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1. Introduction 
 
The United States has long been on the search for alternative energy sources to meet its 

growing energy demand and reduce dependency on coal and oil based energy sources. The 

oil crises of the 1970s served as a major boost to increase research and development efforts to 

find new and alternative domestic energy sources as they would make the U.S. economy less 

dependent on foreign energy sources and, hence, more resistent to external shocks such as 

those brought about the oil crises. Natural gas, one of the major fossil fuels, is an alternative 

energy source that can be economically viable.  In the United States, natural gas is classified 

into two types: (1) natural gas from conventional gas fields, and (2) unconventional natural 

gas. Historically, conventional natural gases have been more easily extractable because they 

are found trapped in permeable material in the earth.1 In contrast, uncoventional natural gases 

are difficult to exploit because they are often dispersed over large areas that are not easily 

accesible. Compared to conventional natural gases, unconventional gases involve advanced 

methods of extraction, which are relatively new and costly.  

 

Among the four types of unconventional natural gases, shale gas has steadily grown 

in importance as an alternative energy source for the United States. The gas is found trapped 

between the layers of shale formation known as “shale plays”. Shale is a sedimentary rock 

composed of fine-grained particles. In the United States, shale gas was first produced 

commercially in 1821 in Fredonia, NY.2 Since 1930, the development of large pipelines for 

extracting and transmitting this natural gas to different parts of the country led to steady 

increase in the volume of commercially produced shale gas. In 1947, a hydraulic fracturing 

experiment was carried out in Grant, Kansas, to stimulate oil and gas wells for increasing 

production levels. Hydraulic fracturing is a technique used for stimulating oil and gas wells 

by fracturing the rock where the gas is trapped with the help of a pressurized liquid such as 

                                                            
1 Source: https://pubs.usgs.gov/fs/fs-0113-01/fs-0113-01textonly.pdf  
2 Source: https://www.energy.gov/sites/prod/files/2013/04/f0/where_is_shale_gas_found.pdf  



water. The cracks created in the rocks help to move the trapped oil (petroleum) or natural gas 

freely. Since 2000, advancement in extraction technology such as hydraulic fracturing and 

horizontal drilling made access to large deposits of shale gas economically feasible, which 

resulted in a rapid increase in U.S. shale gas production. In 2014, shale gas comprised more 

than 40% of total U.S. natural gas production (US Energy Information Administration 2014a). 

Currently, the United States is one of only four countries that produce shale gas commercially, 

the other being Canada, China, and Argentina. 

In the United States, shale gas is found in many areas. About 91 percent of total U.S. 

shale gas proved reserves are contained in the seven shale plays (reference). The following 

table lists the major shale plays in the United States with the proved shale gas reserves 

available there.3  

Basin Shale Play States 2015 Reserves 
(trillion cubic feet) 

Appalachian Marcellus PA, WV 72.7 
Western Gulf Eagle Ford TX 19.6 

Arkoma, Anadarko, S.OK Woodford OK 18.6 
Fort Worth Barnett TX 17.0 
TX-LA Salt Haynesville/Bossier LA, TX 12.8 
Appalachian Utica/Pt. Pleasant OH 12.4 

Arkoma Fayetteville AR 7.1 
Sub-total   160.3 

Other Shale    
All U.S. shale   175.6 

 

Table 1: Distribution of shale gas reserves in the United States 

 

The growing importance of shale gas as an alternative energy source and its recent 

(rapid) increase in production, have generated an interest in scholars across disciplines that 

study different aspects of energy sources and their environmental and economic impact. The 

recent shale gas revolution has important widespread implications for the U.S. economy. To 

understand the potential impact of an abundance of supply in this market, Brown and 

                                                            
3 Table 1 reference: https://www.eia.gov/naturalgas/crudeoilreserves/pdf/usreserves.pdf 



Krupnick (2010) simulate the effects of a lower gas price under varying scenarios of natural 

gas availability, demand for natural, climate change related policies, and the availability of 

competing resources. Their model findings indicate that the rise in shale gas production and 

the projected increase in its use can lead to a small drop (less than 1 percent) in total U.S. 

carbon dioxide emissions. Hausman and Kellogg (2016) conducted a comprehensive analysis 

of the welfare effects associated with shale gas production in the United States. Specifically, 

they analyse the impact of the recent shale gas supply boom on the welfare of consumers and 

producers of natural gas. They find the expansion of natural gas supply between 2007 and 

