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Abstract
Land use change (LUC) is the leading cause of biodiversity loss worldwide. However, the 
global understanding of LUC’s impact on biodiversity is mainly based on comparisons of 
land use endpoints (habitat vs non-habitat) in forest ecosystems. Hence, it may not general-
ise to savannas, which are ecologically distinct from forests, as they are inherently patchy, 
and disturbance adapted. Endpoint comparisons also cannot inform the management of 
intermediate mosaic landscapes. We aim to address these gaps by investigating species- 
and community-level responses of mammals and trees along a gradient of small scale 
agricultural expansion in the miombo woodlands of northern Mozambique. Thus, the case 
study represents the most common pathway of LUC and biodiversity change in the world’s 
largest savanna. Tree abundance, mammal occupancy, and tree- and mammal-species rich-
ness showed a non-linear relationship with agricultural expansion (characterised by the 
Land Division Index, LDI). These occurrence and diversity metrics increased at inter-
mediate LDI (0.3 to 0.7), started decreasing beyond LDI > 0.7, and underwent high lev-
els of decline at extreme levels of agricultural expansion (LDI > 0.9). Despite similarities 
in species richness responses, the two taxonomic groups showed contrasting β-diversity 
patterns in response to increasing LDI: increased dissimilarity among tree communities 
(heterogenisation) and high similarity among mammals (homogenisation). Our analysis 
along a gradient of landscape-scale land use intensification allows a novel understanding 
of the impacts of different levels of land conversion, which can help guide land use and 
restoration policy. Biodiversity loss in this miombo landscape was lower than would be 
inferred from existing global syntheses of biodiversity-land use relations for Africa or the 
tropics, probably because such syntheses take a fully converted landscape as the endpoint. 
As, currently, most African savanna landscapes are a mosaic of savanna habitats and small 
scale agriculture, biodiversity loss is probably lower than in current global estimates, albeit 
with a trend towards further conversion. However, at extreme levels of land use change 
(LDI > 0.9 or < 15% habitat cover) miombo biodiversity appears to be more sensitive to 
LUC than inferred from the meta-analyses. To mitigate the worst effects of land use on 
biodiversity, our results suggest that miombo landscapes should retain > 25% habitat cover 
and avoid LDI > 0.75—after which species richness of both groups begin to decline. Our 
findings indicate that tree diversity may be easier to restore from natural restoration than 
mammal diversity, which became spatially homogeneous.

Communicated by Dirk Sven Schmeller.
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Introduction

Land conversion to agriculture is the major driver of global biodiversity loss, with conse-
quences for ecosystem functioning and human wellbeing (Haddad et al. 2015; Pfeifer et al. 
2017). The expansion of agriculture, and the resulting loss and fragmentation of original 
habitats, leads to reduced habitat area, increased habitat isolation and novel ecological 
boundaries (Taubert et al. 2018). These altered landscape characteristics amplify competi-
tion, reduce immigration and often increase predation, causing population declines, local 
species extinctions and changes in species compositions (Fahrig 2010; Pfeifer et al. 2017). 
However, these effects vary depending on species traits and the spatial structure of the 
habitat (patch) and the surrounding human-modified landscape (matrix) (Ewers and Did-
ham 2006). The global understanding of the impacts of land use change on biodiversity is 
mainly based on studies from forest ecosystems comparing binary endpoints (natural forest 
vs agricultural land; McGill et al. 2015). However, most land cover transformations are a 
gradual process of landscape-scale intensification, leading to habitat loss and fragmenta-
tion. These limitations suggest a potential biogeographical and theoretical knowledge gap. 
Specifically, it overlooks the possibility that different land use-biodiversity relationships 
may exist in savannas and ignores the role of heterogeneous landscape mosaics at interme-
diate land use intensities with varying patch-matrix structures (Franklin and Lindenmayer 
2009). While the former is essential for making accurate global biodiversity change projec-
tions, the latter is critical for informing local land and biodiversity management. Particu-
larly in African savannas, patchy mosaic agricultural landscapes are widespread and will 
need to be managed carefully to meet both biodiversity and food security objectives.

