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The tyre-road interface is one of the most important research topics in the field of vehicle dynamics.

This is largely due to all the vehicle excitation forces (besides aerodynamic forces) being generated at

this interface. There are many parameters which govern the generation of tyre forces, of which the

side-slip angle is of utmost importance.

Vehicle side-slip angle can be used as a measure of vehicle stability. Stability control schemes require

side-slip angle and typically estimate this parameter instead of using a direct measurement. The

relationship between tyre lateral force and tyre side-slip allows the lateral force generated by the tyre

to be determined from the tyre side-slip angle. Therefore, real-time measurement of side-slip angle is

important in tyre research and vehicle stability. Solutions exist to measure the side-slip angle, however,

do not perform well at low speeds or over rough terrain and are prohibitively expensive.

In terramechanics, tyre soil deformation in the form of rut depth is a widely researched topic as it

can be used as a measure of the vehicle’s ability to traverse the terrain, estimate soil characteristics

and for vehicle environmental impact studies. Currently, these measurements are labour intensive and

are typically conducted by hand. Other solutions exist however they are developed for road use and

are prohibitively expensive. The research field would, therefore, benefit largely from online rut depth

measurements.

Digital Image Correlation is the mathematical process of tracking changes in digital images. The
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development of robust algorithms and ease of implementation has allowed many fields to be adapt this

non-contact based, optical technique for application-specific measurements. Previous studies (Botha,

2015) have proved DIC to be a viable candidate for measuring the side-slip angle and rut depth that

overcome current measuring hurdles. However, the analysis was conducted in post-processing from

pre-recorded footage due to the large computational expense of the image processing. This opens the

opportunity to adapt and optimise these techniques to achieve real-time processing speeds required for

these camera-based sensors.

This study builds on Botha (2015) with a real-time implementation which allows for online meas-

urements to be made using inexpensive, off-the-shelf cameras with dedicated software. This will

eventually provide systems such as ABS, stability control schemes and semi-active suspension with

real time vehicle side-slip angle and rut depth with a cost-effective camera-based sensor. The aim of

the present study is to develop and test two systems that can measure the side-slip angle and rut depth

in real-time.

The side-slip angle is measured using a single camera pointing down on the terrain and digital image

correlation. It is shown to measure accurately and in real-time. The sensor is tested on a flat surface

using a rig that allows for validation.

The rut depth is measured using multiple cameras pointing at the terrain and digital image correlation

to create a 3D map of the terrain. Three methods for determining the rut depth from the 3D map is

investigated, with varying degree of accuracy and processing speed.
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CHAPTER 1 INTRODUCTION

In off-road vehicle dynamics research, the interaction between the tyre and the terrain it is travelling

on is one of the most studied areas. This is because it is the only region where external forces act on

the vehicle in the absence of aerodynamic forces.

Modern passenger vehicles rely on complex control systems known as Advanced Driver Assist Systems

(ADAS) to assist drivers in avoiding accidents. These systems, use features such as anti-lock brake

systems (ABS) and electronic stability control schemes (ESC) to enhance the safety of the occupants

and require a large combination of parameters. One of these parameters is the vehicle side-slip angle.

Typically control strategies require vehicle side-slip angle as an input (Rajamani, 2005). Accurate

real-time measurements of vehicle side-slip angle will provide invaluable information for significantly

improving vehicle dynamic control. Tyre side-slip angle is also an important parameter in vehicle

dynamics as there is a direct relationship between the lateral force and the tyre side-slip angle. Accurate

side-slip angle measurements are therefore a necessity for the characterisation of tyres which is required

for vehicle control and vehicle modelling.

Side-slip angle is notoriously difficult to measure. Commercial sensors to measure the side-slip angle

do exist, but are developed for smooth, hard roads or require large dynamic excitation. These solutions

prohibitively expensive and perform poorly over rough, off-road terrain and at low speeds that are

typically experienced during terramechanic applications (Botha and Els, 2012). Tyre side-slip angle is

not typically measured in field tests, however, are measured during tyre characterisation. The tyres are

typically mounted to a rig where the side-slip angle is accurately controlled.

Another important research topic in off-road vehicle dynamics is vehicle mobility on deformable

terrains. When vehicles travel over deformable terrains, such as soil or snow, they compact the terrain

and form ruts. This significantly affects the vehicle‘s ability to traverse the terrain and can have a

detrimental effect on the environment. The rut depth can be used as a measure of vehicle mobility on

the terrain. It may also be useful to estimate soil characteristics such as soil strength and can be used as

a measure of the disturbance on the terrain for environmental studies. Current methods to measure rut

depth are labour intensive and generally only possible at a few discrete locations (Shoop et al., 2013).

They are also difficult to synchronise with other measurements.
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CHAPTER 1 INTRODUCTION

Digital image correlation (DIC) is the process of correlating pixels or regions of pixels between digital

images. Typically contrast patterns on the image, naturally occurring or artificially generated, are used

to measure changes in image sequences using non-contact optical techniques. These techniques can be

tailored to the desired application making it an attractive measuring technique and has been adopted

in various fields for measurement purposes. The depth of a scene can also be determined using DIC

and multiple cameras, known as stereography or stereo-vision (Grimson, 1981). This enhances the

capabilities of DIC as it provides the ability to track points in space as well as determine their 3D

coordinates. Recent years has seen large development in DIC and has lead to robust algorithms that

are relatively easy to implement and have produced better performing cameras at lower costs. These

techniques can be applied to low cost cameras making the techniques inexpensive to implement. The

use of DIC in vehicle dynamics is almost none-existent, especially with real-time implementations.

Moser et al. (2010) used DIC to perform laboratory tyre testing to determine material properties of

the tyre as well as tyre deformation under loading. DIC has also been used in vehicle crash tests,

where stereography was used to perform automated deformation analysis of the vehicle (Rentschler

and Uffenkamp, 1992).

Botha (2015) proved that accurate side-slip angle and terrains profiles (from which rut depth can be

extracted) can be made using DIC as an alternative to current measuring techniques. DIC techniques

are computationally expensive and the analysis was conducted in post-processing from pre-recorded

footage. This opens an opportunity to develop camera-based sensors that will measure the side-slip

angle and rut depth in real-time. This study builds on Botha (2015) by implementing these algorithms

in real-time as a new camera-based sensor that will eventually provide systems such as ABS, traction

control, four-wheel drive and torque vectoring with these parameters using cost-effective, off-the-shelf

cameras and lenses. DIC is used to address the shortcomings of current measuring solutions by

developing camera-based sensors that give improved performance on hard surfaces that are also able

to measure on rough, off-road terrains.

1.1 PROBLEM STATEMENT

This study aims to answer the following question:
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CHAPTER 1 INTRODUCTION

1. Is it possible to adapt and optimise the off-line techniques developed by Botha (2015) to enable

real-time measurements of side-slip angle and rut depth?

1.2 OVERVIEW OF STUDY

Chapter 2 is a literature study to give a brief summary of the relevant literature required for this

investigation. The parameters being measured, side-slip angle and rut depth, are discussed. Current

measuring techniques and their short-comings are discussed. The use of DIC is discussed and proved

to be a viable alternative measurement technique. DIC requires digital images and therefore the

chapter further discusses the basics of obtaining digital images as well as fundamental camera models

used for calibration and lens distortion removal. The side-slip angle uses an optical flow algorithm

that is discussed and mathematically described. The rut depth sensor requires full DIC and uses a

stereo-vision rig to recover depth from a scene. The mathematical models used to achieve this are

discussed as well as the algorithm used for full DIC.

Chapters 3 discuss the development of the side-slip angle sensor, as well as the testing and validation

of the results.

Chapter 4 discusses the implementation of the rut depth sensor. The sensor was validated by measuring

the depth of a preformed rut and compared to manual measurements. Various methods for extracting

the rut depth are evaluated.

Chapter 5 concludes the investigation and gives the recommendations on how it could be improved for

future work.
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OBJECTIVES

This chapter aims to summarise the relevant literature with the aim to develop a research question and

project plan. The chapter starts by exploring the concepts of the side-slip angle and rut depth. This

includes the relevance of these parameters to the vehicle dynamics field, current measuring techniques

and how digital image correlation could be used to perform these measurements.

DIC requires digital images and therefore the fundamental basics of acquiring these images are

discussed. These images have to be preprocessed before they can be used by the algorithms. The

mathematical models required for the preprocessing are discussed. These models require parameters

that are unique to the camera sensor and lens but can be determined through calibrating the cameras.

The calibration process to determine these parameters is also briefly discussed.

Both side-slip angle and rut depth require their own image correlation algorithms that are discussed in

detail. For side-slip angle, feature tracking is discussed and for rut depth measurements stereo-vision

is discussed.

2.2 VEHICLE DYNAMICS

The following section aims to discuss two important vehicle parameters i.e. side-slip angle and rut

depth that are measured during this investigation. A brief description of each parameter is provided

and the possibility of obtaining it in real-time, is discussed.

2.2.1 Side-slip angle

In the field of vehicle dynamics, the side-slip angle can be separated into two variables, namely tyre

side-slip angle, α , and vehicle side-slip angle, β . Figure 2.1 shows a vehicle undergoing vehicle

side-slip. The vehicle is moving in the direction of the velocity vector, VVV , however, is oriented along
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CHAPTER 2 LITERATURE STUDY

the longitudinal component of the velocity vector, VVV x. Vehicle side-slip angle, β , is the angle between

VVV and VVV x. β can therefore be calculated using Equation 2.1. If the change in vehicle displacement in

x

y

Figure 2.1. Vehicle side-slip angle

the longitudinal and lateral directions can be determined simultaneously, β can be determined using

Equation 2.2.

β = arctan(
VVV y

VVV x
) (2.1)

β = arctan(
∆y
∆x

) (2.2)

Similarly, tyre side slip angle, α , is the angle between the direction the tyre is moving in and the

direction it is oriented. Figure 2.2 shows a simple bicycle model representation of a vehicle undergoing

side-slip where the front and rear tyre side-slip angles, α f and αr, as well as the vehicle side-slip angle,

β , are indicated (Gillespie, 1992).

Figure 2.2. A bicycle model of a vehicle and its tyres experiencing side-slip (Gillespie, 1992)

Modern passenger vehicles rely on complex control systems to assist drivers in avoiding accidents

or at least to limit damages in the event of a collision. These systems, known as Advanced Driver

Assist Systems (ADAS) use features such as anti-lock brake systems (ABS) and electronic stability

control schemes (ESC) to enhance the safety of the occupants. Typically these systems require a
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large combination of sensors to determine the state of the vehicle. A vehicle model then uses the

information to predict the behaviour of the vehicle within normal driving conditions. The predicted

model is compared to the actual vehicle behaviour and then corrects any deviation using ADAS features

(Rajamani, 2005). One of these parameters are vehicle side-slip angle, β . Vehicle side-slip angle can

be used as a measure of the vehicle‘s handling and stability and is, therefore, a valuable parameter in

vehicle dynamics. Inagaki et al. (1995) demonstrated that the vehicle side-slip angle and it’s derivative,

β̇ , offer better insight to the vehicle‘s lateral stability as compared to yaw-rate. Chung and Yi (2006)

found that using a stability control scheme that was based on side-slip angle resulted in an overall

improved vehicle performance on a virtual test track. Lu et al. (2016) and Barbarisi et al. (2009) used

a combination control of vehicle side-slip angle and yaw rate to enhance vehicle performance.

Side-slip angle is notoriously difficult to measure. Sensors to measure the side-slip angle do exist but

have been developed for smooth, hard roads and perform poorly over rough, off-road terrain and at low

speeds. This is unsuitable for terramechanic applications which generally occur under these conditions.

Due to prohibitive costs of such sensors, the field of vehicle dynamics has opted to instead estimate

the vehicle side-slip angle rather than using a direct measurement. These methods use sensor fusion

techniques that combine sensors such as accelerometers, GPS, and rate gyroscopes to estimate the

side-slip angle (Bevly et al. (2006), Botha and Els (2012), Nishio et al. (2001) and Hac and Simpson

(2000)). One major disadvantage of these methods is that the sensors are inherently noisy and therefore

require large sensor excitations, such as high-speed dynamic manoeuvres or large side-slip angle, to

provide accurate results. These methods are also prone to integration drift. As a result, these methods

are unsuitable for off-road scenarios, where tests occur at low speeds and experience high levels of

noise due to terrain roughness.

Tyre side-slip angle is also an important parameter in vehicle dynamics. Bakker et al., 1987 showed

that there is a direct relationship between the lateral force generated by the tyre and the tyre side-slip

angle. The “Magic Formula” is an empirical fit to best describe this relationship. Accurate side-slip

angle measurements are therefore a necessity for the characterisation of tyres that is used for evaluating

dynamic manoeuvres, performing tests on tyre test tracks or vehicle model validation. Typically these

tests are conducted in a laboratory where the tyre is mounted on a rig, such as a drum test or flat tracks

where the side-slip angle is accurately controlled. These setups are generally large and expensive,

creating the need for a cheaper alternative. These setups also do not represent realistic friction surfaces

for road and off-road tests. Another alternative setup is a tyre test trailer which is less expensive and
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can conduct testing on real terrains. These test trailers however require direct measurement of the tyre

side-slip angle.

