investigated a broad range of different ATTs including autonomous
methods, thus investigating an array of methods that can be deployed for CR‐LPWAN
systems.

2. RELATED WORK

There are several efforts directed toward developing effective CR‐LPWAN systems. For 
example, Saifullah et al6 focused on improving scalability, asynchronous, and bidirectional 
communication in LPWAN systems. However, with regard to integrating CR in LPWAN, 
they considered only the use of the geolocation database technology in order to identify white 
spaces. Nevertheless, they further acknowledged that there is need to integrate SS in CR‐
LPWAN especially for remote sensing applications. Chen et al in Reference 8 focused on 
safeguarding critical functions at the network layer, such as reducing delay and energy 
consumption rates of CR‐LPWAN systems. However, in their design, little was mentioned 
regarding the type of CR sensing technology adopted at the PHY layer. Dongare and Rowe9

introduced SDR technology at the LPWAN GW for the future exploration of white spaces. 
However, they did not mention whether SS was used in their design or not. Moon et al in 
Reference 10 adopted a centralized sensing mechanism based on SS deployed in a spectrum 
broker server. He emphasized that CR‐LPWAN systems can be distinguished from typical 
LPWAN systems according to whether SS techniques are used or not. However, Moon did 
not mention the type of threshold mechanism that was used in his design. With a few of these 
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works well studied, it is important to note that SS is a fundamental component of an effective 
CR‐LPWAN system, thus, attention must be directed toward the study of ATTs suited for use 
in CR‐LPWAN systems.  

In this regard, we have reviewed existing ATTs based on some relevant design factors 
required for CR‐LPWAN systems. Essentially, we expect that an ATT to be deployed in a 
CR‐LPWAN system should possess the following characteristics:  

• They must be fully adaptive, that is, they must be independent of the prior knowledge
of the noise level or signal‐to‐noise ratio (SNR) in the band.

• They should be simple and light weight, that is, they should have a time complexity of
at least O(N) in order to ensure fast computations as the algorithm's complexity scales
as a function of the total number of input samples N.

• Candidate ATTs may need to be fully autonomous, especially if the IoT use‐case
demands the need for remote and automated capabilities. For example, autonomous
capabilities may be required in IoT use‐cases where sensing nodes are typically self‐
reconfigurable such as in military or remote sensing applications.

• They should belong to the class of global‐based techniques since a single threshold
value is often required in order to detect signals over a broad range of frequencies.

Thus, we reviewed some candidate ATTs that satisfied the above characteristics, such as the 
forward consecutive mean excision (FCME) algorithm proposed in Reference 11. The FCME 
algorithm is a simple and effective ATT having a time complexity of O(N). It accepts the 
input samples and rearranges them in an ascending manner. Then, it uses two finely tuned 
parameters, namely, the threshold factor and the percentage of clean samples in order to 
estimate an effective threshold value. The FCME algorithm has been used extensively in 
different CR technologies and thus considered as suitable to be investigated in our study. The 
recursive one‐sided hypothesis technique (ROHT) presented in References 12 and 13 is a 
simple and relevant method seemingly suited for investigation. It uses a simple recursive 
mechanism based on two parameters to estimate effective threshold values. Similar to the 
FCME algorithm, the ROHT does not depend on prior knowledge of the noise level or SNR 
in order to estimate effective threshold values, instead it computes a threshold value based 
only on the input dataset measured per time. We also studied the first‐order statistical 
technique (FOST) introduced by Gorcin et al in Reference 14, which depends only on the 
mean and SD of the input dataset in order to estimate an effective threshold value. It is the 
simplest method among the methods considered in our investigation. The histogram 
partitioning algorithm (HPA) is another simple and effective method proposed in Reference 
15. It works by bifurcating the histogram of the input dataset using a threshold factor called
the descent parameter. The HPA is a global‐based method with a time complexity of O(N), 
thus making it suitable for investigation in our study. We note that the FCME, ROHT, FOST, 
and HPA algorithms are fully adaptive methods and these algorithms depend on the accurate 
fine tuning of their respective parameter prior to their use.  

Furthermore, we investigated some fully autonomous methods that require no parameter‐
tuning process for their use, such as the modified Otsu algorithm (MOA),16 the mean‐based 
HPA (MHPA),15 and the nonparametric amplitude quantization method (NPAQM).17 Since 
these methods are fully autonomous, they may be applied in some specific IoT use‐cases, 
where sensors are required to be self‐reconfigurable. These autonomous methods are all 
simple (ie, they all have a time complexity of O(N)), they are global‐based methods, and are 
fully adaptive methods as well, thus making them suitable for investigation in our study. 
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Furthermore, we acknowledge that there are so many ATTs proposed in the literature such as 
in References 18-23; however, these methods depend typically on larger parameter sets (ie, 
>2 parameters). Moreover, although these methods are often effective, nevertheless, they 
were not considered in our study since they are either too highly parametrized or they often 
depend on the prior knowledge of the SNR level before they can be used. Unfortunately, 
these are not the qualities desired of an ATT required for use in a CR‐LPWAN system.  

3. METHODS

In this section, we describe the different components of our study. Here, we discuss the 
network architecture, PHY layer model proposed for CR‐LPWAN systems, and the 
experimental setup constructed to investigate the different ATTs. 

