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Abstract

Recent dramatic declines in global malaria burden and mortality can be largely at-
tributed to the large-scale deployment of insecticidal-based measures, namely long-
lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the sus-
tainability of these gains, and the feasibility of global malaria eradication by 2040, may
be a�ected by increasing insecticide resistance among the Anopheles malaria vector.
We employ a new di�erential-equations based mathematical model, which incorporates
the full, weather-dependent mosquito lifecycle, to assess the population-level impact of
the large-scale use of LLINs, under di�erent levels of Anopheles pyrethroid insecticide
resistance, on malaria transmission dynamics and control in a community. Moreover, we
describe the bednet-mosquito interaction using parameters that can be estimated from
the large experimental hut trial literature under varying levels of e�ective pyrethroid
resistance. An expression for the basic reproduction number, R0, as a function of
population-level bednet coverage, is derived. It is shown, owing to the phenomenon of
backward bifurcation, thatR0 must be pushed appreciably below 1 to eliminate malaria
in endemic areas, potentially complicating eradication e�orts. Numerical simulations
of the model suggest that, when the baseline R0 is high (corresponding roughly to
holoendemic malaria), very high bednet coverage with highly e�ective nets is necessary
to approach conditions for malaria elimination. Further, while >50% bednet coverage is
likely su�cient to strongly control or eliminate malaria from areas with a mesoendemic
malaria baseline, pyrethroid resistance could undermine control and elimination e�orts
even in this setting. Our simulations show that pyrethroid resistance in mosquitoes
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appreciably reduces bednet e�ectiveness across parameter space. This modeling study
also suggests that increasing pre-bloodmeal deterrence of mosquitoes (deterring them
from entry into protected homes) actually hampers elimination e�orts, as it may fo-
cus mosquito biting onto a smaller unprotected host subpopulation. Finally, we ob-
serve that temperature a�ects malaria potential independently of bednet coverage and
pyrethroid-resistance levels, with both climate change and pyrethroid resistance posing
future threats to malaria control.

Keywords: Pyrethroid; LLINs; basic reproduction number; temperature e�ects.

1 Introduction

Malaria, a deadly disease caused by protozoan Plasmodium parasites that spread between
humans via the bite of infected adult female Anopheles mosquitoes [124, 125], remains a
major public health burden a�ecting many parts of the globe. Over 2.5 billion people live
in areas whose local epidemiology permits transmission of P. falciparum, responsible for
the most life-threatening form of malaria [50, 64]. The disease is endemic in 91 countries,
and caused 219 million cases and 435,000 deaths in 2017 [22, 117, 130]. Disease burden is
concentrated in the African Region, accounting for about 90% of cases and mortality (with
the majority of deaths in children under the age of �ve) [125]. Other populations at high
risk of malaria include pregnant women and those living with HIV/AIDS (owing to their
weakened immune systems) [82, 124]. Malaria transmission dynamics is greatly a�ected by
numerous abiotic and biotic factors, such as the increased mobility of people (the reservoir
for the malaria parasite), the altered distribution of disease vectors (Anopheles mosquitoes)
due to climate and environmental changes, and malaria's incursions into new areas (e.g.,
East African tropical highlands [57]).

The lifecycle of the ectothermal Anopheles mosquito, which consists of three aquatic
juvenile stages (eggs, larva and pupa) and an adult stage, is intimately connected to local
weather conditions [40, 96, 98], and is fundamental to the spread of malaria. In sub-Saharan
Africa, favorable environmental conditions (a warm tropical climate) and the relatively long
lifespans and strong human biting habits of the major local Anopheles species, along with
broader socioeconomic conditions, and agricultural and land-use practices, make this region
particularly vulnerable to malaria transmission. Adult female Anopheles mosquitoes take
blood meals from vertebrate hosts (needed for egg development) every few days, with the
exact interval depending strongly upon temperature [15]. The mosquito acquires Plasmodium
infection by taking blood meals from an infected human, and subsequently passes the disease
to a susceptible human, once parasite maturation within the mosquito is complete. As
mosquitoes must routinely survive the time interval from initial infection to infectivity (which
could range from 8 to 30 days, depending on ambient temperature [34]) for malaria to
be transmitted, this explains why the relatively long lifespans of African Anopheles is so
important for e�ective malaria transmission.

Great success has been recorded in the �ght against malaria since about the year 2000,
largely owing to concerted global public health e�orts, such as the Roll Back Malaria ini-
tiative and the United Nations Millennium Development Goals (MDGs)[59, 123]. However,
malaria remains a major public health challenge for about half of the world's population
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[51, 121, 122]. New concerted global e�orts, such as The Global Technical Strategy for
Malaria 2016�2030 (approved by the World Health Assembly in May 2015 [123]) and the
Zero by 40 Initiative (an initiative of �ve chemical companies with the support of the Bill &
Melinda Gates Foundation and the Innovative Vector Control Consortium[117, 119]), aimed
at eradicating malaria by 2030 or 2040, respectively, are currently underway. Central to
these laudable malaria eradication e�orts is the widespread use of insecticide-based vec-
tor control interventions, including pyrethroid-based insecticide-treated nets (ITNs; later
replaced by long-lasting insecticidal nets (LLINs)), indoor residual spraying (IRS) and lar-
vacides [10, 59, 95, 120], complemented by artemisinin-based combination drug therapy.
Five major classes of insecticide are used in malaria control e�orts, namely pyrethroids,
organochlorines, organophosphates, carbamates and the recent addition of neonicotinoids,
with all �ve used for IRS [129]. Only the pyrethroids, however, owing to their low mam-
malian toxicity and irritant e�ect on mosquitoes, are recommended for ITNs/LLINs [65]. It is
notable that the earlier WHO's (World Health Organization's) Global Malaria Eradication
Programme (1955�1969) relied almost exclusively on the use of DDT (Dichlorodiphenyl-
trichloroethane) and other insecticidal compounds for vector control, with the theoretical
goal of interrupting malaria transmission via decreasing adult survival times, rather than
decreasing mosquito abundance per se, a goal largely based on the mathematical model of
the malariologist George Macdonald [77, 87]. Long-lasting insecticidal bednets have been
used to great success in reducing the global malaria burden [16]. This success is partly
attributed to community protection. In particular, if the coverage of bednet usage exceeds
a certain threshold level, overall mosquito densities and malaria transmission are impacted
su�ciently to also protect those individuals not using a bednet [67, 76, 95].

It has been estimated that bednets and IRS accounted for 81% of the reduction in malaria
burden recorded in the past 15 years (with most of the bene�ts resulting from the use of
bednets) [16]. The dramatic success of pyrethroid-based LLINs (over IRS) is likely due to
multiple factors, including the fact that LLINs target indoor-biting mosquitoes, are e�ective
as a physical barrier to biting, and pyrthroids have an excito-repellent e�ect that may divert-
ing mosquitoes before they feed on the (protected) human host. However, at the most basic
level, the success of LLINs is likely simply due to the enormous scale of implementation in
endemic areas, especially in sub-Saharan Africa: Nearly 1.5 billion pyrethroid-based bednets
have been deployed in endemic areas since 2010, with 1.25 billion distributed in sub-Saharan
Africa [59, 111]. Unfortunately, this widespread and heavy use of insecticides has resulted
in the emergence of vector resistance to nearly every currently-available agent used in the
insecticides [3, 38, 62, 126] with pyrethroid resistance via multiple molecular mechanisms
now widely observed across the African continent [55]. Given this, and the dominant role
of LLINs in malaria mortality reductions, any threat to their e�cacy via resistance is of
foremost importance.

Perhaps most signi�cantly, a recent and very large observational cohort study across �ve
countries found that while LLIN users had lower rates of malaria infection and disease, no
relationship between laboratory-assessed insecticide resistance and malaria epidemiology was
detected [69]. Nevertheless, at least some data does suggest that resistance can undermine
the control of malaria disease. One recent study suggests that insecticide resistance has led
to a rebound in malaria incidence in South Africa [3]. A large, factorial randomized clinical
trial [102] comparing LLINs, LLINs treated with a piperonyl butoxide (PBO) synergist, and
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IRS, showed bene�t to malaria control with either IRS or a PBO synergist in addition to
an LLIN, suggesting that pyrethroid resistance decreased the e�cacy of the standard LLIN
alone. A recent experimental hut trial [113] also suggested bene�t to LLINs with PBO
synergists in an area with highly pythrethroid-resistant Anopheles.

Some prior mathematical work has examined the impact of insecticide resistance on
malaria transmission dynamics. For example, Barbosa et al. [10] developed a genetic model
to predict changes in mosquito �tness and resistance allele frequency (parameters that de-
scribe insecticide selection, �tness cost as well as LLINs and synergist (PBO) are incor-
porated). The results of their investigation suggested that resistance was most sensitive
to selection coe�cients, �tness cost and dominance coe�cients. Chitnis et al. [28] de-
veloped and analysed a linear di�erence equation model for the dynamics of host-seeking
adult female mosquitoes in a heterogeneous population of hosts in a community where ITNs
are used. In addition to incorporating the gonotrophic cycle of the malaria vector and the
aforementioned host heterogeneity, other notable features of the model in [28] include stage-
structure in Anopheles feeding cycle and that such cycle varies across mosquitoes as well
as allowing for the assessment of various mosquito control interventions. Consistent with
previous studies for the impact of ITNs on malaria epidemiology in both ITN-protected and
unprotect hosts, the Chitnis et al. study [28] shows bene�cial e�ects to unprotected humans
at both, low and high, ITN coverage levels. Birget et al. [17] developed a population-genetic
model of the spread of insecticide-resistance in Anopheles mosquitoes in response to ITNs
and larvicides, which suggested indoor ITNs were less likely to select for resistance. Brown et
al. [21] developed a mathematical model to investigate optimal (cost-e�ective) strategies for
mosquito control in the presence of insecticide resistance. Consistent with previous studies,
their results show that �tness costs are the key elements in the computation of economically
optimal resistance management strategies. Mohammed-Awel et al. [83] designed a novel
deterministic model for assessing the population-level impact of mosquito insecticide resis-
tance on malaria transmission dynamics and to evaluate the community-wide impact of the
use ITNs, IRS and their combination. Their study showed that the prospect of the e�ec-
tive control of malaria spread in endemic settings (while minimizing the risk of insecticide
resistance in the female adult mosquito population), using ITNs and IRS, is quite promising
(provided the e�ectiveness and coverage levels are at optimal levels). Birget and Koella
[18] proposed a model to assess the relative importance in di�erent epidemiological contexts
of repellent and insecticidal properties of ITNs. Gu and Novak [118] used an agent-based
model that incorporated the killing and avoidance of individual mosquitoes exposed to ITNs
in a hypothetical village setting with 50 houses and 90 aquatic habitats. Smith et al. [109]
used a mathematical model to establish the relationship between P. falciparum parasite rate
(PfPR) and ITNs coverage. Killeen and Smith [67] proposed a model that describes the
interaction of a blood-seeking mosquito with either bednet-protected or unprotected hosts
as a two-stage process, whereby mosquito are either diverted from the attempt, or engage
in an attempt and then either die or succeed in taking a bloodmeal. Similar bednet-human
interaction and feeding cycle models are described in [53, 68, 79, 97].