2013 reduced U.S. natural gas price by $3.45 per thousand cubic feet (mcf). The supply boom 

led to large increases in surplus for consumers of natural gas and a reduction in production 

surplus because the fall in price outweighed the gain in supply.  Shale gas production and use 

can result in both positive and negative externalities. An example of a positive external effect 

would be when shale gas is substituted for coal, such as in electricity production, and hence, 

potentially lower emissions from coal use, which are known to impact human health 

adversely (Mason et al., 2016). However, the discussion on the environmental impact of shale 

gas production has been more about the negative external effects associated with its 

production. The production process has a direct impact on current and future water supply 

because hydraulic fracturing uses large amount of water. The technology involves drilling 

wellbores through drinking water aquifers, and generates large volumes of wastewater. Also, 

there are serious concerns associated with fracking at the city, town, and state level. Although 

natural gas, in particular shale gas, can have some positive impact on greenhouse gas 

emissions, shale gas production is also associated greenhouse gas (GHG) emissions. Howarth 

et al., (2011) were the first to provide estimates of the GHG footprint of shale gas by focusing 

on methane emissions associated with shale gas production. The authors find that in the long 

run, the GHG footprint of shale gas is to be significantly larger than that of conventional gas 

or oil, which raises concerns about its long term potential to mitigate global warming. The 



more immediate impact of shale gas production is the viability as a substitute for 

conventional fossil fuel energy sources such as coal and oil.  Given the recent supply boom as 

a result of advancement in extraction technology, there is a growing interest among scholars 

and policymakers about the impact of the rise in shale gas production on the U.S. energy 

market, particularly the impacts on alternative energy prices.  

In this paper, we aim to explore the relationship between natural gas and crude oil 

prices for the U.S. economy over the time period 1997 and 2017. The period covers the 

period of the shale gas production boom, a major event in the natural gas market. We 

advance the existing literature by conducting a wavelet analysis of the relationship between 

the variables of interest. Wavelet is a time-varying methodology across time and frequency 

domains. The method requires the decomposition of a time series into time-frequency space, 

which allows researchers to identify the dominant modes of variability and the variations of 

those modes over time (Torrence and Compo, 1998). It is often used in geophysical 

applications when time series data may be non-stationary and the series can contain dominant 

periodic signals, which can vary in both amplitude and frequency over long time frames.  For 

example, in the context of equatorial sea surface temperature in the Pacific Ocean, the 

dominant mode of variability is identified as El Niño-Southern Oscillation (ENSO). To 

capture the interdecadal changes in variance and coherence in ENSO and Indian monsoons 

over 125 years,  Torrence and Webster (1999) applied a wavelet analysis to isolate the 

timescales of the ENSO-monsoon variability and used significance tests to assess the 

robustness of their results.   

In the economics literature, wavelet analysis have been used to study economic time 

series data that at contain combinations of components operating on different frequencies.  In 

economics literature, Lee (2004) was one of the first to apply the wavelet methodology to 

analyse the international transmission mechanism of stock market movements. Conraria et al. 

(2008) applied the methodology to study the time-frequency effects of U.S. monetary policy. 



Using long term monthly data on macroeconomic variables from 1921 to 2007, the authors 

were able to disentangle the short, medium, and long relations between the variables that 

determine the impact of monetary policy. Yogo (2008) used the wavelet analysis to 

decompose U.S. real GDP data from 1947 to 2003 into trend, cycle, and noise.  

Our paper is related to two papers - Caporin et al., (2016) and Monge et al., (2017). 

Caporin et al. (2016) use data from 1997 to 2013 and find the presence of a structural break 

around 2007 that corresponds with the sharp rise in shale gas supply. Then they apply a 

Vector Error Correction Model (VECM) to show that shale production between 1997 and 

2013 impacted the relationship between oil and natural gas prices. They conclude that on the 

basis of available data, they are unable to state unequivocally that there exists a long run 

relationship between oil and gas prices. A VECM specification depends only on time domain 

and constant parameter whereas the application of wavelet methodology allows us to study 

both short- and long run frequencies and thereby recognize how the relationships among the 

key variables have evolved in the short, medium, and long term. Monge (2017) study the 

relationship between U.S. crude oil production and WTI crude oil prices between 2000 and 

2016. They study the performance of the relationship in the time-frequency domain by 

applying wavelet tool for its resolution. They observe higher frequencies between 2003 and 

2009, which suggest a short term relationship, and low frequencies for the period between 

2009 and 2014, which indicates a presence of a long term component in the relationship 

between crude oil production and crude oil prices. 

