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Abstract

Uncertainty is known to have negative impact on financial markets through its effects on

investors’ decisions. In the wake of the Great Recession, quite a few recent studies have

highlighted the role of uncertainty in predicting in-sample movements of interest rates. Since

in-sample predictability does not guarantee out-of-sample forecasting gains, in this paper we

used historical daily and monthly data for the US to forecast mean and volatility of interest

rate. The results show that, changes in uncertainty measure movements fails to add any

significant statistical gains to the forecast of interest rates for the US. In other words, policy

makers in the US are not likely to improve their accuracy of future movements of the policy

rate’s mean and volatility by incorporating information derived from changes in metrics of

uncertainty.
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1. Introduction1

Theoretically, uncertainty is known to have a negative impact on the real economy and2

financial markets via postponement of investment and consumption decisions (see for ex-3

ample, Bernanke [1], Dixit and Pindyck [2], and more recently Bloom [3]). Following the4

Great Moderation, the world economy experienced a substantial increase in financial and5

macroeconomic volatility as a result of the global financial crisis starting in the summer of6

2007, followed by a major global recession (the Great Recession) between 2008 and 2009,7

and regional crises such as the European sovereign debt crisis starting in 2010. As a result,8

the analysis of the role of volatility and uncertainty in the macroeconomy has regained a9

prominent role in recent years (see, Bloom [4], Chuliá et al. [5] and Gupta et al.[6; 7; 8] for10

detailed reviews of this literature), with the majority of these studies concluding that un-11

expected large changes in uncertainty (or the closely related concepts of risk and volatility)12
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represent an important source of macroeconomic (and financial markets) fluctuations. Not13

surprisingly, large number of recent studies have also highlighted the fact that, central banks14

around the world respond to such uncertainties by changing their interest rate decisions to15

nullify the recessionary impact (see for example, Çekin et al. [9], Christou et al.[10; 11] and16

references cited there in). Given this in-sample evidence, and realizing the fact that, the17

ultimate test of any predictive model (in terms of the econometric methodologies and the18

predictor(s) used) is in its out-of-sample performance [12], we aim to analyse the ability of19

movements of uncertainty in forecasting the policy rate of the United States. In this re-20

gard, we look at linear and nonlinear models over the longest possible historical sample of21

daily and monthly data covering 6th January 1927 to 30th November 2016, and July 188922

to March 2016, respectively. This way, we are able to not only analyse the importance of23

data frequency in interest rate decisions, but also avert the problem of sample-selection bias.24

In addition, we go beyond the impact of uncertainty on the first-moment of interest rate,25

and build on the in-sample evidence provided by Valeraet al. [13] and Donzwa et al. [14] on26

the second-moment, i.e., the volatility of interest rates. In other words, we use alternative27

models of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-family28

to forecast interest rate volatility as well based on the information content of uncertainty29

movements.30

To the best of our knowledge this is the first attempt to provide historical evidence of31

the possible role of uncertainty movements in improving forecasts of the first and second-32

moments associated with the monetary policy decisions of the US. Having said that, large33

number of studies have looked into forecasting monetary policy decisions of the US, as well34

as the volatility of interest rate using a wide array of linear and nonlinear frameworks. In35

terms of the first moment, reliance has been placed on variations of the Taylor-rule used36

independently or within dynamic stochastic general equilibrium, as well as large-scale atheo-37

retical macro models, with the reader is referred to [15; 16; 17; 18] for detailed reviews of this38

literature. As far as volatility, there is an extensive literature focused on modelling interest39

rate volatility. This requires (as with most financial series) taking into account volatility40

clustering, asymmetric effects, excess kurtosis, time-varying volatility, long-memory or lever-41

age effects [19; 20]. Chan et al. [21] assumes a level effects in their study of UK interest42

rate on interest rate volatility, while Brenner et al. [22] and Koedijk et al. [23] propose43

a model that considers conditional heteroscedasticity in a GARCH type models [24; 25] in44

addition to the level effects of Chan et al. [21]. This explains the extensive use of GARCH45

models for this application [26], however, traditional GARCH models are unable to account46

for asymmetries, which led to the development of the Exponential GARCH (EGARCH)47

models [27], Asymmetric Power ARCH (APARCH) models [28], or GJR-GARCH models48
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[29] used to model and forecast interest rates. Drost and Klaassen [30] show that the dis-49

tributions are not normal and usually unknown, however, semiparametric techniques can be50

used to model financial variables. For example, in their study to forecast short-term interest51

rates, Hou and Saurdi [31] applies a semiparametric smoothing to a GARCH model of short52

rate volatility. They obtain more accurate forecasts of interest rate volatility as opposed to53

parametric models. TIan and Hamori [32] use a Realized GARCH (RGARCH) to capture54

volatility clustering and the mean-reverting nature of interest rates in a model of the Euro-55

Yen short-term interest rate, and find that it performs better than traditional GARCH-type56

models.57

Note that, quite a few recent studies have analysed with success the importance of un-58

certainty in forecasting movements of macroeconomic variables [33; 34; 35], asset prices59