The main objective of the current study has been to develop a mathematical model for
assessing the impact of insecticide resistance on malaria epidemiology in malaria-endemic
areas that adopt wide-scale use of LLINs. The main motivation is twofold. First is the fact
that LLINs are the core intervention (due to their superior success over IRS) for National
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Malaria Prevention Programs [127, 128]. Second is the fact that the impact of pyrethroid
resistance on malaria transmission/epidemiology is not well-understood and remains a sub-
ject for considerable debate within the malaria control community [3, 69, 102, 113]. The
developed model, which takes the form of a deterministic system of nonlinear di�erential
equations, incorporates key features of aquatic and adult mosquito dynamics (including the
aquatic developmental stages, adult mosquito gonotrophic cycle, parasite sporogony and
schizogony in the hosts population), disease transmission in humans, and the use of bednets
as the sole control strategy. The human population is strati�ed based on whether or not
they use LLINs. We partly adapt the prior weather-dependent malaria model of Okuneye
et al. [96], and previous bednet-mosquito interaction models, such as those proposed in
[53, 67, 68, 79, 97]. We have reviewed the experimental hut trial literature, and the relation-
ships between key parameters describing bednet e�cacy have been extracted from a large
number of experimental studies. Thus, the model quantitatively represents resistance in a
realistic manner.

The ultimate goal is to determine whether e�ective disease control (or elimination) is
feasible, using LLINs, despite insecticide resistance. The paper is organized as follows. The
model is formulated in Section 2, and analysed for its qualitative features in Section 3. The
e�ect of local temperature variability on the e�ectiveness of LLINs (and, hence, on disease
dynamics and control) is assessed in Section 4. Discussion and concluding remarks are
reported in Section 5.

2 Model Formulation

The model describes the temporal dynamics of immature and adult mosquitoes and humans.
The total immature mosquito population is split into compartments for eggs (E(t)), four
larval instar stages (Li(t); i = 1, 2, 3, 4 and pupae (P (t)). The dynamics of the adult female
mosquitoes is governed by the gonotrophic cycle. Following [96], the adult female mosquito
gonotrophic cycle is divided into three stages [32, 96]:

Stage I : host-seeking and taking of a bloodmeal

Stage II : digestion of bloodmeal and egg maturation

Stage III : search for, and oviposition into, a suitable body of water (breeding site)

The populations of vectors in Stages I, II and III of the gonotrophic cycle at time t are
denoted by X(t), Y (t) and Z(t), respectively. With respect to Plasmodium infection and
the sporogonic cycle, vectors in each gonotrophic stage is further subdivided into susceptible
(SX(t), SY (t), SZ(t)), exposed (i.e., infected but not yet infectious) (EX(t), EY (t), EZ(t))
and infectious (IX(t), IY (t), IZ(t)) compartments. Thus, the total number of adult female
Anopheles mosquitoes at time t, denoted by NM(t), is given by

NM(t) = SX(t) + EX(t) + IX(t) + SY (t) + EY (t) + IY (t) + SZ(t) + EZ(t) + IZ(t).

The total human population at time t, denoted by NH(t), is split into the total number of
humans who are protected by bednets (i.e., those who consistently sleep under an LLIN),
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denoted by NHp(t), and those who are not protected, denoted by NHu(t). The population of
protected and unprotected individuals is further subdivided into susceptible SHp(t)(SHu(t)),
exposed EHp(t)(EHu(t)), infectious IHp(t)(IHu(t)) and recovered RHp(t)(RHu(t)) humans, so
that

NH(t) = NHp(t) +NHu(t),

= SHp(t) + SHu(t) + EHp(t) + EHu(t) + IHp(t) + IHu(t) +RHp(t) +RHu(t).

The �ow diagram of the model to be developed is depicted in Figure 1.

Figure 1: Flow diagram of the model {(2.1), (2.2), (2.4)}.

2.1 Equations for the Dynamics of Immature Mosquitoes

It is convenient to de�ne L =
4∑
j=1

Lj. The equations for the dynamics of immature mosquitoes

are given by (where a dot represents di�erentiation with respect to time t):

Ė = ψEϕZ

(
1− E

KE

)
+

(SZ + EZ + IZ)− [σE(TW ) + µE(TW )]E,

L̇1 = σE(TW )E − [σL1(TW ) + µL(TW ) + δLL]L1,

L̇j = σLj−1(TW )Lj−1 − [σLj
(TW ) + µL(TW ) + δLL]Lj; j = 2, 3, 4,

Ṗ = σL4(TW )L4 − [σP (TW ) + µP (TW )]P,

(2.1)

where TA and TW represent air and water, temperature, respectively. In (2.1), ψE is the
number of eggs laid per oviposition, ϕZ is the rate at which female mosquitoes transi-
tion from Stage III to Stage I of the gonotrophic cycle (i.e., the rate of oviposition for
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mosquitoes in Stage III) and KE is the environmental carrying capacity of eggs (the no-
tation r+ = max{0, r} is used to ensure the non-negativity of the logistic term). The
quantity δLL represents the density-dependent larval mortality rate [1]. Further, µi and σi
(i = E,L, P ) represent the natural death and maturation rates of immature mosquitoes of
type i, respectively. The temperature-dependence of the developmental and survival param-
eters is presented in Section 2.4.

2.2 Equations for the Dynamics of Adult Female AnophelesMosquitoes

As stated above, the dynamics of the adult female Anopheles mosquitoes is governed by
the gonotrophic cycle. The total vector population is split into the aforementioned nine
compartments (SX , EX , IX , SY , EY , IY , SZ , EZ , IZ) corresponding to the three gonotrophic
cycle stages [96]. We let πp represent the proportion of humans that are protected by a
bednet (i.e. consistently sleep under an LLIN), while πu = 1−πp is the unprotected portion.
In other words, 0 < πp ≤ 1 is the bednet coverage. Bednet-mosquito interactions are de�ned
by three basic parameters: εdeter, εdie,i, and εbite,i, as described now. We let εdeter represent
the probability that an adult female mosquito is deterred from entering an LLIN-protected
hut (or house), relative to an unprotected hut (or house). That is,

εdeter =
Number of mosquitoes in control group− Number of mosquitoes in the protected hut

Number of mosquitoes in the control group
.

It should be emphasized that, in the context of this study, �deterrence� (as measured by the
parameter εdeter) means that the mosquito is deterred from entering the house before any
attempt is made to take a bloodmeal. Thus, the parameter εdeter does not include any direct
�barrier� property of the net.

We let εdie,i (with i = {p, u}; p=protected; u=unprotected) represent the probability that
an adult female mosquito dies following entry into a protected (unprotected) house. The
parameters εbite|die,i and εbite|∼die,i represent, respectively, the probability that an adult female
mosquito successfully takes a bloodmeal from the human host, given that the mosquito did
or did not die, with i (p or u) indicating the bednet protection status of the targeted human
Figure 2 depicts the associated decision tree of the aforementioned probabilities).

The (temperature-dependent) equations for adult female mosquito dynamics are given
by:

Stage I


ṠX = fσP (TW )P + ϕZSZ + bH(Q2 +Q3)SX − [bHQ1 + µX + µM(TA)]SX ,

ĖX = ϕZEZ + bH(Q2 +Q3)EX − [bHQ1 + κV (TA) + µX + µM(TA)]EX ,

İX = ϕZIZ + κV (TA)EX + bH(Q2 +Q3)IX − [bHQ1 + µX + µM(TA)]IX ,

(2.2)

Stage II


ṠY = bH [(1− βV ωp)R1 + (1− βV ωu)R2]SX − [θY (TA) + µM(TA)]SY ,

ĖY = bH(βV ωpR1 + βV ωuR2)SX + bH(R1 +R2)EX − [θY (TA) + κV (TA) + µM(TA)]EY ,

İY = κV (TA)EY + bH(R1 +R2)IX − [θY (TA) + µM(TA)]IY ,
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Figure 2: A decision tree of probabilities of the model {(2.1), (2.2), (2.4)}.

Stage III


ṠZ = θY (TA)SY − [ϕZ + µM(TA)]SZ ,

ĖZ = θY (TA)EY − [ϕZ + κV (TA) + µM(TA)]EZ ,

İZ = θY (TA)IY + κV (TA)EZ − [ϕZ + µM(TA)]IZ .

where,

Q1 = πp(1− εdeter) + πu,

Q2 = πp(1− εdeter)(1− εdie,p)(1− εbite|∼die,p),
Q3 = πu(1− εdie,u)(1− εbite|∼die,u),
R1 = πp(1− εdeter)(1− εdie,p)εbite|∼die,p, (2.3)

R2 = πu(1− εdie,u)εbite|∼die,u,

ωp =
IHp

NHp

,

ωu =
IHu

NHu

,

with ωp (ωu) representing the fractions of protected (unprotected) humans that are infec-
tious.

In (2.2) and (2.2), the term fσP (0 < f < 1) represents the proportion of new adult
mosquitoes that are females. Susceptible adult mosquitoes in Stage I of the gonotrophic
cycle encounter hosts at a rate bHQ1 (where bH is the mosquito-host encounter rate per
unit time, and Q1 is de�ned above). The rate bH(Q2 + Q3) represents failure to take a
bloodmeal ending in survival (and thus a return to stage I of the gonotrophic cycle), while
bH(R1 + R2) is the rate at which encounters result in successful bloodmeals and survival.
It should be emphasized that, in the formulation of the model (2.2) questing adult female
mosquitoes that do not succeed in biting bednet-protected humans will not necessarily have
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to bite an unprotected human. They will simply look for a bloodmeal from another human
who may be protected or not (see Figure 1). The parameter κV represents the maturation
rate of malaria parasite in the mosquito (i.e., 1

κV
is the average duration of the sporogonic

cycle), while the parameter θY is the progression rate from Stage II to Stage III of the
gonotrophic cycle. Susceptible adult female mosquitoes in Stage II of the gonotrophic cycle
acquire malaria infection at the rate bH(βV ωpR1 + βV ωuR2), where βV is the transmission
probability from infectious human to a susceptible mosquito, ωp and ωu are the fractions of
protected and unprotected infectious humans, respectively, and µM is the natural mortality
rate of adult female mosquitoes. Following Chitnis et al. [28], we assume an additional
mortality rate, µX, for adult female mosquitoes in the host-seeking stage, as this
stage of the gonotrophic cycle is expected to be most hazardous to the adult
female mosquitoes. Moreover, this helps account for a survival cost potentially
incurred when the adult female mosquitoes are deterred from protected hosts
and, thus, must expend more energy in questing for bloodmeal. Furthermore, as
noted by Cator et al. [31], sporozoite-infected Anopheles gambiae females are more
likely than uninfected females to take bloodmeal from multiple hosts in the same
night, and they su�er higher feeding-associated mortality. It should, however,
be mentioned that very little is known about adult mosquito mortality in the
�eld, and the degree that mortality is associated with bloodfeeding events is
unknown. Such data, when available, will be very valuable in malaria modeling
studies.

From the above formulation, the (time-varying) entomological inoculation rates (EIRs;
the average numbers of infectious bites per human per unit time [40]) for protected and
unprotected hosts are given, respectively, by

EIRp(t) = bH
IX(t)

NHp(t)
πp(1− εdeter)

[
εbite|die,p εdie,p + εbite|∼die,p(1− εdie,p)

]
,

EIRu(t) = bH
IX(t)

NHu(t)
πu
[
εbite|die,u εdie,u + εbite|∼die,u(1− εdie,u)

]
.

Similarly, the biting (infectious or uninfectious) rates for protected and unprotected host are
given, respectively, by

bitingp(t) = bH
[SX(t) + EX(t) + IX(t)]

NHp(t)
πp(1− εdeter)

[
εbite|die,p εdie,p + εbite|∼die,p(1− εdie,p)

]
,

bitingu(t) = bH
[SX(t) + EX(t) + IX(t)]

NHu(t)
πu
[
εbite|die,u εdie,u + εbite|∼die,u(1− εdie,u)

]
.