The Kistler Correvit S-HR is a commercially available side-slip angle sensor, and can measure tyre side-

slip angle or vehicle side-lip angle depending on where the sensor is mounted. It uses a combination

of the Doppler effect and an absolute measuring method for determining the side-slip angle. It is has a

range of ± 40deg slip angle, speed range of 0.5km/h-200km/h and has a sampling frequency of 250Hz

(Kistler, 2016). It was developed for on-road vehicles, where the motion is predominately planar with

little body motion. This makes the sensor well suited for testing high-speed dynamic manoeuvres on

fairly smooth roads but it performs poorly in off-road scenarios that typically occur at low speeds, on

varied terrain, at large side-slip angles (Botha and Els, 2015).

Botha and Els (2015) devised an alternative to current methods whereby the side-slip angle could

accurately be measured over various terrains such as smooth concrete and Belgian paving by using

inexpensive, off-the-shelf cameras and DIC. It was later proven that these methods could also be

used on snow and ice (Botha, Els, Shoop, Becker and Sopher, 2016). This technique was developed

to overcome the hurdles faced with measuring the side-slip angle in off-road conditions, to robustly

measure at low speed over varied terrain and does not require large dynamic excitation. Various

methods were proposed, either using a single camera or a calibrated stereo-vision rig, comprising of

two cameras at a fixed distance apart. The sensor could be mounted on the vehicle to measure vehicle

side-slip angle or be mounted on the hub of the wheel (to allow rotation around the king pin as the

wheel is steered) to measure tyre side slip angle. For both cases, the sensors must mounted downwards

towards the terrain at all times. One disadvantage of the using a camera based system is that it requires

adequate lighting and measurements will be compromised in low lighting conditions such as at night.

In such cases, additional light sources are required or potentially the use of other optical sensors,

such as infra-red cameras. This however will not fall part of the current investigation. There is also a

risk if the camera lens obscured by debris which will affect measurements. Three algorithms were

devised by Botha and Els (2015) and will be discussed next. All the algorithms were implemented in

post-processing using pre-recorded footage and measurements were not conducted in real-time due to

the large computational expense of the algorithms.

Algorithm 1 uses is an efficient 2D algorithm that uses a single camera. Identifiable points on the

image, known as features, are tracked between sequential images (feature tracking is discussed in
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detail in Section 2.3.8). In brief, it means that the new pixel location of that point or feature is found

on the next sequential image. The direction of the feature motion can be considered the directional

travel of the camera. Therefore, if the camera is mounted in a known orientation with respect to

the vehicle body, the direction of travel of the camera would be measured relative to the mounting

orientation. If the the mounting direction is such that the feature motion is vertical on the image

when the side-slip angle is zero, then simply determining the angle of the feature motion relative

to the vertical (or horizontal) direction would result in direct measurement of the side-slip angle. A

graphical representation will be shown in Section 3.2. It should be noted that the motion is in Pixels

and not scaled to real-world coordinates. This algorithm is the least computationally expensive of the

algorithms making it a suitable candidate for real-time applications. The main disadvantage of this

algorithm is that it assumes that the vehicle undergoes predominately planar motion which is valid for

traditional paved road conditions but does not necessarily hold when considering off-road scenarios

where the terrain induces other motions on the vehicle such as vertical displacement, roll, pitch, and

yaw. Figure 2.3 illustrates the effect that various vehicle motions impose on the image. Since these

effects can have a significant impact on the images, algorithm 2 and 3 were developed to compensate

for these motions.

Figure 2.3. Effect of motion on the camera (a) Vertical motion (b) yaw motion (c) roll motion (d) pitch

motion (Botha, 2015)

Algorithm 2 uses pose estimation, which determines the rigid body motion of the camera, using a

single camera. Features are once again tracked between sequential images that are used to calculate

the Essential matrix as shown by (Stewenius et al., 2005). This matrix describes the mapping of these

features from one image to the other. From the essential matrix, all rotations can be determined, as

well as all translations in scale. This means that they need to be multiplied by a scale factor in order

to convert them to real-world coordinates. The scale is dependent on the motion and is therefore

not consistent throughout the measuring process. The result is that the pure planar motion can be

distinguished from the rigid body motion experienced when travelling on off-road terrain. The side-slip

angle can be calculated by taking the angle between the lateral and longitudinal motion and does

not require the measurement to be unscaled. The additional velocity measurements obtained from
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this algorithm can be used in conjunction with other velocity measurements to evaluate the produced

side-slip angle. This algorithm requires many complex iterations and error checking before converging

to a suitable answer, making it computationally expensive and potentially difficult to implement in

real-time.

The third algorithm uses a stereo-vision rig that obtains all measurements directly in real-world units

and does not require scaling. This method uses two cameras that view the same scene at the same

time which allows for 3D measurements much like human eyes determine depth. Determining 3D

coordinates from a stereo-vision rig will be discussed in detail in Section 2.3.7. Once a 3D map of

the scene has been generated, features on the map can be tracked between sequential images. As

before, the rotation and translation matrices can be determined from the tracked points. However,

unlike algorithm 2, these are unscaled and represent the motions in SI units. Similar to algorithm 2,

the pure planar motion underwent by the vehicle can be distinguished from other vehicle motions and

the side-slip angle calculated by taking the angle between the lateral and longitudinal movement. The

3D map generation is computationally expensive and is the bottleneck for computation time in this

algorithm. Fortunately, the calculations are vastly parallel, meaning they can run in parallel to one

another and the result combined. Graphics processing units or GPU’s, are extremely efficient with

these types of calculations and can greatly reduce computation time. The use of GPU’s could make it a

viable candidate for real-time measurements.

Botha and Els (2015) validated the algorithms by comparing the measurements to the Kistler Correvit

S-HR sensor. The cameras and sensor were mounted on a gimbal that allowed them to be rotated in

one-degree increments relative to the vehicle. This allows for the side-slip angle to be set at a fixed

angle while the vehicle travels in a straight line. This forces a known artificial side-slip angle to be

measured by the sensor in a controlled manner. This method was chosen as opposed to dynamic

manoeuvres that would induce vehicle side-slip as it is not a repeatable and controlled process. There is

also no accurate comparative measure that would validate the measurements. The gimbal system was

mounted close to the vehicle’s centre of gravity, or CG, to reduce the effect of other vehicle motions.

These tests were conducted at various side-slip angles and over two terrains, a flat concrete surface and

Belgian paving (a non-deformable cobblestone-like terrain) to simulate off-road terrains. The vehicle

velocity did not exceed 20km/h during these tests. The results of the tests are summarised in Table 2.1

and show the mean values, the standard deviation (STD) and the root-mean-square (RMS) values. It is

evident that all three the algorithms outperformed the Correvit S-HR sensor with lower noise levels
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proving the use of cameras as a viable alternative to the sensor.

Table 2.1. Results obtained for all techniques at various side-slip angles and over two terrains

Angle Correvit S-HR 2D Planar 2D Pose 3D

Flat [deg] RMS Mean STD RMS Mean STD RMS Mean STD RMS Mean STD

0 2.30 0.42 2.26 0.91 -0.36 0.84 0.91 -0.31 0.85 0.83 0.06 0.83

2 2.76 2.45 1.28 1.87 1.75 0.66 1.89 1.76 0.69 1.81 1.70 0.60

5 5.86 5.48 2.09 4.98 4.90 0.89 5.02 4.92 0.98 4.93 4.85 0.87

10 10.39 10.10 2.48 9.96 9.95 0.53 9.97 9.95 0.60 9.81 9.77 0.87

Belgian [deg] RMS Mean STD RMS Mean STD RMS Mean STD RMS Mean STD

0 1.71 0.65 1.58 0.91 -0.09 0.91 0.94 -0.02 0.93 0.92 -0.09 0.92

2 2.98 2.52 1.59 2.10 1.85 0.99 2.18 1.92 1.01 2.06 1.83 0.95

5 5.60 5.42 1.42 4.92 4.85 0.83 4.97 4.90 0.86 4.89 4.79 0.96

10 10.56 10.35 2.12 10.03 10.00 0.75 10.07 10.04 0.78 9.90 9.87 0.87

Comparing the results from the flat surface to the Belgian paving it can be seen that the STD of all three

algorithms increased. However, they only increased (on average) by 10% and the error never exceeded

1deg. The mean values stayed relatively constant with a low error. Even though the assumption of

pure planar motion was clearly violated over the Belgian paving, the 2D Planar algorithm performed

better than expected with comparable accuracies to the other algorithms. This leads to the conclusion

that using a more computationally expensive algorithm to distinguish between the planar motion and

the rigid body motion does not significantly improve the accuracy of the results. The computationally

efficient, 2D Planar method, is therefore sufficient and the best candidate for real-time implementation

and will be used during this investigation.

2.2.2 Rut depth measurements

When vehicles traverse over deformable soils, it creates a loading-unloading sequence which induces

large, three-dimensional deformation of the soil (Hambleton and Drescher, 2009). Figure 2.4 shows a

longitudinal cross-section of the soil under loading conditions, demonstrating how ruts are formed.

The soil is typically pushed forward and to the sides of the wheel. The soil that is pushed to the side of

the wheel results in the formation of two parallel berms that run along side the length of the rut. These

are known are known as the rut piles. A substantial portion of the soil is also compacted resulting in

vertical deformation. This permanent deformation is commonly known as the rut. This can be seen
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Figure 2.4. Rut formation on deformable soils (Esmaeili and Ivanovic, 2015)

in Figure 2.5 which shows a lateral cross section of a rut. The formation of ruts and the resulting

compaction of the soil drastically affects the ability of the vehicle to traverse the terrain.

Rut depth

Compacted soil/Rut floor

Underformed soil

Rut piles

Figure 2.5. Lateral cross section of a rut

Soil compaction reduces the total soil porosity which affects the soil air, water permeability, and water

infiltration (Soane and van Ouwerkerk, 2013). In agriculture, this leads to reduced crop yield. It

also enhances physical, chemical and biological processes that are harmful for crop production. Soil

damage occurs not only on the surface but at subsoil layers that are not visible from the surface. The

exposed soil from the rut is highly susceptible to erosion. Water that has pooled in these ruts, can

freeze in frigid/wintry conditions and affect vehicle traction. The pooling of water can also cause

inconsistency in soil water content resulting in effected trafficability The continuously increasing size

and weight of off-road vehicles and agricultural machinery threatens soil quality and ultimately leads

to soil degradation. Many studies have been conducted to assess and monitor the degradation of the

Department of Mechanical and Aeronautical Engineering
Vehicle Dynamics Group

PAGE 11



CHAPTER 2 LITERATURE STUDY

soil to reduce the severity of traversing vehicles, whether it be on unpaved roads or agricultural fields

(Shoop et al., 2013) (Halvorson et al., 2001).

Soil strength is a measure of how the soil reacts when applying a force to it and is an important

parameter that can be used to determine whether a vehicle can traverse the terrain without becoming

immobilised. Soil strength is a measure of the soil‘s mechanical resistance to penetration and is

commonly used to measure soil compaction. One of the most commonly used penetrative resistance

measures is the Cone Index or CI. The CI is defined as the force per unit base area that is required

to press a standard shape cone into the soil. Fountas et al. (2013) used cone-shaped penetrometers

with multiple tips in conjunction with GPS to characterise the soil’s penetrative resistance (producing

soil strength profiles) and its spatial distribution over a large area. In the past, these tests have been

manually conducted resulting in an extremely labour-intensive testing procedure. This led to the

development of electronic devices that increase productivity, however, the measurement remains a

tedious process since measurements are still made at discrete locations. Hemmat et al. (2014) showed

that there is a correlation between the rut depth and soil cone penetrative resistances that can be used

as a measure of the soil’s bearing capacity and trafficability. Although the correlation is dependent on

the vehicle, the soil strength can be measured using only the soil sinkage or rut depth. This makes rut

depth an important parameter that can be measured with relative ease and is very beneficial to estimate

vehicle mobility. It also provides information for environmental studies (Anderson et al., 2005) and

provides soil characteristics.

Accurate soil deformation measurement is also vital for improving soil models for simulation and

future prediction (Iagnemma et al., 2003). The soil models can be used to evaluate the performance of

wheels on deformable terrains which in turn aids in the development of off-road wheels. Improved

off-road wheels would reduce the rutting of soils and increase overall wheel efficiency and performance.

Botta et al. (2012) and Kurjenluoma et al. (2009) investigated the motion resistance experienced by

off-road vehicles traversing deformable soils typically found in agricultural fields. Both investigations

concluded that higher motion resistances are experienced in soils with a low bearing capacity which is

the result of soil rutting. Motion resistance increases fuel consumption and therefore increases running

costs.

It is apparent that many systems can benefit from real-time rut measurements. Providing this informa-

tion to vehicle control systems such as traction control or tyre pressure inflation systems would improve
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vehicle performance, reduce running costs and reduce the impact on the terrain. It can also be used

to determine whether the vehicle can safely traverse the terrain reducing the risk of immobilization.

Continual assessment of roads would also be beneficial since these systems can be used to evaluate the

need for road maintenance.

Rut measurements are generally conducted manually resulting in a time consuming, labour intensive

process. In Shoop et al. (2013) rut depth was measured using a rod that was placed over the rut,

perpendicular to the direction in which the wheel is travelling. Using another ruler, the relative distance

between the rod and the lowest point within the rut is measured and taken as the rut depth. This is

the preferred method for rut measurements due to its simplicity and low cost. An example of this

method is shown in Figure 2.6. In Kurjenluoma et al. (2009) the rut depth was measured by using

two peiseler wheels that ran parallel to each other with one in the formed rut and the other one next to

it. An ultrasonic sensor was used to measure the relative height difference between the wheels which

gives the rut depth. Real-time measurements can also be done using LiDAR and laser line scanners,

however, these are expensive and are mainly developed for asphalt usage.