3.1. CR‐LPWAN‐based network architecture 

Every CR‐LPWAN system requires a suitable network architecture for its deployment. In this 
section, we present a network architecture in Figure 1 that supports CR‐LPWAN systems by 
introducing some basic network elements such as the network GW, a network server, and the 
IoT‐based end‐nodes. Essentially, we designed the network architecture in Figure 1 such that 
the CR components are deployed at the GW. By deploying the CR functions at the GW 
instead of at the end‐nodes, we are able to minimize the design complexities incurred at the 
LPWAN end‐nodes, which are often resource constrained. It is thus convenient to deploy CR 
technologies at the GW since most GW infrastructures often possess far more computational 
and physical resources than the end‐nodes (ie, the sensors). Thus, the communication system 
benefits from deploying the ATT at the GW since the GW uses its robust computational 
resources in order to sense and operate the ATT. Consequently, the GW is able to effectively 
determine whether the channel of interest is free or occupied. If an intended channel is free 
for opportunistic communication, then details of the intended channel are sent by the GW to 
the different end‐nodes for onward transmission to the end‐nodes. Intuitively, this design 
implies that the life time of a resource‐constrained end‐node can be prolonged since it avoids 
running e ATT, thus conserving its energy resources as required in CR‐LPWAN systems.  

Figure 1. A network architecture depicting a CR‐LPWAN gateway 
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Thus, when in operation, first, the CR‐LPWAN GW scans its surrounding spectra in order to 
detect free channels (white‐spaces) for opportunistic use. In some other cases, the geolocation 
database technology may be used to supplement spectrum sensing at the GW as discussed in 
Reference 7. However, our study considers the case for spectrum sensing since spectrum 
sensing is typically required by the IEEE 802.22 standard for CR.24 In our design, the 
LPWAN network exists within the coverage area of at least a single PU transmitter as 
depicted in Figure 1. We assume that such a PU transmitter(s) works in the TV white‐space 
(TVWS), that is, in the VHF‐UHF band.  

Essentially, when a free channel is detected, the CR‐LPWAN GW initiates communication 
by broadcasting this free channel to the participating LPWAN end‐nodes within the network 
(see Figure 1). These end‐nodes may include sensors (such as in smart factories/industries) 
and these sensors may communicate to the CR‐LPWAN GW via the identified white‐space. 
Then, the GW is linked to an IoT network server through different application servers based 
on a dedicated firewall. The CR‐LPWAN network model considered in our study is able to 
facilitate different IoT and Industrial IoT‐based applications since it integrates CR at the GW 
instead of at the end‐nodes.  

3.2. PHY layer front‐end model 

We present a PHY layer model in Figure 2 for CR‐LPWAN systems. This PHY layer model 
resides in the GW, which decides based on a well‐chosen ATT whether PU signals are 
present (H1) or not (H0) in the sensed band.5, 25 Thus, based on the decision from an ATT, the 
GW activates the spectrum access/sharing module (see Figure 2) only if the H0 case suffices 
to be true. The spectrum access/sharing module is activated in order to setup the LPWAN 
module toward communicating over the band. However, if the H1 condition turns out to be 
true, then the spectrum mobility module will be activated to expedite quick withdrawal from 
the band. This command to withdraw from the band is fed to the transmission controller 
toward disengaging any on‐going transmission process in the LPWAN module.  

Figure 2. A PHY layer front‐end model for CR‐LPWAN systems 



7 

Then the GW activates the switching module (SM) (see Figure 2) based on the command 
received from the transmission controller so that sensing may commence again (receiving 
mode). The SM is a duplexer that enables a single antenna to be used for transmission as well 
as for signal reception. If the H0 case persists, the LPWAN module remains active and the 
SM (ie, the duplexer) keeps the GW in the transmit mode.  

The LPWAN module is introduced in our design to cater for the specific LPWAN PHY layer 
functions that are based on the proprietary nature of the different LPWAN technologies. For 
example, such proprietary functions may include special modulation types, different bands of 
operation, unique number of channels, link symmetry, adaptive data rates, and payload 
length. Furthermore, special MAC layer operations may include different methods for 
forward error correction, handover, authentication, and encryption. However, we do not 
discuss these LPWAN functions in this article since they are covered extensively in other 
documents such as in References 1 and 26.  

The details concerning the individual blocks of Figure 2 are discussed as follows: 

3.2.1. Antenna 

Proper antenna design is critical to the success of any wireless transceiver, including CR‐
LPWAN systems. Striving to achieve good antenna characteristics will guarantee effective 
signal propagation as well as reduce the energy consumption rate of a typical CR‐LPWAN 
system. Essentially, antenna wavelengths must match the operating frequencies of a CR‐
LPWAN system. Low‐cost antenna technologies have been discussed in Reference 27 with 
focus on the design of cost efficient antennas for the 868 MHz band. The antenna design in 
Reference 27 considers an inverted F antenna (IFA) topology and simulation results indicate 
that a reflection coefficient of −6 dB in the 850 to 893 MHz band can be achieved. Lizzi et 
al28 has also proposed an antenna miniaturization technique for IoT applications, which can 
be adopted for CR‐LPWAN systems. They demonstrated that the overall IFA length is often 
responsible for the lower antenna resonance achieved in LoRa communication systems.28

Thus, such similar antenna designs can be considered for use in typical CR‐LPWAN systems. 