[36; 37; 38], and commodity markets [39; 40]. The remainder of the paper is organized as60

follows: Section 2 outlines the empirical methodologies, while Section 3 discusses the data,61

and Section 4 presents the forecasting results, with Section 4 concluding the paper.62

2. Methods63

Following the method employed by Hassani et al. [41] and [42] we used out-of-sample64

forecasts to test for uncertainty’s movements effect on forecasting both mean and volatility65

of interest rate. Half of the data is used for model selection and parameter estimation. The66

h step ahead out-of-sample forecasts are calculated with adding one observation at a time67

(from the other half) and without updating the estimated parameters. For interest rate68

mean forecasting, the nonparametric Functional Coefficient Autoregressive model (FAR) of69

Chen and Tsay [43] and Cai et al. [44] is used, as well as linear ARMA model, both with70

and without including the uncertainty measure as predictor. The ARMA model makes it71

possible to test for linear dependencies between uncertainty movements and interest rate72

mean, as it is a simple base for many statistical tests in econometrics. Since ARMA only73

tests for linear dependencies, we are using nonlinear and nonparametric FAR model as well,74

to test nonlinear relations between uncertainty movements and interest rate mean.75

In volatility forecasting, we are using method employed by Hassani et al. [45]; which used76

a variation ofGARCH type models with different error distributions to forecast UK’s interest77

rate. In this research the Family Nesting GARCH (FNGARCH) model of Hentschel [46]78

with different parametric error distributions is used with and without uncertainty’s first79

difference as predictor. The FNGARCH model is has a general formulation of GARCH80

family and contains all of the well performed model in [45]. Uncertainty’s first difference is81

considered as exogenous variable. FAR, ARMA and random walk are employed to forecaster82

the uncertainty (random walk is applied to uncertainty rather than its first difference, since83
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the uncertainty’s first difference is stationary). The accuracy of fitted models are compared84

using Mean Square Error (MSE) and Kolmogorov-Smirnov Predictive Accuracy (KSPA)85

nonparametric test [47]. In order to increaseKSPA test’s reliability, we also used a bootstrap86

with sample size of 10000 to estimate the KSPA’s P-Value.87

2.1. FAR model88

The Functional-Coefficient Autoregressive with Exogenous variables (FARX) formulates89

the time series conditional expectation of yt as follows [44; 43]:90

yt =

p∑
i=1

fi(yt−d)yt−i +

q∑
i=1

gi(yt−d)xt,i + εt, (1)

where εt is white noise and xi(i = 1, . . . , q) are exogenous variables (and may contain the91

exogenous variables’ lags). The nonlinear functions fi(yt−d) and gi(yt−d) are estimated using92

local linear regression [44].93

2.2. FNGARCH model94

Suppose εt be a time series with zero mean and variance σ2
t . The FNGARCH models95

σ2
t using following functional form [46]:96

σλt =

(
β0 +

q∑
i=1

βixt,q

)
+

k∑
i=1

αkσ
λ
t−i {|zt−i − η2,i| − η1,i (zt−i − η2,i)}

δ +

p∑
i=1

γpσ
λ
t−i, (2)

where zt = εt
σt

and xi(i = 1, . . . , q) are exogenous variables. The FNGARCH model can97

be used as a general functional form for volatility forecasting, since many common GARCH98

models can be formulated as special parameterization of FNGARCH. For instanceGARCH99

[25], AV GARCH [48], GJR − GARCH [49], TGARCH [50], Nonlinear GARCH [51],100

Nonlinear Asymmetric GARCH [52], A − PARCH [28] and EGARCH [27] models are101

sub-models of FNGARCH.102

3. Data Description103

As far as the interest rate variable is concerned, we use the risk-free rate from 6th January104

1927 to 16th March, 1936 from Professor Kenneth R. Frenchs database[53], the 3-month105

Treasury bill rate over the period of 17th March, 1936 till 30th June, 1954, the effective106

Federal funds rate from July 1st, 1954 to 15th December, 2008 and then from 16th December107

2015 to 30thNovember, 2016, with all the latter set of data derived from the FRED database.108

For the time period of 16thDecember, 2008 till 15th December, 2015, which corresponds to109

the zero lower bond (ZLB)scenario, we used the shadow short rate developed by Krippner110

[54; 55] based on models of term structure (The data is available for download from [56]).111
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The yield curve-based framework developed by Krippner [54; 55] essentially removes the112

effect that the option to invest in physical currency (at an interest rate of zero) has on yield113

curves. This results in a hypothetical shadow yield curve that would exist if the physical114

currency were not available (The process allows one to answer the question: What policy rate115

would generate the observed yield curve if the policy rate could be taken as negative? The116

shadow policy rate generated in this manner, therefore, provides a measure of the monetary117

policy stance after the actual policy rate reaches zero). The monthly version of the interest118

rate covers July 1889 to March 2016, with data on risk-free interest rate from July, 1889 to119