Figure 2.6. The prevailing method used for rut depth measurements (Shoop et al., 2013)

Botha, Els, Shoop, Becker and Sopherb (2016) developed a method to perform 3D rut profile meas-

urements in snow and mud. In their investigation, they tested the feasibility of using DIC to measure

un-deformed and deformed terrain profiles. Inexpensive off-the-shelf cameras were used to create
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a stereo-vision rig that enables the system to determine a 3D view of the scene, similar to the way

human eyes determine depth. Determining 3D coordinates from a stereo-vision rig will be discussed

in detail in Section 2.3.7. A typical result of the measured terrain profile is shown in Figure 2.7, where

a vehicle had traversed soft mud, deforming the soil and creating the observed terrain profile. The

shape of the rut is clearly visible. The depth was determined by first reducing the surface profile to a

single lateral cross-section of the surface profile. As the vehicle travels over the terrain, the distance

between the camera and the terrain continuously changes and therefore a ground plane (the reference

height to the sides of the rut) needs to be determined. Points to the left and the right of the rut are taken

(taking the rut piles into consideration) and a straight line is fitted through these points which represent

the ground plane datum. The rut depth is determined by taking the maximum of the reduced surface

profile relative to the ground plane datum. Measurements were validated using the ruler technique

(as demonstrated in Figure 2.6). The exact locations of these measurements could not be obtained,

making precise correlations not possible. However, the largest rut depths were measured and proved to

correlate. It should be noted that measurements were conducted in post-processing from pre-recorded

footage.

Figure 2.7. Terrain profile in mud (Botha, Els, Shoop, Becker and Sopherb, 2016)

One advantage of this system is that it is non-contact based and therefore does not influence the

terrain while measurements are taken. Another advantage is that it provides length and width to the

measurement when compared to conventional point or line scan techniques, providing more information

that can be used to evaluate the road profile. As previously mentioned, camera based systems require
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adequate lighting conditions and additional light sources are required for use in poor lighting conditions

such as at night. The system is also at risk in the event the lens is obscured by debris.

Botha, Els, Shoop, Becker and Sopherb (2016) showed that this is a viable alternative to current

methods during mobility tests. Implementation of this system in real-time can add benefits to vehicle

mobility. For this reason, DIC was chosen as the best candidate for implementation of real-time rut

depth measurements. During this investigation, only the rut depth is measured although there are many

other applications for the use of DIC in terramechanics.

Chapter 2.3 aims to summarise the fundamental basics that are required to develop the rut depth sensor.

This includes fundamentals of acquiring digital images, mathematical models to remove distortion

from the images and recovering depth from a stereo-vision rig.

2.3 CAMERA-BASED VISION

DIC is the process of comparing and analysing sequential images by applying software algorithms

to these images. In the previous sections, it was shown that DIC is a useful tool that can be used for

various vehicle measurements. The following section aims to summarise the fundamental principles

required for applying DIC. During this investigation, an open source library was used for the majority

of the DIC algorithms. For both measurements, it is required to first obtain digital images. The

images then need to be processed to remove any distortion created by the lens, which is achieved

through calibration. For rut measurements, a stereo-vision setup, consisting of two cameras, is used to

determine depth. These cameras also require calibration to find the relative geometry between the two

cameras. DIC algorithms are applied to the whole images to obtain the 3D coordinates of the scene.

Side-slip angle has different requirements. As discussed, discrete points are tracked across sequential

images. Detailed implementation of the algorithms are discussed in the relevant chapters.

2.3.1 OpenCV

Open Computer Vision (OpenCV) is a free, open source computer vision library that includes thousands

of computer vision algorithms (OpenCV, 2017). The goal of the project was to advance computer vision
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research by providing optimized, open source code for basic computer vision. Many of the algorithms

that are used during this investigation are the library implementation’s of the algorithm.

2.3.2 Digital imagery sensors

Digital cameras use a matrix of electronic photodiodes that convert the light, which is focused through

the lens, into an electronic signal. A photodiode is a semiconductor diode which, when exposed to

light, generates a potential difference or changes its electrical resistance proportionally to the intensity

of the exposed light. An analogue-to-digital converter is used to transform the electronic signals into a

3-byte digital value that represents the intensity of red, green and blue light of the colour spectrum. In

a grey scale image, the light intensity is represented by a single byte of data.

Two popular digital image sensors are the Charged Coupling Device (CCD) and the Complimentary

Charged Oxide Semiconductor (CMOS). Both these devices use photodiodes. Historically, the major

difference between the CMOS and CCD was the shutter mechanism, where CMOS used a rolling

shutter and CCD used a global shutter. With rolling shutters, the sensor is sampled from one side

to the other, either vertically or horizontally. Global shutters sample the image in a global fashion

where all the pixels are processed in one time instant. Global shutters are preferred for video or motion

photography where the scene is not stationary and pixels are required to represent the exact same time

of exposure. Rolling shutters cause a distortion effect on a moving image. Figure 2.8 demonstrates

this effect, where the instantaneous shutter gave an undistorted image of the fan blades compared to

the severely distorted image produced by the rolling shutter. (Andor, 2014) Both sensors have their

Figure 2.8. Images of moving fan blades using a Rolling Shutter vs Global Shutter (Andor, 2014)

advantages and disadvantages. CMOS sensors have higher processing rates, are cheaper and consume
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less power. However, CCD sensors produce far less noise. Since most tests during this investigation

are non-stationary, a global shutter is preferred. Recent developments have allowed CMOS sensors to

use global shutters as opposed to rolling shutters (Sony, 2017). For this reason, a CMOS based camera

with global shuttering was used for this investigation.

2.3.3 Camera model

Conceptually, there is no difference between a digital image and a photograph. Light from an observed

3D scene is projected through a lens to concentrate the rays coming from different scene elements

and is captured on a 2D image plane. Figure 2.9 demonstrates the model, where light from a scene is

projected onto the image plane. In Figure 2.9, f represents the lens focal length, di the distance from

Lens

Object

f

di do

Image Plane

Figure 2.9. Photograph model (Laganiére, 2011)

the image plane to the lens and do the distance between the object and the lens. These dimensions are

related through the thin lens equation (Laganiére, 2011):

1
f
=

1
d0

+
1
di

(2.3)
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In computer vision, the above model is simplified to produce the pin-hole camera model. The model

can be simplified in three ways: (Laganiére, 2011)

1. Assume that do is much larger than di and therefore the image plane is located at the focal length.

This is valid as typically the focal length ranges between 4-6mm where the distance to the object

is minimum two orders of magnitude larger.

2. Neglect the effect of the lens by considering a camera with an infinitesimal aperture and therefore

only the central ray is considered. This is a valid assumption since theoretically, this does not

affect the image.

3. Place the image plane in front of the lens to obtain an identical but upright image which is

known as the pin-hole model (Figure 2.10). This is physically not possible but is mathematically

equivalent.

Object

f

do 

Image Plane

/Z

ho / X

hi /x

Figure 2.10. Pin-hole model (Laganiére, 2011)

Mathematically, the basic projective equation can be determined from the graphical pin-hole model

using triangles:

hi = f × ho

do
(2.4)
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This can be applied in both x- and y-direction of the image plane to obtain:

x = f × X
Z

(2.5)

y = f × Y
Z

(2.6)

This model allows the position of a point on a 3D scene to be projected on a 2D plane. These

coordinates are in mm, however, it is not ideal to relate the projection onto the image plane, but rather

onto the image sensor. Typically the focal length is represented as a combination of the sensor and

the lens focal lengths with the units in Pixels, in comparison to the focal length of the lens which is

in mm. The sensor‘s focal length is redefined by multiplying the focal length of the lens in mm with

the size of the pixels (Sx and Sy) in pixel/mm to covert the units to pixels. The sensor focal length is

not necessarily the same in the x-and y-direction because of the rectangular shape of the pixels in the

sensor and is therefore split into x and y components. Noting that the sensor‘s focal length is given as

the product of the lens focal length and the sensor size, the sensor focal length is given as:

fx = Sx× f (2.7)

fy = Sy× f (2.8)

The pixel coordinates of a point in a 3D scene that is projected on the image sensor are then obtained

as (in pixels):

x = fx×
X
Z
+uo (2.9)

y = fy×
Y
Z
+ vo (2.10)

Where uo and vo represent the principal point which is the distance from the centre origin to the

intersection of the optical axis. Equations 2.9 and 2.10 are depicted in Figure 2.11 (Laganiére, 2011).

2.3.4 Camera and lens Settings

Various camera and lens settings can be used to alter the digital images obtained from the camera.

On the camera, there are two main settings, i.e. the sensor sensitivity and shutter exposure time. The

sensor sensitivity, commonly known as ISO, is a measure of amplification used on the image sensor.

High ISO values make the sensor more sensitive to light. This is ideal in low lighting conditions, or

when short exposure time is required to capture fast motion, or when a small aperture is required for
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Figure 2.11. Image reference frame

an increase in depth-of-field. However, high ISO values introduce unwanted noise on the image. The

duration of time that the photodiode on the image sensor is exposed to light is known as the shutter

exposure time. An increase in exposure time allows a larger charge to build up in the photodiode, that

represents the intensity of that pixel. This is useful when there is insufficient lighting. However, if

the exposure time is too long, the image is overexposed which removes detail on the image. Large

exposure times are unwanted when capturing images from moving scenes as they cause motion blur

on the image.

There are two main lens parameters, i.e. aperture and focal length. The aperture is the opening or hole

that the light of the scene travels through to the camera sensor. The size of the opening is defined by

the f-number, which is the ratio of focal length to the aperture opening. A large f-number refers to a

small opening and vice-versa. A small aperture (large f-number) increases the depth of field which

improves the ability to adequately focus on an object. The focal length of a lens is the distance at which

the light rays from the lens converge to form a clear image. The focal length of the image changes the

magnification of the image. A large focal length increases the magnification of the image and reduces

the region of interest.

In general, shutter time, sensor sensitivity and aperture should be as low as possible to reduce noise

and motion blur and to increase the depth of field. This poses a problem as a reduction on these

parameters results in a reduction of brightness on the image. A compromise should be made between

these parameters based on the application. This can be improved by providing the scene with an

abundance of light which will result in less of a compromise.
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2.3.5 Single view calibration

It is evident from the pinhole camera model that parameters such as focal length, size of the image

plane and principal points are required to map from 3D points in space to 2D points on the image

plane, and vice-versa. These parameters are known as the intrinsic parameters and are related to the

camera and lens. Calibration is the process of determining these parameters. Open source calibration

algorithms were used to generate these parameters and only fundamental equations will be discussed

in this section.

To start this discussion, a reference frame or coordinate system is added that intersects the image plane

through the centre of projection or principal point. This is illustrated in Figure 2.11.

Homogenous coordinates are used to represent the projective geometry. They allow for a 3D point

at infinity to be represented by finite coordinates. In this coordinate system, an extra dimension is

added to represent 2D points as 3D vectors and 3D points as 4D vectors. In the 2D case, it can be

thought of as representing a line from the origin through the point on the image plane. Applying this

to Equations 2.9 and 2.10, they can be rewritten into matrix form:

S×


x

y

1

=


fx 0 uo

0 fy vo

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0




X

Y

Z

1

 (2.11)

[
Sensor size

]
=
[
Intrinsic matrix

]
×
[
Projection matrix

]
×
[
Coordinate vector

]

If the reference frame is not at the projection centre of the lens, it must be accounted for by adding a

rotation matrix and a translation vector to the projection matrix of Equation 2.11. These are known

as the extrinsic parameters and represent a rigid transform to ensure the reference frame is at the

projection centre. This yields:

S×


x

y

1

=


fx 0 uo

0 fy vo

0 0 1




r1 r2 r3 t1

r4 r5 r6 t2

r7 r8 r9 t3




X

Y

Z

1

 (2.12)

Another factor that has to be taken into account in the calibration process is lens distortion. All lenses
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(a) Illustration of radial distortion (b) Illustration of radial distortion

Figure 2.12. Effects of lens distortion on the image plane (Botha, 2015)

distort the image in one way or another. This effect is more significant with lower quality lenses,

lenses with a short focal length or when a lens is misaligned. Also, different colours distort the image

unequally as their frequencies vary. Two types of distortion commonly occur, namely radial and

tangential. Figure 2.12 illustrates lens distortion, where an imperfect lens results in radial distortion on

the image plane sensor (a) and a misaligned lens causes tangential distortion (b).