3.2.2. Switching module 

The SM is a duplexer that enables bidirectional transmission over a single path. The SM 
separates the receiving path from the transmitting path while ensuring that the CR‐LPWAN 
GW uses a common antenna for the transceiver. Such a design has been elaborated and 
prototyped by Saifullah et al.6, 7 Nevertheless, several other LPWAN proposals often suggest 
that half duplex mode can also be used.1, 29-31 In particular, the popular LoRa SX1276 
transceiver series are based on the half‐duplex mode, which makes it suited for CR‐LPWAN 
systems. Essentially, we suggest that either the half or full duplex mode can be deployed for 
CR‐LPWAN systems depending on the application type.  

3.2.3. Low noise amplifier 

The low noise amplifier (LNA) amplifies the received radio frequency signal toward 
improving the received SNR. There are several available low‐cost LNA modules that can be 
used in a typical CR‐LPWAN system. For example, a duplex current‐reused CMOS LNA 
with complementary derivative superposition technique was proposed for IoT purposes32 and 
such modules can be deployed for CR‐LPWAN systems. The CR‐LPWAN architecture only 
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requires that the LNA maintains a low‐power consumption rate toward conserving and 
prolonging battery lifetime.  

3.2.4. Filtering and down conversion 

It is essential to filter and down‐convert the input signal frequencies to their intermediate 
frequencies (IF). This process will normally be achieved by using a mixer to obtain the in‐
phase and quadrature components of the IF signal. Further processing of the signal can be 
done at either the IF or baseband level toward reducing the design complexity of the CR‐
LPWAN system. 

3.2.5. Analog to digital converter 

The analog to digital converter (ADC) converts the input signal to its digital form to present a 
fully digitized front end system for the CR‐LPWAN system. Generally, a pair of readily 
available Sigma Delta ADCs can be used to perform such data conversion processes since 
they are typically low energy compliant. 

3.2.6. Fast Fourier transformation module 

The fast Fourier transformation (FFT) module computes the energy content of the input 
signal. This can be readily achieved using commonly available modules such as the FFT 
LogiCORE IP core module, which implements the Cooley‐Tukey FFT algorithm in a 
particularly efficient manner.33 

3.2.7. Threshold estimator 

The threshold estimation module computes a threshold value used to determine the 
presence/absence of PU signals in the band of interest. This is often a function of the noise 
floor, which depends further on the gain of the receiver, the matching filter, and the 
bandwidth. The choice of an effective threshold method will be fundamental to the success of 
CR‐LPWAN systems, thus motivating the present study. We shall provide further details in 
the next section with regard to the candidate investigated ATTs. 

The decision maker module may simply be a comparator, which compares the received signal 
strength to the estimated threshold value to determine the presence or absence of PU signals 
in an intended channel. The other processes involved in accessing a licensed band can be 
handled easily by existing proprietary LPWAN technologies such as the proprietary 
processes adopted in LoRa, Sigfox, and Weightless. The above details are thus presented only 
as an overview of our CR‐LPWAN PHY layer front‐end. It is envisaged that the present 
design will serve to inspire more sophisticated and encompassing models deployed for CR‐
LPWAN systems. 

3.3. The adaptive threshold techniques 

We investigated seven different ATTs based on the PHY layer front‐end model described in 
Section 3.2. These ATTs include the HPA,15 MHPA,15 ROHT,12, 13 FOST,14 FCME,11 MOA,16 
and the NPAQM.17 These algorithms were considered for their simplicity, being all of O(N), 
where N is the total number of input samples, and for their minimal control parameter sets (ie, 
having not more than two parameters to be fine‐tuned), which makes them easy to optimize 
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for improved performance. These characteristics are summarized in Table 1 and these 
techniques are concisely described as follows:  

Table 1. Summary of the different investigated ATTs 

ATT Control parameters Time 
complexity 

Fully 
autonomous Potentials for CR‐LPWAN 

HPA Descent parameter, PFA rate  O(N) No Deployable for applications requiring 
stringent PFA rates  

MHPA — O(N) Yes Deployable for remotely situated GWs 
where self‐reconfigurability is required 

ROHT Mean coefficient, Stopping
Criterion O(N) No Deployable for applications requiring 

stringent PFA rates  

FOST Mean coefficient O(N) No Deployable for applications requiring 
stringent PFA rates  

FCME 
Threshold parameter, 
Percentage of Clean 
Samples 

O(N) No Deployable for applications requiring 
stringent PFA rates  

NPAQM — O(N) Yes Deployable for remotely situated GWs 
where self‐reconfigurability 

3.3.1. HPA and mean‐based HPA 

The HPA and MHPA work by first generating the histogram of an input dataset, which are 
often the power spectral density (PSD) of the input data samples. Then, both algorithms 
locate the first peak in the histogram, which is generally considered to be the mean of the 
noise floor. Thereafter, a search is initiated in order to locate the minimum point that 
corresponds to the threshold value to be estimated. The end point of the search process is 
governed by a descent parameter β defined in Reference 15, eq. (5). Once computed, β is 
used to determine the stopping point along the slope of the histogram, which corresponds to 
the threshold value. The difference between the HPA and the MHPA is that the HPA uses β 
to determine the stopping point of the search process, which also controls the PFA rate of the 
HPA, whereas the MHPA uses the mean of the smoothed counts per bin, obtained from the 
histogram, to determine the stopping point of the search process. Based on this simple 
difference, the MHPA is considered to be a fully autonomous method since it requires no 
parameter to be fine‐tuned. The complete pseudocode of both algorithms are elucidated in 
Reference 15, sec. 3.2.  