Savannas are, even without LUC, heterogeneous systems, conceptually quite differ-
ent from the simple patch-matrix dichotomy that often underpins habitat change theory 
(Jules et  al. 2016). Savanna landscapes, particularly the miombo woodlands that are 
our focus here, are socio-ecological systems characterised by age-old human–envi-
ronment interactions. They comprise a mosaic of land covers—including grass-dom-
inated drainage lines, densely wooded crests, dry forest patches, rocky outcrops and 
open savannas on hydromorphic soils (Frost and Campbell 1996). On top of this 
mosaic, there is widespread and long-standing human land use, including permanent 
agriculture, shifting cultivation, grazing, tree harvesting for timber and energy, and 
widespread fire (Archibald et  al. 2012; McNicol et  al. 2018). The miombo supports 
biodiversity that is globally significant due to high endemicity (Linder et  al. 2012) 
and provides services necessary to the livelihoods of 100  s of millions of rural peo-
ple (Ryan et  al. 2016; Pritchard et  al. 2019). Being inherently patchy and a histori-
cally human-managed system that has co-evolved with the land-use activities of peo-
ple, and is characterised by frequent disturbances (Ellis et al. 2010; Ryan et al. 2011), 
miombo biodiversity might be hypothesised to be resilient to intermediate land-use 
changes (McNicol et al. 2015), particularly in comparison to other less populated trop-
ical biomes. Resolving this is important because currently, there is a rapid and more 
complete land cover change underway from mixed farming systems to monoculture 
farming in several hotspots in Africa. This transformation is notably more prominent 
on the eastern seaboard and around large cities and associated development corridors 
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(Ahrends et al. 2010; McNicol et al. 2018). In future, the expansion of agriculture to 
meet the growing demands of local and commercial markets may lead to the trans-
formation of the intermediate heterogeneous savanna landscapes to more agriculture-
dominated homogenous landscapes where food production will trade-off strongly 
against biodiversity (Molotoks et al. 2018).

Mitigating biodiversity loss in such landscapes requires a nuanced understanding of 
how the mosaic of non-agricultural land facilitates biodiversity (Seppelt et al. 2019). 
Most biodiversity-land use studies overlook the distinctions and complexities of grad-
ual landscape-scale land use intensification; thus, they do not provide the information 
required to understand the trade-offs between food production and conservation. We 
study a gradient of agricultural land-use intensity (Baumert et  al. 2019), evaluating 
the organisation of tree and mammal communities. The overall aim is to provide infor-
mation about how much land should be spared and at what levels of fragmentation to 
maintain biodiversity above safe levels in agricultural miombo landscapes.

Our first goal was to examine how local species richness changes along an agricul-
tural fragmentation gradient. We expected that the mean local species richness loss 
in the miombo would be lower than the average losses reported from the overall wet 
tropics (− 18.3%; Murphy and Romanuk 2014) and also from dry tropics in Africa 
(− 21.6%; Newbold et al. 2017). This is because, as mentioned above, the majority of 
biodiversity-land use studies in the global literature compare land use endpoints (e.g. 
national park versus farmlands)—ignoring that most African savanna landscapes are 
predominantly intermediate mosaics and have not yet transitioned to the extreme levels 
of land use change (Murphy et al. 2016).

Our second goal was to compare the α- and β-diversity responses of trees and mam-
mals to understand taxonomic group differences in response to agricultural expansion. 
We expected that the impact of land use would differ between tree and mammal com-
munities for the following reasons: clearing for small-scale farming is the primary land 
use change in our study area, and individual trees are not selectively removed, at least 
within the miombo woodland cover. Therefore, population declines of tree species are 
more likely to be random i.e., more abundant and common tree species will be har-
vested first—in other words, local species decline will be ordered by abundance and 
ubiquity. This would cause reduced richness but increased dissimilarity among tree 
communities—subtractive heterogenisation, a pattern driven by random local extinc-
tions (Segre et al. 2014; Socolar et al. 2016). On the other hand, mammal communities 
are more likely to be structured systematically on the basis of species’ traits, dispers-
ibility, and degree of habitat specialisation (Ewers and Didham 2006). Habitat special-
ists are thus likely to decline due to isolation and reduction in the size of habitat frag-
ments (Jamoneau et al. 2012), whilst habitat generalists, more mobile, and non-forest 
species may proliferate in the patch-matrix mosaic (Cordeiro et  al. 2015). Based on 
this information, we expected that mammals would undergo loss of species richness 
and reduced spatial species dissimilarity among mammal communities, i.e., a decline 
in α β-diversity at high levels of agricultural expansion—subtractive heterogenisation.