Radial distortion is a result of rays refracting more when they are further away from the centre of the

lens when compared to the rays closer to the centre. Tangential distortion occurs when the image plane

is not parallel to the lens, which causes a slant on the image plane. The corrected coordinates (xc and

yc) are calculated by adding the distortion corrections (xr, xt , yr and yt ) to the coordinate, as shown in

Equations 2.13 and 2.14. The distortion corrections are substituted with a suitable model, δ , to give the

final corrected coordinates (Equation 2.15 and 2.16) that are a function of the radial (ki) and tangential

(pi) distortion coefficients. Radial and tangential distortion coefficients are approximated separately

and the result combined. This requires 4 parameters to be solved before the image can be corrected for

distortion (Slama et al., 1980).

xc = x+δxr +δxt (2.13)

yc = y+δyr +δyt (2.14)

xc = x+ x(k1r2 + k2r4 + . . .)+ [2p1y+ p2(r2 +2x2) (2.15)

yc = y+ y(k1r2 + k2r4 + . . .)+ [2p2x+ p1(r2 +2y2)] (2.16)

The most popular method for calibration were developed by Zhang (2000). By supplying these
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Figure 2.13. Various patterns used for calibration (Botha, 2015)

algorithms with images of a known pattern and size, at various angles and distances from the camera,

the parameters can be solved in the least squares manner. The calibration algorithms used for calculating

these parameters (intrinsic matrix and distortion coefficients) are not in the scope of this study and

those supplied by the OpenCV library is use without modification. Many possible calibration patterns

exist such as dots, squares, or chequered patterns as shown in Figure 2.13.

2.3.6 Multiple view calibration

The previous section described the process of calibrating a single camera by determining the intrinsic

parameters and distortion coefficients. This section describes the calibration process used over multiple

views which requires determining the relative geometry between the cameras. Multiple views of a

scene can be obtained in two ways:

1. Using two cameras that are imaging the same scene, at the same time. This is often referred to

as a stereographic or stereo-vision rig.

2. Using a single camera but imaging the same scene from two different locations.

However, this investigation will focus on viewing the scene at the same time using two cameras. Figure

2.14 shows the geometric relationship between two stereo images, also known as epipolar geometry.

In this illustration, point P refers to the scene in consideration, points p and p′ are the projections of P

in the planes Π and Π′ respectively. The lines joining ep and e′p′ are the epipolar lines, where e is

the epipolar point and represents the projection of plane Π′ centre onto plane Π and e′ represents the

projection of plane Π centre onto the Π′. This is of great significance as the ray OP in the plane Π

is projected onto plane Π′ as the epipolar line. The implication of this is that a feature in one image

can be found on the other image by searching along its corresponding epipolar line. This is known
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as the epipolar constraint (Hartley and Zisserman, 2003). The importance of this relationship will be

discussed in Section 2.3.7. Calibration of a stereo-vision rig requires the determination of the relative

Figure 2.14. Epipolar Geometry between two views (Botha, 2015)

rotation and translation between the two cameras. The calibration process is similar to that of the single

camera calibration process used to determine the camera intrinsic and distortion parameters. However,

in this case, both cameras view the calibration pattern simultaneously. The calibration, therefore,

produces the intrinsic parameters and distortion coefficients of each camera as well as the geometric

relationship between the two cameras. Once again the algorithms that are used to calibrate the rig do

not fall within the scope of this study and will not be discussed. As with calibration of a single camera,

calibration is achieved using built-in algorithms supplied by OpenCV. Once the stereo-vision rig has

been calibrated, it is possible to extract 3D coordinates of a scene by back-projecting the rays. This is

discussed in the following section.

2.3.7 Stereo vision

The process used to determine depth from a stereographic rig is similar to one of the methods that

the human eyes use to determine depth, commonly known as binocular vision. Binocular disparity is

defined as the change in location that an object appears to undergo between the left and right views of

a stereographic rig. This is best illustrated in Figure 2.15. In this image, it is evident that the features

(moon, sun and face) appear at different locations on the left and right images. This change in location

is a result of having a translational and rotational separation between the left and the right images. In
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order to retrieve 3D coordinates of a scene, the disparity between the images has to be determined.

Figure 2.15. Illustration of disparity on a stereo-vision rig

Stereo-vision is applied to the whole image and obtains the depth of the whole scene7. This means

that each pixel is matched between the left and right images. The disparity d is computed by tracking

regions of pixels between the left and right images using an exhaustive search and suitable correlation

metric and a winner-takes-all matching strategy. This means that the regions that have the best match,

are most likely to be the corresponding region. The simplest and most common correlation metric used

is the minimization of the sum of absolute differences or SAD given as (Konolige, 1997)

SAD =
N/2

∑
i=−N/2

N/2

∑
j=−N/2

|I(x+ i,y+ j)− I′(x+ i+dx,y+ j+dy)| (2.17)
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where I and I′ represent the brightness of the left and right images. Other metrics such as the sum of

squared differences, or SSD, and normalised cross-correlation, or NCC, also exist. For a pixel in the

left image, the absolute difference of a N×N window around the pixel is taken between the left and

the right images. The result is then summed. The window on the right image is moved and the process

repeated until the SAD of the whole second image has been determined. The region with the lowest

SAD is said to have the best correlation. The next pixel on the first image is then selected and the

process once again repeated, leading to an extensive computationally expensive search.

The exhaustive search can be simplified by remembering that epipolar geometry (shown in Figure

2.16) allows for a feature in one image to be mapped onto the epipolar line of the other image, which

reduces the complex search down to a 1D line search. This is achieved by reprojecting the images

such that the epipolar lines of both images are horizontal and correspond to the same row, so that a

feature in a row on the left image, appears in the same row on the corresponding right image. This

is known as image rectification. The rectification can be obtained from known geometry between

cameras by the calibration process. In Figure 2.16 point P is project onto the left and right images at

point p and p′. It can be seen that after the images have been rectified, both points lie on the same

horizontal line. OpenCV supports two algorithms that calculate the disparity between two images,

Figure 2.16. Image Rectification (Botha, 2015)

Block Matching (BM) and Semi-Global Block Matching (SGBM), although many others exist. Both

these algorithms feature in the top ten of the KITTI (Karlsruhe Institute of Technology and Toyota

Technological Institute at Chicago) stereo benchmark, where SGBM is ranked 3rd and BM ranked

9th (Geiger et al., 2012). According to the benchmark, BM was computationally cheaper but far less

accurate than SGBM. This is because SGBM first implements BM and optimises the result. In this
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study, processing time dominates the importance of accuracy and therefore BM will be implemented

due to its faster processing time. Computing the disparity map was one of the major bottlenecks in

computation time. Seeing as the majority of computations consist of multiple 1D line searches, these

calculations can be done parallel to one another. Graphics processing units, or GPU’s, are efficient

with simple parallel calculations such as these and have shown significant reductions in processing

time for disparity mapping. Hernandez-Juarez et al. (2016) showed that for a 640x480 image, frame

rates of up to 230Hz can be achieved using high-end GPU’s. The use of GPU’s do not fall within

the scope of this investigation but, will significantly reduce processing time making it a necessity for

future work.

The algorithm determines the disparity of a pixel by starting at the same location on the other image

and then searches along the row using the SAD metric to find its corresponding pixel. Generally,

the disparity is computed relative to the left image, but the algorithms allow for the disparity to be

computed relative to the right image. This means that the algorithm starts on the right image at the same

pixel location as that of the left image and moves the window accordingly. Figure 2.17 graphically

illustrates how the disparity is calculated between the left and right image (d = x− x′). Once the

disparity between the images has been obtained, it is a trivial process to recover the depth. Using the

process of similar triangles, indicated by the coloured triangles in Figure 2.17, the depth (Z) can be

derived using Equation 2.18, where the left side of the equation is represented by the blue triangle and

the right side represented by a red triangle. This provides the relationship in Equation 2.20.

t− (x− x′)
Z− f

=
t
Z

(2.18)

t−d
Z− f

=
t
Z

(2.19)

Z =
t f
d

(2.20)

The depth resolution is a crucial factor to be considered. From Equation 2.20 it can be shown that

the depth resolution (∆Z) can be derived from the focal length, translation displacement between the

cameras and the minimum measurable disparity ∆d (Grewe and Kak, 1994).

∆Z =
−∆dZ2

t f +∆dZ
(2.21)

From Equation 2.21 it is evident that it is desired to have the object as close to the camera as possible

in order to improve the depth resolution.
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Figure 2.17. Disparity mapping between left and right images (Botha, 2015)

2.3.8 Feature tracking

Feature tracking across successive images is required for measuring the side-slip angle. Features are

regions of the image that are unique and make it easy to identify and subsequently, track. In the field of

computer vision, the process of tracking identifiable points is known as optical flow and is heavily used

in video-based applications. Optical flow algorithms can be classified into two main groups, namely

sparse and dense optical flow algorithms. Sparse optical flow techniques track the motion of a few

discrete features rather than tracking the motion of the whole image as in the case of dense optical

flow. In many applications the motion of the whole scene is necessary such as stereo-vision where DIC

is applied to the full image. However, for side-slip angle measurements, it is only required to track

relatively few discrete points. This approach is also more computationally efficient making it better

suited for real-time applications.

Feature tracking faces many challenges. To start, one first has to determine which features can be

tracked. This is challenging as some features may change appearance due to the motion of the

camera and lighting conditions. Additionally, points may disappear and appear resulting in further

ambiguities. Often, the tracking algorithms are prone to drift due to the accumulation of small errors

as the appearance model is updated. Numerous sparse optical flow algorithms have been developed to
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select and track features to combat these challenges. The OpenCV library has a variety of algorithms.

The most popular and widely used is the Lucas-Kanade (LK) (Lucas and Kanade, 1981) algorithm,

which will be discussed in detail in Section 2.3.8.1. A short comparison in performance of sparse

optical flow algorithms available from the OpenCV library will be discussed in Section 3.1 that proves

the LK algorithm to be the fastest algorithm on a single core CPU.

Many other feature tracking algorithms exist such as the Scale-Invariant Feature Transform (SIFT),

Speeded-Up Robust Features (SURF), Oriented FAST and Rotated BRIEF (ORB) and Binary Robust

Invariant Scalable Keypoints (BRISK). A short description of each algorithm is given below. More

algorithms do exist but will not be considered during this investigation.

SIFT (Lowe, 2004) address the problem of matching features that have changed in scale and rotation.

In this algorithm, features are identified by finding local extremes between scales of the difference

of Gaussian (DoG). Orientation is determined by selecting the dominant orientation from histogram

of oriented gradients (HOG). The feature descriptor then defines the features by its scale, orientation

and it’s location. By calculating feature descriptor on both images, the corresponding features can be

found by calculating the euclidean distances between all features descriptor. Features with the smallest

distances are said to be a match. This is known as a brute-force matching strategy as each feature

descriptor is compared to all other possibilities.

SURF (Bay et al., 2008) is based on the same principals as SIFT, however each operation has been

optimised. The scale and DoG are approximated using box shaped filters. The features are identified

by taking the second-order derivative of the DoG at each scale and selected if the determinant is

maximal. The orientation of each feature is approximated through wavelet responses and the dominant

orientation selected by summing the responses along a sliding window and finding the largest vector.

As with SIFT, the feature descriptor then defines the feature by its scale, orientation and it’s location.

The feature descriptors are then matched using the brute force matching strategy, as with SIFT.

ORB (Rublee et al., 2011) uses a feature detector based on machine learning that has been trained

as a classifier to detect edges. It has been modified to include the orientation of the feature using

the intensity centroid. The algorithm uses a modified binary feature descriptor that is a bit string

comparative description of the feature that is steered in the direction of the edge orientation. The

descriptors are then matched by comparing the Hamming distance between all descriptors.

Department of Mechanical and Aeronautical Engineering
Vehicle Dynamics Group

PAGE 29



CHAPTER 2 LITERATURE STUDY

BRISK (Leutenegger et al., 2011) uses a scale-space feature detection method that detects features using

a saliency criterion across the image and the scale dimensions. Local intensity gradients are obtained

in concentric circles in the neighbourhood of each feature and is used to obtained the orientation of the

feature. The feature descriptor consists of a comparative bit string that is formed using the descriptor.

The descriptors are then matched by comparing the Hamming distance between all descriptors. The

descriptors are then matched by comparing the Hamming distance between all descriptors.

2.3.8.1 Lucas Kanade

The OpenCV implementation of the LK algorithm, is actually a variant called the Kanade-Lucas-

Tomasi, or KLT, algorithm. This algorithm combines the LK tracking algorithm with features from

Shi and Tomasi (1994) or the so called ”Good Features to Track”. Shi and Tomasi (1994) proposed a

feature selection criterion that is optimal by construction as it based on how the LK tracking algorithm

functions. These features do not necessarily represent a physical point in space but mathematically

represent the best possible point that the LK can track from the image. This greatly improves the

accuracy and reliability of the algorithm.

The LK optical flow algorithm tracks these unique features across sequential images by solving the

optical flow equation in a least squares approach. As mentioned before, the features for KLT are

selected based on how the LK functions. Therefore it is required to discuss the LK algorithm before

determining what features should be tracked. The LK algorithm makes three important assumptions.

Firstly, the pixel brightness across images are consistent. This implies that the brightness of the pixel

being tracked stays constant from the image to image. This would be invalid if e.g. shadows appear on

the image but can be overcome by using adjustable camera parameters such as sensor gain, aperture,

and contrast. The second assumption is that the pixel motion is small. The assumption of small motion

is overcome by introducing a modification to the algorithm that tracks over a pyramid of smaller scaled

images which reduces the motion on the image. The motion on the smallest image is then tracked

and the solution used on the next largest image. This process is repeated for the larger scaled images

until the solution of the motion of the original image is found (Bouguet, 2000). This is valid when

lateral motion is observed from a stationary scene although may not hold if multiple objects in the

scene move or if the motion is predominantly rotational. To start, consider Figure 2.18 where a point

with pixel intensity I is located at (x,y) at time t. At time t +1, the point has moved by (u,v). The
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Figure 2.18. Feature motion

brightness consistency assumption therefore states

I(x,y, t) = I(x+u,y+ v, t +1) (2.22)

The right-hand side of Equation 2.22 can be linearise by taking a first order Taylor expansion to

produce Equation 2.23. In this equation, Ix and Iy represent the partial image derivative along the x

and y directions. It is the partial time derivative of the brightness and is determined by determining

the change in brightness of the same location over a finite time difference apart. By rearranging and

substituting Equation 2.22 into Equation 2.23, produces Equation 2.26. By dividing this equation by

dt, Equation 2.27 is obtained.