3.3.2. Recursive one‐sided hypothesis testing 

The ROHT receives the input PSD dataset and creates a set S belonging to the set of signals 
in the PSD dataset. It also creates an initial set Q belonging to the set of noise samples within 
the PSD dataset. Initially, the entire PSD dataset is classified as belonging to Q. Then, the 
ROHT iterates recursively by creating a subset of S and Q per iteration termed Sk and Qk, 
respectively, where k denotes the iteration index. After every kth iteration, the ROHT 
computes the mean μ and SD σ of the elements in Qk and a decision threshold γk is then 
computed per iteration as γk=z−value×μk+σk. Thereafter, γk is used to classify the dataset 
where samples below γk would belong to Qk, whereas samples above γk would belong to Sk. 
This iterative process thus continues until a stopping criterion is satisfied, which is activated 
when the difference between two successive SD values is less than ϵ, where ϵ can be any 
small arbitrary value defined by the user. Further details about the ROHT can be found in 
Reference 12, sec. 3.  
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3.3.3. First‐order statistical technique 

The FOST algorithm is the simplest technique wherein the threshold γ is computed as 
γ=h×μ+σ, where μ and σ are the mean and SD of the input PSD dataset. Here, h refers simply 
to a coefficient introduced to control the magnitude of the estimated γ value, thus invariably 
controlling the PFA rate of the algorithm. We note that the FOST and ROHT algorithms are 
based essentially on the same threshold function except for the recursive mechanism, which 
is absent in the FOST algorithm. More details about the FOST can be found in Reference 14.  

3.3.4. Forward consecutive mean excision 

The FCME algorithm works by iteratively classifying the input PSD dataset based on a 

threshold function defined as , where xq refers to the input dataset per sample q, Tcme is 
the threshold parameter and Q is the percentage of the clean set, which defines the total 
number of samples within the window. Essentially, Tcme is calculated based on a desired PFA 
rate defined by the user. The FCME algorithm then classifies the dataset after each iteration 
and the signal‐free samples (ie, noise samples) are sequentially added to the clean set Q until 
no outlier sample is greater than the estimated threshold value. At this point, the FCME 
algorithm terminates and returns the estimated threshold γ to be used for signal detection. The 
FCME algorithm has been used extensively in the literature and further details can be found 
in Reference 11.  

3.3.5. Modified Otsu's algorithm 

The MOA is a fully autonomous method deployed to classify noise from signal samples in an 
input PSD dataset. Essentially, the MOA computes the histogram of the input PSD dataset 
and then it maximizes the between‐class variance that exists between the noise and the signal 
subsets over several potential threshold values. These threshold values typically correspond 
to the different bins of the histogram. The threshold that produces the maximum between‐
class variance is generally defined as the optimal threshold value used for signal detection. 
The MOA is a modification of Otsu's algorithm and further details concerning the MOA can 
be found in Reference 16, sec 3.2.  

3.3.6. Nonparametric amplitude quantization method 

The NPAQM is also a fully autonomous method for dynamic threshold estimation.17 It works 
similarly to the MOA, although without requiring the need for histogram and grayscale 
computations as in References 13 and 16. The NPAQM adopts the first‐order difference of 
the between‐class variance computed based on the input dataset and used to determine the 
best threshold value for effective signal detection. Furthermore, the NPAQM boasts of an 
inbuilt heuristic algorithm introduced in order to detect when an input dataset contains only 
noise samples. This heuristic ensures that the NPAQM maintains very low PFA rates under 
noise‐only conditions. This heuristic is considered to be a major improvement of the NPAQM 
over other ATTs.  

3.4. The experimental setup 

The experimental setup designed to investigate the different ATTs is described in this section 
following the CR‐LPWAN front‐end model presented in Figure 2.  
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We used MATLAB to encode the candidate ATTs and then interfaced them to the USRP 
B200 SDR module as shown in Figure 3. The USRP B200 SDR kit was used to model the 
PHY layer front‐end model as presented in Figure 2. The receiver of the CR‐LPWAN GW 
was modeled physically as in Figure 3 by using the single channel B200 transceiver board to 
measure the electromagnetic spectrum around the local environment of the CR‐LPWAN GW 
(ie, the setup in Figure 3). Since the USRP board measures signals within the range of 
70 MHz to 6 GHz, thus, we investigated the TVWS spectra (ie, between 300 and 800 MHz) 
presently being considered by the Federal Communications Commission (FCC) for the 
deployment of CR‐based technologies.24 Essentially, the signals measured by the USRP B200 
module were interfaced to a computer wherein processing was conducted. We subjected each 
ATT running in the PC to the same input dataset as measured from the USRP module in 
order to examine the PD and PFA rates of each technique.  

 
 
Figure 3. Experimental setup of the emulated CR‐LPWAN GW 

In our experiment, the B200 board and an input antenna served as part of the front‐end of the 
emulated CR‐LPWAN GW. The different ATTs investigated in this article were deployed in 
a PC, which served as the processing unit of the GW. We used the PC as the processor of the 
CR‐LPWAN GW since the CR‐LPWAN GW typically determines whether the sensed band 
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is free H0 or not H1. Furthermore, the PC was considered to be a makeshift processor since 
we assumed that most GWs are often robust in terms of their computational, power supply, 
and memory resources.1 We coupled a log periodic antenna, which has an input frequency 
range between 400 MHz and 6.5 GHz, to the input of the B200 board, which enabled us to 
properly investigate the intended VHF/UHF band for TVWS operation. In addition, the 
antenna has an antenna factor of between 24 and 40 dB with a typical forward gain of 6 dBi. 
This antenna was considered in our setup because of its good crosspolarization property, 
which contributes greatly toward reducing the uncertainty in the measured values. Power 
supply was provided from the PC to the USRP B200 board via a USB 3.0 cable through 
which data were also received. The power spectral of the measured signals over different 
bands of interest were computed prior to the threshold estimation phase.  