December, 1933 obtained from the website of Professor Amit Goyal, and for the rest of the120

period we use the same sources as the daily data [57]. Note the coverage of our sample periods121

is purely driven by the availability of the daily and monthly measures of uncertainties, which122

we discuss next.123

The daily measure of uncertainty associated with financial market uncertainty is mea-124

sured using the metric developed by Chuliá et al. [58], who uses 25 portfolios of stocks125

belonging to the NYSE, AMEX, and NASDAQ, which comprises the CRSP (Center for Re-126

search in Security Prices) stock index, sorted according to size and their book-to-market127

value. These authors follow a two-step process for the construction of their uncertainty128

index. First, they remove the common component of the series under study and calculate129

their idiosyncratic variation by filtering the original series using a generalized dynamic factor130

model (GDFM). Second, these authors calculate the stochastic volatility of each residual in131

the previous step using Markov Chain Monte Carlo (MCMC) techniques. Then, Chuliá et132

al. [58] obtain a single index of uncertainty for the stock market by average the series ( The133

data can be downloaded from the website of Professor Jorge M. Uribe at [59]). The monthly134

data on uncertainty is text-based and includes the title and abstract of all front-page articles135

of the Wall Street Journal, as developed by Manela and Moreira [60]. These authors focus on136

front-page titles and abstracts in order to ensure feasibility of data collection, and also be-137

cause these are manually edited and corrected following optical character recognition, which138

in turn, improves their earlier sample reliability. The News Implied Volatility Index (NVIX)139

data is found to peak during stock market crashes, times of policy-related uncertainty, world140

wars, and financial crises. The reader is referred to Manela and Moreira [60] for further141

details.142

The PELT (Pruned Exact Linear Time) algorithm [61] is employed to test for structural143

change in the first difference of interest rate. The results of the changepoint test shows144

significant structural change in variance of the interest rate’s first difference, on Friday, 22nd145

November 1985 (the R package ”changepoint” [62] is used to apply the algorithm). The same146

test is applied to first difference of monthly data which shows significant structural change147
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in first difference of interest rate’s monthly average on November 1972. Original time series148

and their differences in new timeline (after the structural change) are shown in Figures 1149

and 2. As it can be seen, the mean of the original time series are not stable. After removing150

the time series before the structural changes, the Augmented Dickey-Fuller (ADF ) test is151

applied to test stationarity of both interest rate and uncertainty measure in new timeline152

(Ng and Perron [63] method is used for lag selection in ADF ). Results (Table 1) shows153

that none of four time series (daily and monthly interest rate and uncertainty measure) are154

stationary, however, their first differences (daily and monthly changes) are stationary.155

4. Empirical Results156

As mentioned before, FAR, linear ARMA, FARX (FAR with uncertainty’s first dif-157

ference as predictor) and ARMAX (ARMA with uncertainty’s first difference as predictor)158

are used to forecast first difference of interest rate’s daily and monthly mean. Moreover, the159

Random Walk (RW ) model for interest rate daily and monthly mean is fitted as well. Half160

of the available data (after structural change) are used for model fitting and the rest of the161

data are used for accuracy comparison. The Mean Square Error (MSE)s for out-of-sample162

mean forecasting are given in Tables 2 and 3 for different forecasting horizons.163

As it is shown byKSPA P-Values in Tables 2 and 3, none of the models with uncertainty’s164

first difference as predictor outperformed the models without predictor (The uncertainty165

forecast with significantly higher accuracy is used to forecast interest rate). According to166

these results, random walk can be used to forecast the mean of both daily and monthly167

uncertainty measure. One can forecast the mean of the monthly interest rate in short,168

medium and long forecasting horizons (h = 1, 3, 6 and 12) using random walk as well.169

However, in daily interest rate forecasting, the ARMA (AR(2)) model has significantly170

better out-of-sample accuracy in very short forecasting horizon (h = 1) whilst in medium171

and long term forecasting, none of the models outperform the random walk. The estimated172

models for uncertainty and interest rate forecasting are presented in Tables 7 and 8. Since173

the mean interest rate follows a random walk model in monthly data (and consequently its174

first difference is a has constant mean), we removed the constant mean from first difference175

of monthly interest rates difference and test for ARCH effects in new time series. In Daily176

data the test is performed on the residuals of AR(2), since none of the estimated models177

outperform the AR(2). The ARCH − LM test results (Table 4) show presence of ARCH178

effect in first difference of both daily and monthly interest rates.179

In order to test the uncertainty first difference’s effect on volatility forecasting, the180