We expect the results to be useful for landscape planning and management aimed at 
biodiversity conservation and the sustainance of local livelihoods. The two taxonomic 
groups studied are essential for provisioning ecosystem services in the region: trees for 
fruit, fodder and timber (Frost and Campbell 1996; Sileshi et al. 2007) and mammals 
for food (mainly medium to small-sized species; Caro, 2001; Linzey and Kesner 1997).
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Material and methods

We conducted a ’space-for-time’ study along a gradient of miombo landscapes, from 
low levels of agriculture through to almost complete conversion of the landscape. We 
collected occurrence data (counts for trees and incidence for mammals) in these land-
scapes and analysed multi-species occurrence using hierarchical meta-community occu-
pancy models (Dorazio and Royle 2005) in a Bayesian regression modelling framework.

Study area

We carried out this study from April to July 2016 in Posto Administrativo Lioma, in the 
district of Gurué, located in the northern part of Zambézia, the second-most populous 
province in Mozambique (Fig. 1). The site has a mean temperature of 22.7 ºC and pre-
cipitation of 1030 mm year−1, with most rainfall from November to April (INE 2014). It 
is primarily a miombo landscape dominated by trees of genus Brachystegia and grasses 
of the genera Hyparrhenia and Andropogon (Frost 1996). Typical crops include maize, 
cassava and beans, and cash crops such as pigeon pea, soya, cowpea, sunflower and 
sesame (INE 2014). Small farms of 1–2 ha in size cover about 90% of the agricultural 
land (Hanlon and Smart 2012). The commercial farming of soya, which was first intro-
duced in the 1980s by Brazilian companies, stopped due to the civil war (1977–92) and 
was reinstated in 2002 (Matteo and Otsuki 2016). Since then, small scale commercial 
farming—mainly driven by the national demand for soya—has been steadily growing, 
now equalling 2.8% of agricultural land (Matteo and Otsuki 2016; Baumert et al. 2019).

Fig. 1   Study area in Zambézia province in north-central Mozambique. We selected landscape sampling 
units (1 km2 grids) within which we collected incidence data of mammal (red boxes) and count data of tree 
species (blue boxes) and computed land division index (LDI), total woodland cover (ME) and woodland 
cover loss between 2007 and 2014 (HL). Camera trap locations for mammal sampling were at least 2 km 
away from each other; this provides independent observations for most mammal species observed in this 
study
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Measures of agricultural expansion

We used indicators of fragmentation and changes in miombo cover to measure the inten-
sity of agricultural expansion in the miombo ecosystem. To map these changes, we made 
above-ground woody biomass maps for 2007 and 2014 using images obtained by the 
Phased Array L-band Synthetic Aperture Radar sensor on the Advanced Land Observing 
Satellite following the methods described in Ryan et  al. (2012). We classified all pixels 
above 15 tC ha−1 as wooded miombo and all pixels below this value as non-wooded fol-
lowing other studies in the region (Ryan et  al. 2012, 2014). We divided the study area 
into grids of 1 km2, representing landscape-scale sampling units (LSU). To ensure that 
the LSUs represent miombo, we excluded LSUs with a mean elevation of > 800 m ASL 
(Shirima et al. 2011). In each LSU, we estimated three land cover variables:

	 (i)	 Land Division Index (LDI), a measure of fragmentation defined as the probability 
that two randomly selected points in the landscape are situated in two different 
patches of the habitat (Jaeger 2000; Mcgarigal 2015)

	 (ii)	 Miombo extent (ME), the proportion of the LSU covered by wooded miombo in 
2014, a measure of habitat quantity.

	 (iii)	 Habitat loss (HL) between 2007 and 2014, the area that was converted from wooded 
to non-wooded, as a % of the 2007 miombo extent.

Habitat quantity (ME) and habitat loss (HL) are in most cases negatively correlated, but 
a landscape can naturally have lower habitat quantities without undergoing habitat loss, so 
the latter was also included to take into account this inherent variation.

LDI can help differentiate between fragmentation and habitat quantity effects as it is 
more sensitive to dissection than shrinkage and, therefore, is a robust measure of fragmen-
tation (Jaeger 2000). We also examined the relationship between diversity and other envi-
ronmental variables—soil type (ISRIC 2013), accessibility—proximity to the nearest paved 
road (CIESIN, ITOS 2013), and mean annual temperature (MAT) and precipitation (MAP) 
(Hijmans et al. 2005). MAP was significantly related to diversity and was thus used as one 
of the explanatory variables for occupancy and diversity. Further, ME and HL were cor-
related with LDI (correlation coefficient r = 0.9 and 0.25, respectively; correlation plot in 
supporting information: SI Fig. 1). Hence, to reduce multicollinearity, we used their resid-
uals (i.e. the amount of variation not explained by LDI) as variables following the concept 
of sequential regression (Dormann et al. 2013) in the order LDI, ME, and HL. Hereafter, 
HLresid, and MEresid refer to the residuals of "HL ~ LDI", and "ME ~ LDI + HLresid", respec-
tively. We considered fragmentation to be the primary driver of biodiversity (Pfeifer et al. 
2017), followed by habitat quantity and intensity of habitat loss, hence the order LDI, ME 
and HL.