The parameters related to the use of LLINs in the community (i.e., bH , πp, πu, εdeter,
εbite|∼die,p, εbite|∼die,u, εbite|die,p, εbite|die,u, εdie,p and εdie,u) have been estimated for various
mosquito-bednet pairings using experimental hut trial data conducted in various parts of
sub-Saharan Africa. We assume, for this work, that εbite|∼die,i = εbite,i, for i = u, p. In brief,
such trials typically include a control net and several treated nets that may be of di�erent
classes (conventional ITN vs. LLIN), subject to di�erent degrees of wear (e.g. washing
and/or arti�cial holing), and conducted in areas with di�erent levels of local anopheline
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pyrethroid resistance (or employ lab strains). Volunteers sleep under nets in these trials,
and the total number of mosquitoes collected in each hut, the total bloodfed, and the total
dead are typically reported. We identi�ed 26 publications conducted in Africa that reported
su�cient detail to calculate the above metrics [6, 7, 8, 11, 22, 27, 32, 33, 35, 36, 42, 66, 70,
72, 80, 81, 89, 90, 91, 92, 93, 94, 99, 100, 103, 114],

Every mosquito-hut pairing reported in these trials gives a value for εdie,p, εbite,p, and
εdeter. Moreover, each pairing represents some �e�ective� level of insecticide resistance (i.e.
an ine�ective net and a sensitive mosquito and e�ective net but highly resistant mosquito
may both represent pairings of high e�ective resistance). These pairings can be used to
estimate how εdie,p and εbite,p systematically co-vary as e�ective resistance changes, and a
functional relationship between εdie,p (the probability of death following encounter with a
protected host) and εbite,p (the probability of taking a bloodmeal from a protected host) can
been estimated, as depicted in Figure 3. We choose the exponential relation,

εbite,p = a0 exp (−b0 εdie,p),

where the best-�t values of the constants a0 and b0 are found, using weighted nonlinear
least squares (weighting by number of mosquitoes collected in each trial), to be a0 = 0.55
and b0 = 2. The value of this relationship is that it allows e�ective bednet resistance
to be described by a single parameter, εdie,p, with εbite,p determined as a function of εdie,p.
Following Randriamaherijaona et al. [103], we estimate the probability that a mosquito takes
a bloodmeal from a person sleeping without a net or under an extremely holed untreated
net is on the order of 70-80%, while the probability of death is ≤ 5%. Hence, we take εbite,u
= 0.7 and εdie,u = 0.05 as baseline parameters for encounters with unprotected hosts. The
parameter εdeter is assumed to vary between 0.01 to 0.4.

In this study, the following three e�ectiveness levels of the LLINs are considered (given
in Table 4), as also highlighted in Figure 3:

(i) Weakly-e�ective net: this is a net that has low killing e�cacy and high biting probabil-
ity. For this setting, we choose εdie,p = 0.25, εbite,p = 0.33. Here, the adult mosquitoes
are highly resistant to the net.

(ii) Moderately-e�ective net: this is a net with moderate killing e�cacy and moderate
biting probability. Here, we set εdie,p = 0.5, εbite,p = 0.2, and the adult mosquitoes are
moderately resistant to the net.

(iii) Highly-e�ective net: this is a net with very high killing e�cacy and very low biting
probability. Here, we set εdie,p = 0.9, εbite,p = 0.1. This corresponds to the case where
the adult mosquitoes are weakly resistant to the net.
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Figure 3: Data-points showing probability of death (εdie,p) and blood feeding (εbite,p) for various
mosquito-net pairings drawn from experimental hut trial data. Each point is coded according to
net type by symbol shape, and according to mosquito resistance class (either pyrethroid resistant
or sensitive). Additionally, representative points on the exponential curve �t relating εbite,p to εdie,p
are marked, signifying parameters for a highly e�ective (εdie,p = 0.9, εbite,p = 0.1), moderately

e�ective (εdie,p = 0.5, εbite,p = 0.2), and weakly e�ective (εdie,p = 0.25, εbite,p = 0.33) bednet.
Data for the curves is drawn from the references [6, 7, 8, 11, 22, 27, 32, 33, 35, 36, 42, 66, 70, 72,
80, 81, 89, 90, 91, 92, 93, 94, 99, 100, 103, 114], as described further in the text.
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2.3 Equations for the Dynamics of Human Population

The equations for the dynamics of the human population are given by:

ṠHp = Ππp + ηHRHp − (λV Hp + µH)SHp ,

ĖHp = λV HpSHp − (γH + µH)EHp ,

İHp = γHEHp − (αH + µH + δH)IHp ,

ṘHp = αHIHp − (ηH + µH)RHp ,

ṠHu = Ππu + ηHRHu − (λV Hu + µH)SHu ,

ĖHu = λV HuSHu − (γH + µH)EHu ,

İHu = γHEHu − (αH + µH + δH)IHu ,

ṘHu = αHIHu − (ηH + µH)RHu ,

(2.4)

where, λV Hp(t) = βM EIRp(t) and λV Hu(t) = βM EIRu(t).
In (2.4), Π represents the recruitment rate of individuals (by birth or immigration) into

the population (with πp and πu as de�ned in Section 2). The parameter ηH represents the
loss of immunity by individuals who recovered from malaria. Susceptible protected humans
acquire malaria infection from infectious mosquitoes at a rate λV Hp (λV Hu), with βM being
the probability of infection per bite and EIRp (EIRu) as de�ned in Section 2. Natural
mortality occurs in all human compartments at a rate µH . Infected individuals develop
clinical symptoms of malaria at a rate γH , and recover at a rate αH . Finally malaria-induced
death occurs in the infectious human population at a rate δH .

The model {(2.1), (2.2), (2.4)} is a modi�cation of the model in [96] by:

(a) explicitly including the dynamics of the adult mosquitoes under the in�uence of bednet
usage (in Stages I and II of the gonotrophic cycle);

(b) stratifying the human population in terms of bednets usage (only one class for suscep-
tible, exposed, infectious and recovered humans was used in [96]).

The 23-dimensional nonlinear continuous-time model {(2.1), (2.2), (2.4)} is also an extension
of the 3-dimenisonal, linear, di�erence equation model developed by Chitnis et al. [28] by:

(i) explicitly including the dynamics of the immature mosquitoes (i.e., adding equations
for the dynamics of eggs, the four larval instars and the pupal stages of the aquatic
cycle; this was not included in [28]) ;

(ii) explicitly incorporating the deterrence property of the bednet (this was not explicitly
included in [28]);

(iii) explicitly including the dynamics of the adult mosquitoes under the in�uence of bednet
usage (in Stages I and II of the gonotrophic cycle);

(iv) including the dynamics of humans vis a vis malaria transmission, and stratifying the
human population in terms of bednets usage (the dynamics of humans is not explicitly
incorporated in the model in [28], making the model linear);
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(v) explicitly incorporating the e�ect of temperature variability on the population ecology
of immature and adult mosquitoes (this was not considered in [28]).

Furthermore, unlike in the case of the model in [28], the model developed in this study is
simulated subject to three e�ectiveness levels (low, moderate and high) of the bednets used
in the community. This allows for the assessment of various levels of insecticide resistance
in the community (these bednets e�ectiveness levels are not considered in [28]).

The state variables and parameters of the model {(2.1), (2.2), (2.4)} are described in
Tables 1-3. Baseline values and ranges of the parameters of the model are tabulated in
Table 4 (more detailed descriptions may be found in [96]). All bednet-related parameters
vary with net e�ectiveness, as described above, with the sole exception of εdeter, which we
�x at 0.1 for all simulation results, unless otherwise stated.

Table 1: Description of state variables for the model {(2.1), (2.2), (2.4)}
Variables Interpretation
E Number of eggs
Lj (j = 1, 2, 3, 4) Number of larvae at instar Stage j
P Number of pupae

SX , EX , IX Number of susceptible, exposed, and infectious
female mosquitoes in gonotrophic Stage I, respectively

SY , EY , IY Number of susceptible, exposed, and infectious
female mosquitoes in gonotrophic Stage II, respectively

SZ , EZ , IZ Number of susceptible, exposed, and infectious,
female mosquitoes in gonotrophic Stage III, respectively

SHp(SHu) Number of protected (unprotected) susceptible humans
EHp(EHu) Number of protected (unprotected) exposed (infected but not yet infectious) humans
IHp(IHu) Number of protected (unprotected) infectious (symptomatic) humans
RHp(RHu) Number of protected (unprotected) recovered humans

2.4 Temperature-dependent Parameters

Both vector and parasite are ectothermal (dependent on ambient temperature). Thus, their
life histories are signi�cantly a�ected by temperature. For instance, adult and immature
aquatic mosquito survival is maximized for temperature values in the mid-20s (◦C), with
survival tailing o� rather symetrically at higher and lower temperatures [40]. Further, the
development rates of Plasmodium parasites, immature anophelines and mosquito eggs gener-
ally increase with increasing temperature to, at least, about 30◦C [98, 40]. Thermal response
functions for temperature-dependent parameters are determined from experimental lab data
as follows.

Death rate of adult female mosquitoes (µM(TA)). The mean survival times for adult
Anopheles gambiae under laboratory conditions, and under constant ambient temperatures
ranging from 5 to 40oC (5 oC intervals), are taken from [12].

1

µM(TA)
= max(0.01, a+ bTA + cT 2

A), (2.5)
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Table 2: Description of bednet-independent parameters of the model {(2.1), (2.2), (2.4)}
Parameters Interpretation
µM Mortality rate for the mosquito population
µX Additional mortality rate for those mosquitoes deterred from entering the protected hut
δL Density-dependent mortality rate of larvae
κV Progression rate of exposed adult female mosquito to infectious stage
ϕZ Oviposition rate for adult in Stage III of the gonotrophic cycle (Stage III to Stage I transition)
βV Transmission probability from infected human to a susceptible mosquito
βM Transmission probability from infected mosquito to a susceptible human
ωp(ωu) Fraction of protected (unprotected) humans that are infectious
θY Progression rate for Stage II of the gonotrophic cycle
f Proportion of adult mosquitoes that are females
ψE Number of eggs per oviposition event (Stage III to Stage I transition)
KE Carrying capacity of eggs
σE Maturation rate from egg to larvae
σL Maturation rate from larvae to pupae
σP Maturation rate from pupae to adult mosquitoes
µE Mortality rate of eggs
µL Mortality rate of larvae
µP Mortality rate of pupae
Π Recruitment rate of humans into the population
λV H Infection rate of susceptible humans
γH Progression rate of humans from exposed to infectious (symptomatic) class
δH Malaria-induced mortality rate for humans
αH Recovery rate of infected humans
ηH Rate of loss of infection-acquired immunity
µH Natural mortality rate of humans

Table 3: Description of bednet-related parameters of the model {(2.1), (2.2), (2.4)}
Parameters Interpretation
πp Proportion of protected hosts
πu Proportion of unprotected hosts
εdeter Probability repelled before entering protected hut relative to unprotected
εbite|∼die,p Probability of bloodmeal in protected houses
εbite|∼die,u Probability of bloodmeal in unprotected houses
εbite|die,p Probability of bloodmeal, given death, in protected houses
εbite|die,u Probability of bloodmeal, given death, in unprotected houses
εdie,p Probability of death in protected houses
εdie,u Probability of death in unprotected houses

Table 4: Parameters for bednet e�ectiveness
levels with deterrence εdeter set to zero.