FNGARCH model is fitted to the daily and monthly interest rate first difference (after181

removing constant mean) with different error distributions. Again half of the available data182
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(after changepoints) are used for model fitting and the rest are used for accuracy compari-183

son. KSPA test is employed to compare fitted models (with and without uncertainty’s firs184

difference as predictor). The out-of-sample MSEs, minimum MSE models and KSPA test185

for comparing each model with minimum MSE model, are given in Tables 5 and 6 for daily186

and monthly time series. Estimated models for daily and monthly interest rate volatility187

forecasting are given in Tables 7 and 8. As it can be seen in estimated models for volatility188

forecasting, the best models to forecast volatility has asymmetric behaviour (evident from189

estimated parameters η1 and η2 in (2) formulation) which shows the asymmetric response of190

the interest rate volatility to previous large and small volatilities.191

As it can be seen in Tables 5 and 6, none of the FNGARCH models with uncertainty’s192

first difference as predictor, outperformed the FNGARCH models without predictors. In193

other word, adding the uncertainty’s first difference does not improve the out-of-sample194

forecasting accuracy of interest rate volatility.195

5. Conclusion196

In the wake of the Great Recession, quite a few recent studies have highlighted the role of197

uncertainty in predicting in-sample movements of both first- and second moments of interest198

rates. Since in-sample predictability does not guarantee out-of-sample forecasting gains, in199

this paper we used historical daily and monthly data for the US covering 6th January 1927200

to 30th November 2016, and July 1889 to March 2016, respectively, to forecast mean and201

volatility of interest rate based on linear and nonlinear frameworks. Our results show that,202

changes in uncertainty measure movements, as defined above, fails to add any significant203

statistical gains to the forecast of interest rates for the US. In other words, policy makers in204

the US are not likely to improve their accuracy of future movements of the first and second205

moments of the policy rate by incorporating information derived from changes in metrics of206

uncertainty. While there is lack of forecastability of uncertainty’s movements for the interest207

rate setting behaviour of the US, it would be interesting to extend our work in future analysis208

to other developed and emerging market economies.209
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[18] Ivashchenko, S.; Çekin, S.E.; Kotzé, K.; Gupta, R. Forecasting with Second-Order Approx-251

imations and Markov-Switching DSGE Models. Computational Economics 2019; doi: ; doi:252

10.1080/00036846.2016.1210777253

[19] Franses, P.; van Dijk, D. Non-linear Time Series Models in Empirical Finance; Cambridge University254

Press, 2000; doi: 10.1017/CBO9780511754067255

[20] Zumbach, G. Discrete Time Series, Processes and Applications in Finance; Springer Finance Series.256

Springer: Berlin, Germany, 2013; doi: 10.1007/978-3-642-31742-2257

[21] Chan, K.C.; Karolyi, G.A.; Longstaff, F.A.; Sanders, A.B. An empirical comparison of alternative258

models of the short-term interest rate. The Journal of Finance 1992, 47, 1209–1227; doi: 10.1111/j.1540-259

6261.1992.tb04011.x260

8

https://doi.org/10.1016/j.intfin.2016.12.003
https://doi.org/10.1016/j.jmacro.2018.06.009
https://doi.org/10.1007/s10663-018-9400-3
https://doi.org/10.1080/09638199.2020.1720785
https://doi.org/10.1016/j.qref.2020.05.010
https://doi.org/10.1515/snde-2018-0056
https://doi.org/10.1111/j.1365-2966.2008.00453.x
https://doi.org/10.1080/13504851.2016.1223817
https://doi.org/10.2478/jcbtp-2019-0023
https://doi.org/10.2202/1935-1690.1675 
https://doi.org/10.1002/jae.1137
https://doi.org/10.1016/j.ijforecast.2011.04.006
https://doi.org/10.1007/s10614-019-09941-8
https://doi.org/10.1080/00036846.2016.1210777
https://doi.org/10.1017/CBO9780511754067
https://doi.org/10.1111/j.1540-6261.1992.tb04011.x
https://doi.org/10.1111/j.1540-6261.1992.tb04011.x
https://doi.org/10.1111/j.1540-6261.1992.tb04011.x


[22] Brenner, R.J.; Harjes, R.H.; Kroner, K. Another look at alternative models of the short-term interest261

rate. Journal of Financial and Quantitative Analysis 1995, 1, 85–107; doi: 10.2307/2331388262

[23] Koedijk, K.G.; Nissen, F.; Schotman, P.; Wolff, C. The dynamics of short-term interest rate volatility263

reconsidered. European Finance Review 1997, 1, 105–130; doi: 10.1023/A:1009714314989264

[24] Engle, R. F. Autoregressive conditional heteroscedasticity with estimates of the variance of United265

Kingdom inflation. Econometrica 1982, 50, 987–1007; doi: 10.2307/1912773266

[25] Bollerslev, T. Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics267

1986, 31, 307–328; doi: 10.1016/0304-4076(86)90063-1268

[26] Longstaff, F.A.; Schwartz, E.S. Interest rate volatility and the term structure: A two-factor general269

equilibrium model. Journal of Finance 1992, 47, 1259–1282; doi: 10.1111/j.1540-6261.1992.tb04657.x270

[27] Nelson, D.B. Conditional autoregressive conditional heteroskedasticity in assets returns: A new ap-271

proach.Econometrica 1991, 59, 347–370; doi: 10.2307/2938260272

[28] Ding, Z.; Granger, C.; Engle, R. A long memory property of stock returns and new model. Journal of273