Species sampling

We collected species occurrence data within a sample of 1 km2 LSUs: abundance for trees 
using 20 m radius circular plots and incidence for mammals using camera traps (Fig. 1). 
For trees, we made a post-hoc selection of existing inventory data by selecting 27 LSUs 
with a mean elevation of ≤ 800 m ASL, each containing ~ 3 tree plots. Within each plot, the 
diameter at breast height (DBH) of all tree stems > 5 cm DBH was measured, and the stems 
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were identified by their local names, with the help of local experts. Stems unidentified in 
the field were collected and identified later by reference to Palgrave, (2002). Tree identifi-
cation was corroborated by botanists at the University of Eduardo Mondlane in Maputo. 
The 42 individuals (2% of total stems) that could not be identified were grouped into dis-
tinct unknown species (n = 13) based on morphological characteristics.

To sample mammal communities, we used a stratified sample of 40 LSUs representing 
a gradient of fragmentation from low to high. Within each LSU, we placed one camera trap 
within 100 m of the centre, at the best camera trapping location, chosen as an open and 
frequently used pathway, to maximise detection (O’Connell et al. 2011). The cameras were 
visited every week to download images and check functioning. Each LSU was consid-
ered as a site, and every day-night period of the camera trap a sampling occasion. Camera 
traps were supposed to be operated for 60–65 days; however, due to camera thefts (n = 3; 
excluded from the analysis), disturbance by people, and inclement weather conditions, not 
all cameras recorded an equal number of camera-days. The camera-days ranged from 8 to 
65 and had a mean of 45 days. Mammals in camera trap images were identified to the spe-
cies level where possible, by reference to field guides (Liebenberg 2000; Kingdon 2001; 
Stuart and Stuart 2007; Gutteridge and Liebenberg 2013). Where species identification 
could not be made (n = 5, 0.5% of all mammal occurrences), the morphologically distinct 
individuals were classified to the lowest possible taxonomic group (genus, family or order) 
and given unique identification codes. Three domestic species in our dataset (dog, cat and 
pig) were removed from the analysis.

Statistical analysis

Our objective in this study was to test relationships between species and community level 
attributes (detailed in Table 1) and landcover variables (LDI, MEresid and HLresid). To do 
this we built species- and community-level hierarchical mixed-effects models (Dorazio and 
Royle 2005) for both taxonomic groups with landcover variables as predictors in additive 
combination.

Since the effects of fragmentation can be non-linear (Andrén 1994; Ewers and Didham 
2006), we included quadratic and cubic terms of LDI (LDI2 and LDI3) as predictors, and 
compared models with and without these terms using penalised deviance ( ̂D ) as a measure 
of model fit (Van Der Linde 2005). D̂ is given by D̂ = DIC—2 pD, where DIC = Deviance 
Information Criterion (DIC), and pD = posterior mean of the deviance. The values of DIC 
and pD increase with model complexity, and hence,D̂ , which incorporates a degree of pen-
alty for complexity, was used as a measure of model fitness (Van Der Linde 2005). Details 
of the models, model structures, and parameters values are provided in supporting informa-
tion (SI: SI models and SI Table 1 and 2). The goodness of fit table is provided in the result 
section.

We specified the models using BUGS (Kéry 2010; Kéry and Schaub 2012) and exe-
cuted simulations using three Markov chains, with 75,000 iterations for each chain (the 
first 25,000 iterations of which were discarded as burn-in), and set the thinning rate to 50, 
yielding 3000 samples from the posterior distributions. We checked all the models for con-
vergence using the Gelman-Rubin convergence diagnostic, with potential scale reduction 
factor values approaching 1 considered acceptable (Gelman and Rubin 1992). We use the 
% deviation of the standardised beta-coefficients from the intercept as the standard effect 
size (± standard deviation) with posterior probabilities (Pp) as a measure of confidence in 
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the posterior estimates. Where more than one species is mentioned together, we provide the 
mean Pp of all species concerned.