I(x+u,y+ v, t +1)≈ I(x,y, t)+ Ixu+ Iyv+ It (2.23)

I(x+u,y+ v, t +1)− I(x,y, t)≈ Ixu+ Iyv+ It (2.24)

0≈ Ixu+ Iyv+ It (2.25)

[Ix, Iy] · [u,v]T + It = 0 (2.26)

∴ [Ix, Iy] · [Vx,Vy]
T + It = 0 (2.27)

Equation 2.27 can be used to recover the velocity of the pixel in consideration. However this is a scalar

equation with two variables. To create more equations for the pixel, the spatial coherence constraint

(neighbouring pixels around the feature undergoes the same motion as the feature) is employed. If for

example, a 5x5 window around the feature is considered, 25 equations are generated.
Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
...

...

Ix(p25) Iy(p25)


Vx

Vy

=−


It(p1)

It(p2)
...

It(p25)

 (2.28)
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This produces an over-constrained system (for illustration, the system is donated by Ad = b) that can

be solved using a least squares approach. This is done by multiplying the equation by AT such that

(AT A)d = AT b. The result is known as the Lucas-Kanade equation (Equation 2.29). The algorithm

solves this equation to determine the velocity in the x-direction, Vx, and the velocity in the y-direction,

Vy. The exact location of the feature is determined by optimising cost function in Equation 2.30 by

stepping in the direction of the velocity vector, at each iteration.Vx

Vy

=−

∑ IxIx ∑ IyIx

∑ IxIy ∑ IyIy

−1∑ IxIt

∑ IyIt

 (2.29)

ε =
m

∑
i

m

∑
j
[I(x,y, t)− I(x+u,y+ v, t +1)] (2.30)

Shi and Tomasi (1994) stated that in order to accurately and reliably solve for the feature motion, some

requirements of the LK equation need to be evaluated. Firstly, AtA should be invertible, secondly,

AtA should also not be too small (which would result in small eigenvalues) and lastly AtA should be

well-conditioned meaning that the ratio between the eigenvalues should not be too large. By choosing

specific features to satisfy these requirements, the ability to track the features are greatly increased.

The so-called ”Good Features to Track” features are identified by firstly obtaining the Hessian matrix

(the second derivative) of the image intensity.

H(x,y) =

 δ 2I
δx2

δ 2I
δxδy

δ 2I
δyδx

δ 2I
δy2

 (2.31)

The eigenvalues of the Hessian matrix are then calculated. Points of the image are then selected based

on eigenvalues. If the smallest eigenvalue of the point is above a certain threshold as well as the relative

ratio of the eigenvalues are below another threshold, the point is said to be unique and classed as a

good to feature to be tracked. When the LK algorithm then tracks these features, it ensures that the LK

equation (Equation 2.29) is fully satisfied. This results not only in pixels with good contrast but gives

preference to corner points instead of edge points. Considering Figure 2.19, location A has little to no

gradients which result in small eigenvalues. Location B has large gradients in some directions and

small gradients in others, resulting in a high relative ratio of the eigenvalues. Location C has large

gradients in all directions which result in larger eigenvalues making it the best candidate to track. It is

therefore required to have texture in the observed scene that creates contrast in the image to sufficiently

identify unique features. Most road surfaces offer a large variation in texture, making it easy to identify
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Figure 2.19. Effect of texture variation

these unique features. Figure 2.20 depicts a typical road surface where it is clear that the road offers

many unique variations in texture.

Figure 2.20. Typical asphalt surface

Botha, Els, Shoop, Becker and Sopher (2016) also studied the applicability of these algorithms on

off-road surfaces such as ice and snow, which although might have large texture variation, does not
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necessarily show up as illumination variation on the image. Accurate side-slip angle measurements

could still be obtained on these terrains.

2.4 CONCLUSION

The focus of this chapter is split into two components. The first part of the chapter was based on

the measurements being made, i.e. side-slip angle and rut depth. In both cases, the measurement

was described and their applicability in vehicle dynamics discussed, as well as current measurement

techniques.

For side-slip angle, the investigation showed that there is a need for an alternative measuring method

on off-road terrains and at low speeds as current commercial sensors or estimation method fail to

accurately measure under these conditions. For rut depth, the ability to make online measurements is

almost unheard of and current manual measuring techniques are widely adopted. Botha (2015) showed

a proof of concept that used DIC as a viable alternative to current measuring techniques that overcome

the hurdles of measuring side-slip angle at low speeds and on off-road terrain and allowed for rut depth

to be determined. However, these measurements were conducted offline from recorded footage and

was not implemented in real-time. This opens an opportunity to optimise these algorithms such that

they can operate in real-time.

For this reason, the remainder of the literature study was based on DIC. The basics of acquiring digital

images were discussed. In order to perform DIC, intrinsic and extrinsic parameters of the camera need

to be performed and therefore this was discussed for both the case of a single camera and multi-camera

setups. For rut measurements, stereo-vision is required and was discussed. This includes epipolar

geometry, rectification, and disparity mapping. The side-slip angle algorithm tracks change across

images and therefore feature tracking was investigated.
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Side-slip angle is an important, but inherently difficult parameter to measure as discussed in Sec-

tion 2.2.1. This chapter describes the real-time implementation of the 2D planar algorithm developed

by Botha and Els (2015) to directly measure side-slip angle. This was achieved by optimising the

original algorithm and its parameters to increase performance and to allow a live video stream to

be processed in real-time, instead of using pre-recorded footage. This chapter includes the detailed

implementation and validation of the algorithm, the setup used for testing and the results obtained. The

performance of the sensor is evaluated using two criteria, namely the maximum achievable sampling

frequency and the accuracy of the measurements.

3.1 SPARSE OPTICAL FLOW ALGORITHM COMPARISON

As discussed in Section 2.2.1, feature tracking is used to estimate the direction that the vehicle is

travelling in. A comparative study was conducted between the feature tracking algorithms available

from the OpenCV library (these algorithms were discussed in Section 2.3.8) to determine which

algorithm would be the best candidate for real-time applications. It should be emphasized that OpenCV

implementations were used for all the algorithms. Table 3.1 shows the computation time required

to identify and track 50 features across a 640x480 sized image on a desktop computer with an i5

quad core processor 2.8GHz, using a single core. Pre-recorded footage of a vehicle travelling over an

asphalt road was used for this investigation as shown in Figure 3.1. From this, it is evident that the

Lucas-Kanade (LK) algorithm is the least computationally expensive and was able to track the features

in 15ms, which is less than half it’s the closest competitor. The accuracy of the algorithms was not

tested during the analysis as it is outweighed by the importance of computation time. Section 3.2 will

discuss how outliers are rejected using random sample consensus (RANSAC) to ensure the accuracy

of the motion.

3.2 ALGORITHM

The LK tracking algorithm, discussed in Section 2.3.8, is used to track features across consecutive

images. The images are obtained from a single camera mounted to the vehicle, pointing downwards
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Table 3.1. Various feature tracking algorithms performance comparison

Algorithm Average Computation time [ms]

Lucas-Kanade 15

SIFT 570

SURF 95

ORB 35

BRISK 550

towards the terrain. Before features are identified, distortion is removed from the images. This

is achieved by calibrating the camera to determine the intrinsic parameters, as well as distortion

coefficients as discussed in Section 2.3.5. Features are identified on the image, IIIt and their locations

tracked to the next sequential image IIIt+1 using the LK tracking algorithm. Typically the features are

corner edges or points with a large contrast in multiple directions. A summary of parameters used

for the algorithm are given in Appendix B.1. It is therefore required to have texture on the testing

surface that shows up as illumination variation or contrast in the image to sufficiently identify features.

The input parameters for the LK algorithm are optimised for mainly reduced computational time. An

example of the feature motion vectors produced are shown in Figure 3.1 where features were tracked

between two consecutive images on a smooth concrete surface, where the feature motion vector starts

at the red circle. The various colours represent inliers and outliers, which will be discussed later in this

section.

The feature motion vectors are used to estimate the relative motion that the camera has undergone

between frames. Since the camera is perpendicular (pointing downwards) to the terrain (as shown in

Figure 3.3), the direction of the feature vectors can be considered the direction of motion of the camera,

and therefore the vehicle. By mounting the camera such that the direction of the feature motion vectors

are either horizontal or vertical when the side-slip angle is zero, then the angle that the feature motion

moves in is considered the side-slip angle of the vehicle. For the feature vector motion to represent the

motion of the vehicle, the assumption is made that the camera (and therefore the vehicle) undergoes

predominantly planar motion. This means that the vehicle exhibits negligible motion such as yaw, pitch

and roll as discussed in Section 2.2.1. An offset in the sensor can easily be corrected by measuring the

side-slip angle when the side-slip angle should be zero, typically when driving in a straight line on a

flat road (Botha and Els, 2015).
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Figure 3.1. Features tracked across sequential images

Considering many features are tracked in one measurement, a method of determining outliers is

required to ensure that the measurement is not obscured by outliers. The OpenCV implementation

of the LK algorithm already contains a filtering technique whereby tracked features are rejected if

their error is higher than a prescribed threshold. However, this fails to detect all outliers and therefore

RANdom SAmple Consensus (RANSAC) is employed (Fischler and Bolles, 1981). RANSAC is an

iterative algorithm that is used to estimate parameters of a model from data which contains outliers. In

this case, only one parameter is required for the direction of the motion of the features and therefore

only one point is required. The general idea is to randomly select the minimum samples required

to build the model, which in this instance is one sample, from the data set and build a model from

the selected samples. The rest of the data set is compared to this model with a suitable metric, in

this case, the difference in angle. If the error of a point in the data set is more than a set threshold

(0.05deg), the point is rejected. The number of inliers is noted and those data points stored. The

algorithm then again randomly selects a sample and builds a model based on the new sample. The

rest of the data set is once again tested against this model. If the number of inliers is more than the

previous model, the new points are stored. This process is repeated for a suitable number of iterations

which is dependent mainly on the number of points being used and the order of the model. For this

setup, only one parameter is required for the model that has a maximum of 50 points and therefore

100 iterations were used to keep computation cost to a minimum. Upon completion, the model with

the most number of inliers is returned, as well as the inliers. A best-fit model is then generated with
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the inliers and considered to be the correct model for the data set. This algorithm ensures an accurate

model, free from the influences of outliers. Although this extra check increases computational expense,

it is still minimal when compared to the feature tracking. Figure 3.1 shows features that have been

rejected in blue and features that are classed as inliers as green.

The original algorithm developed by Botha and Els (2015) had a variable sampling frequency based

on the displacement the vehicle had undergone between frames (D was used as the measure of

displacement). If the displacement was too small, the frame was skipped until the displacement

was above a set threshold of 5 Pixels. This ensured that motion vectors were adequately large for

accurate measurements. This improved the algorithm performance at low speeds. However, it was not

implemented in this investigation due to the complexity of multi-threading the algorithm. Instead, the

data was filtered by checking the size of the displacement vector. If it was too small (2 Pixels), the

measurement is rejected. Figure 3.2 shows a flow-diagram of the algorithm.

Acquire initial 
image It, i=0

Acquire next  image 
It+i, i=1

Identify and track 
features between It

and It+i

Apply RANSAC to 
filter outliers and 

then determine best-
model fit

Remove distortion

|D| > thresholdCalculate side-slip 
angle Yes

Write data to file

Reset  It+I = It

Reject measurementNo

Reset  It+I = It

Thread available No

Yes

Figure 3.2. Flow diagram of side-slip algorithm

The algorithm was set to track 50 features. The number was kept low to keep computational costs at a

minimum but allows enough points for redundancy. The algorithm was threaded across all cores to
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boost the computational efficiency. This means that each core ran its own local version of the algorithm.

This increases throughput (the overall sampling frequency of the system) but does not decrease latency

(the time it takes to process a set of images). The main function would continuously check whether a

thread was busy and then supply it with a set of images for processing once it became available. To

further enhance computational efficiency, threads were continuously active and only destroyed at user

request rather than starting and destroying a thread on each iteration, thereby keeping thread overhead

at a minimum.

3.3 TEST SETUP

The side-slip angle measurement was tested by mounting the camera on a gimbal, which allowed

rotation of the camera in fixed increments relative to the vehicle as shown in Figure 3.3. This forces a

known artificial side-slip angle to be measured by the sensor in a controlled manner when the vehicle

is driving in a straight line. This method was chosen as opposed to dynamic manoeuvres that would

induce vehicle side-slip, as the measurements would not be controlled or repeatable. There is also no

accurate comparative measure that would validate the measurements. The camera was mounted about

450mm from the testing surface, resulting in a field of view (FOV) of 480mm x 350mm. Ideally, the

camera should be mounted on or close to the centre of gravity of the vehicle to minimise the effect of

vehicle motion, however, for testing purposes, it was mounted on the rear of the vehicle. The vehicle

was driven in a straight line on a flat concrete road and the side-slip angle incremented between 0, 5

and 10 deg. It should be noted however that the system can theoretically measure any angle but is

limited because of the gimbal setup only allowing up to 10deg rotation.