Empirical Finance 1993, 1, 83–106.274

[29] Bali, T.G. Testing the empirical performance of stochastic volatility models of the short-term interest275

rate. Journal of Financial and Quantitative Analysis 2000, 35, 191–215; doi: 10.2307/2676190276

[30] Drost, F.C.; Klaassen, C. Efficient estimation in semiparametric GARCH models. Journal of Econo-277

metrics 1997, 81, 193–221; doi: 10.1016/S0304-4076(97)00042-0278

[31] Hou, A.J.; Suardi, S. Modelling and forecasting short-term interest rate volatility: A semiparametric279

approach. Journal of Empirical Finance 2011, 18, 692–710; 10.1016/j.jempfin.2011.05.001280

[32] Tian, S.; Hamori, S. Modeling interest rate volatility: A realized GARCH approach. Journal of Banking281

and Finance 2015, 61, 158–171; doi: j.jbankfin.2015.09.008282

[33] Balcilar, M.; Gupta, R.; Jooste, C. Long memory, economic policy uncertainty and forecasting283

US inflation: a Bayesian VARFIMA approach. Applied Economics 2017, 49(11), 1047–1054; doi:284

10.1080/00036846.2016.1210777285

[34] Aye, G.C.; Gupta, R.; Lau, C.K.M.; Sheng, X. Is there a role for uncertainty in forecasting output286

growth in OECD countries? Evidence from a time-varying parameter-panel vector autoregressive model.287

Applied Economics 2019, 51(33), 3624–3631; 10.1080/00036846.2019.1584373288

[35] Pierdzioch, C.; Gupta, R. Uncertainty and forecasts of U.S. recessions. Studies in Nonlinear Dynamics289

& Econometrics 2020, —it 24(4),1–20; doi: 10.1515/snde-2018-0083290

[36] Christou, C.; Gupta, R.; Hassapis, C. Does economic policy uncertainty forecast real housing returns in291

a panel of OECD countries? A Bayesian approach. The Quarterly Review of Economics and Finance292

2017, 65(C), 50–60; doi: 10.1016/j.qref.2017.01.002293

[37] Christou, C.; Gupta, R.; Hassapis, C.; Suleman, T. The role of economic uncertainty in forecasting294

exchange rate returns and realized volatility: Evidence from quantile predictive regressions. ournal of295

Forecasting 2017, 37(7), 705–719; doi: 10.1002/for.2539296

[38] Christou, C.; Gupta, R. Forecasting equity premium in a panel of OECD countries: The role of eco-297

nomic policy uncertainty. The Quarterly Review of Economics and Finance 2020, 76(C), 243–248; doi:298

10.1016/j.qref.2019.08.001299

[39] Aye, G.; Gupta, R.; Hammoudeh, S.; Kim, W.J. Forecasting the price of gold using dy-300

namic model averaging. International Review of Financial Analysis 2015, 41(C), 257–266; doi:301

10.1016/j.irfa.2015.03.010302

[40] Bonaccolto, G.; Caporin, M.; Gupta, R. The dynamic impact of uncertainty in causing and forecasting303

the distribution of oil returns and risk. Physica A: Statistical Mechanics and its Applications 2018,304

9

https://doi.org/10.2307/2331388
https://doi.org/10.1023/A:1009714314989
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1111/j.1540-6261.1992.tb04657.x
https://doi.org/10.2307/2676190
https://doi.org/10.1016/S0304-4076(97)00042-0
https://doi.org/10.1016/j.jempfin.2011.05.001
https://doi.org/10.1016/j.jbankfin.2015.09.008
https://doi.org/10.1080/00036846.2016.1210777
https://doi.org/10.1080/00036846.2019.1584373
https://doi.org/10.1515/snde-2018-0083
https://doi.org/10.1016/j.qref.2017.01.002
https://doi.org/10.1002/for.2539
https://doi.org/10.1016/j.qref.2019.08.001
https://doi.org/10.1016/j.irfa.2015.03.010


507(C), 446–469.; doi: 10.1016/j.physa.2018.05.061305

[41] Hassani, H.; Yeganegi, M.R.; Gupta, R. Does inequality really matter in forecasting real housing returns306

of the United Kingdom? International Economics 2019, 159, 18–25; doi: 10.1016/j.inteco.2019.03.004307

[42] Hassani, H.; Yeganegi, M.R.; Gupta, R.; Demirer, R. Forecasting stock market (realized) Volatility in308

the United Kingdom: Is there a role for economic inequality? International Journal of Finance and309

Economics, Forthcoming.310

[43] Chen, R.; Tsay, R.S. Functional-coefficient autoregressive models. Journal of the American Statistical311

Association 1993, 88, 298–308; doi: 10.2307/2290725312

[44] Cai, Z.; Fan, J.; Yao, Q. Functional-coefficient regression models for nonlinear time series. Journal of313

the American Statistical Association 2000, 95, 941–956; doi: 10.1080/01621459.2000.10474284314
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Figure 1: Daily interest rate and uncertainty time series and their first difference after the changepoint