Calculations and analysis were undertaken using the statistical software R version 
3.4.2 (R Core Team 2017). We used the vegan package (Oksanen et al. 2016) to com-
pute species richness, iNEXT (Hsieh et  al. 2016) for sample-based rarefied species 
richness, accumulation and survey completeness, and adespatial (Dray et al. 2016) for 
species β-diversities. To fit the Bayesian models, we used the jagsUI package (Kellner 
2015). We followed the R scripts in Kéry and Royle (2016) for constructing the meta-
community models. Figures were drawn using ggplot2 (Wickham 2009).

Results

Survey effort and model selection

We measured a total of 1215 tree stems and recorded 864 mammal occurrences (from 
1693 trap-nights) belonging to 88 and 21 species, respectively. Sample-based species 
accumulation showed that mammals reached a clear asymptote while trees did not, 
although both taxonomic groups attained significant survey completeness > 95% (SI 
Fig. 4).

All models obtained sufficient convergence and had low Monte Carlo error (Gel-
man and Rubin 1992). For mammal occupancy, the model with quadratic and cubic 
terms of LDI (LDI + LDI2 + LDI3) produced the lowest D̂ (Table 2) and was selected as 
the best model. For tree abundance, the 2nd-degree model (LDI + LDI2) without LDI3 
had the lowest D̂ and hence was selected as the more plausible model. In the case of 
the community models for both trees and mammals, the model selection was unclear 
as there were only minor differences between the three model structures as estimated 
by D̂ (Table  2). For simplicity’s sake, we thus selected the community model struc-
ture of trees and mammals based on whichever model structure was agreed by their 
respective occurrence models because the community models use the outputs from the 
occurrence models (see Table 1). So, if the quadratic abundance model is preferred for 

Table 2   Model goodness of fit, as estimated by the penalised deviance ( ̂D)

The values in bold correspond to the models that were selected in this study. Note that the community 
models are based on the outputs from occurrence (occupancy and abundance) models. As well as the LDI 
predictors shown here, each model also includes residuals of ME Miombo extent, HL habitat loss, MAP 
mean annual precipitation
The italics indicate short form initials of predictor variables in the model

Models Predictors

LDI LDI + LDI2 LDI + LDI2 + LDI3

Mammal occupancy 1285 1290 1270
Mammal community—richness and turnover − 165 − 163 − 159
Tree abundance 1090 755 2376
Tree community—richness and turnover − 78 − 81 − 90
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tree abundance (model 1), it makes sense to use quadratic models for tree community 
attributes (richness etc.; models 3–5); likewise, the 3rd-degree model was selected for 
mammal community attributes as it was the best model for mammal occupancy.

Effects of land use change on α‑ and β‑diversity

The overall effects of LUC on species and community level diversity metrics were non-
linear and there were some differences between taxonomic groups. The species richness 
of both trees and mammals showed a non-linear relationship with LDI: increasing from 
low (< 0.3) to moderate (0.3–0.7) and declining at high LDI values (> 0.7, Pp = 0.9; 
Figs. 2 and 3). For trees, the species richness began to decrease at lower LDI than that 
of mammals (0.6 vs 0.75).

The nestedness of tree communities reduced (Pp = 0.99) at low LDI, stabilised at 
moderate LDI, and declined again at high LDI. This was matched with a decline and an 
increase in tree species turnover at low and high LDI values (Pp = 0.89). On the other 
hand, mammals had reduced turnover (Pp = 0.95) and increasing nestedness (Pp = 0.72) 
in response to LDI.

The predictors of diversity other than LDI had varied effects: tree species richness 
showed a positive response to HLresid (Pp = 0.85) and had a negative association with 
MEresid (Pp = 0.95) and MAP (Pp = 0.97). Tree species turnover increased with MEresid 
(Pp = 0.87) and MAP (Pp = 0.98) and decreased with HLresid (Pp = 0.95). In mammals, 
MEresid, HLresid and MAP were negatively associated with species richness (Pp = 0.86) 
and positively related to turnover (Pp = 0.81). The species richness, turnover and nest-
edness of mammals and trees and their model residuals had weak and statistically non-
significant spatial autocorrelation (Moran’s I = 0.05 and 0.09, p > 0.1 for mammals and 
trees, respectively).

