Australian cultures of Botryosphaeriaceae held in Queensland and Victoria plant pathology herbaria revisited

Yu Pei Tan^{1,2}*, Roger G. Shivas^{1,3}, Thomas S. Marney¹, Jacqueline Edwards^{4,5}, John Dearnaley⁶, Fahimeh Jami⁷, Treena I. Burgess^{7,8}

Keywords Biosecurity, Diagnostics, Taxonomy

Abstract

The Botryosphaeriaceae is one of the most widespread and cosmopolitan endophytic group of fungi. However, the species of this group can cause severe disease when the hosts are under stressful conditions. The aim of this study was to identify living cultures from the Botryosphaeriaceae family preserved in the Queensland and Victorian Plant Pathology Herbaria using DNA sequence analyses. The 51 isolates were collected between 1971 and 2017, from 35 different host genera, with the dominant host genera being *Mangifera* (11 isolates), *Acacia* (10), and *Persea* (5). Multilocus sequence analyses resulted in the re-identification of 41 isolates to the genera *Botryosphaeria* (2 isolates), *Diplodia* (4), *Dothiorella* (1), *Lasiodiplodia* (19), and *Neofusicoccum* (15), as well as some that belonged to genera outside of the Botryosphaeriaceae (10). New records for Australia were *Botryosphaeria sinensis*, *Diplodia alatafructa*, *Lasiodiplodia gonubiensis*, *Neofusicoccum cryptoaustrale*, and *N. mangroviorum*. These were identified as a result of a workshop organised by the Subcommittee on Plant Health Diagnostics. The results of this study provide the fundamental information regarding the diversity of Botryosphaeriaceae species present in Australian.

¹ Department of Agriculture and Fisheries, Biosecurity Queensland, Ecosciences Precinct, Dutton Park QLD 4012, Australia

²Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands

³ Centre for Crop Health, University of Southern Queensland, Toowoomba QLD 4350, Australia

⁴ Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, Bundoora, VIC 3083, Australia

⁵ La Trobe University, Bundoora, VIC 3083, Australia

⁶ School of Agricultural, Computational and Environmental Sciences, University of Southern Queensland, Toowoomba QLD 4350, Australia

⁷ Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa

⁸ School of Veterinary and Life Sciences, Murdoch University, Murdoch WA 6150, Australia

^{*} Corresponding author: yupei.tan@daf.qld.gov.au; +61 7 3708 8470.

Introduction

The Botryosphaeriaceae (Dothideomycetes: Botryosphaeriales) includes 24 genera of ecologically diverse fungi that occur as saprobes, endophytes or plant pathogens (Slippers et al. 2017, Yang et al. 2017). Some of these fungi are important pathogens of woody plant species, causing dieback and stem cankers, especially in the tropics and subtropics. Several species of Botryosphaeriaceae can remain as latent pathogens in localised infections for many years, facilitating their global spread through trade in agricultural and forestry products (Burgess et al. 2016, Crous et al. 2016).

The accurate identification of Botryosphaeriaceae by DNA sequence data rather than relying on morphological descriptions, provides the best means to halt their spread and reduce the threat of these fungi. Recent taxonomic changes and the recognition of cryptic species have made the identification of species in the Botryosphaeriaceae challenging. Phillips et al. (2013) recommended that at least two loci, the internal transcribed spacer (ITS) region, and the translation elongation factor 1-alpha (tefla), be used for species separation within Botryosphaeriaceae. However, Slippers et al. (2013) recommended the use of four loci, including the ITS region, tefla, beta-tubulin (tub), and the RNA polymerase II (rpb2), as these loci will provide sufficient resolution to distinguish cryptic species. The amplification of rpb2 is challenging and subsequently there is lack of data for comparisons (Slippers et al. 2013).

Recent research into grapevine trunk diseases has identified at least 14 Botryosphaeriaceae species that impact Australian viticulture (Pitt et al. 2010, 2013, 2015, Wunderlich et al. 2011). Similarly, in Western Australia, many fungi that belong to Botryosphaeriaceae have been associated with dieback of mango and forest trees (Sakalidis et al. 2011a, 2011b, 2013). Further information about the species of Botryosphaeriaceae elsewhere in Australia must be treated with caution as it predates the recent molecular focussed taxonomic revisions.

Australian plant biosecurity is underpinned by the ability to accurately determine what pathogens are present and established in Australia, in order to recognise pathogens that are exotic. National plant pest reference collections, such as the Queensland and Victorian Plant Pathology Herbaria (BRIP and VPRI, respectively), play a crucial role in diagnostics by providing specimen-based records of Australia's plant pathogens. This information can be rapidly accessed by Australian biosecurity practitioners through the Australian Plant Pathogen Database (Plant Health Australia 2001). In light of ongoing taxonomic revisions, there is a need for specimens in Australian reference collections to be verified, as well as for the continued professional development of Australian plant biosecurity diagnosticians. To this end, a workshop was held at the University of Southern Queensland (26–30 June, 2017) to provide training for 23 professional plant pathologists on the latest developments in morphological and molecular methods for the identification and classification of fungi in the Botryosphaeriaceae.

Materials and methods

Specimens and species identification

Living cultures of 51 specimens were sourced from the Queensland Plant Pathology Herbarium (BRIP) and Victorian Plant Pathology Herbarium (VPRI) (Tables 1 and 2). Identification of the specimens to species level required unambiguous DNA sequence reads that matched data from the ex-type reference specimens on GenBank (Table 3).

DNA extraction, PCR amplification and phylogenetic analyses

Mycelia were collected from cultures grown on potato dextrose agar (DifcoTM, Becton, Dickinson and Company) and macerated with 0.5 mm glass beads (Daintree Scientific) in a Tissue Lyser (QIAGEN). Genomic DNA was extracted with the DNeasy Plant Mini Kit (QIAGEN) according to the manufacturer's instructions.

The primers V9G (de Hoog and Gerits van den Ende 1998) and ITS4 (White et al. 1990) were used to amplify the ITS region of the nrDNA, and the amplification of the partial region of the *tef1α* locus was achieved by either the primer sets EF1-728F (Carbone & Kohn 1999) and EF2 (O'Donnell et al. 1998) or EF1-688F and EF1-1251R (Alves et al. 2008). All loci were amplified with the Phusion High-Fidelity PCR Master Mix with HF Buffer (New England Biolabs). The PCR mix included: 12.5 μL of Phusion Master Mix, 0.5 μL of 10 mM of each primer, and 1 μL of DNA template. Sterile water was used as no-template control. The amplification conditions were as follows: initial denaturation of 98 °C for 30 secs, followed by 30 cycles of 98 °C for 10 secs, 55 °C for 30 secs, and 72 °C for 30 secs, and a final extension at 72 °C for 5 mins. The amplified products were purified and sequenced by Macrogen Incorporated (Seoul, Korea).