Bednet e�ectiveness εdie,p εbite,p
Weakly-e�ective net 0.25 0.33
Moderately-e�ective net 0.5 0.2
Highly-e�ective net 0.9 0.1

14



Table 5: Ranges and baseline values of temperature-independent parameters of the model {(2.1),
(2.2), (2.4)}. The estimate for KE is de�ned in terms of the total human population at the disease-
free equilibrium ( Π

µH
) to ensure that the mosquito: host ratio falls within the realistic range of 0.1

to 10 mosquitoes per person per day typically encountered in the �eld [77].
Parameters Range (per day) Baseline Value (per day) Reference
µM 0.0431�0.1000 0.0431 Adapted from [96]
µX 0�0.1 0.05 Estimated
δL 0�0.0001 0.00002 Adapted from [96]
κV 0.070�0.0973 0.0851 Adapted from [96]
βV 0.0200�0.2500 (dimensionless) 0.1500 (dimensionless) [25, 73]
βM 0.0100�0.5000 (dimensionless) 0.5000 (dimensionless) [106, 108]
θY 0.4000�0.4964 0.2807 Adapted from [96]
f 0.5000�0.8000 (dimensionless) 0.5000 (dimensionless) [96]
ψE 10�150 eggs per oviposition 65 [110]
ϕZ 0.5000�4.000 2.000 [34]
KE 1.0× 104�1.0×106 100× Π

µH
[96]

σE 0.3300�1.0000 0.4499 [116]
σLj

(j = 1, 2, 3, 4) 0.3599�0.5399 0.4499 Adapted from [96]
σP 0.3300�1.0000 0.4499 [13]
µE 0.0608�0.0912 0.0760 Adapted from [96]
µL 0.0608�0.0912 0.0760 Adapted from [96]
µP 0.0608�0.0912 0.0760 Adapted from [96]
Π 4.000�5.5000 humans 4.5000 [96]
γH 1/17�1/14 1/14 [96]
δH 0.0001�0.0030 0.0021 [2, 37, 105, 96]
αH 1/1500�1/100 1/30 [9, 63, 96, 107]
ηH 1/(3× 365)− 1/(7× 365) 1/(3× 365) [44]
µH 1/(50× 365)− 1/(70× 365) 1/(60× 365) [96]
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where a = -11.8239, b = 3.3292 and c = -0.0771.
Transition rate from Stage II to Stage III of gonotrophic cycle (θY (TA)). We

describe the rate at which mosquitoes complete Stage II of the gonotrophic cycle (that is,
the transition from the Y to Z compartment(s)), using a Briere function [20], such that

θY (TA) = cTA(TA − T 0
A)(TmA − TA)

1
2 , (2.6)

and parameter values are adopted from Mordecai et al. [84], with c = 0.000203, TmA = 42.3oC
and T 0

A = 11.7oC .
Sporogony (κ(TA)). We follow Paaijmans et al. [98] and use a Briere function for

κ(TA), given by the right-hand side of (2.6) with parameters c = 0.000112, TmA = 35oC , and
T 0
A = 15.384oC .
Death rate of immature mosquitoes (µE(TW ), µL(TW ), µP (TW )). We assume that

temperature-dependent death rates are equal for eggs, larvae, and pupae, and use laboratory
larval survival times reported by Bayoh and Lindsay [14], to �t a per-capita death rate (inverse
of survival time) with the fourth-order polynomial,

µi(TW ) = 8.929×10−6T 4
W−0.0009271T 3

W +0.03536T 2
W−0.5814TW +3.509, i = E,L, P. (2.7)

Development rate of immature mosquitoes (σE(TW ), σL(TW ), σP (TW )). We adopt
the relationship between water temperature and overall time from egg to adult, l(TW ), given
by Bayoh and Lindsay [13] (based on laboratory data),

l(TW ) = (a+ bTW + ceTW + de−TW )−1, (2.8)

with a = −0.05, b = 0.005, c = −2.139 × 10−16 and d = −281357.656. We assume that the
duration of all six immature stages (egg, four larval instars, and pupa) is equal, giving [96].
We determined stage-speci�c development times as a function of temperature from Figure 1
of Bayoh and Lindsay [13], as shown in Figure 4. Development times are similar across all
immature stages, with appreciable overlap in the temperature-dependent curves. Therefore,
we simply assume all stages have the same duration, and the uniform temperature-dependent
development rates are given as

σE(TW ) = σP (TW ) = σL(TW ) = 6
1

l(TW )
. (2.9)

We have assumed, for this study, that near the surface of the water, air and water tem-
perature are approximately equal [1, 60], giving TA = TW (unless otherwise stated, a default
value of TA = TW = 25 ◦C will be used to compute each of the aforementioned temperature-
dependent parameters of the model). Further, since (by using �xed temperature values) the
aforementioned temperature-dependent parameters take constant values, the model {(2.1),
(2.2), (2.4)} is autonomous. This assumption is made for mathematical tractability.

2.5 Basic Qualitative Properties of the Model

The basic qualitative properties of the model {(2.1), (2.2), (2.4)} in the absence of density-
dependent mortality rate in the larvae stage (δL = 0) are explored in this section, with the
positivity and boundedness of the solutions of the model established.
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Figure 4: Development times of the dynamics of the immature mosquitoes.

Let AX = SX + EX + IX , AY = SY + EY + IY , AZ = SZ + EZ + IZ and NM(t) = AX(t) +
AY (t) + AZ(t). Further, de�ne

X =
(
E,L1, L2, L3, L4, P, SX , EX , IX , SY , EY , IY , SZ , EZ , IZ , SHp , EHp ,

IHp , RHu , SHu , EHu , IHu , RHu

)
.

It is convenient to group the variables of the model {(2.1), (2.2), (2.4)} as follows:

B1 = (E,L1, L2, L3, L4, P ) ,

B2 = (SX , EX , IX , SY , EY , IY , SZ , EZ , IZ) ,

B3 =
(
SHp , EHp , IHp , RHu , SHu , EHu , IHu , RHu

)
.

(2.10)

Consider the feasible region Ω = Ω1 × Ω2 × Ω3 for the model {(2.1), (2.2), (2.4)}, where:

Ω1 =
{
B1 ∈ R6

+ : E(t) ≤ KE, L1(t) ≤ L�1, L2(t) ≤ L�2, L3(t) ≤ L�3, L4(t) ≤ L�4, P (t) ≤ P �
}
,

Ω2 =
{
B2 ∈ R9

+ : NM(t) ≤ fσPP
�

µM

}
, Ω3 =

{
B3 ∈ R8

+ : NH(t) ≤ Π
µH

}
,

(2.11)
with, L�1 = σEKE

σL1
+µL

, L�2 =
σL1

L�
1

σL2
+µL

, L�3 =
σL2

L�
2

σL3
+µL

, L�4 =
σL3

L�
3

σL4
+µL

and P � =
σL4

L�
4

σP +µP
.

We claim the following result.

Lemma 2.1 Consider the model { (2.1), (2.2), (2.4)}.

(a) Each component of the solution of the model, with non-negative initial conditions,
remains positive and bounded for all time t > 0.

(b) The set Ω is positively-invariant and attracting region for the model.

The proof of Lemma 2.1 is given in Appendix A.
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3 Mathematical Analysis

In this section, the model {(2.1), (2.2), (2.4)} is rigorously analysed to show the existence
and asymptotic stability of its disease-free equilibrium, and to characterize the bifurcation
structure of the model. We de�ne the threshold quantity, N0, as

N0 =

ψEϕZσEfσP θYC2

4∏
i=1

σLi

(C1K9K11 − C2θY ϕZ)
6∏
i=1

Ki

, (3.1)

where C1 = K7 − bH(Q2 + Q3), C2 = bH(R1 +R2), K1 = σE + µE, Kj = σLj−1
+ µL (j =

2, ..., 5), K6 = σP + µP , K7 = bHQ1 + µX + µM, K9 = θY + µM and K11 = ϕZ + µM .
Furthermore (noting the de�nitions of C9, C10 and C11 given in Appendix B), C1K9K11 −
C2θY ϕZ = µ3

M + µ2
MC9 + µMC10 + C11 > 0. Hence, N0 > 0.

The quantity N0, which is the extinction threshold for the mosquito population of
the model, measures the average number of new adult female mosquitoes produced by one
reproductive mosquito during its entire reproductive period [40, 96].

3.1 Existence of the Disease-free Equilibrium

The existence and asymptotic stability of the disease-free equilibrium (DFE) of the model
{(2.1), (2.2), (2.4)} is demonstrated here, and we examine the following equilibria:

(i) The model {(2.1), (2.2), (2.4)} has a trivial disease-free equilibrium (TDFE ), given by:

T1 =
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, S∗Hp
, 0, 0, 0, S∗Hu

, 0, 0, 0
)
,

=

(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Π πp
µH

, 0, 0, 0,
Ππu
µH

, 0, 0, 0

)
.

The equilibrium T1 is ecologically unrealistic (since it is associated with the total ab-
sence of mosquitoes in the community). Hence, it is not analysed.

(ii) The model {(2.1), (2.2), (2.4)} has a unique non-trivial disease-free equilibrium (NDFE ),
given by:

T2 =

(
E∗, L∗1, L

∗
2, L

∗
3, L

∗
4, P

∗, S∗X , 0, 0, S
∗
Y , 0, 0, S

∗
Z , 0, 0,

Π πp
µH

, 0, 0, 0,
Π πu
µH

, 0, 0, 0

)
,

where,

E∗ = KE

(
1− 1

N0

)
, L∗1 =

σEE
∗

K2

, L∗2 =
σL1L

∗
1

K3

, L∗3 =
σL2L

∗
2

K4

,

L∗4 =
σL3L

∗
3

K5

, P ∗ =
σL4L

∗
4

K6

, S∗X =

[
fσEσPKE

(
1− 1

N0

)
K9K11

] 4∏
i=1

σLi

(C1K9K11 − C2θY ϕZ)
6∏
i=2

Ki

,

S∗Y =
C2S

∗
X

K9

, S∗Z =
θY S

∗
Y

K11

.

(3.2)
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It is clear from Equation (3.2) that the equilibrium T2 exists if and only if N0 > 1 (it is
assumed from here on that N0 > 1, so that the non-trivial disease-free equilibrium, T2,
exists). It is worth noting that the NDFE (T2) is the non-extinction equilibrium for the
mosquito population coupled with the trivial disease-free equilibrium (T1) for the human
population. Hence, in the absence of the vectors and the disease, the two subsystems (T1

and T2) are uncoupled.

3.2 Asymptotic Stability of the NDFE

Consider the model {(2.1), (2.2), (2.4)}. It can be shown, using the next generation operator
method [115], that the associated reproduction number R0 of the model is given by:

R0 =
√

(RHpV +RHuV )×RV H , (3.3)

where,

RHpV =
γHβVN

∗
HuQpR1

K13K14

, RHuV =
γHβVN

∗
HpQuR2

K13K14

, (3.4)

and,

RV H =
bHβMS

∗
X

N∗HpN
∗
Hu

κV ϕZθY [(K9 +K12)C3 +K9K11]

(C3K10K12 − C2θY ϕZ) (C1K9K11 − C2θY ϕZ)
, (3.5)

with,

Qp = bHπp(1− εdeter)
[
εbite|die,p εdie,p + εbite|∼die,p(1− εdie,p)

]
,

Qu = bHπu
[
εbite|die,u εdie,u + εbite|∼die,u(1− εdie,u)

]
,

N∗Hp = Ππp
µH

, N∗Hu = Ππu
µH

, C3 = K8 − bH(Q2 + Q3), K8 = bHQ1 + κV + µX + µM, K10 =
θY + κV + µM , K12 = ϕZ + κV + µM , K13 = γH + µH and K14 = αH + δH + µH . It can be
shown that C3K10K12 − C2θY ϕZ = bH [C4κ

2
V + 2κV

(
µM + θY

2
+ ϕZ

2

)
C5 + C6 + C7] + C8 > 0

(where the coe�cients Ci (i = 2, ..., 8) are constants, and are given in Appendix D). Hence,
RV H > 0 (and thus R0 is also automatically positive).