Following the network architecture of Figure 1, it is expected that the CR‐LPWAN GW 
operates within the coverage area of one or more PU transmitters. Thus, we modeled the 
presence of a single PU transmitter assumed to be transmitting within the coverage of the 
CR‐LPWAN GW by using a similar USRP B200 module. This B200 module was interfaced 
to a different PC wherein the different signal types were generated. We investigated different 
signal types including sample sets that contained only additive white Gaussian noise 
(AWGN) samples, signal types based on orthogonal frequency division multiplexing 
(OFDM), and frequency modulation (FM) techniques. These different signal types were used 
to investigate different possible types of PU transmitters that may operate within the coverage 
area of a CR‐LPWAN system. Our findings are discussed in Section 4.  

3.5 Empirical method of analysis 

We analyzed the performance of the candidate ATTs using the computed PD and PFA rates 
defined statistically as:  

 

 
where γ is the threshold value estimated by the specific ATT under consideration at the time, 
Y(k) is the measured signal power, and k refers to the frequency index. Then, we computed 
the PD and PFA rates per dataset using Fawcett's approach.34 Following Fawcett's approach, 
first, we obtained the ground truths of the different measured signal sets by labeling the actual 
signal samples in the frequency domain as ones (ie, true signal samples), and the noise 
samples within the same band were labeled as zeros (ie, the true noise samples). To achieve 
this, the signal power at each frequency index k within a sensed band was compared with the 
true threshold value in order to construct the ground truth that corresponds to each dataset. 
The actual thermal noise level in the band was used as the true threshold value in order to 
obtain the different ground truths per dataset. This implies that the maximum true noise value 
of each dataset was used as the true threshold to classify the ground truth. Thus, the ground 
truths were obtained from the true dynamic range of each dataset.  

Consequently, the PD and PFA rates per dataset were computed as:34  

 
where ϕ is the number of true positives (truly detected signal samples) given that Y(k)≥γ|H1 
and P is the total number of actual true signal samples, and  



13 
 

 
where φ is the number of false positives (falsely detected signal samples) given that 
Y(k)<γ|H0 and N0 is the total number of noise samples. The different performance curves 
under different conditions are presented in Section 4. These were plotted as the PD and PFA 
rates against their corresponding threshold values. This presentation enabled us to clearly 
identify the threshold values estimated by the different techniques and to easily read‐off their 
corresponding performance points along the graphs.  

4. RESULTS AND DISCUSSION 

This section discusses our findings under two main subsections, namely, the noise‐only and 
signal‐plus‐noise spectra conditions. These regimes were investigated since they represent 
real‐life conditions under which CR‐LPWAN systems may be deployed. The section on 
noise‐only conditions examines the false‐alarm performance of different ATTs, which we 
modeled within the PHY layer of a CR‐LPWAN system. Here, we considered conditions that 
describe both noise uncertainties and pink noise realization. The section on signal‐plus‐noise 
conditions, on the other hand, presents a number of different detection challenges to the 
different models, which we describe under both the microphone and the digital television 
(DTV) signal conditions, and under narrow and wideband sensing conditions. Our findings 
are discussed relative to the IEEE 802.22 standard, which states that the probability of 
detection PD should be PD>.9 and the probability of false alarm PFA should be PFA<.1.24  

A summary of the characteristics of each investigated scenario is presented in Table 2.  

Table 2. Characteristics of the different investigated scenarios  
Sensing 

conditions Categories Bandwidth 
(MHz) Characteristics 

 Reference level 5 Spectra contained only noise samples at a peak level 
of −190 dBm, considered to be the reference level 

Noise‐only Noise uncertainty 5 Uncertainty was introduced by increasing the 
reference level by 2 dB from −190 to −188 dBm 

 Pink noise  200 Noise level slowly ramps downward from left to right 
over a very wide bandwidth 

 Microphone signals 5 Involving frequency modulated (FM) signals at low 
SNR (=1 dB) and high SNR (=10 dB) 

Signal‐plus‐
noise Digital TV signals 5 Involving OFDM signals at low SNR (=3 dB) and 

high SNR (=10 dB) 

 Under different 
occupancy conditions 

25 (for low 
occupancy) 

Low occupancy condition had the signal occupying 
less than 5% of the entire bandwidth 

  1 (for high 
occupancy) 

High occupancy had the signal occupying over 80% 
of the entire bandwidth 

4.1. Noise‐only conditions 

This subsection investigates how the different models would perform under increasing 
average spectral noise levels (noise uncertainty) as well as when the noise level ramps slowly 
downward (pink noise). These conditions can be encountered in certain real‐life situations, 
for example, the case for pink noise can be experienced under conditions of wideband 
sensing. These conditions are important and should be examined since they are easily 
encountered by CR‐LPWAN systems in typical IoT‐based applications. 
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4.1.1. Noise‐only spectra at a reference level (0 dB) 