All sequences generated were assembled using Geneious v.9.1.8 (Biomatters Ltd.) and deposited in GenBank (Table 2). These sequences were aligned with selected sequences of ex-type or authentic representative Botryosphaeriaceae genera (Table 3) using the MAFFT alignment algorithm (Katoh et al. 2009) in Geneious. *Pseudofusicoccum stromaticum* strain CBS 117448 was included as the outgroup (Table 3). The sequences of each locus were aligned separately and manually adjusted as necessary. Alignment gaps were treated as missing character states and all characters were unordered and of equal weight. The Markov chain Monte Carlo (MCMC) algorithm was used to create a phylogenetic tree based on Bayesian probabilities using MrBayes v.3.2.1 (Huelensbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) in Geneious. To remove the need for *a priori* model testing, the MCMC analysis was set to sample across the entire general time-reversible (GTR) model space with a gamma-distributed rate variation across the sites. Five million random trees were generated using the MCMC

Table 1. Non-Botryosphaeriaceae re-identified based on DNA analyses.

Taxon	Strain ^a	Former identification	Host	State ^b , city/town/region
Cladosporium sp.	BRIP 52463	Fusicoccum sp.	Cycas sp.	Qld, Townsville
Coniothyrum sp.	VPRI 41605	-	Acacia pycnantha	Vic, Grampians National Parl
	(=BRIP 65675)			-
	VPRI 41618		Acacia retinodes	Vic, Grampians National
	(=BRIP 65676)	Dinladiaan		-
	VPRI 41620	Diplodia sp.	Acacia retinodes	Vic, Grampians National
	(=BRIP 65677)			_
	VPRI 41626		Acacia pycnantha	Vic, Grampians National
	(=BRIP 65678)			
Diaporthe sp.	BRIP 52819b		Acacia sp.	Qld, Brisbane
	BRIP 52820	Fusicoccum sp.	Acacia sp.	Qld, Brisbane
	BRIP 52999b	_	Acacia sp.	Qld, Brisbane
Fusarium sp.	BRIP 52819d	Botrysphaeria sp.	Acacia sp.	Qld, Brisbane
Huntiella sp.	BRIP 28467	Fusicoccum luteum	Mangifera indica	Qld, Ayr

Table 2. List of isolates identified or re-identified by DNA sequencing in this study. New Australian fungal or host records are in bold

Taxon	Strain ^a	Former	Host	State ^b , city/town/region	GenBank Accessions	
1 aauli	SUAIII	identification	11021		ITS	tef1a
Botryosphaeria sinensis	BRIP 19781	Fusicoccum sp.	Mangifera indica	Qld, Ayr	MH057165	MH102228
Botryosphaeria sp.	BRIP 24140	Neofusicoccum parvum	Mangifera indica	Qld, Rita Island	MH057166	MH102229
Diplodia africana	VPRI 41783 (=BRIP 53702)	undetermined	Pinus muricata	Vic, Melbourne	MH057169	MH102232
	BRIP 53072	Zasmidium scaevolicola	Scaevola taccada	Qld, Cape Tribulation	MH057168	MH102231
Diplodia alatafructa	BRIP 52819a	Botryosphaeria sp.	Acacia sp.	Qld, Brisbane	MH057167	MH102230
Diplodia seriata	VPRI 42125 (=BRIP 65679)	undetermined	Araucaria heterophylla	Vic, Melbourne	MH057170	MH102233
Dothiorella sp.	VPRI 13932 (=BRIP 65673)	Botryosphaeria sarmentorum	Alyxia buxifolia	Vic, Melbourne	MH057171	MH102234
Lasiodiplodia brasiliensis	BRIP 60182e	undetermined	Gossypium hirsutum	Qld, Emerald	MH057184	MH102247
Lasiodiplodia	BRIP 58865	Lasiodiploda sp.	Acmena smithii	Qld, Brisbane	MH057180	MH102243
gonubiensis	BRIP 54897c	Lasiodiploda sp.	Camellia sinensis	Qld, Topaz	MH057176	MH102239
	BRIP 58861	Lasiodiploda sp.	Lenwebbia lasioclada	Qld, Brisbane	MH057179	MH102242
Lasiodiplodia iraniensis	BRIP 63318	undetermined	Vaccinium sp.	Qld, Brisbane	MH057172	MH102235
Lasiodiplodia mahajangana	BRIP 63052	undetermined	Annona reticulata	Qld, Alloway	MH057187	MH102250
v	BRIP 63346	Lasiodiplodia sp.	Musa sp.	Qld, Upper Daradgee	MH057188	MH102251
	BRIP 55402	Lasiodiplodia theobromae	Persea americana	NSW, Duranbah	MH057177	MH102240
Lasiodiplodia	BRIP 64096b	Lasiodiplodia sp.	Annona muricata	Qld, Tully	MH057189	MH102252
pseudotheobromae	BRIP 53572	undetermined	Dimocarpus longan	Qld, Mareeba	MH057174	MH102237
•	BRIP 53606	undetermined	Macadamia sp.	Qld, Tolga	MH057175	MH102238
	BRIP 51631	Lasiodiplodia theobromae	Mangifera indica	Qld, Gumlu	MH057173	MH102236
	BRIP 62846	Lasiodiplodia theobromae	Rosa sp.	Qld, Tolga	MH057185	MH102248
Lasiodiplodia	BRIP 58919	Botryosphaeria sp.	Syzygium nervosum	Qld, Brisbane	MH057182	MH102245
theobromae	BRIP 58866	Botryosphaeria sp.	Syzygium wilsonii	Qld, Brisbane	MH057181	MH102244