Overall, the picture is clear. At high LDI, tree communities lost species richness but 
increased in within-site dissimilarity, i.e., subtractive heterogenisation. In contrast, at 

Fig. 2   The effect size of the predictors of community diversity metrics., Circle positions represent scaled 
coefficients (proportion of deviation from the intercept), horizontal lines on the circles indicating 95% CI, 
and colours showing the direction of the effect. Increasing LDI was associated with reduced species rich-
ness of trees and mammal species, reduced mammal turnover and increased tree species turnover. LDI Land 
Division Index, ME Miombo extent i.e., habitat quantity, HL habitat loss, MAP mean annual precipitation. 
For HL and ME, the residuals of an LDI ~ ME and LDI ~ HL model are used to account for the correlation 
between these predictors
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high levels of LDI, mammals lost species richness and became more similar in species 
composition—subtractive homogenisation.

Effects on species occurrence

At the species-level, the effect of agricultural expansion on tree communities was largely 
negative as most tree species had reduced abundance at higher levels of LDI. The nega-
tively affected tree species included dominant miombo species such as Brachystegia spici-
formis and B. boehmii, and non-dominants such as Pterocarpus angolensis, Sclerocarya 
birrea, Combretum apiculatum and Albizia adianthifolia. Increasers included Annona 
senegalensis (prized for its edible fruit), Mangifera indica (planted mainly by humans), 
Terminalia sericea, and Piliostigma thonningii (a rapidly growing species that colonises 
clearings and fallow; SI-Fig.  6). For mammals, the probability of occupancy of all spe-
cies responded non-linearly: it increased at low to intermediate LDI and reduced after high 
LDI. The species which had significantly higher occupancy at intermediate LDI consisted 
of elephant shrews, murids (African spiny mouse, Acomys sp., and thicket rat, Grammo-
mys sp.) and species that are known to survive well in human-influenced, disturbed and 
fragmented landscapes (lesser bushbaby, Galago moholi, and rusty-spotted genet, Genetta 
maculata). On the other hand, species such as the African giant rat (Cricetomys gambi-
anus), Bush hyrax (Heterohyrax brucei), and South African hedgehog (Atelerix frontalis), 

Fig. 3   Community-level responses of trees and mammals to agricultural expansion (represented by the 
Land Division Index). The circles denote point estimates with 95% CRIs (vertical lines) from the meta-
community occupancy models. The dashed line is a spline smooth based on those point estimates. The 
blue and green lines are predicted species diversity responses—richness, turnover and nestedness, from 
the regression model that considers the estimation error (posterior standard deviations) of the point esti-
mates from the meta-community occupancy models. The shaded area represents the 95% CRI of the model-
predicted species diversity responses. Land Division Index is associated with declining species richness of 
both trees and mammals and has different effects on β-diversity—compositional drift in trees and biotic 
homogenisation in mammals at high LDI values
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in addition to the previously mentioned African spiny mouse, showed a significant negative 
reduction in occupancy at high LDI (see species level coefficient plots in SI-Fig. 7).

In summary, LDI was associated with the reduced abundance of a majority of tree spe-
cies and lower occupancy of all mammal species, thus creating more species losers than 
winners. The effect of the other predictor variables was minor, and HLresid and MAP had 
poor posterior probabilities (Pp < 0.6) and were associated with an almost equal number of 
species winners and losers; MEresid had a significant negative association with most mam-
mal species. Plots of species-level model coefficients with 95% CI of trees and mammals 
are provided in the SI.

Discussion

Fragmentation: few winners and many losers

Our results underline the disruptive effects of agricultural expansion on species popula-
tions and diversity. We found that agricultural expansion was associated with a decrease 
in population size in 75% of species, indicating the ’more species losers than winners’ 
paradigm (McKinney and Lockwood 1999). The tree species that declined were primarily 
miombo dominants and species used by humans for timber and firewood. While the decline 
of miombo species may be related to the random loss of species through habitat loss, the 
decline of livelihood-relevant species may be driven by the selective over-harvesting along 
the edges of habitat patches.

For most mammal species, occupancy was highest at intermediate levels of fragmenta-
tion and woodland cover. The species positively associated with the intermediate levels of 
fragmentation consisted of the rapidly breeding Elephantulus species and murids and gen-
eralist predators. Assuming that the less divided woodland landscapes are relatively undis-
turbed by humans, our finding of positive effects of intermediate fragmentation is similar 
to the results Caro (2001) obtained in miombo woodlands of western Tanzania and studies 
in other ecosystems (Andrén 1994; Conde y Vera and Rocha 2006; Cusack 2011; Rich 
et al. 2016). By showing that even after the positive effect of the intermediate disturbance, 
most mammal /tree species declined in occupancy/abundance at higher levels of land use 
and associated fragmentation, our results expand upon the existence of non-linear relation-
ships and possible thresholds observed in forests (Andrén 1994; Hill and Caswell 1999; 
Mönkkönen and Reunanen 1999; Pardini et al. 2010).