However, in terms of the question we ask dealing with effect of natural gas on oil 

prices in the wake of the shale gas revolution, our paper is most closely related to the works 

of  Geng et al., (2016a, b, c, 2017), Ji et al., (2018), Zhang and Ji (2018). These studies using 

variety of econometric methods covering nonparametric, regime-switching, directed acyclic 

graphs, multi-scale perspective, in general tends to suggest weak relationship between the 

two prices of concern. We aim to build on the above mentioned works, especially nonlinear 



causality approach of Geng et al., (2017) and to some extent the correlation analyses of Geng 

et al., (2016 a, b), with the variables being disaggregated into their various frequencies based 

on Ensemble Empirical Mode Decomposition (EEMD). We do this by relying on coherency 

and phase-differences in a wavelet analysis, which allows us to provide time-varying causal 

relationship across frequencies between natural gas and oil prices, without having to look at 

sub-sample analysis based on pre and post- the shale gas revolution.     

The structure of this paper is as follows. In the following section, we describe the 

dataset we use in the analysis and provide the descriptive statistics of it. Section 3 presents an 

overview of the methodology applied. In section 4, we discuss the results of the empirical 

model. Finally, Section 5, provides a few concluding remarks on the policy implications of 

our findings.  

 

2. Data 

We use monthly data from January 1997 to July 2017 for all our variables. Data on natural 

gas prices are the Henry Hub Natural Gas Spot Price. The data on natural gas quantity, 

measured in million cubic feet (MMcf), are given by the U.S. natural gas gross withdrawals 

obtained from the EIA database. We include data on crude oil given by the Crude Oil Real 

Spot Prices (WTI, dollars per barrel) at Cushing, Oklahoma obtained from the EIA database. 

All variables are included in the analysis in their natural logarithmic form. The following 

table (Table 2) provides the descriptive statistics of the data for the full sample. 

Variable Name  Mean  Median  STD  Max Min 
Henry Hub Natural Gas Spot Price (Dollars 

per Million Btu) 
4.428 3.830 2.235 13.420 1.720 

Cushing, OK WTI Spot Price FOB (Dollars 
per Barrel) 

55.601 49.780 29.915 133.880 11.350 

U.S. Natural Gas Gross Withdrawals (MMcf) 
[NGW] 

2211930.
522 

2080504.
000 

278852.
752 

2828428.
000 

1766603.
000 

CPI 203.790 206.755 27.036 246.373 159.400 
Real Natural Gas Price [NGP] 2.198 1.798 1.120 6.740 0.727 

Real WTI Price [WTI] 26.257 22.509 12.338 61.564 6.904 

 

Table 2: Descriptive Statistics 



 

3. Methodology 

The objective of the wavelet analysis is to determine the frequency content of a variable with 

a view to extracting the temporal variation of this frequency content (Labat, 2005). A wavelet 

is a function with zero mean localized in both time and frequency. It grows quickly and 

decays within a limited period (Fan and Gençay, 2010) thereby obeying the conditions that 
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where s  and   are the scale and location parameters and  st )(   is known as the mother 

wavelet function that is possibly complex-valued. The symbol   is the convolution operator. 

A complex wavelet function is of valuable utility in economic analysis as it gives information 

on local phase. One such function having this property is the Morlet wavelet function. 

Besides, the Morlet wavelet function can be shown to achieve an optimal localization 

between the resolution in time and in frequency due to its Gaussian envelop. This property is 

guaranteed by Heisenberg’s uncertainty theorem stating that there is a lower limit to the 

product of time and frequency resolution. Also implying a trade-off between the resolution in 

time and in frequency, the theorem ensures that any improvement in time degrades the 

frequency resolution and any improvement in frequency degrades the time resolution. Thus, 

to achieve optimal balance, we employ the Morlet wavelet function given by 
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where 0  is dimensionless frequency and   is dimensionless time. For optimal balance, we 

set 60   as suggested by Torrence and Compo (1998). Since the idea behind the CWT is 



to apply the wavelet as a band pass filter to the time series, the wavelet is stretched in time by 

varying its scale s , so that ts   and normalizing it to have unit energy. For the Morlet 

wavelet, the Fourier period ( wt ) is almost equal to the scale )03.1( wt s. The wavelet 

transform also inherits this property. The discretized version of Equation (1) for time series 
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where t  is the uniform step size. From the expression above, the wavelet power that 

measures the variability in the time series both in time and in frequency is defined as 

2
)(sW x

m . The CWT suffers from edge effects caused by a discontinuity at the edge because 

wavelet is not completely localized in time. To cope with this challenge, the cone of 

influence (COI) has been introduced. The COI earmarks the area where edge effects cannot 

be ignored and determines the set of CWT coefficients influenced by the value of the signal 

at a specified position. Outside COI, edge effects are predominant and can distort the result. 