	DDID (2072	7 . 1. 1 1.	D: 17	011 77 1	NITO 57105) (III 1 0 0 0 4 0
	BRIP 62872	Lasiodiplodia sp.	Pinus caribaea	Qld, Kalpower	MH057186	MH102249
	BRIP 64718	undetermined	Passiflora edulis	Qld, Cooktown	MH057190	MH102253
Lasiodiplodia sp.	BRIP 58969	undetermined	Acacia mangium	Qld, Mareeba	MH057183	MH102246
	BRIP 58042b	Lasiodiplodia sp.	Vitis vinifera	Qld, Dimbulah	MH057178	MH102241
Neofusicoccum australe	VPRI 42853 (=BRIP 65680)	Botryosphaeria sp.	Banksia sp.	Vic, Mornington	MH057204	MH102267
	VPRI 42863 (=BRIP 65681)	undetermined	Juglans sp.	NSW, Leeton	MH057205	MH102268
	BRIP 59728	undetermined	Persea americana	WA, Kalamunda	MH057198	MH102261
Neofusicoccum cryptoaustrale	BRIP 63679	Neofusicoccum sp.	Mangifera indica	WA, Northampton	MH057200	MH102263
Neofusicoccum luteum	BRIP 5016	Dothiorella aromatica	Persea americana	Qld, Brisbane	MH057191	MH102254
	BRIP 54746	Neofusicoccum parvum	Mangifera indica	Qld, Mundubbera	MH057194	MH102257
Neofusicoccum mangroviorum	BRIP 57901	Neofusicoccum luteum	Helianthus annuus	Qld, Gatton	MH057196	MH102259
Neofusicoccum occulatum	BRIP 64094	Lasiodiplodia theobromae	Vaccinium sp.	Qld, Tolga	MH057202	MH102265
Neofusicoccum parvum	BRIP 19486	Dothiorella dominicana	Persea americana	Qld, Maleny	MH057192	MH102255
	BRIP 55401	Dothiorella sp.	Persea americana	WA, Gingin	MH057195	MH102258
	BRIP 62250a	Dothiorella sp.	Persea americana	WA, Busselton	MH057199	MH102262
	BRIP 65440	Dothiorella sp.	Mangifera indica	Qld, Spring Creek	MH057195	MH102266
	BRIP 24083	Fusicoccum mangiferae	Mangifera indica	Qld, Bowen	MH057193	MH102256
	BRIP 58868	Botryosphaeria sp.	Xanthostemon sp.	Qld, Beerburrum	MH057197	MH102260
Neofusicoccum vitifusiforme	BRIP 64010	Neofusicoccum sp.	Geijera salicifolia	Qld, Kingsthorpe	MH057201	MH102264

^a BRIP, Queensland Plant Pathology Herbarium, Brisbane, Qld; VPRI, Victorian Plant Pathology Herbarium, Agribio, Bundoora, Vic. ^b NSW, New South Wales; Qld, Queensland; Vic, Victoria; WA, Western Australia.

Table 3. List of reference sequences included in phylogenetic analyses.

Taxon	Strain ^a	Host	Country		GenBank Accessions	
Taxon			Country	ITS	tef1a	
Botryosphaeria dothidea	CBS 115476 ^{ET}	Prunus sp.	Switzerland	AY236949	AY236898	
Botryosphaeria fabicerciana	CBS 127193 ^{HT}	Eucalyptus sp.	China	HQ332197	HQ332213	
Botryosphaeria fusispora	MFLUCC 10-0098 ^{HT}	Entada sp.	Thailand	JX646789	JX646854	
Botryosphaeria ramosa	CBS 122069 ^{HT}	Eucalyptus camaldulensis	Australia	EU144055	EU144070	
Botryosphaeria scharifii	CBS 124703 ^{IS}	Mangifera indica	Iran	JQ772020	JQ772057	
Botryosphaeria sinensis	CGMCC 3.17723 ^{PT}	Populus sp.	China	KT343254	KU221233	
Diplodia africana	CBS 120835 ^{HT}	Prunus persica	South Africa	EF445343	EF445382	
Diplodia alatafructa	CBS 124931 ^{HT}	Pterocarpus angolensis	South Africa	FJ888460	FJ888444	
Diplodia allocellula	CBS 130408 ^{HT}	Acacia karroo	South Africa	JQ239399	JQ239386	
Diplodia crataegicola	MFLU 15-1311 ^{HT}	Crataegus sp.	Italy	KT290244	KT290248	
Diplodia estuarina	CMW 41230 ^{PT}	Avicennia marina	South Africa	KP860831	KP860676	
Diplodia fraxini	CBS 136010 ^{NT}	Fraxinus angustifolia	Portugal	KF307700	KF318747	
Diplodia galiicola	MFLU 15-1310 ^{HT}	Galium sp.	Italy	KT290245	KT290249	
Diplodia seriata	CBS 112555 ^{ET}	Vitis vinifera	Portugal	AY259094	AY573220	
Dothiorella americana	CBS 128309 ^{HT}	Vitis vinifera	USA	HQ288218	HQ288262	
Dothiorella californica	CBS 141587 ^{HS}	Umbellularia californica	USA	KX357188	KX357211	
Dothiorella iberica	CBS 115041 ^{HT}	Quercus ilex	Spain	AY573202	AY573222	
Dothiorella omnivora	CBS 140349 ^{HT}	Corylus avellana	Italy	KP205497	KP205470	
Dothiorella parva	IRAN1579CHT	Corylus avellana	Iran	KC898234	KC898217	
	$(=CBS\ 124720^{IS})$					
Dothiorella sarmentorum	IMI 63581b ^{HT}	Ulmus sp.	England	AY573212	AY573235	
Dothiorella sempervirentis	IRAN1583CHT	Cupressus sempervirens	Iran	KC898236	KC898219	
	$(=CBS 124718^{IS})$					
Dothiorella symphoricarposicola	MFLUCC 13-0497 ^{IS}	Symphoricarpos sp.	Italy	KJ742378	KJ742381	
Dothiorella vidmadera	DAR 78992 ^{HT}	Vitis vinifera	Australia	EU768874	EU768881	
Lasiodiplodia brasiliensis	CMM 4015 ^{HT}	Mangifera indica	Brazil	JX464063	JX464049	
Lasiodiplodia bruguierae	CMW 41470 ^{HT}	Bruguiera gymnorrhiza	South Africa	KP860832	KP860677	
Lasiodiplodia caatinguensis	CMM 1325 ^{HT}	Citrus sinensis	Brazil	KT154760	KT008006	
Lasiodiplodia exigua	CBS 137785 ^{HT}	Quercus ilex	Tunisia	KJ638317	KJ638336	
Lasiodiplodia gonubiensis	CBS 115812 ^{HT}	Syzygium cordatum	South Africa	AY639595	DQ103566	
Lasiodiplodia gravistriata	CMM 4564	Anacardium humile	Brazil	KT250949	KT250950	
Lasiodiplodia iraniensis	CBS 124710 ^{HT}	Salvadora persica	Iran	GU945346	GU945334	