Theorem 3.1 Let N0 > 1. The NDFE, T2, of the model { (2.1), (2.2), (2.4)} is locally-
asymptotically stable (LAS) in Ω \ T1 if R0 < 1, and unstable if R0 > 1.

The epidemiological implication of Theorem 3.1 is that malaria is eliminated from the pop-
ulation if the initial sizes of the subpopulations of the model {(2.1), (2.2), (2.4)} are in the
basin of attraction of the non-trivial disease-free equilibrium (T2 ). Hence, a small in�ux of
malaria-infected individuals into the community will not generate large outbreaks, though
larger in�uxes may.

It is notable that the value of the reproduction number (R0) for the worst-case scenario
(i.e., bednet coverage is zero), denoted by R̃0∗ and computed using the baseline parameter
values in Table 4, is R̃0∗ ' 11.4 (see Appendix C for the formulation of the special case of
the model {(2.1), (2.2),(2.4)} with no bednet coverage). This high value of the reproduction

19



number is typically seen in holo-endemic malaria regions [49]. It should be mentioned that,
for the computation of the value of the reproduction number for this (holo-endemic) setting,
we assumed (in Table 4) that there are, on average, 100 eggs per human (which translates
to about 10 adult mosquitoes per human). When we reduce the number of eggs per human
to 10 per human, so that we have one mosquito per human (which is more typically the
case in meso-endemic regions [49]), the value of R0 reduces to R̃0∗ ' 3.6. Hence, these
computations (together with Theorem 3.1) show that, for the worst-case scenario (with no
bednets used in the community), the disease will persist in both the holoendemic and the
mesoendemic regions (since R̃0∗ > 1 in both cases), as expected.

3.3 Existence of Backward Bifurcation

The phenomenon of backward bifurcation has been observed in numerous models (such
as those in [19, 43, 45, 46, 60, 61]) for spread of malaria and other vector-borne diseases
that incorporated disease-induced death in the host population. A backward bifurcation
is characterized by the co-existence of two asymptotically-stable equilibria when R0 < 1:
an endemic equilibrium point (EEP) and a disease-free equilibrium point (DFE). Thus, the
classical epidemiological requirement that R0 be less than one for elimination of the disease,
while necessary, is no longer su�cient to eliminate malaria when it already exists in the
population. That is, while R0 ≥ 1 remains a condition for malaria to spread within a
previously unexposed population, pushing R0 < 1 via control measures does not necessarily
guarantee elimination of the disease.

Theorem 3.2 The model { (2.1), (2.2), (2.4)} undergoes a backward bifurcation at R0 = 1
whenever a bifurcation coe�cient, denoted by a (given in Appendix D), is positive.

Proof. The proof of Theorem 3.2, based on using Center Manifold theory [23, 24], is given
in Appendix D. The result given by Theorem 3.2 is numerically illustrated by simulating
the model {(2.1), (2.2), (2.4)} using parameter values such that the backward bifurcation
condition, given in Appendix D, is satis�ed (Figure 5).

The range for backward bifurcation for a weakly-e�ective net (i.e., a net with εdie,p =
0.25, εbite,p = 0.33) is βM ∈ (0.526394,∞), a moderately-e�ective net (i.e., a net with
εdie,p = 0.5, εbite,p = 0.2) is βM ∈ (0.503682,∞) and that for a highly- e�ective net (i.e., a
net with εdie,p = 0.9, εbite,p = 0.1) is βM ∈ (1.4009823,∞), where βM is the chosen backward
bifurcation parameter (see Appendix D). Hence, this study shows that the phenomenon of
backward bifurcation is more likely to occur using a moderately-e�ective net than when
either a weak or highly-e�ective net is used.

Theorem 3.2 shows that elimination is dependent on the initial sizes of the infected vector
and human populations. For elimination to be independent of the size of the infected popula-
tions, a global asymptotic stability property must be explored for the non-trivial disease-free
equilibrium (T2). It is convenient to de�ne the associated reproduction number of
the model {(2.1), (2.2), (2.4)} in the absence of disease-induced mortality in the
host population (δH) by

R̃0 = R0|δH=0. (3.6)
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Figure 5: Backward bifurcation diagram of the model {(2.1), (2.2), (2.4)}, showing a plot of
IHp(t) as a function of the reproduction number R0, where βM is the chosen bifurcation pa-
rameter. Parameter values used are as given in Table 5 with: πp = 0.5, πu = 0.5, εdeter =
0.75, εbite|∼die,p = 0.1, εbite|∼die,u = 0.7, εbite|die,p = 0.1, εbite|die,u = 0.7, εdie,p = 0.9, εdie,u =

0.05, bH = 2, µX = 0.005, ψE = 5, δH = 0.0005, ηH = 1/14, βV = 0.5,Π = 1 and KE = Π
µH

(so

that the bifurcation coe�cient, a (de�ned in Appendix D), is given by a=5.42 × 10−6 > 0 and
R0 = 1). It should be mentioned that in order to generate this �gure, the values of seven param-
eters (µX , ψE ,KE , ηH , δH , βV and Π) have to be chosen outside their biologically-feasible ranges
given in Table 5.
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We claim the following.

Theorem 3.3 The NDFE, T2, of the model { (2.1), (2.2), (2.4)}, with δH = 0 and N0 > 1,
is globally-asymptotically stable (GAS) in Ω \ T1 if R̃0 < 1.

The proof of Theorem 3.3, based on using Lyapunov function theory and LaSalle's Invariance
Principle, is given in Appendix E. The epidemiological implication of Theorem 3.3 is that,
for the special case of the model {(2.1), (2.2), (2.4)} with no disease-induced mortality in
the host population (i.e., δH = 0), bringing and maintaining the associated reproduction
threshold (R̃0) to a value less than one is necessary and su�cient for complete elimination
of malaria in the community, regardless of initial conditions.

4 Numerical Simulations: Populations at Equilibrium

4.1 Interaction between bednet coverage and bednet e�cacy pa-

rameters

To assess the population-level impact of bednets on malaria transmission dynamics in the
community under equilibrium conditions (i.e., the model is numerically simulated until an
endemic equilibrium is reached), the model {(2.1), (2.2), (2.4)} is simulated using various
bednet coverage and e�ectiveness levels, where bednet e�ectiveness is jointly de�ned by
εbite,p and εdie,p. Unless otherwise stated, all simulations use the baseline parameter values in
Table 5, and temperature is �xed at 25◦C (i.e., the values of all the temperature-dependent
parameters of the model are obtained by evaluating each of the functional forms in Section 2
at the �xed temperature T=25◦C). Figure 6 illustrates the nonlinear relationships between
bednet coverage fraction, πp, disease prevalence in the two human populations (bednet-
protected and unprotected), R̃0 (i.e., R0 for the case when the disease-induced mortality
in the human population, δH , is set to zero), and EIR (again, in the bednet-protected and
unprotected populations), at endemic equilibrium and for baseline parameters. Notably, this
�gure shows that EIR decreases with increasing bednet coverage (top right panel). This
result is consistent with that reported in the modeling study by Chitnis et al. [28], which used
data relevant to malaria transmission dynamics in Ifakara, Tanzania (i.e., data for Anopheles
gambiae feeding on a heterogenous human population, with no cattle), to show that bednets
are e�ective in reducing malaria transmission. Our result is also consistent with the results
of the �eld trials on permethrin-treated bednets in western Kenya reported by Hawley et al.
[54].

Further, as evident from the graph in the lower left panel of Figure 6, human disease
prevalence varies hyperbolically with EIR (i.e., prevalence increases with increasing EIR),
such that, for a high baseline EIR, a large reduction in EIR is required before any meaningful
malaria control is realized. A �ve-fold reduction in overall EIR, however, is achieved with
roughly 20% bednet coverage (see upper right panel of Figure 6). Thus, although even
a relatively low bednet coverage can aid somewhat in malaria control, the simulations in
Figure 6 show that much higher bednet coverage (and a decrease in EIR of two orders of
magnitude) is needed to achieve malaria elimination. Finally, there is a similar, although
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less marked, hyperbolic relationship between increasing R̃0 and increasing disease prevalence
(bottom right panel).

We explore how changes in εbite,p and εdie,p (i.e. net e�ectiveness) a�ect R̃0, starting from
either a baseline R̃0 value of 11.7, presumably representing holoendemic malaria, or 3.7,
which is more appropriate for mesoendemic malaria. In particular, we generate contour plots
of R̃0 as a function of εbite,p and εdie,p, for either low (20%) or high (80%) bednet coverage
levels (Figure 7). The inscribed curve on each contour plot of Figure 7 shows how εbite,p and
εdie,p co-vary, based upon the experimental hut data discussed in Section 2.2. In these plots,
the highlighted points indicate highly, moderately, and weakly e�ective nets. It follows from
Figure 7 that, for the mesoendemic baseline, even a moderately e�ective net is capable of
pushing R̃0 to a value less than one when bednet coverage is high (80%). Further, for this
(mesoendemic baseline scenario) even low bednet coverage (20%) may substantially improve
malaria control. In the holoendemic baseline, on the other hand, only a highly e�ective
net with high coverage can have a chance to approach malaria elimination. Thus, these
simulations show that our study only supports the claim in the malaria modeling study by
Chitnis et al. [28] (based on data relevant to malaria dynamics in Ifakara, Tanzania) and the
permethrin-treated bednets �eld trial in western Kenya by Hawley et al. [54] that bednets
reduce malaria transmission if the malaria region being considered is mesoendemic. For
holoendemic malaria regions, our study shows that only a highly-e�ective net, coupled with
very high coverage, can lead to e�ective control of malaria. Ifakara and western Kenya are
considered regions of high malaria endemicity [52, 58].

Figure 7 also suggests that high coverage of weakly e�ective (i.e. low killing
e�ciency) nets is better than low coverage with highly e�ective (i.e. high killing
e�ciency) nets. For example, in the holoendemic setting, 20% coverage with
a highly e�ective net pushe R̃0 from 11.7 to 5.5, while 80% coverage with a
weakly e�ective net gives R̃0 of 3.6. Given the nonlinear relationship between
R̃0 and disease prevalence, widespread use of even marginally e�ective bednets
may better control malaria than lower coverage rates with better (more e�ective)
nets.