Figure 4A presents the noise dataset measured at the PHY layer front‐end of the CR‐LPWAN 
system. The figure displays the different threshold values estimated by the different ATTs 
based on an average reference noise level of −190 dBm. We considered this average 
reference level to be the 0 dB level and all other noise increments were conducted with 
reference to this 0 dB level. We present in Figure 4B only the PFA performance curve since 
the dataset used in this experiment contained only noise samples. The PFA performance of 
each ATT is indicated by the respective horizontal lines shown in Figure 4B. The MOA and 
MHPA performed least with high PFA rates of PFA=.556 and PFA=.304, respectively (see 
Figure 4B). The other methods compared herewith satisfied the IEEE 802.22 standard since 
they achieved PFA rates less than .1. The NPAQM performed best with PFA=.004, which 
outperformed the next algorithm (ie, the HPA) by a PFA percentage reduction rate of 88.9%. 
The MOA and MHPA, by being fully autonomous methods, performed poorer than the 
NPAQM since they lack effective methods to easily differentiate noise‐only datasets from 
signal‐plus‐noise conditions. In particular, the parametrized ATTs such as the FCME, FOST, 
HPA, and ROHT performed well in this noise‐only case since their parameters were fine‐
tuned a priori to a predefined PFA rate based on datasets characterized by only AWGN 
samples.  

 
 
Figure 4. Noise‐only spectra at a reference level (0 dB) 

4.1.2. Noise uncertainty (with 2 dB increment) 

We examined the case for noise uncertainty by increasing the reference noise level in Section 
4.1.1 by 2 dB, resulting in a new average noise level of −188 dBm. Kindly see Figure 5A for 
the resulting dataset and the corresponding threshold values estimated by the different ATTs. 
It is observed easily in Figure 5A that the MOA and MHPA both estimated relatively lower 
threshold values than the other tested ATTs, which implies that they obviously suffered 
higher PFA rates. This fact is corroborated by the corresponding PFA trace of each ATT shown 
in Figure 5B. Here, we observe that the MOA and MHPA both achieved PFA>.2, which 
violates the requirements of the IEEE 802.22 standard, albeit the MHPA only performed 
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better than the MOA in this case. The other algorithms tested here again satisfied the IEEE 
802.22 standard, making them stable methods under noise uncertainty conditions, based on 
an uncertainty increment of 2 dB. Essentially, it may be argued that the parametrized 
algorithms considered in our experiments only performed well in this case because they were 
fine‐tuned a priori using similar AWGN sample sets. However, since AWGN samples may 
not always be the case under real‐life conditions, consequently, we discuss in the next 
subsection the case for pink noise‐only condition, which also occurs frequently under real‐life 
conditions.  

 
 
Figure 5 .Noise‐only spectra demonstrating an uncertainty increment of 2 dB 

4.1.3. Pink noise‐only condition  

Figure 6A shows the spectra that demonstrates pink noise characteristics. Pink noise is 
demonstrated in Figure 6A since the noise power level ramps slowly downward from lower 
toward higher frequencies. This condition may occur when CR‐LPWAN systems sense 
relatively wide spectra as indicated in Figure 6A, that is, over a bandwidth of 200 MHz. By 
sensing very wide bands, the noise level may become greater at lower frequencies than at 
higher frequencies. Thus, following our experiments, the FCME algorithm performed best by 
achieving the lowest PFA rate as shown in Figure 6B and the MOA being the worst performer 
with PFA=.6388. Again, the other algorithms considered in our experiments achieved an 
average PFA rate lower than .1. The FCME algorithm with PFA=.0019 outperformed the 
NPAQM with PFA=.066 by a PFA percentage reduction rate of 97%.  



16 
 

 
 
Figure 6. Performance under Pink noise‐only spectra  

In essence, our findings based on the experiments conducted and discussed above suggest 
that:  

• The different parametrized algorithms considered in our noise‐only experiments 
typically satisfied the IEEE 802.22 standard by providing PFA rates less than .1.  

• The NPAQM, being a fully autonomous algorithm outperformed other autonomous 
algorithms such as the MOA and MHPA under noise‐only conditions. The NPAQM 
performed best since it adopts an effective heuristic designed to determine effectively 
whether a measured sample set contains noise‐only samples or not. 

• The success of the NPAQM suggests that fully autonomous algorithms can be 
deployed effectively in CR‐LPWAN systems particularly for remote IoT‐based 
applications where sensors may be required to self‐reconfigure themselves. 

4.2. Signal‐plus‐noise conditions 

This subsection presents the detection performance of the different models under conditions 
containing different signals embedded in AWGN. Since most CR‐LPWAN systems may be 
deployed to sense TVWS, thus, we investigated two main types of PU transmitters that reside 
prevalently in the TV VHF‐UHF band, that is, the microphone and DTV transmitters. 