Here we take the COI as the area in which the wavelet power drops to 2e of the value at the 

edge. 

2.2 Wavelet coherence (WTC) 

Since our intention is to measure the extent of synchronization between two given time 

series, it is informative to use coherence between them. Wavelet coherence is a time-

frequency counterpart of the time-domain coefficient of determination and shares property 

with traditional correlation coefficient. Aguiar-Conraria et al. (2008, p. 2872) defines wavelet 

coherence as “the ratio of the cross-spectrum to the product of the spectrum of each series, 

and can be thought of as the local (both in time and frequency) correlation between two time-

series”. Following Torrence and Webster (1999), we define the wavelet coherence between 

two time series as 
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coefficient )(  10  . Without smoothing coherency is identically 1 at all scales and 

times. We may further write the smoothing operator S  as a convolution in time and scale: 
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where scaleS  denotes smoothing along the wavelet scale axis and timeS denotes smoothing in 

time. The time convolution is done with a Gaussian and the scale convolution is performed 

with a rectangular window (see, for more details, Torrence and Compo 1998). For partial 

continuous wavelet transform, Aguiar-Conraria, and Soares (2011) define coherence as 
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between  x  and y . It is important to conceptualize the lead-lag relationship between two 

time series. This is achieved by computing the phase difference given by 
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where  and   are the imaginary and real parts of the smooth power spectrum respectively. 

Phase differences are useful to characterize phase relationship between any two time series. 

A phase difference of zero indicates that the time series move together at the specified 

frequency. If ]2/,0[,  yx , then the series move in-phase, with the time-series y  leading 

x . On the other hand, if ]0,2/[,  yx  then x  is leading. We have an anti-phase relation 

(analogous to negative covariance) if we have a phase difference of   (or  ) meaning 

]2/,[],2/[,  yx . If ],2/[,  yx  then x  is leading, and the time series y is 

leading if ]2/,[,  yx . 

 

3. Results analysis and discussion 

In this paper, our objective is to examine the relationship between natural gas price and oil 

price in the unconditional and conditional framework by conditioning the relationship on 

natural gas production. For this purpose, we used monthly data from January 1997 to July 

2017 for the analysis. 

Figure (1) below has three panels in which we present results of continuous wavelet 

power spectrum. In the first panel, it is evident from Figure 1 that there are some common 

features in the wavelet power of between natural gas price and oil price. Specifically, the 

common features in the high (or significant) wavelet power of the two-time series are evident 

in 1~4 years scales that belong to 2005 to 2013. However, the observed similarity between 

the portrayed patterns of the two series in these periods may merely be a coincidence rather a 

results of a cause and effect relationship. To analyse the relationship between natural gas 

price and oil price we used conditional and unconditional framework of continuous wavelet 

transform, namely wavelet coherency and partial wavelet coherency and phase difference 

associated with each model. 

 



Figure 1: Continuous Wavelet Power Spectra of the series 
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The results of wavelet coherence, partial wavelet coherence and associated phase-differences 

are presented in Figure 2. In figure 2, part a.1 presents results of wavelet coherency and b.1 

shows the results of partial wavelet coherency while explicitly controlling for natural gas 

production. Part a.2 presents the phase-differences associated with the wavelet coherency 

exhibited by a.1. Similarly part b.2 presents results related to the phase-differences associated 

with the partial wavelet coherency exhibited by b.1 by explicitly controlling for natural gas 

production over the time period. The wavelet coherencey between natural gas price and oil 



price in panel (a.1) show that there is evidence of significant wavelet coherency during 2006 

– 2015 for 2 to 4 years scale. However, once we control for the natural gas production we 

find that significant or high wavelet coherency is observed during 2000 -2015 for 3 to 4 years 

scale. We also notice that between 2007 to 2009 there is increase the wavelet power of the 

coherency i.e., the region of yellow color is increased and high wavelet coherency power is 

observed during the scale of 1.5 to 2 years period.  Now if we analyse the results from the 

phase-differences we find from Figure A1 and A2 that during 2006-2015 for both scales i.e., 

1 to 2 years scale and 2 to 4 years scale phase-differences are between ]2/,0[   indicating 

that both series move cyclically and oil price leading natural gas price throughout period 

except in 2013 when phase difference are between ]2/,0[   which indicates that during this 

period natural gas production is leading. 