The camera used in during this investigation is a Point Grey Flea3 USB 3.0 camera with Fujinon

DF6HA-1B lenses (see Appendix A for camera and lens specifications). The camera was set to a

resolution of 640x480 pixels with which a maximum frame rate of 450Hz can be achieved. Two

methods for triggering the camera to take an image were investigated. In the first method, the software

determined when an image should be taken. The second used a synchronizing pulse which is generated

by the data acquisition device, referred to as hardware triggering. It was found that the software

triggering limited the processing rate to 180Hz and therefore the decision was made to only use

hardware triggering. This also enables the synchronization of other measurement devices if needed,

making it the preferred triggering method. Due to the high sampling frequency, it is required for the
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(a) Top view of gimbal setup (b) Side view of gimbal setup

Figure 3.3. Camera Gimbal Setup

camera to have a short shutter time. This reduces the exposure the camera sensor has to the scene

and therefore more light is required. The aperture of the camera was set relatively large to allow

high light exposure to the sensor. This decreases the reduces the depth of field. However, since the

distance between the camera and the testing surface is fairly constant, a large depth of field is not

required. The short shutter time also reduces motion blur on images. The processing unit used during

this investigation was an Intel NUC with a 6th generation i7 quad core/8 thread processor that runs at

2.5GHz (Intel Corporation, 2016) with solid state hard drive and 16Gb DDR4 memory.

3.4 RESULTS

This section discusses the results obtained from testing the sensor. The results are split into two

sections, namely the processing time and accuracy of the measurements that is followed by a discussion

of the results.

3.4.1 Processing time

Initial performance evaluation was focussed on the maximum obtainable sampling frequency. This

was accomplished by increasing the sampling frequency until the computation time became excessive

and the algorithm started skipping frames. As a result, it was found that 250Hz was the maximum

obtainable sampling frequency with no frame skipping. Setting the sampling frequency to 300Hz

resulted in an average sampling frequency of 283Hz and increasing it further to 350Hz resulted in an

actual sampling frequency of 302Hz. Although higher sampling frequencies were obtained, they are
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Table 3.2. Side-slip angle results on flat concrete at 250Hz

Side-slip angle [deg] Run Mean [deg] Standard deviation

0 1 -0.0671 0.4621

2 0.0598 0.5030

3 0.3620 0.4990

5 1 5.053 0.6144

2 5.399 0.5024

3 5.10 0.6914

10 1 10.46 0.5873

2 10.43 0.5742

3 10.06 0.6507

not consistent and the skipped frames create ambiguities in the measurements. This sensor matches

the sampling frequency of the commercial sensor, the Correvit S-HR.

3.4.2 Accuracy

The second part of the performance evaluation was focussed on the accuracy of the sensor. This was

achieved by setting the side-slip angle to a predefined value on the gimbal setup and then driving in a

straight line. The actual side-slip angle is then compared to the measured side-slip angle. The sampling

frequency was set to 250Hz which is the maximum obtainable sampling frequency. In these tests,

the vehicle was accelerated from rest up to 60km/h. Table 3.2 shows the results where the side-slip

angle was set and compared to the average side-slip angle that was measured for that run. The STD

for each run is also added as an indication of the noise levels. The results show that a maximum of

0.46deg error in the side-slip angle was obtained throughout testing, although most measurements

were considerably closer with a mean error of 0.25deg. Considering the STD, the mean is 0.56deg

but not exceed 0.7deg. This is comparable to the accuracies of Botha (2015), which implies results

are better than commercial. It should be noted that the testing surface was not completely flat and at

speed, caused motions on the vehicle which could explain some of the noise experienced. Figure 3.4

shows a test where the side-slip angle was set to 10deg and (a) shows the pixel displacement or size

of the motion vector (D) in pixels. Coincidently D correlates well with the actual vehicle velocity, in

Department of Mechanical and Aeronautical Engineering
Vehicle Dynamics Group

PAGE 41



CHAPTER 3 SIDE-SLIP ANGLE

0 5 10 15 20 25 30 35 40
0

50

100
D

 [P
ix

el
s]

(a) Pixel displacement representative of vehicle speed

0 5 10 15 20 25 30 35 40 45 50
0

50

F
ea

tu
re

s

(b) Features tracked

0 5 10 15 20 25 30 35 40 45 50

Time [s]

5

10

15

A
ng

le
 [d

eg
]

(c) Side-slip angle

Figure 3.4. Results obtained with side-slip angle set at 10 deg

km/h, that was obtained from the vehicle‘s speedometer and was used as an approximation towards the

vehicle velocity. This assumption is only valid for this specific setup and does not generally hold. For

future investigations other means of vehicle velocity are required. Figure 3.4 (b) shows the number of

features that were successfully tracked. The decrease in this number will be discussed in the following

section. Figure 3.4 (c) shows the side-slip angle measurement which measures 10deg as expected.

3.4.3 Discussion

A commercial sensor, such as the Correvit S-HR, was not available during this investigation and no

direct comparison could be made. However, these results are comparable to that of Botha and Els

(2015) who used a similar experimental setup on the same test surface (refer to Table 2.1) for both

the DIC methods and the Correvit S-HR sensor. Comparing the results to those measurements, it is

evident that similar accuracies were obtained proving that the camera based sensor outperforms the

commercial sensor. Lower noise bands are also observed.

For the accuracy measurements, the vehicle velocity was limited to 60km/h. However, to further test

the capabilities of the sensor tests were conducted at higher speeds. It was found that measurements

could still be made up to 100km/h which was the maximum obtainable speed for the test vehicle on the

test surface. This is also far better than required for most off-road testing on rough terrain. Figure 3.5

shows a test where the side-slip angle was set to 5deg and the vehicle accelerated from rest to 100km/h.
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Figure 3.5 (a) shows the pixel displacement and therefore an estimate of the velocity as explained.

Figure 3.5 (b) shows the number of features tracked during the measurement. As the vehicle velocity

increases, the ability to track features also decreases. At 100km/h it appears only a small portion of the

50 features are correctly tracked. Although only one point is required to make a measurement, there

is zero redundancy and no room for error. Even at the lower speeds of 60km/h where the accuracy
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Figure 3.5. (a) Pixel displacement which represents velocity (b) the number of features that were

successfully tracked (c) the measured side-slip angle which was set to 5 deg

tests were conducted, a reduction in features tracked occurs although not to the extent of 100km/h.

There are three possible causes for this phenomenon. The first is blurring on the images caused by the

high velocity of the vehicle. This could be reduced by decreasing the shutter time and decreasing the

aperture but will require better lighting. The second is the assumption of small motion made by the LK

tracking algorithm being violated. The motion can be reduced by increasing the distance between the

camera and the ground. This would also reduce blurring caused by the motion, however, the accuracy

at lower speeds will be reduced due to the larger field of view. Variable focal length can also be used to

achieve the same effect. The focal length can be adjusted either manually or automatically based on the

velocity at which the test occurs. The last possibility is the lack of overlap between frames. Figure 3.6

shows the distance the vehicle travels between samples as the speed increases. At 100km/h, there is

110mm displacement between samples. This results in a 70% overlap between images. By rotating

the camera 90deg such that the features are tracked in the width rather than the length, the overlap is

increased to 78%. The overlap is important as only features in this region can be tracked. If features

are chosen where there is no overlap, the feature cannot be tracked and the feature is therefore lost. As

mentioned before, the pixel displacement was used as an approximation towards the vehicle velocity.

If a calibration is done to find the correlation between the vehicle velocity and D, the exact vehicle
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Figure 3.6. Distance travelled between frames at 250Hz

velocity can be measured by the sensor in addition to the side-slip angle. This could supply ADAS

with an alternative vehicle velocity measurement during dynamic manoeuvres where the velocity

determined by the wheel speed is complex and generally unreliable, especially at lower speeds.

3.5 CONCLUSION

From the results obtained it is clear that the real-time implementation of the camera-based side-slip

angle sensor was successful. A maximum sampling frequency of 250Hz was obtained. The mean error

across measurements was 0.25 deg with a mean STD of 0.56deg. Although no direct comparison can

be made between the camera based sensor and the commercial sensor, a comparison can be made to

previous results obtained that used the same experimental setup. This proved that the camera-based

sensor outperforms the commercial sensor in accuracy and with lower noise bands. It also shows

that, although no tests were conducted on rough off-road terrains, the sensor will still outperform

the commercial sensor on these rough terrains. Supplementary tests showed that the sensor could

measure up to 100km/h which is close to highway speeds. This is also far better than required for

most off-road testing on rough terrain, showing excellent capabilities. In conclusion, the camera

based sensor successfully provides a cheaper alternative to current methods by using inexpensive,

off-the-shelf cameras with dedicated software.
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3.6 RECOMMENDATIONS

Although the investigation was deemed successful, various improvements can be made. Firstly, the

cause for the reduction in features tracked at higher speeds can be identified. This will improve the

accuracy of the measurements at high speeds and possibly allow for even higher operating speeds. The

overlap can be increased by rotating the camera as to allow the features to move along the width of

the camera which has a larger field of view. Next would be to mount the sensor higher on the vehicle,

increasing the distance between the camera and the ground. This would reduce the motion observed by

the sensor, reducing any blurring on the image and will aid the small motion assumption made by the

LK tracking algorithm. The same effect can be achieved by changing the focal length. This decreases

the accuracy at low speeds. However, using a lens with a variable focal length that changed depending

on the velocity the accuracy could be maintained. The next improvement would be to incorporate the

variable sampling frequency in the algorithm as done by Botha (2015). By calibrating the system as to

determine the exact relationship between the actual vehicle velocity and D (making the assumption

that the sensor is fixed to the vehicle and its position will not change), the system could provide the

velocity of the vehicle independent of other measurements. The sensor should also be tested on terrains

that may not have large texture variation such as snow and ice, where it would be difficult to identify

and track features. The sensor should be tested on off-road like terrains that would induce vehicle

motion such as roll, pitch and yaw to establish the effect of on the measurement. Lastly, the output

of the sensor should be incorporated in current ADAS to improve performance, or vehicle stability

programs.
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DIC has proved to be a viable alternative to current rut measurement techniques as discussed in

Section 2.2.2. Inexpensive, off-the-shelf cameras with dedicated DIC software can be used to measure

rut depth, as opposed to current contact-based methods. The following section describes the real-time

implementation and validation of the rut depth sensor. This includes the detailed implementation of the

algorithms, the setup used for testing and the results obtained. A stereo-vision rig is used to recover

3D coordinates of the disturbed terrain from which the rut depth can be obtained. Three methods for

extracting the rut depth are investigated. The first method averages the heights over a predefined area

that represent the rut and ground plane datum. The second and third methods attempt to automatically

detect the rut from the 3D map and then calculates the rut depth by fitting a horizontal plane through

the rut and ground plane datums. The performance of the sensor is evaluated using two criteria, i.e. the

maximum sampling frequency and the accuracy of the measurements.

4.1 ALGORITHMS

Before any measurements can be made it is first required to calibrate the stereo-vision rig in order to de-

termine the intrinsic and distortion coefficients of each camera and the geometric relationship between

one another (discussed in Section 2.3.5 and 2.3.6). The rut measurement is made by first determining

the 3D map of the terrain using the calibrated stereo-vision setup. This is done by simultaneously

taking a set images of the scene using the stereo-vision rig. Distortion is removed from the image set

after which they are rectified. The corresponding left and right images are matched to determine the

disparity map using the BM algorithm. The minimum and maximum disparities as well as the window

size were optimally tuned to the scene as to reduce computational requirement. The disparity map

is then converted into 3D coordinates resulting in a 3D surface profile of the rut. Figure 4.1 shows a

typical output of a surface profile once it has been converted into 3D coordinates, where the vehicle

was travelling along the y-axis. The z-axis represents the distance between the camera and the terrain.

The rut depth is measured by taking the difference between the ground plane datum and ”floor” of

the rut. It is therefore required to determine where the rut is located on the 3D surface profile. The

most simplistic method for determining the ground plane and rut floor is by manually defining these

locations. Before rut-depth can be measured, the location of the boundaries of the rut in the 3D image
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Figure 4.1. Reduced surface profile from stereo-vision rig in mud

has to be set. These locations are hard-coded into the algorithm, fixing them throughout measurements.

This method does not accommodate any changes in the rut‘s location that might occur such as when

the vehicle is turning. The rut floor and ground plane datum heights are then calculated by simply

averaging over the predefined area. An example is shown in Figure 4.2 where the top view of a surface

profile is shown with the red rectangles demarcating the areas for the ground plane and rut floor and the

green rectangle demarcating the pile. The colour bar shows the distance between the camera and the

terrain. Large outliers can skew mean values and therefore averaging was calculated by only selecting

values in the predefined area that fell within a set range height range.

Figure 4.2. Top view of surface profile showing averaged areas

In order to accommodate changes in the rut‘s location, two algorithms were devised that automatically

detected the boundary locations of the rut. Due to the shape of the rut (refer to Figure 2.5 in Sec-

tion 2.2.2), the pile peaks can be used to find the boundaries as they typically represent the maximum

heights of the rut. Therefore if these locations can be determined, points in between can be identified as

the rut and points to the outer sides of the piles can be used as the ground plane. To start, the algorithm

reduces the surface profile to a single lateral cross-section of the surface profile. This is done by simply

averaging the height values along the y-axis (direction of travel of the vehicle).