(Friday, 22nd November 1985)
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Figure 2: Monthly interest rate and uncertainty time series and their first difference after the changepoint

(November 1972)
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Table 1: Augmented Dickey-Fuller test Results on original series and their differences, after changepoints

Series’ Names Time Series’ Parameter ADF Test

Variance (Lag order) Statistic P-Value

Daily Interest Rate 12.18 70 -1.44 0.5616

Daily Interest Rate’s

First Difference 0.0011 70 -7.93 8.637e-13

Monthly Interest Rate 21.49 10 -1.72 0.4186

Monthly Interest Rate’s

First Difference 0.36 10 -7.29 1.399e-10

Daily Uncertainty 0.72 70 0.0086 0.6854

Daily Uncertainty’s

First Difference 7.6428e-05 70 -7.80 1.677e-13

Monthly Uncertainty 29.08 10 -0.35 0.5591

Monthly Uncertainty’s

First Difference 10.09 10 -8.45 5.841e-15

Table 2: Daily out-of-sample mean forecast MSEs and Bootstrap KSPA P-Value for comparing each

model with minimum MSE model. P-Values are presented in parenthesis.

MSEs and Bootstrap MSEs and Bootstrap

KSPA (P-Values) for daily KSPA (P-Values) for daily

Forecasting interest rate’s first differene forecasting uncertainty’s first differene forecasting

Model h = 1 h = 5 h = 10 h = 20 h = 1 h = 5 h = 10 h = 20

RW 0.0011 0.0011 0.0011 0.0011 0.00009 0.00009 0.00009 0.00009

(0.0000) (0.9970) - - (0.1811) (0.1811) (0.2406) (0.4005)

ARMA 0.0007 0.0011 0.0011 0.0011 0.00002 0.00003 0.00004 0.00006

- - (0.9108) (0.9038) - - - -

FAR 0.0009 0.0011 0.0011 0.0011 0.00125 0.01962 1.493E+13 5444.99

(0.0000) (1.0000) (0.9037) (0.9032) (0.4318) (0.0000) (0.0000) (0.0000)

ARMAX 0.0007 0.0011 0.0011 0.0011 - - - -

(1.0000) (0.9973) (1.0000) (1.0000) - - - -

FARX 0.0016 0.0023 0.0022 0.0022 - - - -

(0.0000) (0.0000) (0.0000) (0.0000) - - - -

Min. MSE ARMA ARMA RW RW ARMA ARMA ARMA ARMA

Model
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Table 3: Monthly out-of-sample mean forecast MSEs and Bootstrap KSPA P-Value for comparing each

model with minimum MSE model. P-Values are presented in parenthesis.

MSEs and Bootstrap MSEs and Bootstrap

KSPA (P-Values) for monthly KSPA (P-Values) for monthly

Forecasting interest rate’s first differene forecasting uncertainty’s first differene forecasting

Model h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

RW 0.0866 0.0866 0.0866 0.0866 12.5340 12.5340 12.5340 12.5340

(0.5880) (0.9990) (0.9970) (0.9570) - (0.9741) (0.8351) (0.8851)

ARMA 0.0719 0.0867 0.0867 0.0867 13.8963 12.5174 12.5333 12.5340

- (0.9390) (0.9970) (0.7390) (0.0000) - (0.6947) (0.7547)

FAR 0.0725 0.0859 0.0859 0.0871 1429.0423 1437.8198 8.2976 8.1777

(0.9810) - (0.9980) (0.9830) (0.0004) (0.6274) - -

ARMAX 0.0734 0.0880 0.0880 0.0880 - - - -

(1.0000) (0.9610) (0.9970) (0.8940) - - - -

FARX 0.0757 0.0862 0.0855 0.0866 - - - -

(0.9930) (1.0000) - - - - - -

Min. MSE ARMA FAR FARX FARX RW ARMA FAR FAR

Model

Table 4: ARCH-LM test Results for first difference of daily and monthly interest rate

Series’ Name Parameter ARCH − LM Test

(Lag order) Statistic P-Value

Daily Interest Rate’s 20 986.9186 0.0000∗∗∗

First Difference

Monthly Interest Rate’s 20 192.5429 0.0000∗∗∗

First Difference

∗∗∗. The null hypothesis of ARCH-LM test

(H0: There is no existing ARCH up to specified lag order)

is rejected at 0.001 significance level.

14



Table 5: Daily out-of-sample volatility forecast MSEs and Bootstrap KSPA P-Value for comparing each

model with minimum MSE model. P-Values are presented in parenthesis.