4.2.1. Detecting microphone signals 

Most microphone transmitters in the VHF‐UHF bands typically transmit FM signals. 
Consequently, we examined the case for FM signals transmitted at both low‐ and high‐SNR 
levels in order to analyze the performance of the different ATTs. Our findings are presented 
as follows: 
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4.2.1.1. FM signal at low SNR (1 dB) 

Figure 7A presents the spectra showing the FM carrier signal and the different threshold 
values estimated by the different ATTs. The carrier signal is situated at 482 MHz while all 
other frequencies in the band contain noise‐only samples. The peak noise value lies at 
−97.5 dBm, which serves at the ideal threshold value that maintains PFA<.0001. Essentially, 
the SNR is measured by the dynamic range obtained as the difference between the peak noise 
power and the peak signal power at −96.5 dBm (thus being about 1 dB). The performance 
curves in Figure 7B,C were constructed based on this ideal threshold value and the 
performance of the different ATTs were measured off these curves accordingly. We see in 
Figure 7A that all the algorithms successfully detected the carrier signal as shown by the 
threshold lines that lie below the signal level. This resulted in PD=1 for all algorithms as 
shown in Figure 7B. However, by estimating the lowest threshold value, the MOA suffered 
the highest PFA rate as shown in Figure 7C. All other techniques considered in this 
experiment achieved PFA rates less than .1, which conforms to the IEEE 802.22 standard. 
Essentially, we note that the MOA seems to perform poorly in highly noisy conditions, as it 
becomes difficult to effectively differentiate signal from noise samples. Thus, in the next 
subsection, we examine whether such findings apply or not to the case of high SNR 
conditions.  

 
 
Figure 7. The case for detecting microphone carrier signal at 1 dB 

4.2.1.2 FM signal at 10 dB 

We increased the SNR level of the FM carrier signal to 10 dB as shown in Figure 8A to 
examine the performance of each algorithm. We observed that the threshold values estimated 
by the different algorithms were above the average noise level. This resulted in PD rates of 1 
for all the algorithms considered in our experiments (see Figure 8B) and PFA rates less than .1 
as seen in Figure 8C. Essentially, we can conclude that all the ATTs considered in our 
experiments typically satisfied the IEEE 802.22 standard when the SNR level was greater 
than 10 dB.  
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Figure 8. The case for detecting microphone carrier signal at 10 dB 

4.2.2. Detecting digital TV signals 

Next, we examined the case for detecting DTV signals characterized by the transmission of 
OFDM signals both at low and high SNR levels. Our findings are discussed as follows: 

4.2.2.1. OFDM signal at a low SNR level 3 dB 

Figure 9A presents the ODFM spectra and the corresponding threshold values estimated by 
the different ATTs. The PD performance is shown in Figure 9B. Here, we observed that only 
the MOA achieved PD>.9, although at the expense of a relatively high PFA rate of PFA>.2, 
which violates the IEEE 802.22 standard. All other algorithms considered in this experiment 
experienced low PD rates below .4, albeit at low PFA rates as well. A plausible explanation for 
this general low PD performance may be that the OFDM spectra demonstrates typical noise‐
like characteristics, which may have biased these algorithms into estimating higher threshold 
values in a bid to keep the PFA rate as low as possible. Essentially, we observed that the case 
for detecting OFDM at the low SNR is thus a challenge for the candidate ATTs considered in 
this experiment. Nevertheless, in a bid to remedy this problem, it could have been possible to 
reconfigure the parameters of these algorithms in order to lower their estimated threshold 
values. However, this is a difficult task to implement under real‐life conditions since these 
algorithms may typically be embedded within sensors deployed in inaccessible environments. 
Thus, our findings suggest that detecting low SNR OFDM signals effectively is a typical 
problem that must be solved toward deploying effective CR‐LPWAN systems. In the next 
subsection, we shall examine whether or not it is possible for these algorithms to detect 
OFDM signals easily at higher SNR levels.  
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Figure 9. Detecting OFDM signals at SNR = 3 dB 

4.2.2.2. OFDM signal at a high SNR level 10 dB 

In this subsection, we analyze the performance of the different ATTs toward detecting 
OFDM signals at a higher SNR level. Figure 10A presents the sensed spectra and the 
threshold values estimated by the different ATTs. Following our experiment, we observed 
that these algorithms performed similarly to the low SNR case with low PD and PFA rates as 
shown in Figure 10B,C, respectively. In this case, only the MOA achieved the expected 
results of PD>.9 and PFA<.1, with the FCME algorithm following closely (see Figure 10B,C). 
Thus, it is concluded that the ATTs considered in our investigations may find it typically 
difficult to detect OFDM signals, a finding that requires further investigation toward the 
successful deployment of CR‐LPWAN systems, and other CR‐based technologies in general.  

 
 
Figure 10. Detecting OFDM signals at SNR = 10 dB 

4.3. Under low and high occupancy conditions 

This section investigates the performance of the different ATTs under low and high 
occupancy conditions. Here, high occupancy condition implies that the sensed signal 
occupies a relatively large percentage (≈80%) of the entire spectra, making it an 
approximately flat frequency response across the band. This can be encountered often under 
narrowband sensing situations. The low occupancy condition, on the other hand, implies that 
the actual signal occupies a relatively small percentage of the entire large sensed spectra 
(<10%). In this case, the frequency response is not often flat and this may occur under very 
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wideband sensing situations. In terms of bandwidth design, either of these two occupancy 
conditions may typically be encountered by CR‐LPWAN systems under real‐life situations. 