Finally, Figure 8 shows the nonlinear relationship between R̃0 and EIR, such that EIR
must be pushed very close to zero before R̃0 drops below one. In other words, Figure 8 shows
that a signi�cant reduction in EIR is needed in order to bring the reproduction number R̃0

to a value less than 1 (so that, by Theorem 3.3, malaria elimination can be achieved).
We also examine how deterrence, as measured in the model by εdeter, interacts with

bednet coverage and net e�ectiveness to determine R̃0, as shown in the contour plots in
Figure 9. Perhaps surprisingly, increasing deterrence generally results in an increase in
R̃0. This is likely because increasing εdeter focuses mosquito biting upon the unprotected
subpopulation, resulting in more intense malaria transmission among this subpopulation
and an overall increase in R̃0. It should be emphasized here that this increased biting on
unprotected persons is not an assumption directly imposed on the model, but is a natural
consequence of the fact that, if a mosquito does not attempt a bloodmeal on a net-protected
human she has encountered, due to deterrence, she will continue in her search and likely
ultimately encounter an unprotected person (although this comes at an increased mortality,
denoted by µX in the model 2.2).
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Figure 6: Relationships among EIR, fraction of infected humans, bednet coverage level, and R̃0, at
the endemic equilibrium, as determined from numerical simulation of the model {(2.1), (2.2), (2.4)},
and for �xed temperature (25◦C). Results are disaggregated between the protected, unprotected,
and overall (bednet-protected and unprotected human) populations. Results are determined using
baseline parameter values with a highly e�ective net in a holoendemic setting (KE = 100 Π

µH
,

R̃0∗ = 11.4 with no bednet coverage).
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Figure 7: Contour plots of the R̃0 of the model {(2.1), (2.2), (2.4)}, as a function of εdie,p and
εbite,p (the respective probabilities that a mosquito dies or takes a blood meal upon encountering
a protected human), for four di�erent permutations of bednet coverage and baseline R̃0. The
top panels use KE = 100 Π

µH
to approximate a holoendemic baseline, while the bottom panels use

KE = 10 Π
µH

as an approximation of a mesoendemic baseline. Bednet coverage is either 20% (left)
or 80% (right). The inscribed curve shows the approximate relationship between εdie,p and εbite,p
derived from experimental hut trial data (using the exponential relation given in Section 2.2), with
three qualitative net e�ectiveness levels highlighted.
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Figure 8: Numerically determined relationship between overall EIR and R̃0 at the endemic equi-
librium, where variability in EIR is generated by changing bednet coverage, πp. For larger EIR,
R̃0 decreases nearly linearly with falling EIR, while for very small EIR, R̃0 decreases dramatically
with falling EIR. Thus, EIR must be pushed very close to zero for malaria elimination. Results
are generating using baseline parameter values with a highly e�ective net in a holoendemic setting
(KE = 100 Π

µH
).

Figure 9: Contour plots showing R̃0 as a function of εdeter and πp (bednet coverage), for weakly,
moderately, and highly e�ective nets. For this �gure, we use KE = 100 Π

µH
to approximate a

holoendemic baseline.
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4.2 E�ects of Temperature

We examine the e�ect of changing mean ambient temperature (assumed equal to water
temperature) upon R̃0 and EIR, as shown in Figure 10. We see an asymmetric increase in
R̃0 and EIR from low temperatures to peaks around 29�30◦C, followed by rapid drop-o�s at
higher temperatures. In other words, malaria burden is maximized for temperature values in
the range 29�30◦C, and such burden decreases for increasing temperatures thereafter. This
peak is similar to that reported by Okuneye et al. [96], but higher than the reported value
by the well-known Mordecai et al. [84] study. Furthermore, although the results in Figure
10 are obtained using a highly e�ective net with KE = 100×Π/µH , it should be stated that
qualitatively similar results are obtained regardless of net type and KE value.

To determine if temperature alters the qualitative interaction between bednet e�cacy,
bednet coverage, and control, we have generated a series of contour plots showing R̃0 as a
function of εdie,p and εbite,p, for di�erent ambient temperatures; several surfaces are given in
Figure 11. While altering the maximum R̃0 value, changes in temperature have no mean-
ingful e�ect upon the qualitative contour shape. That is, while maximum R̃0 varies between
about 1.3 and 4.5 in the contours shown in Figure 11, the surface shapes are essentially
invariant. Mirroring Figure 10, maximum R̃0 increases up to nearly 30◦C and then falls o�.
Thus, it is concluded that bednet coverage and temperature independently a�ect malaria
risk.

Figure 10: The left panel shows how R̃0 varies with mean temperature, using a �xed πp = 0.5, KE =
100 Π

µH
, and a highly e�ective net. The right shows the numerically determined equilibrium values

of EIR for protected, unprotected, and overall human populations as a function of temperature (and
for the same parameter values). Both R̃0 and EIR, across populations, peak around 29◦C.
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Figure 11: Contours of R̃0 as a function of εdie,p and εbite,p for four di�erent ambient temperatures,
and for di�erent net at 50% bednet coverage (with KE = 100 Π

µH
). The qualitative shape of the

contour plots does not appreciably vary with temperature.
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Discussion and Conclusions

Great success has been recorded in the concerted global e�ort against malaria over the past
15 years, thanks largely to the large-scale use of long-lasting insecticidal bednets (LLINs) and
indoor residual spraying (IRS) in malaria-endemic regions within sub-Saharan Africa. There
is now a strong global push to eradicate malaria (particularly the �Zero by 40� initiative of �ve
chemical companies, with support of the Bill & Melinda Gates Foundation and the Innovative
Vector Control Consortium [117, 119] ). Given the widespread emergence of vector resistance
to pyrethroid-based insecticides (the only chemical agent approved for use in LLINs), and the
uncertainty surrounding how this a�ects (and will a�ect) malaria epidemiology, mathematical
modeling studies are a promising to examine the interaction between bednet resistance and
malaria epidemiology.

This paper presents a novel mathematical model, of the form of deterministic system
of nonlinear di�erential equations, for gaining insight into the transmission dynamics of
malaria in a population where a certain percentage of the populace use LLINs (consistently
and correctly). In addition to incorporating many critical features of malaria disease (e.g.,
the four main cycles associated with malaria disease, namely immature mosquito life cycle,
adult mosquito gonotrophic cycle, parasite sporogony in the mosquito and schizogony in
humans; stratifying human population according to bednet usage; etc.), the model allows
for the assessment of the killing and deterrence properties of the LLINs (in particular, in
addition to killing adult mosquitoes (with some e�cacy) upon encounter, the nets can also
deter the mosquito from entering the house and/or from biting the human host). The
model has been parametrized using ecological data and parameter values relevant to malaria
transmission dynamics in holo- and meso-endemic regions of sub-Saharan Africa, and was
used to evaluate the population-level impact of various LLINs coverage and e�ectiveness
levels. For numerical simulation purposes, the e�ectiveness levels of the bednets described
in Section 2.2 are considered.

The developed model was rigorously analysed to gain insight into its dynamical fea-
tures (thereby allowing for the determination of important ecological and epidemiological
thresholds that govern the persistence, e�ective control and/or elimination of the disease in
a population). It is, �rst of all, shown, using the theory of center manifold [75], that the
model undergoes the phenomenon of backward bifurcation, when the reproduction number
of the model is less than 1, whenever a certain bifurcation coe�cient attains positive values.
This condition is associated with the disease-induced mortality in the host population being
set to zero [60, 61]. The epidemiological implication of this phenomenon is that the usual
epidemiological requirement of having the reproduction number of the model being less than
1, while necessary, is no longer su�cient for the e�ective control of the disease. Thus, when
a backward bifurcation exists, greater control e�ort is needed to eradicate disease.

However, the phenomenon of backward bifurcation does not exist in the model developed
in this study if all the values of the parameters are chosen from their biologically realistic
ranges in Table 5, for a holoendemic setting, with �ve parameter values chosen outside
the given range to illustrate a backward bifurcation. Thus, this study shows that, for a
holoendemic malaria setting, the backward bifurcation phenomenon in the developed model
is essentially a mathematical artifact which may not be realizable using realistic data (or set
of parameter values). This result is consistent with those reported in [45, 46, 60, 61], which
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also showed that backward bifurcation is not realizable using realistic parameters.
The backward bifurcation phenomenon is known to exist in vector-borne disease models

that incorporate disease-induced death in the host(s) population(s). This is con�rmed,
in the current study, by showing that such bifurcation does not occur in the special case
of the model with no disease-induced death in the human population (we showed, using
Lyapunov function theory together with LaSalle's Invariance Principle, that the disease-free
equilibrium of the special case of the model with no disease-induced death rate is, indeed,
globally-asymptotically stable whenever the associated reproduction number is less than 1).

The impact of coverage level of the LLINs is monitored by simulating the model using
various coverage levels. The simulation results obtained show, expectedly, that the disease
prevalence in the host population (including those protected, by sleeping under a net, and
the unprotected ones who do not sleep under a net) decreases with increasing coverage levels.

We observe LLINs at 20% coverage to reduce the reproduction number, at the holoen-
demic baseline (approximated by KE = 100×Π/µH), from a baseline value of about 11.7 to
either 9.2, 7.3, or 5.5, under weakly, moderately, or highly e�ective bednets, respectively.
Increasing coverage to 80% yields R̃0 values of 3.6, 1.6, and 0.6, for the same respective net
e�cacies. Thus, malaria elimination in holoendemic regions will require highly e�ective nets
at high coverage levels. At the mesoendemic baseline, approximated by KE = 10 × Π/µH
and giving R̃0 = 3.7 without bednets, we see similar relative reductions in R̃0. However,
given the lower baseline R̃0, even weakly e�ective nets give R̃0 = 1.1 under 80% bednet
coverage, near the elimination threshold, and both moderately and highly e�ective nets push
R̃0 well below zero. Bednet coverage of 20%, in this case, improves malaria control, but is
insu�cient for elimination.

The widespread use of insecticide-based vector control interventions, includ-
ing pyrethroid based insecticide-treated nets (ITNs; later replaced by long-
lasting insecticidal nets (LLINs)) has resulted in the emergence of vector re-
sistance to nearly every currently-available agent used in the insecticides [3, 38,
62, 126] with pyrethroid resistance now widely observed across the African con-
tinent [55]. Most nets distributed to-date are pyrethroid-only nets (although
pyrethroid nets with the synergist PBO and pyrethroid nets with a second ac-
tive ingredient are now available), and pyrethroid-only nets will likely remain a
core vector control intervention over the next few years. As such it is critical to
understand their current impact - now resistance to their active ingredients is so
widespread - on malaria epidemiology. This study suggests that high coverage
of weakly e�ective (i.e. low killing e�ciency) nets is better than low coverage
with highly e�ective (i.e. high killing e�ciency) nets.

The impact of the deterrence property of LLINs to repel mosquitoes from entering pro-
tected house has also been examined, and we �nd, perhaps unexpectedly, that higher de-
terrence almost uniformly increases R̃0. This is likely because mosquitoes repelled from
protected persons now focus their e�orts on the unprotected subpopulation, thus increasing
transmission within this group and potentially hampering elimination e�orts.

The transmission cycle of malaria is greatly a�ected by changes in the environment.
In particular, the life-cycles of the malaria vector (adult female Anopheles mosquito) and
parasites (Plasmodium) are both strongly a�ected by changes in ambient temperature, while
suitable aquatic habitat is necessary for immature mosquito development. Therefore, we
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have examined how malaria burden changes with mean ambient temperature, and how this
interacts with bednet coverage. We �nd R̃0 and EIR to both peak at just under 30◦C,
with this true regardless of bednet coverage levels. Indeed, we observe bednet coverage
and temperature to essentially independently in�uence R̃0. Thus, somewhat colder regions,
such as the eastern African highlands, may see an increase in malaria potential with climate
change, while warmer western regions may be little a�ected.
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Appendix A: Proof of Lemma 2.1

Proof. (a) It should be noted, �rst of all, that the right-hand side of each of the equations of
the model {(2.1), (2.2),(2.4)} is continuous and locally-Lipschitz at t = 0. Hence, a solution
of the model with non-negative initial conditions exists and is unique in Ω = Ω1 × Ω2 × Ω3

for all time t > 0 (see also [61, 96]). Furthermore, since
(

1− E
KE

)
+
≥ 0, it follows from the

�rst equation of the sub-system (2.1) that E(t) ≤ KE for all time t > 0. Similarly, it follows
from the second equation of the sub-system (2.1) that

L̇1 = σEE − (σL1 + µL)L1 ≤ σEKE − (σL1 + µL)L1,

so that lim sup
t→∞

L1(t) ≤ σEKE

σL1 + µL
= L�1. Using a similar approach, it can be shown that

lim sup
t→∞

L2(t) ≤ σL1L
�
1

σL2 + µL
= L�2, lim sup

t→∞
L3(t) ≤ σL2L

�
2

σL3 + µL
= L�3, lim sup

t→∞
L4(t) ≤ σL3L

�
3

σL4 + µL
=

L�4 and lim sup
t→∞

P (t) ≤ σL4L
�
4

σP + µP
= P �. That is, all solutions of the sub-system (2.1) are

bounded for all time t > 0.
For the boundedness of the solutions of the sub-system (2.2), we consider the following

equation (for the rate of change of the total adult mosquito population):

ṄM = fσPP − µXSX − µXEX − µXIX − µMNM + bH(Q2 +Q3 −Q1 +R1 +R2)AX , (A-1)

where, NM = AX + AY + AZ (with AX , AY , AZ , Q1, Q2, Q3, R1 and R2 are as de�ned in
Section 2). It can be shown that Q2 + Q3 −Q1 + R1 + R2 < 0. Hence, Equation (A-1) can
be re-written as

ṄM = fσPP−µXSX−µXEX−µXIX−µMNM+bH(Q2+Q3−Q1+R1+R2)AX ≤ fσPP−µMNM ,
(A-2)

so that,

lim sup
t→∞

NM(t) ≤ fσPP
�

µM
.