Lasiodiplodia jatrophicola	CMM 3610 ^{HT}	Jatropha curcas	Brazil	KF234544	KF226690		
Lasiodiplodia macrospora	CMM 3833 ^{HT}	Jatropha curcas	Brazil	KF234557	KF226718		
Lasiodiplodia mahajangana	CBS 124927 ^{IS}	Terminalia catappa	Madagascar	FJ900597	FJ900643		
Lasiodiplodia pseudotheobromae	CBS 116459 ^{HT}	Gmelina arborea	Costa Rica	EF622077	EF622057		
Lasiodiplodia subglobosa	CMM 3872 ^{HT}	Jatropha curcas	Brazil	KF234558	KF226721		
Lasiodiplodia thailandica	CBS 138760 ^{HT}	Mangifera indica	Thailand	KJ193637	KJ193681		
r	(=CPC 22795)	0.0					
Lasiodiplodia theobromae	CBS 164.96 ^{NT}	unknown fruit on coral reef coast	Papua New Guinea	AY640255	AY640258		
Neofusicoccum australe	CMW 6837 HT	Acacia sp.	Australia	AY339262	AY339270		
Neofusicoccum cryptoaustrale	CBS 122813 ^{HT}	Eucalyptus sp.	South Africa	FJ752742	FJ752713		
Neofusicoccum eucalypticola	CBS 115766 ^{IS}	Eucalyptus grandis	Australia	AY615143	AY615135		
Neofusicoccum eucalyptorum	CBS 115791	Eucalyptus grandis	South Africa	AF283686	AY236891		
Neofusicoccum luteum	CBS 110299 ^{HT}	Vitis vinifera	Portugal	AY259091	AY573217		
Neofusicoccum mangiferae	CBS 118531	Mangifera indica	Australia	AY615185	DQ093221		
Neofusicoccum mangroviorum	CMW 41365 ^{HT}	Avicennia marina	South Africa	KP860859	KP860702		
Neofusicoccum mediterraneum	CBS 121718 ^{HT}	Eucalyptus sp.	Greece	GU251176	GU251308		
Neofusicoccum occulatum	CBS 128008 ^{HT}	Eucalyptus grandis	Australia	EU301030	EU339509		
Neofusicoccum parvum	CMW 9081 ^{ET}	Populus nigra	New Zealand	AY236943	AY236888		
Neofusicoccum ursorum	CMW 24480 ^{HT}	Eucalyptus sp.	South Africa	FJ752746	FJ752709		
J	(=CBS 122811 ^{IS})						
Neofusicoccum vitisiforme	CBS 110887 ^{HT}	Vitis vinifera	South Africa	AY343383	AY343343		
Pseudofusicoccum stromaticum	CBS 117448 ^{HT}	Eucalyptus urophylla	Venezuela	AY693974	AY693975		
A CDC Was a Lite Front District Levites Bushed to Nich and CDC Color Callering of China Front at Control China And							

^a CBS, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CERC, Culture Collection of China Eucalypt Research Centre, Chinese Academy of Forestry, ZhanJiang, GuangDong, China; CGMCC, China General Microbiological Culture Collection Center, Institute of Microbiology, Chinses Academy of Sciences, China; CMM, Culture Collection of Phytopathogenic Fungi Prof. Maria Menezes, Federal Rural University of Pernambuco, Brazil; CMW, Collection of the Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa; DAR, New South Wales Plant Pathology Herbarium, Orange, NSW; GZCC, Guizhou Academy of Agricultural Sciences, Guizhou, China; IMI, CABI Genetic Resource Collection, Surrey, UK; MUCC, Mie University Culture Collection, Tsu City, Mie Prefecture, Japan. Ex-type isolates: ET, ex-epitype; HT, ex-holotype; IS, ex-isotype; NT, ex-neotype; PT, ex-paratype.

procedure with four chains. The sample frequency was set at 1000 and the temperature of the heated chain was 0.1. Burn-in was set at 25 %, after which the likelihood values were stationary. Maximum likelihood (ML) analysis was run using RAxML v.7.2.8 (Stamatakis and Alachiotis 2010) in Geneious and started from a random tree topology. The nucleotide substitution model used was GTR with a gamma-distributed rate variation.

Results

All 51 isolates were successfully amplified for both ITS and $tef1\alpha$ and their sequence datasets were analysed individually and in combination. The dataset contained 650 bp for the ITS region and 420 bp for the $tef1\alpha$ locus. The ITS and $tef1\alpha$ alignments were trimmed to 525 and 333 bp, respectively, and combined for phylogenetic analyses. The combined alignment was composed of 859 characters from 144 isolates, of which 99 bp (18.9 %), and 99 bp (29.4 %) were variable for ITS and $tef1\alpha$, respectively. Species identification was confirmed through careful analyses of the combined ITS and $tef1\alpha$ sequence data.

Ten isolates that had been deposited as *Botryosphaeria* (1 isolate), *Diplodia* (4), and *Fusicoccum* (5), were identified as non-Botryosphaeriaceae based on BLASTn search results of the ITS sequences against the GenBank database (Table 1). The remaining 41 isolates that had been deposited as *Botryosphaeria* (5), *Dothiorella* (7), *Fusicoccum* (2), *Lasiodiplodia* (8), *Neofusicoccum* (5), and undetermined (9) were re-identified based on analyses of the combined ITS and *tef1a* sequences (Table 2; Fig. 1).

Seven of these re-identified isolates represent five new species records for Australia. One isolate (BRIP 19781) obtained from *Mangifera indica* (Anacardiaceae) in Ayr, Queensland (Qld), was identified as *Botryosphaeria sinensis* based on 100% identity in the ITS and in the *tef1a* to the ex-paratype strain CGMCC 3.17723. One isolate (BRIP 52819a) obtained from *Acacia* sp. (Fabaceae) in Brisbane, Qld, was identified as *Diplodia alatafructa* based on 100% identity in the ITS, and 99% (1 single nucleotide polymorphism) identity in the *tef1a* to the ex-holotype strain CBS 124931 (Fig. 1). Three isolates (BRIP 54897c, 58861, and 54897) obtained from dead branches of *Acmena smithii* (Myrtaceae) and *Lenwebbia lasioclada* (Myrtaceae) in Brisbane, as well as from *Camellia sinensis* (Theaceae) in northern Qld were identified as *Lasiodiplodia gonubiensis* (Fig. 1). All three BRIP isolates differed from the ex-holotype strain CBS 115812 by 1 single nucleotide polymorphism (SNP) in the ITS region, while the isolates from *C. sinensis* (BRIP 54897c) and *L. lasioclada* (BRIP 58861) differed by 1 SNP in the *tef1a* sequence. An isolate (BRIP 63679) from a leaf of *M. indica* in Western Australia was identified as *Neofusicoccum cryptoaustrale* based on 99% (1 SNP) identity in the ITS region, and 99% (1 SNP) identity in the *tef1a* to the ex-type strain CBS 122813 (Fig. 1). An isolate (BRIP 57901) obtained from

Dothiorella symphoricarposicola MFLUCC 13-0497

└ BRIP 65673 Alyxia buxifolia Dothiorella sarmentorum IMI 63581b Dothiorella americana CBS 128309

Pseudofusicoccum stromaticum CBS 117448

Dothiorella sp.

Fig. 1. Phylogenetic tree based on maximum likelihood analysis of the combined ITS and $tefl\alpha$ alignment. RAxML bootstrap values (bs) greater than 70 % and Bayesian posterior probabilities (pp) greater than 0.8 are given at the nodes (bs/pp). The outgroup is *Pseudofusicoccum stromaticum* ex-type strain CBS 117448. New species reported in Australia and new host records are in **bold**.