Declines in species richness

As expected, the species richness of both trees and mammals reduced with agricultural 
expansion-led fragmentation. Both groups showed a hump-shaped pattern of species rich-
ness in response to fragmentation—species richness increasing at the intermediate levels of 
fragmentation (30–70%) but declining beyond a fragmentation (~ 70%) and habitat quantity 
threshold (~ 30%). The intermediate disturbance hypothesis could explain the non-linear 
patterns. The intermediate levels of fragmentation and habitat loss would have created 
landcover heterogeneity which is associated with an increase in the landscape-wide species 
pool due to niche complementarity (Pardini et al. 2010; Tscharntke et al. 2012). In the case 
of tree communities, an increase in diversity at intermediate levels despite loss of miombo 
trees species is possibly due to colonisation of new species as a result of tree planting or 
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selection by humans (e.g. mango) or regeneration of early-successional species as observed 
elsewhere (McNicol et  al. 2015; Yeboah and Chen 2016). The non-linear response of 
mammals may be due to their ability to move and exploit resources in multiple fragments 
when the fragmentation is low and habitat patches are within reach (Pardini et al. 2005). 
However, as the landscapes become more fragmented and increasingly homogenous, the 
size of remaining woodland patches and woody cover in the landscapes reduce, leading to 
increased competition and predation, and a subsequent decline in mammal species richness 
(Magrach et al. 2014).

At the extreme levels of agriculture expansion, comparable to the land use endpoints 
used in the global syntheses (Murphy and Romanuk 2014; Newbold et al. 2015, 2017), we 
found > 40% decline in species richness (− 49 ± 19% after 95% fragmentation). This loss 
is much higher than the African average of 21.6% in Newbold et al. (2017) and the "tropi-
cal average" of 25.6% in Murphy and Romanuk (2014). A possible reason why we found 
higher biodiversity losses is that our study takes into account the landscape-scale relation-
ships between biodiversity and land use change. In contrast, most studies included in the 
global syntheses of biodiversity and land use change have focussed on patch-scale observa-
tions of biodiversity responses to land use. In these patch-scale observations, biodiversity 
losses may be influenced and mitigated by landscape heterogeneity and associated source-
sink process (Kormann et al. 2018), and hence, underestimated.

The majority of African savanna landscapes, however, have not undergone complete 
patch-to-matrix transformation (McNicol et  al. 2018). A rough indication of the current 
impact of intermediate transformation is given by combining all our sites above 25% frag-
mentation. Here, the reduction in species richness was ~ 13 ± 6%. This estimate is just 
slightly below the global average of 13.6% reduction in local species richness under com-
plete patch-to-matrix conversions suggested by Newbold et  al. (2015), and considerably 
lower than the averages from the global syntheses we discussed above. This study provides 
a more representative depiction of the current state of biodiversity change in the miombo, 
which is still at the intermediate stages of land use transformation.

Taxonomic heterogeneity in β‑diversity responses

The β-diversity response to agricultural expansion, in contrast to the alpha-diversity 
response, differed between the two taxonomic groups. Tree communities underwent com-
positional drift in highly fragmented landscapes, possibly because of contrasting succes-
sional pathways following random extinctions due to habitat loss. The ubiquitous miombo 
woodland dominants declined, and fast-growing secondary vegetation and successional 
species became more abundant. Such combined effects of turnover and species loss 
results in subtractive heterogenisation—loss of species richness with increased dissimilar-
ity between communities (McGill et  al. 2015; Socolar et  al. 2016), and is represented in 
our result by the increase in the turnover and loss of the nestedness component of tree 
β-diversity. This finding corroborates similar studies from African woodlands (McNicol 
et al. 2015) and other ecosystems (Laurance et al. 2006; Arroyo-Rodríguez et al. 2013).

On the other hand, mammal communities became more similar in community compo-
sition in landscapes dominated by a agricultural matrix and fragmented woodland patches. 
Specifically, they underwent niche-based deterministic reduction leading to a strong subtrac-
tive homogenisation—loss of species richness with reduced dissimilarity between communi-
ties (McGill et al. 2015; Socolar et al. 2016). This pattern in mammals is mainly because, as 
the woodland habitat in the woodland-agriculture mosaic reduced and became fragmented, 
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disturbance-sensitive species with preferences for woodland habitats declined, and a nested 
subset of ubiquitous disturbance-tolerant species survived in the non-woodland matrix. Also, 
species such as the African giant rat (Cricetomys gambianus), rock hare (Pronolagus rupes-
tris) and the common duiker (Sylvicapra grimmia) are preferentially hunted using dogs and 
traps (personal observation and Timberlake et al. 2009), which leads to a loss of these species 
across all fragmented landscapes.