Daily MSEs and Bootstrap KSPA (P-Values)

Forecasting Error for different forecasting horizons (h)

Model Dist. h = 1 h = 5 h = 10 h = 20

N1 0.00064(0.03)∗ 0.00069(0.016)∗ 0.0007(0.028)∗ 0.00068(0.016)∗

SN2 0.00063(0.086)† 0.00067(0.084)† 0.00068(0.078)† 0.00067(0.098)†

T 3 0.00057(0.000)∗ 0.00062(0.000)∗ 0.00064(0.000)∗ 0.00063(0.000)∗

FNGARCH ST 4 0.00051(0.000)∗ 0.00055(0.000)∗ 0.00058(0.000)∗ 0.0006(0.000)∗

witout GED5 0.00049 0.00052 0.00054(0.998)† 0.00052

predictors SGED6 0.0005(0.996)† 0.00052(1.000)† 0.00053 0.00052(0.99)†

IG7 0.00052(0.000)∗ 0.00056(0.000)∗ 0.00057(0.000)∗ 0.00055(0.000)∗

GH8 0.00052(0.000)∗ 0.00056(0.000)∗ 0.00058(0.000)∗ 0.00056(0.000)∗

JSU9 0.00052(0.000)∗ 0.00056(0.000)∗ 0.00057(0.000)∗ 0.00056(0.000)∗

N1 0.00061(0.066)† 0.00064(0.052)† 0.00065(0.014)∗ 0.00064(0.046)†

FNGARCHX SN2 0.00054(0.000)∗ 0.00059(0.002)∗ 0.00058(0.000)∗ 0.00056(0.000)∗

(FNGARCH T 3 0.00054(0.000)∗ 0.00059(0.000)∗ 0.0006(0.000)∗ 0.00058(0.000)∗

with ST 4 0.00054(0.000)∗ 0.00059(0.000)∗ 0.0006(0.000)∗ 0.00058(0.000)∗

Uncertainty GED5 0.00054(0.000)∗ 0.00058(0.000)∗ 0.00057(0.000)∗ 0.00056(0.000)∗

as SGED6 0.00061(0.001)∗ 0.00067(0.004)∗ 0.00069(0.002)∗ 0.0007(0.000)∗

predictor) IG7 0.00053(0.000)∗ 0.00058(0.000)∗ 0.00059(0.000)∗ 0.00057(0.000)∗

GH8 0.00055(0.000)∗ 0.0006(0.000)∗ 0.00058(0.000)∗ 0.00057(0.000)∗

JSU9 0.00053(0.000)∗ 0.00058(0.000)∗ 0.00059(0.000)∗ 0.00057(0.000)∗

Min MSE Model FNGARCH FNGARCH FNGARCH FNGARCH

(Error Distribution) GED5 GED5 SGED6 GED5

1. Normal; 2. Skew Normal; 3 t-student; 4. Skew t-student;
5. Generalized Error Distribution; 6. Skew-Generalized Error Distribution;
7. Invers Gaussian Distribution; 8. Generalized Hyperbolic Distribution
9. Johnsons SU Distribution[64];
∗. Accuracy of the model is significantly lower than the minimum MSE model (at α = 0.05 level);
†. Accuracy of the model is the same as minimum MSE model (at α = 0.05 level);
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Table 6: Monthly out-of-sample volatility forecast MSEs and KSPA P-Value for comparing each model

with minimum MSE model. P-Values are presented in parenthesis.

Monthly MSEs and Bootstrap KSPA (P-Values)

Forecasting Error for different forecasting horizons (h)