Helianthus annuus (Asteraceae) in a sunflower screening trial at Gatton, Qld, most likely as an endophyte, was identified as *N. mangroviorum* based on 99% identity (1 SNP) in the ITS, and 99% (2 SNP) identity in the $tef1\alpha$ to the ex-type strain CMW 41365 (Fig. 1).

Furthermore, four isolates were clustered in three distinct taxa in the current phylogenetic tree (Fig. 1). These isolates will remain as undescribed species as they require more loci sequences to support their introduction as novel species. One isolate (BRIP 24140) is a sister clade to *B. dothidea* and *B. sinensis*, and differs from both species by 4 bp in tefla. Two other isolates (BRIP 58042b and 58969), Lasiodiplodia sp., is a sister clade to L. iraniensis, L. jatrophicola, and L. thailandica. Lasiodiplodia sp. differs from L. iraniensis by 2 bp in ITS and 7 bp in tefla, from L. jatrophicola by 3 bp in ITS and 5 bp in tefla, and from L. thailandica by an 8 bp deletion in tefla. The isolate, VPRI 13932, represents a distinct taxon in Dothiorella, and differs from the other species by a 26 bp deletion in tefla.

Discussion

Multilocus sequence analyses re-identified 41 isolates from the two herbaria into five genera and 20 species, including 18 known species and three unknown species in Botryosphaeriaceae. Five of these species, *Botryosphaeria sinensis*, *Diplodia alatafructa*, *Lasiodiplodia gonubiensis*, *Neofusicoccum cryoptoaustrale*, and *N. mangroviorum*, are reported for the first time in Australia. New hosts are reported for 14 species, namely *B. sinensis*, *D. africana*, *D. alatafructa*, *D. seriata*, *L. brasiliensis*, *L. gonubiensis*, *L. iraniensis*, *L. mahajangana*, *N. australe*, *N. cryptoaustrale*, *N. mangroviorum*, *N. occulatum*, *N. parvum*, and *N. vitifusiforme*.

Two *Botryosphaeria* species were identified in this study, *B. sinensis* and an undescribed *Botryosphaeria* sp. *Botryosphaeria sinensis* was recently described from *Juglans regia* (Juglandaceae), *Morus alba* (Moraceae), and *Populus* sp. (Salicaceae) in China (Zhou et al. 2016), as a sister taxon to *B. dothidea*. The isolate, BRIP 19781, from *M. indica* represents a new species record for Australia, and a new host association.

Three *Diplodia* species, including *D. africana*, *D. alatafructa* and *D. seriata*, were identified in this study. *Diplodia africana* was first described as a potential pathogen on *Prunus* spp. in South Africa (Damm et al. 2007), and has since been found on *Juniperus phoenicea* (Cupressaceae) in Italy (Alves et al. 2014). In this study, *D. africana* was identified on *Pinus muricata* (Pinaceae) and *Scaevola taccada* (Goodeniaceae). *Diplodia alatafructa* was first described from a stem wound on *Pterocarpus angolensis* (Fabaceae) in South Africa (Mehl et al. 2011), and has been shown to cause stem lesions and vascular discolouration on *Eriobotrya japonica* (Rosaceae) in Spain (González-Domínguez et al. 2017). The isolate of *D. alatafructa* (BRIP 52819a) from *Acacia* sp. represents a new species record for

Australia. *Diplodia seriata* has over 300 host associations and is found worldwide (Farr and Rossman 2017). Despite its plurivorous nature, the identification of *D. seriata* on *Araucaria heterophylla* (Araucariaceae) in Australia represents an extension of its host family. Results of this study not only expand the host associations for these three species, but also a new geographical location for *D. alatafructa*.

Seven Lasiodiploda species were identified in this study, L. brasiliensis, L. gonubiensis, L. iraniensis, L. mahajangana, L. pseudotheobromae, L. theobromae, and an undescribed Lasiodiplodia sp. Lasiodiplodia brasiliensis was originally described as a minor pathogen associated with stem-end rot of Carica papaya (Caricaceae) and of M. indica in Brazil (Marques et al. 2013; Netto et al. 2014). Since then, it has been isolated from other hosts in Brazil, including *Anacardium occidentale* (Anacardiaceae), Annona squamosa (Annonaceae), Cocos nucifera (Arecaceae), Spondias purpurea (Anacardiaceae), and Vitis vinifera (Vitaceae) (Cardoso et al. 2017; Correia et al. 2016; Coutinho et al. 2017; Netto et al. 2017; Rosado et al. 2015). It has also been reported from other countries, including in Madagascar from Adansonia madagascariensis (Malvaceae), in Thailand from Tectona grandis (Lamiaceae) and in Turkey from Fragaria × ananassa (Rosaceae) (Cruywagen et al. 2017; Doilom et al. 2015). The isolate, BRIP 60182e, from Gossypium hirsutum (Malvaceae) represents an extension of its host range. Lasiodiplodia gonubiensis was originally described as an endophyte from Syzygium cordatum (Myrtaceae) in South Africa (Pavlic et al. 2004), where it has subsequently been isolated from healthy and/or diseased Bruguiera gymnorrhiza (Rhizophoraceae), Ceriops tagal (Rhizophoraceae), Sclerocarya birrea subsp. caffra (Anacardiaceae), and Vachellia karroo (Fabaceae) in South Africa (Jami et al. 2015, 2017; Osorio et al. 2017; Mehl et al. 2017). Lasiodiplodia gonubiensis has also been reported from Adansonia digitata (Malvaceae) in Mozambique, Anacardium humile (Anacardiaceae) in Brazil, and Phyllanthus emblica (Phyllanthaceae) in Thailand (Cruywagen et al. 2017; Netto et al. 2017; Trakunyingcharoen et al. 2015). The isolates in this study represent the first record of L. gonubiensis in Australia, as well as new host associations for this species. Lasiodiplodia iraniensis has been isolated from various hosts in Iran, namely Citrus sp. (Rutaceae), Eucalyptus sp. (Myrtaceae), Juglans sp. (Jualandaceae), M. indica, Salvadora persica (Salvadoraceae), and Terminalia catappa (Combretaceae) (Abdollahzadeh et al. 2010; Mohammadi et al. 2013). It has also been reported from A. digitata throughout central and southern Africa (Cruywagen et al. 2017), A. occidentale in Brazil (Netto et al. 2017), M. indica in Australia, Brazil and Peru (Netto et al. 2017; Rodriguez-Galvez et al. 2017; Sakalidis et al. 2011b), S. persica in Colombia (Úrbez-Torres et al. 2012b), and Sclerocarya birrea subsp. caffra (Anacardiaceae) in South Africa (Mehl et al. 2017). The isolate, BRIP 63318, from Vaccinium sp. (Ericaceae) represents a new host association for L. iraniensis. Lasiodiplodia mahajangana is predominantly associated with woody hosts in the southern Africa continent (Begoude et al. 2010; Jami et al. 2017; Mehl et al. 2017; Phillips et al. 2013). The isolates in this study represents expansion of its host range to include *Annona reticulata* (Annonaceae) and *Persea americana* (Lauraceae), and an herbaceous host, *Musa* sp. (Musaceae).