The contrasting patterns of β-diversity observed in this study will have implications for 
maintaining biodiversity in these human-modified landscapes. Tree communities which expe-
rienced biotic heterogenisation are more likely to recover as species needed for recovery are 
maintained in the meta-community species pool (Tscharntke et al. 2012). Mammal communi-
ties experience more disruptive effects of fragmentation. Therefore, they would require more 
focused land and conservation management policies to maintain the habitat structure above 
the thresholds that we will discuss below.

Limitations

It is worth noting that the effect of fragmentation on individual species may be confounded by 
local contexts (Ewers and Didham 2006). The remaining woodland patches in the undivided 
landscapes that we studied may have gone through selective harvesting of trees and defau-
nation due to hunting for bushmeat (Timberlake et  al. 2009; Zach et  al. 2016), which may 
explain the lower densities of trees and mammals in these areas. The observed nonlinearity in 
responses of communities in this study would, in that case, simply be the result of multiple fil-
tration processes: harvesting and hunting causing declines in population size across all species 
(Reyna-Hurtado and Tanner 2007; Hegerl et  al. 2015), and fragmentation leading to selec-
tion of smaller mammals, generalists and domesticated species (Jamoneau et al. 2012; Keinath 
et al. 2016). For a clearer understanding of the effect of fragmentation and habitat loss in the 
region, the biodiversity of undisturbed, less divided and large miombo woodland patches in 
similar climatic and topographic conditions should be the reference point for community size 
and integrity. We excluded the high-elevation landscapes with relatively undisturbed wood-
land areas, as they were inaccessible and not preferred for farming. But these woodland 
patches, although mainly non-miombo, maybe the last remaining undisturbed refuges support-
ing fauna that have migrated from the disturbed and fragmented landscapes. Accounting for 
the role of these high elevation habitats will be essential to understand and accurately predict 
biodiversity change in this region.

In terms of model selection, we used D̂ values as an indicator of deviance and model fit, 
and selected models with the lowest penalised deviance as the most plausible model. For com-
munity models, however, the deviance difference among the models was small, indicating that 
models were similar and that any polynomial model could be valid for community-level met-
rics. However, since the community-level metrics used in the community models were derived 
from the occupancy models, we simply selected the community models’ structure to match 
the occupancy models. A strength of the approach here is that we account for heterogeneity in 
species detection, which is not often done in the land use-biodiversity literature, which primar-
ily estimates diversity (richness and composition) purely based on plot-level observations of 
diversity.

Lastly, this study is a space-for-time substitution; therefore, generalisation and validation 
of the results and the thresholds by undertaking multi-season and multi-spatial scale studies 
should be the focus of future research.
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Conclusion

Our study demonstrates that fragmentation and the associated loss of habitat cover due 
to agricultural expansion in the miombo results in reductions in the diversity, abundance 
and occupancy of the majority of tree and mammal species. Severe reductions in species 
richness and population size were observed at the highest levels of fragmentation and 
habitat loss. However, as most African savanna landscapes are still at the intermedi-
ate levels of land use intensification, the extent of local biodiversity loss in the African 
savanna ecosystems has not reached these highest levels.

We show that different taxonomic groups respond differently to land use intensifica-
tion. Trees undergo subtractive heterogenisation with a reduction in species richness 
and increased species dissimilarity. In contrast, mammal communities experience sub-
tractive homogenisation due to decreased species richness combined with a loss of spe-
cies dissimilarity. Finally, we also show that the effects of fragmentation on biodiversity 
may be non-linear: beyond ~ 75% fragmentation, the impact of fragmentation switches 
from positive to negative.

These results underline the ecological importance and conservation value of mosaic 
landscapes in African savannas, especially those with intermediate fragmentation lev-
els. They also suggest that to maintain savanna biodiversity above safe levels (Hooper 
et al. 2012), the landscape must contain > 25% habitat cover with < 75% fragmentation. 
However, this does not mean that the savanna landscapes can be modified to those levels 
without consequences: the effects on species compositions of both groups—trees and 
mammals—are noticeable even at low levels of intensification. Furthermore, this study 
used human-utilised landscapes as a baseline and, therefore, the effects on biodiversity 
could be much more severe if comparisons are made with less modified landscapes.
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