Two methods of identifying the piles were used during this investigation. The gradient detection

method identified turning points on the profile by finding where the first derivative of the rut profile
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is equal to zero. A rolling average was applied to the derivative to filter the data. Alternatively, the

polynomial detection method used a windowed 2nd order model (parabola) fit to aid the search for

the turning points. The model was fit across a window of size N and the turning point of the model

calculated. If the turning point of the model was within the window, it represents a turning point on

the profile. The window is then shifted to the location of the turning point. If it did not contain a

turning point, the window was incrementally shifted across the whole profile and checked if it contains

a turning point at each iteration.

The two turning points with minimum heights represent the peak pile heights. Although the pile peaks

are actually the highest points on the rut profile, the term minimum is used as they are represented

by the minimum distance from the camera. It should, however, be noted that the rut profiles are not

always ideal as rocks and debris cause ambiguity in the actual location of the piles. To combat this, the

algorithm checked that the candidate pile locations were between 200mm and 300mm apart (width

of a typical passenger vehicle tyre) and that the average height between the piles was more than the

height to the outer sides of the pile.

Once the rut locations have been determined, a 0th order model fit (a horizontal line) with RANSAC is

applied to the points in between the piles to determine the rut floor. Similarly, a 0th order model fit

with RANSAC is applied to the points to the right of the right-hand side pile, to determine the ground

plane. Using RANSAC increases the accuracy of the model if the exact location of the piles has not

been found. This is because the rut and the ground plane will be dominated by a horizontal line and

any points that deviate from this will be rejected. The rut depth is then taken as the difference between

the two planes. Appendix B.2 summarises the main parameters used for these algorithms. Figure 4.3

shows the typical output of the polynomial fit detection algorithm where the rut has been located and

planes fitted to the rut floor and ground datum. The y-axis on the figure represents the distance from

the camera/sensor and the x-axis is the image width in Pixels. The rut depth was calculated to be

8.5mm.

Figure 4.4 shows the output of the gradient detection algorithm from the same map where the rut

has been located and the planes fitted to the rut floor and ground datum. As before, the y-axis (left)

represents the distance between the sensor and the x-axis is the image width in Pixels. The y-axis

(right) represents the filtered gradient of the rut profile and it is evident points where the gradient is

zero corresponds to turning points on the rut profile. The rut depth was calculated to be 8.5mm which
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Figure 4.3. Typical output of the polynomial detection algorithm

is the same as the polynomial fit detection method. In comparison, the manual method resulted in a

rut depth of 8.6mm which corresponds well with the gradient detection method and the polynomial

detection method.

0 200 400 600 800 1000 1200

Pixel location

340

345

350

355

360

365

370

375

D
is

ta
nc

e 
fr

om
 s

en
so

r 
[m

m
]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

G
ra

di
en

t

Rut profile with rut and ground planes fitted (Gradient method)

Rut profile
Gradient of rut
Pile peaks
Located turning points
Ground plane
Rut floor

Figure 4.4. Typical output of the gradient detection algorithm

A basic filter was added to the algorithm to reject a rut depth measurement if it exceeded a threshold.

It was found that in the event that the rut locations where not correctly identified, the rut location

detection algorithms mistakenly identified the rut and ground planes as the same plane or calculates one

of the planes to have no height. The resulting rut depth is then either very small (typically zero) or the

distance between the camera and the terrain, which is typically two orders of magnitude larger than the

actual rut depth. These extreme values are easily identified and simply neglected by the system.
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4.2 TEST SETUP

Ideally, the rut depth sensor should be tested by mounting the stereo-vision rig to the vehicle, behind one

of the rear wheels as to measure the depth of the deformed terrain as the vehicle is driving. However,

it is then difficult to correlate manual measurements with the sensor‘s measurements. Instead, a

man-made rut was used with three height levels that can be validated using manual measurements. The

rut used is shown in Figure 4.5(b). The stereo-vision rig was mounted on an x-y table and positioned

over the rut at approximately the same height that it would be mounted to the vehicle. The x-y table

allowed the cameras to move along the length of the rut to simulate the vehicle driving forward. The

test rig is shown in Figure 4.5(a). Each algorithm was tested by moving the camera along the rut as to

(a) Camera mounted on a x-y table (b) The pre-formed rut used for testing

Figure 4.5. Rut measurement test setup

measure the three rut depths. The sensor outputs not only the measured rut depth but also computation

times for various sections of the algorithm to gain a better understanding of the possible bottlenecks

in sampling frequency. Each test was repeated for a minimum of three times to ensure repeatability.

Figure 4.6 shows a 3D map that was generated from the setup. The colour on the image represents the

height of that location, donated by the colour bar on the right. The figure shows regions A, B, and C

that are the different depths of the rut. Region D (to the left and right of the right), indicate the rut

piles.

The cameras used during this investigation were Point Grey Flea3 USB 3.0 cameras with Fujinon

DF6HA-1B lenses (see Appendix A for further details). The cameras were set to a resolution of

Department of Mechanical and Aeronautical Engineering
Vehicle Dynamics Group

PAGE 50



CHAPTER 4 RUT DEPTH MEASUREMENTS

Figure 4.6. 3D Map of the rut

1280x960 pixels. An average of 1100x900 points are in view of both cameras for which a grid of

3D points can be obtained. It should be noted that this high resolution was used to ensure the whole

width of the rut is in the field of view of the cameras. A higher resolution increases computation

time as more pixels need to be matched between the left and right images. However, due to the fact

that only a small longitudinal section of the rut it required, the matching was reduced to a 1280x90

window. This decreases computation time but still allows the required field of view. The theoretical

depth resolution was calculated to be 0.25mm using Equation 2.21 for this setup. An Acer laptop with

a core i7 dual-core processor that runs at 2GHz with 8Gb DDR3 ram was used for processing during

this investigation.

In this setup, the software triggered the cameras to capture images. In Section 3.3 it was stated that

software triggering limited the camera frame rate to 180Hz, however, due to the much lower sampling

frequency of the system, it is deemed sufficient. As with the side-slip angle measurements, the shutter

time was set as low as possible with a small aperture to reduce any blurring effects caused by the

vehicle movements.
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4.3 RESULTS

The performance of the sensor is split into two categories, namely processing time and accuracy of the

measurements. The overall sampling frequency of the sensor is discussed with the various algorithms,

however, to better understand what the bottlenecks in the processing times are, the computation time

of various sections of the algorithms are studied. The accuracy of the depth measurement is discussed

by comparing the measurements to manual measurements of the rut depth.

4.3.1 Processing time

Table 4.1 shows the average sampling frequencies that were obtained from the sensor for each test, as

well as the standard deviation of the sampling frequency.

Table 4.1. Rut depth measurements results: Sample frequencies

Method Run Sample Freq [Hz] STD [Hz]

Averaging 1 7.7 0.09

Averaging 2 7.8 0.09

Averaging 3 7.7 0.06

Polynomial fit 1 2.6 0.15

Polynomial fit 2 2.6 0.19

Polynomial fit 3 2.6 0.18

Gradient 1 4.2 0.03

Gradient 2 4.2 0.04

Gradient 3 4.2 0.03

Each algorithm showed a relatively constant sampling frequency, with low noise bands. The simple

averaging method, substantially outperforms the other methods with a sampling frequency of 7.7Hz.

The gradient method had an average sampling frequency of 4.2Hz and the polynomial fit method had a

sampling frequency 2.6Hz. These sampling frequencies are relatively low and might seem insignificant,

however, to current manual measurements these are major improvement in productivity. Figure 4.7

shows the distance a vehicle would travel at various speeds and sampling frequencies. From this, it can

be seen that with the sampling frequencies obtained, at a speed of 15 km/h which is a typical speed
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when traversing deformable terrains, a sample would be taken between every 0.5-1.5m which is less

than one revolution of the wheel.
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Figure 4.7. Distance travelled for various speeds at different sampling frequencies

To fully understand the computational bottleneck within algorithms, the computation time of each

section of each algorithm was recorded and is summarised in Table 4.2. The simple averaging method

consists of two major sections, obtaining the disparity map between the left and right images, and

averaging the pre-defined regions. From Table 4.2 it is clear that the disparity mapping dominates the

computation time, taking 0.125s. The more complex methods that attempt to locate the rut automatically

consist of four major sections i.e., disparity mapping, finding peaks in the rut profile, locating the rut

from the peaks and fitting planes to rut floor and ground datum. For the polynomial fit method, the

disparity mapping takes 0.125s, finding the peaks take 0.15s, locating the rut is essentially negligible

and fitting the planes takes 0.11s. For the gradient method, the computation time is dominated by the

disparity mapping (0.125s) and fitting the planes (0.11s) and the rest is negligible.
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Table 4.2. Rut depth measurements results: Processing times

Method Run Disparity [s] Averaging [s] Finding Peak [s] Locating rut [s] Fitting planes [s]

Averaging 1 0.125 2.70E-04 NA NA NA

Averaging 2 0.125 2.70E-04 NA NA NA

Averaging 3 0.125 2.70E-04 NA NA NA

Polynomial fit 1 0.125 NA 0.150 7.69E-05 0.108

Polynomial fit 2 0.125 NA 0.148 8.93E-05 0.109

Polynomial fit 3 0.125 NA 0.146 9.09E-05 0.110

Gradient 1 0.125 NA 7.60E-05 7.40E-05 0.109

Gradient 2 0.125 NA 8.79E-05 6.59E-05 0.108

Gradient 3 0.125 NA 1.12E-04 5.75E-05 0.108

One common bottleneck between all methods is the disparity mapping. However, as stated before,

this can be significantly reduced if implemented on a GPU. Finding the rut’s location using the

polynomial detection method proved to be computationally expensive when compared to the gradient

detection method. Only a single core was used of the CPU. This could potentially sped up by multi-

threading these algorithms. Both detection methods fitted planes to these locations using RANSAC

to improve their accuracy. Each plane (the rut floor and the ground datum) contains many points

(typically hundreds) and therefore many iterations are required (typically thousands) to successfully

reject outliers. From Table 4.2 it is evident that this is computationally expensive.

In order to achieve higher sampling frequencies, a combination of these methods could be used. Using

a GPU to obtain the disparity mapping would substantially decrease the computation time to determine

the disparity. If the gradient method is used to locate the rut, and the planes found by averaging the

heights rather than fitting a plane through the points, the total computation time would be reduced,

increasing sampling frequency.

4.3.2 Accuracy

The accuracy of the measurements was tested against manual measurements. The manual measurements

were conducted as described in Section 2.2.2. The results are summarised in Table 4.3. Each method
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shows fairly consistent measurements, although all methods under estimated the rut depth. From

the table is evident that the simple averaging method was the most accurate and had a mean error

of 1.5mm (1.8%), the gradient method was second most accurate and had a mean error of 3.1mm

(3.5%) and the polynomial fit method had an error of 10.6mm (12.2%). The measurements between

the simple averaging method and the gradient method correlate well with each other, typically within

1mm. However, the polynomial fit method consistently measured an offset between 8-9mm lower

than the other methods. This is possibly due to the method failing to detect the correct peaks although

further investigation is required. All parameters relating to locating the rut from the peaks and fitting

the planes to the rut floor and ground datum between the gradient method and the polynomial fit

method were kept constant leading to the possibility that there is a mistake in the implementation of

the algorithm.

Table 4.3. Rut depth measurements results: Depth

Method Run Rut depth 1 [mm[ Rut depth 2 [mm[ Rut depth 3 [mm[

Manual N/A 64 103 139

Averaging 1 62.0 102.0 137.1

Averaging 2 62.0 102.0 137.0

Averaging 3 62.0 102.0 137.9

Mean error N/A 3.1% 0.9% 1.4%

Polynomial fit 1 51.1 94.7 128.0

Polynomial fit 2 50.9 94.3 128.9

Polynomial fit 3 51.1 94.8 128.6

Mean error N/A 20.4% 8.4% 7.9%

Gradient 1 60.8 100.8 135.4

Gradient 2 61.6 100.5 134.7

Gradient 3 60.8 100.4 134.7

Mean error N/A 5.0% 2.5% 3.1%

Various factors contribute to the accuracy of the measurement. Firstly, considering that all measure-

ments made from the sensor were lower than the manual measurements leads to the possibility that

the manual measurements were inaccurate. The size of the area of the averaging method, as well as
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(a) Left camera view (b) Right camera view

Figure 4.8. Typical view of a formed rut

where the area is located, could either increase or decrease the accuracy of the measurement. A larger

area would be less prone to outliers (e.g. small stones etc.) and would better represent the height of

that area. The window size used for the polynomial fit did not seem to greatly affect the algorithm, as

long as it was large enough to capture the curvature. The number of iterations used for the RANSAC

algorithm also plays an important part in accurately determining the height of the plane although this

comes at the cost of computation time.