Finally, when we analyse the results obtained from the phase-difference of partial 

wavelet coherency as reported in b.2 and b.3 for 1 to 2 years scale and 2 to 4 years scale 

respectively, we find that till 2004 phase-differences lie between ]2/,0[   which indicates 

that during this period natural gas price is leading. Further, evidence show that from 2007 to 

2010 the phase-differences are between ]2/,0[  , indicating that both series move cyclically 

and oil price leading natural gas price. Last but not least, if we study the case of 2 to 4 years’ 

phase-difference we find that phase-differences always are between ]2/,0[   indicating that 

both series move cyclically and oil price leading natural gas price. So in general, the effect of 

natural gas price on WTI price, especially in the wake of the so-called shale gas revolution is 

not evident, and tends to support the works of Geng et al., (2016a, b, c, 2017), Ji et al., 

(2018), Zhang and Ji (2018).4   

                                                            
4 As a robustness check, we also conducted (1000) bootstrapped time-varying Granger causality tests in the time 
domain, using rolling-, recursive-rolling, and recursive-windows (of 40 months) as developed by Balcilar et al., 
(2010), under both homoscedastic and heteroscedastic error distributions. These results have been reported in 
Figures A1 and A2 in the Appendix of the paper, and in general, confirms the findings in terms of lack of 
causality running from natural gas prices to crude oil prices during the shale gas revolution, especially under the 
rolling and recursive-rolling schemes. 



 

Figure 2: Wavelet Coherency and Phase-differences 

 

5. Conclusion: 

The advancement of technology such as hydraulic fracking and fracturing in recent years has 

led to a sharp increase in production of shale gas in the United States. This supply boom has 

implications for the U.S. natural gas market, and more broadly the energy market. In this 

paper, we analysed the relationship between U.S. natural gas and crude oil prices between 

1997 and 2017. We used wavelet methodology to demonstrate the impact of shale gas 

production on this relationship. Results indicate that when natural gas production is 

controlled for, there is a high wavelet coherency between the variables of interest during the 

years 2000 to 2015 for 3 to 4 years scale. Between 2007 and 2009, the wavelet power of the 

coherency further increased on the scale of 1.5 to 2 years. The results of the phase-differences 

show that except for a single year (2013) natural gas prices and oil prices moved cyclically 

between 2006 and 2015 with oil price leading natural gas prices. This indicates that when oil 

and natural gas prices are in-phase, they move together in the same direction with oil prices 

leading natural gas prices. The results of the phase differences of partial wavelet coherency 



show that natural gas price was leading till 2004. The results illustrate the degree of 

substitutability between oil and natural gas with the crude oil market leading the natural gas 

market. The results imply that policies imposed on one market have implications for the 

market outcomes in the other market (though the net effects) will depend on which market 

the policy is imposed. As indicated by our results, since oil prices tend to lead natural gas 

prices and since the oil market is the dominant market, then a policy on the oil market can 

potentially have a stronger impact on the natural gas market than the other way around. For 

example, a tax on crude oil production , which can be expected to increase oil prices, can 

potentially have a stronger impact on the natural gas market outcome (through an increase in 

demand for natural gas and, hence, price) than a policy targeted to boost natural gas supply 

would have on the oil market. The cross market effects would depend on the direction of the 

co-movement of the variables of interest. We do not find any evidence of shale gas prices 

affecting oil price indicating that the in spite of the shale gas revolution, the shale gas market 

is still relatively small compared to the U.S. oil market. Our findings indicate that in spite of 

the recent spike in production, in the short run U.S. shale gas supply will not significantly 

reduce the economy’s crude oil demand from both domestic and foreign sources. This 

conclusion is consistent with the arguments put forth by Kilian (2016). 
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APPENDIX: 

Figure A1. Time-varying causality from NGP to WTI 

 

Note: The figure presents the bootstrap p-values of the rolling, recursive-rolling and recursive Wald tests which 
are obtained from a VAR model with a varying lag order and a window size of 40 observations. For each sub-
sample, the BIC is used to select the optimal lag orders with a maximum lag order of 12. The p-values of the 
tests are obtained using 1,000 bootstrap repetitions.  A horizontal line is drawn at 5%.
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Figure A2. Time-varying causality from WTI to NGP 

 

Note: See note to Figure A1. 

 

 