Seven Neofusicoccum species were identified in this study, including N. australe, N. cryptoaustrale, N. luteum, N. mangroviorum, N. occulatu, N. parvum and N. vitifusiforme. Neofusicoccum australe has been reported from 73 different hosts mainly from countries located in the southern hemisphere (Farr and Rossman 2017). Despite its plurivorous nature, the identification of N. australe on Juglans sp. in this study represents an extension of its host range. Neofusicoccum cryptoaustrale was first described as an endophyte from branches and leaves of Eucalyptus trees in South Africa (Pavlic-Zupanc et al. 2013), where it has subsequently been isolated from healthy and/or diseased Avicennia marina (Acanthaceae), Barringtonia racemosa (Lecythidaceae), Bruguiera gymnorrhiza (Rhizophoraceae), Ceriops tagal (Rhizophoraceae), Eucalyptus spp., Lumnitzera racemose (Combretaceae), Podocarpus henkelii (Podocarpaceae), P. latifolius (Podocarpaceae), and Rhizophora mucronata (Rhizophoraceae) (Osorio et al. 2017, Pavlic-Zupanc et al. 2017). The isolate in this study represents the first record of N. cryptoaustrale in Australia, as well as a new host association. Neofusicoccum mangroviorum was isolated from symptomless branches of four genera of mangrove (Avicennia, Bruguiera, Lumnitzera, and Rhizophora) and Mimusops caffra (Sapotaceae) in South Africa (Osorio et al. 2017, Jami et al. unpublished). The identification of this species on H. annuus represents a new species record for Australia, and a new host association. Neofusicoccum occulatum was first described from Eucalyptus spp. (Myrtaceae) and Wollemia nobilis (Araucariaceae), as pathogens on stems of E. globulus (Sakalidis et al. 2011a). Neofusicoccum occulatum has since been isolated from other woody hosts, such as Blepharocalyx salicifolius (Myrtaceae) in Uruguay, Grevillea sp. (Proteaceae) in Uganda, Eucalyptus spp. in Hawaii, and V. vinifera in Australia (Sakalidis et al. 2013). The identification of N. occulatum on Vaccinium sp. represents a host new host association. Neofusicoccum parvum has been reported globally from over 150 different hosts (Farr and Rossman 2017). Despite its plurivorous nature, the identification of N. parvum on Xanthostemon sp., a tree endemic only to north eastern Qld, represents a new host association. Neofusicoccum vitifusiforme has a wide host range having been found to cause, or be associated with, grapevine dieback in South Africa (van Niekerk 2004, who first described and named this species Fusicoccum vitifusiforme), Spain (Luque et al. 2009), Mexico (Candolfi-Arballo et al. 2010), USA (Úrbez-Torres 2011) and Italy (Mondello et al. 2013); olive (Olea europaea) drupe rot in Italy (Lazzizera et al. 2008, Úrbez-Torres et al. 2012a); dieback of stone-fruit trees (*Prunus* spp.) (Damm et al. 2007) and pome fruit trees (*Malus* and *Pyrus* spp.) in South Africa (Cloete et al. 2011), and blight of blueberry (Vaccinium corymbosum) in China (Kong et al. 2010). In this study, N. vitifusiforme was identified on leaves of Geijera salicifolia (Rutaceae), which is native to dry rainforests in eastern Australia, and represents a new host association.

Species in the Botryosphaeriaceae are spreading around the world, likely facilitated by movement of plant material, including fruits. These fungi are virtually impossible to detect in their endophytic state (Burgess et al. 2016). Even where symptoms are visible, biosecurity measures, including quarantining plant material, must no longer rely on morphological identifications and outdated taxonomy for this group of fungi (Crous et al. 2016). The re-identification of 41 isolates in this study based on phylogenetic analyses of the ITS and tefIa loci demonstrates the inadequacy of morphological characters for species level identifications. Ten isolates were identified as not belong to Botryosphaeriaceae, which also illustrates the difficulties faced by plant pathologists and plant diagnosticians even at the generic level. This has also shown to be the case for *Colletotrichum* (Shivas and Tan 2009, Shivas et al. 2016), *Fusarium* (Summerell et al. 2011), *Phytophthora* (Burgess et al. 2009), downy mildew (Shivas et al. 2012), and powdery mildew (Cunnington et al. 2003). Thus, laboratory capability to identify these fungi must be maintained and extensive reference collections supported if effective surveillance and monitoring of the family is to continue.

Acknowledgments

We thank Plant Health Australia (PHA) who provided funds for the workshop on the identification and classification of Botryosphaeriaceae species. The workshops were organised by the Subcommittee on Plant Health Diagnostics in collaboration with PHA as part of a professional development program for plant health diagnosticians. PHA sourced funding from the Department of Agriculture and Water Resources through a grant from the Modern Diagnostics initiative. We thank the various diagnosticians who originally isolated the cultures and the herbaria staff who maintained the cultures. We also thank Prof. Pedro W. Crous for his constructive feedback in the review of this manuscript.

References

Abdollahzadeh J, Javadi A, Goltapeh EM, Zare R, Phillips AJL (2010) Phylogeny and morphology of four new species of *Lasiodiplodia* from Iran. Persoonia 25: 1–10.

Alves A, Crous P, Correia A, Phillips AJL (2008). Morphological and molecular data reveal cryptic speciation in *Lasiodiplodia theobromae*. Fungal Divers. 28: 1–13.

Alves A, Linaldeddu BT, Deidda A, Scanu B, Phillips AJL (2014) The complex of *Diplodia* species associated with *Fraxinus* and some other woody hosts in Italy and Portugal. Fungal Divers. 67: 143–156.

Begoude AD, Slippers B, Wingfeld MJ, Roux J (2010) Botryosphaeriaceae associated with *Terminalia catappa* in Cameroon, South Africa and Madagascar. Mycol. Progr. 9: 101–123.

Burgess TI, Webster JL, Ciampini JA, White D, Hardy GEStJ, Stukely MJC (2009) Re-evaluation of *Phytophthora* species isolated during 30 years of vegetation health surveys in Western Australia using molecular techniques. Plant Dis. 93: 215–223.

Burgess TI, Crous CJ, Slippers B, Hantula J, Wingfield MJ (2016) Tree invasions and biosecurity: ecoevolutionary dynamics of hitchhiking fungi. AoB Plants 8: plw076.

Candolfi-Arballo O, Valenzuela-Solano C, Gubler WD, Hernández-Martínez R (2010). Botryosphaeriaceae species associated with grapevine decline in Mexico. Phytopathol. Mediterr. 49: 105–106.