4.3.1. Low occupancy condition 

A bandwidth of 25 MHz was sensed and the signal occupied less than 5% of the entire 
bandwidth. Figure 11A shows the signal located between 606 and 608 MHz and the threshold 
values estimated by the different ATTs. The detection performance in Figure 11B indicates 
that the MOA performed poorly with PD=.78, while the other algorithms achieved PD=1. This 
good PD performance by the other algorithms can be expected since the signal was measured 
at about 10 dB, making it easy to detect the transmitted signals. The MOA may have 
performed less in detection terms because the strong signal strength typically biased the 
adaptation process into estimating higher threshold values. In PFA terms (see Figure 11C), we 
observed that all the algorithms considered in this experiment achieved PFA less than .1. 
Thus, our findings suggest that the different ATTs may perform well even under low 
occupancy conditions.  

 
 
Figure 11. Performance under low occupancy sensing conditions 

4.3.2. High occupancy condition 

Figure 12A presents the sensed spectra and the corresponding threshold values estimated by 
the different ATTs. We observed that the different algorithms estimated different values, 
which were typically above the noise level. This implies that all the algorithms considered in 
this experiment achieved PFA rates lower than .1 (see Figure 12C). This good PFA 
performance can be explained noting that the spectra contained a very low noise level since 
most of the band contained signal samples. However, the different algorithms achieved 
different PD rates, which were typically below .9 (see Figure 12B), except for the FCME and 
MHPA algorithms that achieved PD>.9. Thus, our findings suggest that the FCME and 
MHPA algorithms may perform well under high occupancy conditions, particularly if the 
band contains at least some percentage of noise samples. However, this may not always be 
the case for the FCME algorithm, since it is known that the FCME algorithm performs poorly 
when the band contains only signal samples.35 The ROHT and FOST algorithms may have 
performed poorly in detection terms because they depend only the mean and SD values of the 
dataset, which may be quite high in the highly occupied narrowband sensing case.  



21 
 

 
 
Figure 12. Performance under high occupancy sensing condition 

4.4. Summary of findings 

Two main sensing conditions were investigated in this study, namely, the noise‐only and 
signal‐plus‐noise sensing conditions. In this section, we present a summary of our findings in 
Table 3 concerning the best and worst performing ATT under each sensing condition. We 
also postulate possible reasons why these algorithms may have performed as observed. Under 
the noise‐only condition, particularly at the reference level, the NPAQM performed best, 
whereas the MHPA performed least. The use of an effective heuristic within the NPAQM 
may explain why the NPAQM performed best in this case. Since the heuristic of the NPAQM 
seeks to determine the unimodality of an input dataset, this may further explain why it was 
effective at discerning whether the input data contained only noise samples or not, toward 
minimizing its PFA rate. On the other hand, the MHPA, being a fully autonomous algorithm, 
performed least since it uses only the mean of the input data to adjust its threshold value. In 
this case, this may have been an ineffective approach to deploy under noise‐only conditions.  

Table 3. Summary of the best/least performing ATT under different investigated scenarios  
Sensing 

conditions Categories Best performer(s) Least performer(s) 

 Reference level NPAQM MHPA 
Noise‐only Noise uncertainty FCME, NPAQM, HPA MOA 
 Pink noise  FCME MOA 
 Microphone signals NPAQM MOA 
Signal‐plus‐
noise Digital TV signals MHPA FCME 

 Under different occupancy 
conditions 

For low occupancy: all investigated 
ATTs except MOA For low occupancy: MOA 

  For high occupancy: FCME For high occupancy: 
FOST, ROHT 

The FCME algorithm performed best under the pink noise condition since the first set of 
samples in the dataset were typically of higher power levels than other samples within the 
dataset. Consequently, going by the mechanism of the FCME, a higher threshold value was 
obviously estimated during the initial iterative process of the algorithm, thus guaranteeing a 
lower PFA than the other investigated ATTs.  
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Under the signal‐plus‐noise conditions, we observed that the NPAQM, MHPA, and FCME 
achieved top performance under the microphone, DTV, and occupancy conditions, 
respectively. The unique approaches adopted by these different methods such as the search 
for unimodality by the NPAQM, the histogram partitioning by the MHPA, and an effective 
threshold factor may explain why these algorithms outperformed others. 

5. CONCLUSION 

In this article, we have investigated different adaptive threshold estimation techniques (ATT) 
for possible deployment in CR‐based LPWANs, termed CR‐LPWAN. To achieve our aim, 
first, we proposed a network architecture suited for CR‐LPWAN systems. Our network 
architecture suggests that CR functionalities should be deployed at the GW toward reducing 
further complexities at the end‐nodes, which are often resource constrained. We then 
introduced a PHY layer front‐end model for spectrum sensing in CR‐LPWAN systems. 
Herein, we deployed and investigated different ATTs. We constructed an experimental setup 
to investigate our model based on a B200 USRP module interfaced to a PC, where the 
different algorithms were deployed. Based on several experiments conducted under different 
spectra conditions, our findings suggest that there may not exist a single ATT that performs 
best under all sensing conditions. For example, although the FCME, NPAQM, and HPA 
algorithms performed well under most tested conditions, nevertheless, they may experience 
limited detection performance under spectra conditions containing OFDM signals. 
Furthermore, our findings suggest that CR‐LPWAN developers may need to adopt fully 
autonomous methods such as the NPAQM and MHPA, particularly for IoT applications 
where sensors must self‐reconfigure themselves, such as in military or geological remote 
sensing applications. Following the investigation conducted in the present article, our future 
works will be directed at developing real‐time sensors that are embedded with these 
algorithms. Furthermore, we shall seek to address some specific limitations associated with 
some methods as disclosed by the findings of this article. 
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