Model Dist. h = 1 h = 3 h = 6 h = 12

N1 0.06269(1.000)† 0.06591(1.000)† 0.06949(1.000)† 0.07336(1.000)†

SN2 0.06303(0.998)† 0.06594(0.996)† 0.06915(1.000)† 0.0726(0.994)†

T 3 0.06021 0.06314 0.06628 0.06956

FNGARCH ST 4 0.06296(0.998)† 0.06565(1.000)† 0.06852(1.000)† 0.07149(1.000)†

witout GED5 0.06094(0.000)∗ 0.07412(0.000)∗ 0.07608(0.000)∗ 0.07621(0.000)∗

predictors SGED6 0.06094(0.000)∗ 0.07412(0.000)∗ 0.07608(0.000)∗ 0.07621(0.000)∗

IG7 0.06267(1.000)† 0.06527(1.000)† 0.06803(1.000)† 0.07091(1.000)†

GH8 0.06259(1.000)† 0.06518(1.000)† 0.06797(1.000)† 0.07089(1.000)†

JSU9 0.0631(1.000)∗ 0.06576(1.000)† 0.0686(1.000)† 0.07156(1.000)†

N1 0.06425(0.020)∗ 0.07152(0.018)∗ 0.08019(0.020)∗ 0.09025(0.042)∗

FNGARCHX SN2 0.06498(0.102)† 0.07145(0.112)† 0.07906(0.092)† 0.08776(0.116)†

(FNGARCH T 3 0.06137(0.408)† 0.06593(0.416)† 0.07096(0.398)† 0.0764(0.394)†

with ST 4 0.06379(0.063)† 0.06885(0.988)† 0.07442(0.990)† 0.08042(0.982)†

Uncertainty GED5 0.06094(0.000)∗ 0.07412(0.000)∗ 0.07608(0.000)∗ 0.07621(0.000)∗

as SGED6 0.06094(0.000)∗ 0.07412(0.000)∗ 0.07608(0.000)∗ 0.07621(0.000)∗

predictor) IG7 0.06297(1.000)† 0.06591(1.000)† 0.06908(1.000)† 0.0724(1.000)†

GH8 0.06306(0.308)† 0.06747(0.302)† 0.07233(0.288)† 0.0776(0.278)†

JSU9 0.06363(0.898)∗ 0.06676(0.892)† 0.07011(0.890)† 0.07361(0.886)†

Min MSE Model FNGARCH FNGARCH FNGARCH FNGARCH

(Error Distribution) T 3 T 3 T 3 T 3

1. Normal; 2. Skew Normal; 3 t-student; 4. Skew t-student;
5. Generalized Error Distribution; 6. Skew-Generalized Error Distribution;
7. Invers Gaussian Distribution; 8. Generalized Hyperbolic Distribution;
9. Johnsons SU Distribution[64];
∗. Accuracy of the model is significantly lower than the minimum MSE model (at α = 0.05 level)
†. Accuracy of the model is the same as minimum MSE model (at α = 0.05 level)
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Table 7: Estimated models for daily interest rate and uncertainty forecasting

Uncertainty forecasting models

Forecasting Model Description

FAR Bandwidth: 0.2884, Kernel Function: Gaussian, p† = 1, d† = 1

ARMA dxt = 0.9767dxt−1 − 0.5126ωt−1 + ωt

RW dxt = 0.0005 + ηt

Interest rate mean models

Forecasting Model Description

FAR Bandwidth: 0.2884, Kernel Function: Gaussian, p† = 1, d† = 1

FARX Bandwidth: 0.2884, Kernel Function: Gaussian, p† = 1, d† = 1

ARMA dyt = 0.7009dyt−1 − 0.1189dyt−2 + νt

ARMAX dyt = 0.7005dyt−1 − 0.1189dyt−2 + 0.0452dxt + εt

RW dyt = −0.00087 + ζt

Interest rate volatility model with minimum out-of-sample forecasting MSE

Forecasting Model Description

FNGARCH σ0.9966
t = 0.006 + 0.3822σ0.9966

t−1 {|zt−1 + 0.0325| − 0.0789 (zt−1 + 0.0.0325)}1.3756

with GED + 0.022σ0.9966
t−2 {|zt−2 + 1.3033| − 0.2078 (zt−2 + 1.3033)}1.3756

error dis. + 0.017σ0.9966
t−3 {|zt−3 − 5.9897| − 0.3994 (zt−3 − 5.9897)}1.3756

+ 0.032σ0.9966
t−4 {|zt−4 + 7.2959|+ 0.5174 (zt−4 + 7.2959)}1.3756

FNGARCH σ1.0163
t = 0.0054 + 0.4001σ1.0163

t−1 {|zt−1 + 0.0325| − 0.122 (zt−1 + 0.0325)}1.3619

with SGED + 0.0193σ1.0163
t−2 {|zt−2 + 1.3033| − 0.2397 (zt−2 + 1.3033)}1.3619

error dis.∗ + 0.0145σ1.0163
t−3 {|zt−3 − 5.9897|+ 0.2461 (zt−3 − 5.9897)}1.3619

+ 0.0287σ1.0163
t−4 {|zt−4 + 7.2959|+ 0.4946 (zt−4 + 7.2959)}1.3619

.† for description of p and d see equation (1)

dxt and dyt are first difference of monthly uncertainty and interest rate, respectively.

ωt, ηt, νt, εt, ζt and zt are white noises.

.∗ Estimated skewness parameter of SGED distribution is 1.0509.
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Table 8: Estimated models for monthly interest rate and uncertainty forecasting

Uncertainty forecasting models

Forecasting Model Description

FAR Bandwidth: 0.3291, Kernel Function: Gaussian, p† = 1, d† = 1

ARMA dxt = 0.1981dxt−1 − 0.8045ωt−1 + ωt

RW dxt = 0.00068 + ηt

Interest rate mean models

Forecasting Model Description

FAR Bandwidth: 0.3291, Kernel Function: Gaussian, p† = 1, d† = 1

FARX Bandwidth: 0.3291, Kernel Function: Gaussian, p† = 1, d† = 1

ARMA dyt = 0.449νt−1 + νt

ARMAX dyt = 0.4509εt−1 + 0.0055dxt + εt

RW dyt = −0.00243 + ζt

Interest rate volatility model with minimum out-of-sample forecasting MSE

Forecasting Model Description

FNGARCH σ2.5842
t = 0.0685σ2.5842

t−1 {|zt−1 + 0.1878|+ 0.6253 (zt−1 + 0.1878)}6.0549

+ 0.7683σ2.5842
t−1

.† for description of p and d see equation (1)

dxt and dyt are first difference of monthly uncertainty and interest rate, respectively.

ωt, ηt, νt, εt, ζt and zt are white noises.
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