Hence, the solutions of the equations of the sub-system (2.2) are bounded for all time t > 0.
Similarly, consider the equation for the rate of change of the total human population, given
by:

ṄH = Π− µHNH − δH(IHp + IHu) ≤ Π− µHNH , (A-3)

from which it follows that lim sup
t→∞

N(t) ≤ Π

µH
. Thus, the solutions of the sub-system (2.4)

are bounded for all t > 0. Since the solutions of the three sub-systems of the model {(2.1),
(2.2),(2.4)} are bounded, it follows that the solutions of the model are bounded. This
concludes the proof of Item (a).

(b) The proof for the invariance of the region Ω1 follows from the bounds established in Item
(a) (i.e., 0 < lim sup

t→∞
L1(t) ≤ L�1, 0 < lim sup

t→∞
Lj(t) ≤ L�j and 0 < lim sup

t→∞
P (t) ≤ P �) and
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the fact that Ė(t) < 0 whenever E(t) > KE, L̇1(t) < 0 whenever L1(t) > L�1 and L̇j(t) < 0
whenever Lj(t) > L�1 (j = 2, 3, 4), respectively.

For the invariance of the region Ω2, it is convenient to consider the following equation
for the rate of change of the total mosquito population given by:

ṄM = fσPP−µXSX−µXEX−µXIX−µMNM+bH(Q2+Q3−Q1+R1+R2)AX ≤ fσPP−µMNM .

It follows that ṄM < 0 whenever NM(t) > fσPP
�

µM
. Thus, the region Ω2 is invariant with

respect to the sub-system (2.2) of the model {(2.1), (2.2),(2.4)}.
Finally, consider the equation for the total human population given by

ṄH = Π− µHNH − δH(IHp + IHu) ≤ Π− µHNH .

It follows that ṄH < 0 whenever NH(t) > Π
µH

. Thus, the region Ω3 is invariant with respect
to the sub-system (2.4) of the model {(2.1), (2.2),(2.4)}. Since the regions Ω1, Ω2 and Ω3 are
positively-invariant and attracting, it follows that Ω = Ω1 × Ω2 × Ω3 is positively-invariant
and attracting for the model {(2.1), (2.2),(2.4)}. This concludes the proof of Item (b). �

Appendix B: Coe�cients of Equation (3.5)

C1 = bH
{
πp(1− εdeter)[(1− εdie,p)εbite|∼die,p + εdie,p] + πu[(1− εdie,u)εbite|∼die,u + εdie,u]

}
+ µX + µM > 0,

C2 = bH [πp(1− εdeter)(1− εdie,p)εbite|∼die,p + πu(1− εdie,u)εbite|∼die,u] > 0,

C3 = bH
{
πp(1− εdeter)[(1− εdie,p)εbite|∼die,p + εdie,p] + πu[(1− εdie,u)εbite|∼die,u + εdie,u]

}
+ κV + µX + µM > 0,

C4 =
{
πp(1− εdeter)[εdie,p(1− εbite|∼die,p) + εbite|∼die,p] + πu[εdie,u(1− εbite|∼die,u) + εbite|∼die,u]

}
κ2
V > 0,

C5 = 2κV

(
µM +

θY
2

+
ϕZ
2

)
C4 > 0,

C6 = πp(1− εdeter)
{

[εdie,p(1− εbite|∼die,p) + εbite|∼die,p]µ
2
M + (θY + ϕZ)[εdie,u(1− εbite|∼die,u) + εbite|∼die,u]µM + εbite|∼die,pθY ϕZ

}
> 0,

C7 = πu
{

[εdie,u(1− εbite|∼die,u) + εbite|∼die,u]µ
2
M + (θY + ϕZ)[εdie,u(1− εbite|∼die,u) + εbite|∼die,u]µM + εbite|∼die,uθY ϕZ

}
> 0,

C8 = (µM + κV )K10K12,

C9 = ϕZ + θY + bH
{
πp(1− εdeter)[1− (1− εdie,p)(1− εbite|∼die,p)] + πu[1− (1− εdie,u)(1− εbite|∼die,u)]

}
> 0,

C10 = θY ϕZ + bH(θY + ϕZ)
{
πp(1− εdeter)[1− (1− εdie,p)(1− εbite|∼die,p)] + πu[1− (1− εdie,u)(1− εbite|∼die,u)]

}
> 0,

C11 = bHθY ϕZ [πpεdie,p(1− εdeter) + εdie,uπu] > 0.

Appendix C: Equations of the Model {(2.1), (2.2), (2.4)}

Without Bednets Intervention

In the absence of the bednet-based intervention, the sub-systems of the model involving the
adults and human dynamics, given by Equations (2.2) and (2.4), reduce, respectively, to the
following sub-systems:
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Stage I


ṠX = fσPP + ϕZSZ + bHQ3SX − (bH + µX + µM)SX ,

ĖX = ϕZEZ + bHQ3EX − (bH + κV + µX + µM)EX ,

İX = ϕZIZ + κVEX + bHQ3IX − (bH + µX + µM) IX .

Stage II


ṠY = (1− βV ω)R2SX − (θY + µM)SY ,

ĖY = bHβV ωR2SX + bHR2EX − (θY + κV + µM)EY ,

İY = κVEY + bHR2IX − (θY + µM) IY .

(C-1)

Stage III


ṠZ = θY SY − (ϕZ + µM)SZ ,

ĖZ = θYEY − (ϕZ + κV + µM)EZ ,

İZ = θY IY + κVEZ − (ϕZ + µM) IZ ,

Human


ṠH = Π− (λV H + µH)SH + ηHRH ,

ĖH = λV HSH − (γH + µH)EH ,

İH = γHEH − (αH + δH + µH)IH ,

ṘH = αHIH − (ηH + µH)RH .

(C-2)

The equations for the aquatic dynamics, given by (2.1), remain unchanged. Hence, the
reduced (no-bednets) model consist of the equations {(2.1), (C-1), (C-2)}.

It can be shown, using the next generation operator method (as in Section 3), that the
basic reproduction number of the reduced model {(2.1), (C-1), (C-2)} is given by

R̃0∗ =

√
bHβV J1J3S0

XβMγHθY ϕZκV [(K9 +K12)J5 +K9K11]

K13K14N∗H(J5K10K12 − J6θY ϕZ)(J4K9K11 − J6θY ϕZ)
, (C-3)

where,

J1 = bH
[
εbite|die,u εdie,u + εbite|∼die,u(1− εdie,u)

]
, J2 = (1− εdie,u)(1− εbite|∼die,u), N∗H =

Π

µH
,

J3 = (1− εdie,u)εbite|∼die,u, J4 = (bH + µX + µM)− bHJ2, J5 = (bH + κV + µX + µM)− bHJ2,

J6 = bHJ3, N0∗ =

(ψEϕZσEfσP θY J6)
4∏
i=1

σLi

(J4K9K11 − J6θY ϕZ)
6∏
i=1

Ki

, S0
X =

[
fσEσPKE

(
1− 1

N0∗

)
K9K11

] 4∏
i=1

σLi

(J4K9K11 − J6θY ϕZ)
6∏
i=2

Ki

.

Substituting the baseline parameter values in Table 4 (for the holo-endemic setting) shows
that the worst-case scenario basic reproduction number (R̃0) of the model {(2.1), (2.2),
(2.4)}, or, equivalently, the reduced model {(C-1), (C-2)}, given by (C-3), is R̃0∗ = 11.4.
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Appendix D: Proof of Theorem 3.2

Proof. The proof of Theorem 3.2 is based on using center manifold theory [23, 24]. It is
convenient to de�ne the following change of variables for the model {(2.1), (2.2), (2.4)}:
E = x1, L1 = x2, L2 = x3, L3 = x4, L4 = x5, P = x6, SX = x7, EX = x8, IX = x9,
SY = x10, EY = x11, IY = x12, SZ = x13, EZ = x14, IZ = x15, SHp = x16, EHp = x17,
IHp = x18, RHp = x19, SHu = x20, EHu = x21, IHu = x22, RHu = x23. Using the vector
notation X = (x1, ......x23)T and F = (f1, ....f23)T , the model can then be written in the form
dX
dt

= (f1, ....f23)T , as follows:

ẋ1 ≡ f1 = ψEϕZ

(
1− x1

KE

)
+

(x13 + x14 + x15)− (σE + µE)x1,

ẋ2 ≡ f2 = σEx1 − (σL1 + µL)x2,

ẋ3 ≡ f3 = σL1x2 − (σL2 + µL)x3,

ẋ4 ≡ f4 = σL2x3 − (σL3 + µL)x4,

ẋ5 ≡ f5 = σL3x4 − (σL4 + µL)x5,

ẋ6 ≡ f6 = σL4x5 − (σP + µP )x6,

ẋ7 ≡ f7 = fσPx6 + ϕZx13 + bH(Q2 +Q3)x7 − (bHQ1 + µX + µM)x7,

ẋ8 ≡ f8 = ϕZx14 + bH(Q2 +Q3)x8 − (bHQ1 + κV + µX + µM)x8,

ẋ9 ≡ f9 = ϕZx15 + κV x8 + bH(Q2 +Q3)x9 − (bHQ1 + µX + µM)x9,

ẋ10 ≡ f10 = bH [(1− βV ωp)R1 + (1− βV ωu)R2]x7 − (θY + µM)x10,

ẋ11 ≡ f11 = bH(βV ωpR1 + βV ωuR2)x7 + bH(R1 +R2)x8 − (θY + κV + µM)x11,

ẋ12 ≡ f12 = κV x11 + bH(R1 +R2)x9 − (θY + µM)x12,

ẋ13 ≡ f13 = θY x10 − (ϕZ + µM)x13,

ẋ14 ≡ f14 = θY x11 − (ϕZ + κV + µM)x14,

ẋ15 ≡ f15 = θY x12 + κV x14 − (ϕZ + µM)x15,

ẋ16 ≡ f20 = Ππp − (λV Hp + µH)x16 + ηHx19,

ẋ17 ≡ f21 = λV Hpx16 − (γH + µH)x17,

ẋ18 ≡ f22 = γHx17 − (αH + δH + µH)x18,

ẋ19 ≡ f23 = αHx18 − (ηH + µH)x19,

ẋ20 ≡ f24 = Ππu − (λV Hu + µH)x20 + ηHx23,

ẋ21 ≡ f25 = λV Hux20 − (γH + µH)x21,

ẋ22 ≡ f26 = γHx21 − (αH + δH + µH)x22,

ẋ23 ≡ f27 = αHx22 − (ηH + µH)x23,

(D-1)
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where,

EIRp = bH
x9

NHp

πp(1− εdeter)
[
εbite|die,pεdie,p + εbite|∼die,p(1− εdie,p)

]
,

EIRu = bH
x9

NHu

πu
[
εbite|die,uεdie,u + εbite|∼die,u(1− εdie,u)

]
,

λV Hp = βM EIRp,

λV Hu = βM EIRu,

ωp =
x18

NHp

, ωu =
x22

NHu

.