Carbone I, Kohn LM. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556.

Cardoso JE, Lima JS, Viana FMP, Ootani MA, Araújo FSA, Fonseca WL, Lima CS, Martins MVV (2017) First report of *Lasiodiplodia brasiliense* causing postharvest fruit rot of custard apple (*Annona squamosa*) in Brazil. Plant Dis. 101: 1542–1542.

Cloete M, Fourie PH, Damm U, Crous PW, Mostert L (2011). Fungi associated with die-back symptoms of apple and pear trees, a possible inoculum source of grapevine trunk disease pathogens. Phytopathol. Mediterr. 50: S176–S190.

Correia KC, Silva MA, de Morais Jr MA, Armengol J, Phillips AJL, Camara MPS, Michereff SJ (2016) Phylogeny, distribution and pathogenicity of *Lasiodiplodia* species associated with dieback of table grape in the main Brazilian exporting region. Plant Pathol. 65: 92–103.

Coutinho IBL, Freire FCO, Lima CS, Lima JS, Goncalves FJT, Machado AR, Silva AMS, Cardoso JE (2017) Diversity of genus *Lasiodiplodia* associated with perennial tropical fruit plants in northeastern Brazil. Plant Pathol. 66: 90–104.

Crous PW, Groenewald JZ, Slippers B, Wingfield MJ (2016). Global food and fibre security threatened by current inefficiencies in fungal identification. Phil. Tr. R. Soc. B 371: 20160024.

Cruywagen EM, Slippers B, Roux J, Wingfield MJ (2017) Phylogenetic species recognition and hybridisation in *Lasiodiplodia*: a case study on species from baobabs. Fungal Biol. 121: 420–436.

Cunnington JH, Takamatsu S, Lawrie AC, Pascoe IG (2003) Molecular identification of anamorphic powdery mildews (*Erysiphales*). Australas. Plant Pathol. 32: 421–428.

Damm U, Crous PW, Fourie PH (2007). Botryosphaeriaceae as potential pathogens of prunus species in South Africa, with descriptions of *Diplodia africana* and *Lasiodiplodia plurivora* sp. nov. Mycologia 99: 664–680.

Doilom MW, Shuttleworth LA, Roux J, Chukeatirote E, Hyde KD (2015) Botryosphaeriaceae associated with *Tectona grandis* (teak) in northern Thailand. Phytotaxa 233: 1–26.

Farr DF, Rossman AY Fungal Databases, U.S. National Fungus Collections, ARS, USDA, https://nt.ars-grin.gov/fungaldatabases/ Retrieved 27 November 2017.

González-Domínguez E, Alves A, Leon M, Armengol J (2017) Characterisation of Botryosphaeriaceae species associated with diseased loquat (*Eriobotrya japonica*) in Spain. Plant Pathol. 66: 77–89.

Hoog GS de, Gerrits van den Ende AHG. 1998. Molecular diagnostics of clinical strains of filamentous basidiomycetes. *Mycoses* 41: 183–189.

Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

Hyde KD, Chomnunti P, Crous PW, Groenewald JZ, Damm U, Ko Ko TW, Shivas RG, Summerell BA, Tan YP (2010) A case for re-inventory of Australia's plant pathogens. Persoonia 25: 50–60.

Jami F, Slippers B, Wingfield MJ, Loots MT, Gryzenhout M (2015) Temporal and spatial variation of Botryosphaeriaceae associated with *Acacia karroo* in South Africa. Fungal Ecol. 15: 51–62

Jami F, Wingfield MJ, Gryzenhout M, Slippers B (2017). Diversity of tree-infecting *Botryosphaeriales* on native and non-native trees in South Africa and Namibia. Australas. Plant Pathol. 46: 529–545

Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 537: 39–64.

Kong CS, Qiu XL, Yi KS, Yu XF, Yu L (2010). First report of *Neofusicoccum vitifusiforme* causing blueberry blight of blueberry in China. Plant Dis. 94: 1373.

Lazzizera C, Frisullo S, Alves A, Phillips AJL (2008). Morphology, phylogeny and pathogenicity of *Botryosphaeria* and *Neofusicoccum* species associated with drupe rot of olives in southern Italy. Plant Pathol. 57: 948–956.

Luque J, Martos S, Aroca A, Raposo R, Garcia-Figueres F (2009). Symptoms and fungi associated with declining mature grapevine plants in northeast Spain. J. Plant Pathol. 91: 381–390.

Marques MW, Lima NB, Antônio de Morais Jr M, Barbosa MAG, Souza BO, Michereff SJ, Phillips AJL, Câmara MPS (2013) Species of *Lasiodiplodia* associated with mango in Brazil. Fungal Divers. 61: 181–193.

Mehl JWM, Slippers B, Roux J, Wingfield MJ (2011) Botryosphaeriaceae associated with *Pterocarpus angolensis* (kiaat) in South Africa. Mycologia 103: 534–553.

Mehl JWM, Slippers B, Roux J, Wingfield MJ (2017) Overlap of latent pathogens in the Botryosphaeriaceae on a native and agricultural host. Fungal Biol. 121: 405–419.

Mohammadi H, Gramaje D, Banihashemi Z, Armengol J (2013) Characterisation of *Diplodia seriata* and *Neofusicoccum parvum* associated with grapevine decline in Iran. J. Agric. Sci. Technol. 15: 603–616.

Mondello V, Lo Piccolo S, Conigliaro G, Alfonzo A, Torta L, Burruano S. (2013). First report of *Neofusiccoccum vitifusiforme* and presence of other Botryosphaeriaceae species associated with *Botryosphaeria* dieback of grapevine in Sicily (Italy). Phytopathol. Mediterr. 52: 388–396.

Netto MSB, Assunção IP, Lima GSA, Marques MW, Lima WG, Monteiro JHA, de Queiroz Balbino V, Michereff SJ, Phillips AJL, Câmara MPS (2014) Species of *Lasiodiplodia* associated with papaya stemend rot in Brazil. Fungal Divers. 67: 127–141.

Netto MSB, Lima WG, Correia KC, Da Silva CFB, Thon M, Martins RB, Miller RNG, Michereff SJ, Camara MPS (2017) Analysis of phylogeny, distribution, and pathogenicity of Botryosphaeriaceae species associated with gummosis of *Anacardium* in Brazil, with a new species of Lasiodiplodia. Fungal Biol. 121: 437–451.

O'Donnell K, Kistler HC, Cigelink E, et al. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. U.S.A. 95: 2044–2049.

Osorio JA, Crous CJ, De Beer ZW, Wingfield MJ, Roux J (2017) Endophytic Botryosphaeriaceae, including five new species, associated with mangrove trees in South Africa. Fungal Biol. 121: 361–393.