Let R0 = 1 and suppose, further, that βM = β∗M is chosen as a bifurcation parameter.
Solving for βM = β∗M from R0 = 1 gives

βM = β∗M =
Ππpπu (C3K10K12 − C2θY ϕZ) (C1K9K11 − C2θY ϕZ)

µ2
HbHx

∗
7κV ϕZθY [(K9 +K12)C3 +K9K11](RHpV +RHuV )

.

The Jacobian of the transformed system (D-1), evaluated at the DFE (T2) with βM = β∗M ,
is given by

J(β∗M) =

[
J1 J2

J3 J4

]
,

where,

J1 =



−ψEϕZx
∗
13

KE
−K1 0 0 0 0 0 0 0 0 0 0 0

σE −K2 0 0 0 0 0 0 0 0 0 0
0 σL1 −K3 0 0 0 0 0 0 0 0 0
0 0 σL2 −K4 0 0 0 0 0 0 0 0
0 0 0 σL3 −µH 0 0 0 0 0 0 0
0 0 0 0 σL4 −K5 0 0 0 0 0 0
0 0 0 0 0 fσP −C1 0 0 0 0 0
0 0 0 0 0 0 0 −C3 0 0 0 0
0 0 0 0 0 0 0 κV −C1 0 0 0
0 0 0 0 0 0 C2 0 0 −K9 0 0
0 0 0 0 0 0 0 C2 0 0 −K10 0
0 0 0 0 0 0 0 0 C2 0 κV −K9



,

J2 =



ψEϕZ(1− x∗1
KE

) ψEϕZ(1− x∗1
KE

) ψEϕZ(1− x∗1
KE

) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
ϕZ 0 0 0 0 0 0 0 0 0 0
0 ϕZ 0 0 0 0 0 0 0 0 0
0 0 ϕZ 0 0 0 0 0 0 0 0

0 0 0 0 0 − bHR1βV x
∗
7

x∗16
0 0 0 − bHR2βV x

∗
7

x∗20
0

0 0 0 0 0
bHR1βV x

∗
7

x∗16
0 0 0

bHR2βV x
∗
7

x∗20
0

0 0 0 0 0 0 0 0 0 0 0



,
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J3 =



0 0 0 0 0 0 0 0 θY 0 0
0 0 0 0 0 0 0 0 0 θY 0
0 0 0 0 0 0 0 0 0 0 θY
0 0 0 0 0 0 0 −βMQp 0 0 0
0 0 0 0 0 0 0 βMQp 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −βMQu 0 0 0
0 0 0 0 0 0 0 βMQu 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


,

and,

J4 =



−K11 0 0 0 0 0 0 0 0 0 0
0 −K12 0 0 0 0 0 0 0 0 0
0 κV −K11 0 0 0 0 0 0 0 0
0 0 0 −µH 0 0 ηH 0 0 0 0
0 0 0 0 −K13 0 0 0 0 0 0
0 0 0 0 γH −K14 0 0 0 0 0
0 0 0 0 0 αH −K15 0 0 0 0
0 0 0 0 0 0 0 −µH 0 0 ηH
0 0 0 0 0 0 0 0 −K13 0 0
0 0 0 0 0 0 0 0 γH −K14 0
0 0 0 0 0 0 0 0 0 αH −K15


.

The Jacobian J(β∗M) has a simple zero eigenvalue (and all other eigenvalues having negative
real parts). Hence, the center manifold theory [23, 24] can be used to analyse the dynamics
of (D-1) near βM = β∗M . This entails carrying out the following computations.

Eigenvectors of J(T2) |βM=β∗
M
: The Jacobian of the transformed system (D-1), evaluated

at the DFE (T2) with βM = β∗M , has a right and left eigenvectors (associated with the zero
eigenvalue) (the expression for the eigenvector wi and vi, i = 1, 2, .., 23, are given in the
Supplementary Material).
Computations of bifurcation coe�cients of a and b :

By computing the associated non-zero partial derivatives of F (x) evaluated the the DFE,
it follows from Theorem 4.1 in [24] that the associated bifurcation coe�cients, a and b, are
given, respectively, by

a =−2bH

[
(−w22R2w7v11βV +v21QuβMw9(w22+w21+w23))x∗20+w22βV R2x∗7v11(w20+w21+w22+w23)

(x∗20)2

]
−2bH

[
(−w18βV R1w7v11+QpβMw9(w18+w19+1))x∗16+w18(x∗20)2βV R1x∗7v11(w16+w18+w19+1)

(x∗16)2

]
,

(D-2)

and,
b = bHw9 (Quv21 +Qp) > 0. (D-3)
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Hence, it follows from Theorem 4.1 of [24] that the transformed model (D-1) undegoes a
backward bifurcation at R0 = 1 if the bifurcation coe�cient a (given by (D-2)) is positive.
This concludes the proof. �

Appendix E: Proof of Theorem 3.3.

Proof. Consider the special case of the model {(2.1), (2.2), (2.4)} without disease-induced
mortality in the host population (i.e., δH = 0). Further, let N0 > 1 (so that the NDFE, T2,
exists) and R̃0 ≤ 1. Setting δH = 0 in the model {(2.1), (2.2), (2.4)} gives NH(t) → Π

µH
as

t → ∞, and K̄14 = αH + µH . Hence, from now on, NH(t) is replaced by its limiting value,
Π
µH

. Furthermore, consider the following linear Lyapunov function:

F = g1EHp + g2IHp + g3EHu + g4IHu + g5EX + g6IX + g7EY + g8IY + g9EZ + g10IZ ,

where,

g1 = βVNHuγHbHR1SXκV ϕZθY (C3 (K9 +K12) +K9K11) ,

g2 = βVNHubHR1SXκV ϕZθY (C3 (K9 +K12) +K9K11)K13,

g3 = βVNHpγHbHR2SXκV ϕZθY (C3 (K9 +K12) +K9K11) ,

g4 = βVNHpbHR2SXκV ϕZθY (C3 (K9 +K12) +K9K11)K13,

g5 =
C2βMγHθ

2
Y ϕ

2
Zκ

2
V SXβV (C3 (K9 +K12) +K9K11)2 (NHpQuR2SHu +NHuQpR1SHp)

(C3K10K12 − C2θY ϕZ) (C1K9K11 − C2θY ϕZ)C3

+
K9K11K13K̄14NHpNHu (C3K10K12 − C2θY ϕZ)κV

C3

,

g6 = K9K11K13K̄14NHpNHu (C3K10K12 − C2θY ϕZ) ,

g7 =
βMγHθ

2
Y ϕ

2
Zκ

2
V SXβV (C3 (K9 +K12) +K9K11)2 (NHpQuR2SHu +NHuQpR1SHp)

(C3K10K12 − C2θY ϕZ) (C1K9K11 − C2θY ϕZ)
,

g8 = θYK13K̄14ϕZNHpNHu (C3K10K12 − C2θY ϕZ) ,

g9 =
C2βMγHθ

2
Y ϕ

3
Zκ

2
V SXβV (C3 (K9 +K12) +K9K11)2 (NHpQuR2SHu +NHuQpR1SHp)

(C3K10K12 − C2θY ϕZ) (C1K9K11 − C2θY ϕZ)K12C3

+
ϕZK9K13K̄14NHpNHu (C3K10K12 − C2θY ϕZ)κV (K11 + C3)

K12C3

,

and, g10 = ϕZK9K13K̄14NHpNHu (C3K10K12 − C2θY ϕZ) .

The Lyapunov derivative of F (where a dot represents di�erentiation with respect to t) is
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given by:

Ḟ = g1ĖHp + g2İHp + g3ĖHu + g4İHu + g5ĖX + g6İX + g7ĖY + g8İY + g9ĖZ + g10İZ ,

= g1(λV HpSHp −K13EHp) + g2(γHEHp − K̄14IHp) + g3(λV HuSHu −K13EHu)

+ g4(γHEHu − K̄14IHu) + g5(ϕZEZ − C3EX) + g6(ϕZIZ + κVEX − C1IX)

+ g7[(bHβV ωpR1 + bHβV ωuR2)SX + C2EX −K10EY ] + g8(κVEY + C2IX −K9IY )

+ g9(θYEY −K12EZ) + g10(θY IY + κVEZ −K11IZ),

=

(
g1βMQpSHp

NHp

+
g3βMQuSHu

NHu

− g6C1 + g8C2

)
IX +

(
g7bHβVR1SX

NHp

− g2K̄14

)
IHp

+

(
g7bHβVR2SX

NHu

− g4K̄14

)
IHu + (−g1K13 + g2γH)EHp + (−g3K13 + g4γH)EHu

+ (−g5C3 + g6κV + g7C2)EX + (−g7K10 + g8κV + g9θY )EY + (−g9K12 + g10κV + g5ϕZ)EZ

+ (−g8K9 + g10θY )IY + (−g10K11 + g6ϕZ)IZ .

Since SHp(t) ≤ NHp, SHu(t) ≤ NHu, NHp(t) = Ππp
µH

and NHu(t) = Ππu
µH

in Ω for all t > 0, it
follows that:

Ḟ =≤ K13K̄14NHpNHu(C1K9K11 − C2θY ϕZ)(C3K10K12 − C2θY ϕZ)(R̃2
0 − 1)IX

+ βVNHubHR1SXκV ϕZθY (C3 (K9 +K12) +K9K11)K13K14(R̃2
0 − 1)IHp

+ βVNHpbHR2SXκV ϕZθY (C3 (K9 +K12) +K9K11)K13K14(R̃2
0 − 1)IHu

+
ϕ2
Z(NHpQuR2SHu+NHuQpR1SHp)κ2V βV (C3(K9+K12)+K9K11)2θ2Y SXγHβM

bHK12C3(C1K9K11−C2θY ϕZ)

(
1− 1

R̃2
0

)
EY .

Hence, Ḟ ≤ 0 if R̃0 < 1 with Ḟ = 0 if and only if IX = IHp = IHu = EY = 0. Therefore,
F is a Lyapunov function in Ω and it follows from LaSalle's Invariance Principle [75] that
every solution to the equations in {(2.1), (2.2), (2.4)} (with δH = 0 and initial conditions in
Ω) converges to T2 as t→∞ That is,

(EX(t), IX(t), EY (t), IY (t), EZ(t), IZ(t), EHp(t), IHp(t), RHp(t), EHu(t), IHu(t), RHu(t))

→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) as t→∞.

Thus, X (t)→
(
E∗, L∗1, L

∗
2, L

∗
3, L

∗
4, P

∗, S∗X , 0, 0, S
∗
Y , 0, 0, S

∗
Z , 0, 0,

Π πp
µH

, 0, 0, 0,
Π πu
µH

, 0, 0, 0

)
as t→∞ for R̃0 ≤ 1. Hence, the NDFE, T2, is globally-asymptotically stable in Ω if R̃0 ≤ 1
for the special case of the model {(2.1), (2.2), (2.4)} with δH = 0. This completes the proof.

�
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