Pavlic D, Slippers B, Coutinho TA, Gryzenhout M, Wingfield MJ (2004). *Lasiodiplodia gonubiensis* sp. nov., a new *Botryosphaeria* anamorph from native *Syzygium cordatum* in South Africa. Stud. Mycol. 50: 313–322.

Pavlic-Zupanc D, Maleme HM, Wingfield MJ, Slippers B (2013). *Neofusicoccum cryptoaustrale* Pavlic, Maleme, Slippers & M.J. Wingf. Fungal Planet 202. Persoonia 31: 271.

Pavlic-Zupanc D, Maleme HM, Piškur B, Wingfield BD, Wingfield MJ, Slippers B (2017) Diversity, phylogeny and pathogenicity of Botryosphaeriaceae on non-native Eucalyptus grown in an urban environment: A case study. Urban For. Urban Greening 26: 139–148.

Plant Health Australia (2001) Australian Plant Pest Database. https://appd.ala.org.au/appd-hub/index

Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW (2013) The Botryosphaeriaceae: genera and species known from culture. Stud. Mycol. 76: 51–167.

Pitt WM, Huang R, Steel CC, Savocchia S (2010) Identification, distribution and current taxonomy of Botryosphaeriaceae species associated with grapevine decline in New South Wales and South Australia. Aust. J. Grape Wine Res. 16: 258–271.

Pitt WM, Huang R, Steel CC, Savocchia S (2013) Pathogenicity and epidemiology of Botryosphaeriaceae species isolated from grapevines in Australia. Australias. Plant Pathol. 42:573–582.

Pitt WM, Úrbez-Torres JR, Trouillas FP (2015) *Dothiorella* and *Spencermartinsia*, new species and records from grapevines in Australia. Australas. Plant Pathol. 44:43–56.

Rodriguez-Galvez E, Guerrero P, Barradas C, Crous PW, Alves A (2017) Phylogeny and pathogenicity of *Lasiodiplodia* species associated with dieback of mango in Peru. Fung. Biol. 121: 452–465.

Ronquist F, Huelsenbeck JP (2003) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

Rosado AWC, Machado AR, Freire FCO, Pereira OL (2015) Phylogeny, identification, and pathogenicity of *Lasiodiplodia* associated with postharvest stem-end rot of coconut in Brazil. Plant Dis. 100: 561–568.

Sakalidis ML, Hardy GEStJ, Burgess TI (2011a). Use of the Genealogical Sorting Index (GSI) to delineate species boundaries in the *Neofusicoccum parvum – Neofusicoccum ribis* species complex. Mol. Phylogenet. Evol. 60: 333–344.

Sakalidis ML, Ray JD, Lanoiselet V, Hardy GEStJ, Burgess TI (2011b). Pathogenic Botryosphaeriaceae associated with *Mangifera indica* in the Kimberley Region of Western Australia. Eur. J. Plant Pathol. 130: 379–391.

Sakalidis ML, Slippers B, Wingfield BD, Hardy GEStJ, Burgess TI (2013). The challenge of understanding the origin, pathways and extent of fungal invasions: global populations of the *Neofusicoccum parvum–N. ribis* species complex. Diversity and Distributions 19: 873–883.

Shivas RG, Tan YP (2009) A taxonomic re-assessment of *Colletotrichum acutatum*, introducing *C. fioriniae* comb. et stat. nov. and *C. simmondsii* sp. nov. Fungal Divers. 39: 111–122.

Shivas RG, Ryley MJ, Telle S, Liberato JR, Thines M(2012) *Peronosclerospora australiensis* sp. nov. and *Peronosclerospora sargae* sp. nov., two newly recognised downy mildews in northern Australia, and their biosecurity implications. Australas. Plant Pathol. 41: 125–1130.

Shivas RG, Tan YP, Edwards J, Dinh Q, Maxwell A, Andjic V, Liberato JR, Anderson C, Beasley DR, Bransgrove K, Coates LM, Cowan K, Daniel R, Dean JR, Lomavatu MF, Mercado-Escueta D, Mitchell RW, Thangavel R, Tran-Nguyen LTT, Weir BS (2016) *Colletotrichum* species in Australia. Australia. Plant Path. 45: 447–464.

Slippers B, Crous PW, Jami F, Groenewald JZ, Wingfield MJ (2017). Diversity in the *Botryosphaeriales*: Looking back, looking forward. Fungal Biol. 121: 307–321.

Slippers B, Boissin E, Phillips AJL, Groenewald JZ, Lombard L, Wingfield MJ, Postma A, Burgess T, Crous PW (2013) Phylogenetic lineages in the *Botryosphaeriales*: a systematic and evolutionary framework. Stud. Mycol. 76: 31-49.

Stamatakis A, Alchiotis N (2010) Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics 26: i132–i139

Summerell BA, Leslie J, Liew ECY, Laurence MH, Bullock S, Petrovic T, Bentley AR, Howard CG, Peterson SA, Walsh JL, Burgess LW (2011) *Fusarium* species associated with plants in Australia. Fungal Divers. 46: 1–27.

Trakunyingcharoen T, Lombard L, Groenewald JZ, Cheewangkoon R, To-anun C, Crous PW (2015) Caulicolous *Botryosphaeriales* from Thailand. Persoonia 34: 87–99.

Úrbez-Torres JR (2011). The status of Botryosphaeriaceae species infecting grapevines. Phytopathol. Mediterr. 50: S5–S45.

Úrbez-Torres JR, Peduto F, Gubler WD (2012a). Olive trees, a potential alternative host for grapevine trunk disease pathogens. Phytopathol. Mediterr. 51: 432–433.

Úrbez-Torres JR, Peduto F, Striegler RK, Urrea-Romero KE, Rupe JC, Cartwright RD, Gubler WD (2012b) Characterisation of fungal pathogens associated with grapevine trunk diseases in Arkansas and Missouri. Fung. Diversity 52: 169–189

van Niekerk JM, Crous PW, Groenewald JZ, Fourie PH, Hallen F (2004) DNA phylogeny, morphology and pathogenicity of *Botryosphaeria* species on grapevines. Mycologia 96: 781–798.

White TJ, Bruns T, Lee S, et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. (eds), PCR protocols: a guide to methods and applications. Academic Press, San Diego, USA, pp 315–322.

Wunderlich N, Ash GJ, Steel CC, Raman H, Savocchia S (2011) Association of Botryosphaeriaceae grapevine trunk disease fungi with the reproductive structures of *Vitis vinifera*. Vitis 50: 89–96.

Yang T, Groenewald JZ, Cheewangkoon R, Jami F, Abdollahzadeh J, Lombard L, Crous PW (2017). Families, genera and species of *Botryosphaeriales*. Fungal Biol. 121: 322–346.

Zhou Y, Dou Z, He W, Zhang X, Zhang Y (2016) *Botryosphaeria sinensia* sp nov., a new species from China. Phytotaxa 245: 43–50.