4.3.3 Recorded footage

The field tests prove that the algorithms are capable of measuring the rut depth, with varying degree of

accuracy. For clarification, the algorithms were tested on pre-recorded footage to demonstrate their

capability under real-world conditions over longer periods. The footage was recorded from 1977 Jeep

Cherokee that traversing soft, muddy soil. The stereo-vision cameras were mounted behind the left

front wheel beneath the chassis, to have full view of the permanent deformation in the soil caused by

the wheel. Figure 4.8 shows the typical view obtained from the stereo-vision cameras, where the left

and right views are shown. The formed rut is clearly visible in both views.

Figure 4.9 shows the calculated rut depth from the pre-recorded footage, where the x-axis represent

the frame number and the y-axis the depth of the rut in mm. It can be seen that all three algorithms,

(the averaging algorithm, the polynomial detection algorithm and the gradient detection algorithm)
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correspond to the one another throughout the video. The variation in rut depth is likely due to change

in soil characteristics. No manual hand measurements were conducted for this footage as it difficult

to accurately synchronise the hand measurements with the system’s measurements. However, the

algorithms have been validated in the previous section and therefore no further validation is required.

It should however be noted that the rut depths and pile heights are relatively small in sections of the

footage. It was found that the rut location detection algorithms perform poorly in these conditions and

from the 760 frames of the footage, almost 100 measurements are rejected due to the filter implemented

for both the polynomial detection algorithm and gradient detection algorithm. No further investigation

was conducted to determine whether this was due to the small rut depth or whether it was due to the

minimal pile heights. Interestingly there is no offset in the polynomial detection algorithm as found

in the validation tests in Section 4.3.2. This further points to the fact that there is a mistake in the

algorithm.
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Figure 4.9. Rut depth results from pre-recorded footage

No investigation was conducted on the processing times of the algorithms on the footage. This is due

to the total processing time largely being dominated by reading and decoding the images from the hard

drives and does not represent real-time conditions.

4.4 CONCLUSION

From the results, it is clear that the real-time implementation of the camera-based rut-depth sensor

was successful. The simplest method proved to have the highest sampling frequency of 7.7Hz and
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also was the most accurate with a mean error of 1.8%. Although the area over which the algorithm

averages are fixed, the use of other vehicle parameters can be used to estimate movement in the rut’s

location on the image. The polynomial fit method proved to be computationally expensive and had a

mean sampling frequency of 2.6Hz. It also was deemed the least accurate out of all the methods with a

mean error of 12.2%. The gradient method had a mean sampling frequency of 4.2Hz and a mean error

of 3.5%. The methods that attempted to automatically detect the rut’s location were slow and were

not as accurate as the averaging method. However slow, they are still an improvement over current

methods whereby the rut depth is measured by hand. Even without the accuracy of the averaging

method, the measurements could still be used as a good approximation towards the rut depth. The

computation times of the algorithms were critically evaluated and found that one common bottleneck

is the disparity mapping. Pre-recorded footage showed the capabilities of the algorithm in real-world

scenarios and compared well within one another. This leads to the possibility that there is a mistake in

the implementation of the polynomial detection method that caused the offset in the validation of the

algorithms.

4.5 RECOMMENDATIONS

Although the study was successful, a few specific aspects need to be addressed to improve the results.

The first would be to investigate how much the rut location would move during dynamic manoeuvres.

This might eliminate the need for automatically detecting the rut. If the sensor had other information

available, such as side-slip angle and steering angle, the location of the rut could easily be determined

based on the geometry of the vehicle eliminating the need to automatically detect the location. The

study can be further improved by considering both the left and right ground datums and not only one

side, as in this study. This would require a larger field of view which could be achieved by either

increasing the height between the sensor and the ground or using wide-angle lenses. It should be noted

that the automatic rut detection algorithms make the assumption that the rut has piles along its side.

No investigation was conducted to test the performance in the absence of piles or when the rut depth is

small and should be investigated. The implementation of the polynomial detection algorithm needs to

be critically evaluated to determine the cause for the offset in measurements in the validation testing.

One common bottleneck in computation time between the algorithms was the disparity mapping. The

use of GPU’s would greatly reduce this computation time and increase the sampling frequency. All

the algorithms could be multi-threaded to potentially increase throughput. Further, a combination of
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the algorithms could be used to exploit the best properties of each. If, the gradient method is used

to locate the rut and the ground plane and rut floor calculated by averaging, the computation time

would be reduced substantially. Often rut depth measurements are conducted on snow and ice for

environmental impact studies. Snow and ice pose the problem that although the terrain has texture,

it does not necessarily show as illumination variation on an image making it difficult to track. The

applicability of using this sensor on snow would be beneficial.
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RECOMMENDATIONS

During this investigation, Digital Image Correlation, or DIC, was successfully used to measure vehicle

dynamic properties in real time. These techniques provided better results and proved to be viable

alternatives to current measuring techniques. The use of DIC in vehicle dynamics is still vastly

unknown with limitless possibilities yet to be discovered.

Two parameters in vehicle dynamics were measured using DIC, namely side-slip angle and rut depth.

The basic definition of these parameters were discussed, as well as current measuring techniques and

their shortcomings. For side-slip angle, the investigation shows that there is a need for an alternative

measuring method on off-road terrains and at low speeds as current commercial sensors or estimation

methods fail to perform under these conditions and are prohibitively expensive. The ability to measure

rut depth in real-time is none-existent and current manual measuring techniques are widely adopted.

Botha (2015) showed a proof of concept that used DIC as a viable alternative to current measuring

techniques. However, these measurements were conducted offline from recorded footage. This opened

the opportunity to optimise these algorithms such that they could operate in real-time.

DIC requires digital images therefore the basic concepts for acquiring digital images were discussed.

A compromise between camera settings are required to obtain clear and sharp digital images, which is

discussed. Mathematical camera models such as camera intrinsic and extrinsic parameters and lens

distortion are discussed, where these parameters are determined through calibration.

The DIC algorithms and techniques used during this investigation are discussed. For the side-slip angle

measurements, features need to be identified and tracked using sparse optical flow techniques. A short

study was conducted to determine which optical flow algorithm (from the OpenCV library) had the

lowest computation time. Rut depth measurements required full DIC to obtain a disparity map from

a stereo-vision rig which is used to map pixels to 3D coordinates. Disparity mapping requires the

image pair to be rectified, where after regions of pixels are matched using a correlation metric and a

winner-takes-all matching strategy.
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SIDE-SLIP ANGLE

The real-time side-slip angle sensor was successfully implemented during this investigation. The

sensor consists of a single camera that was mounted to the vehicle with dedicated software. The

software identified and tracks features across consecutive images. Considering the vehicle and thus

sensor, undergoes predominantly horizontal planar motion, all motion feature vectors point in the same

direction. By mounting the sensor such that the angle of the feature motion vectors are zero when the

side-slip angle is zero, any change in angle is said to be the side-slip angle. The sensor was tested

by mounting it to a gimbal that induced a known artificial side-slip angle to be measured in fixed

increments. The testing surface consisted of a flat concrete surface.

The results showed that accurate measurements can be made with relatively low noise bands. The

sensor was able to successfully sample up to 250Hz, which is comparable to current commercial sensors.

Although no direct comparison can be made between the camera based sensor and the commercial

sensor, a comparison can be made to previous results obtained that used the same experimental setup.

The results proved that the camera-based sensor outperforms the commercial sensor in accuracy and

with lower noise bands. Supplementary tests showed that the sensor could measure at 100km/h which

is close to highway speeds and more than sufficient for off-road testing applications. This is also far

better than required for most off-road testing on rough terrain. In conclusion, the camera based sensor

successfully provides a cheaper alternative to current methods by using inexpensive, off-the-shelf

cameras with dedicated software.

The investigation could be improved by first identifying the cause of the reduction of features tracked

at higher speeds. This will possibly allow the system to measure at higher speeds as well as increase

the accuracy at lower speeds. The camera should be rotated such that the feature motion vectors move

across the width of the image, instead of the height. This increases the overlap available for the features.

Another improvement would be to mount the sensor higher on the vehicle, increasing the distance

between the camera and the ground. This would reduce the motion observed by the sensor, reducing

any blurring on the image and will aid the small motion assumption made by the LK tracking algorithm.

The same effect can be achieved by changing the focal length. This decreases the accuracy at low

speeds. However, using a lens with a variable focal length that changed depending on the velocity

the accuracy could be maintained. An independent vehicle velocity measurement can be supplied by

calibrating the system as to determine the exact relationship between the actual vehicle velocity and
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pixel displacement. The sensor should be tested on various surfaces such as snow and ice where it is

inherently difficult to identify and track features. Lastly, the sensor should be tested on off-road like

terrains that would induce vehicle motion such as roll, pitch and yaw to establish the effect of on the

measurement.

RUT MEASUREMENTS

The sensor consisted of a stereo-vision rig which has two cameras pointing towards the scene with a

fixed relative geometry. The camera-based rut depth sensor was tested on a preformed rut that had

three different heights in the rut. The measurements were compared to manual measurements made on

the rut. Three methods of determining the rut depth from the 3D coordinates were investigated. The

first method simply averaged the height over a fixed, predefined area that represented the rut floor and

the ground datums. This method proved to not only be the fastest between the methods, but also the

most accurate when compared to the manual measurements. It had a mean sampling frequency of

7.7Hz and a mean error of 1.5mm. The second method attempted to locate the rut’s location by finding

the maximum points on the rut profile, which are the piles. This was achieved by fitting a polynomial

on the rut profile over a small window. If the turning point of the polynomial is within the window, it

was said that it represented the turning point on the rut profile. The window is incrementally shifted

until the whole rut profile was covered. The turning points with the largest heights represented the pile

peaks. Additional checks were added to ensure that the peaks were correctly identified. This method

proved to be computationally expensive and had a mean sampling frequency of 2.6Hz. It also was

deemed the least accurate out of all the methods with a mean error of 10.6mm. The last method also

attempted to locate the rut’s location by finding the maximum points on the rut profile. However, this

method checked where the gradient of the rut profile was equal to zero to find turning points on the

rut profile. The same process as the polynomial fit method was used to determine the rut depth from

the turning points. This proved to be a better approach than the polynomial fit method and showed a

reduction in computation time to locate the rut. The mean sampling frequency was 4.2Hz and had a

mean error of 3.1mm.

The study can be improved by investigating how much the rut‘s location would move during dynamic

manoeuvres. This might eliminate the need for automatically detecting the rut’s location. If the sensor

had other information available, such as side-slip angle and steering angle, the location of the rut
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could easily be determined based on the geometry of the vehicle eliminating the need to automatically

detect the location which will increase the sampling frequency. The study can be further improved by

considering both the left and right ground datums and not only one side, as in this study. This would

require a larger field of view which could be achieved by either increasing the height between the

sensor and the ground or using wide-angle lenses. The automatic rut detection algorithms made the

assumption that the rut has piles along its side. No investigation was conducted to test the performance

in the absence of piles or when the rut depth is small and therefore should be investigated. The

implementation of the polynomial detection algorithm needs to be critically evaluated to determine the

cause for the offset in measurements in the validation testing. One common bottleneck in computation

time between the algorithms was the disparity mapping. The use of GPU’s would greatly reduce this

computation time and increase the sampling frequency. All the algorithms could be multi-threaded to

potentially increase throughput and further increase the sampling frequency. In order to achieve higher

sampling frequencies, a combination of these methods could be used. If the gradient method is used to

locate the rut, and the planes found by averaging the heights rather than fitting a plane through the

points, the total computation time would be reduced, increasing sampling frequency. Often rut depth

measurements are conducted on snow and ice for environmental impact studies. The sensor should be

tested on various surfaces such as snow and ice where it is inherently difficult to correlate regions to

determine the disparity.
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APPENDIX A LENS AND CAMERA

SPECIFICATIONS

A.1 CAMERA SPECIFICATIONS: POINT GREY FLEA3 (FL3-U3-13Y3M-C)

Specification Value

Max Resolution 1280x1024

Frame Rate (at max resolution) 150 FPS

Megapixels 1.3 MP

Chroma Mono

Sensor Name On Semi VITA1300

Sensor Type CMOS

Readout Method Global Shutter

Sensor Format 1/2"

Pixel Size 4.8 µm

Lens mount C-Mount

ADC 10-bit

Interface USB 3.0

Power Requirements 5-24V via GPIO or 5V via USB3.0

Power Consumption 3W

Dimension 29mm x 29mm x 30 mm

Mass 41g

A.2 LENS SPECIFICATIONS: FUJINON DF6HA-1B

Specification Value

Main sensor size 1/2"

Focal length 6mm

Lens mount C-Mount

Iris control Manual
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APPENDIX A LENS AND CAMERA SPECIFICATIONS

Specification Value

Aperture range f/1.2 - f/16

Focusing range 0.1m - ∞

Angle-of-view 56 deg x 43 deg

Focus control Manual

Minimum object distance 4"

Dimensions 29.5mm x 29.5mm x 36.7mm

Weight 55g
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APPENDIX B ALGORITHM PARAMETERS

B.1 SIDE-SLIP ANGLE MEASUREMENTS

Parameter Value Units

Lucas-Kanade optical flow

Quality Level 0.06 %

Distance between corners 10 Pixels

Number of features to identify 50

Hessian block size 3x3 Pixels

Window search size (per pyramid level) 21x21 Pixels

Minimum Eigen Threshold 7

Pixel displacement threshold 2 Pixels

RANSAC

Sample iterations 100

Error threshold 0.05 deg

B.2 RUT DEPTH MEASUREMENTS

Parameter Value Units

RANSAC threshold for Ground Plane fit 1 mm

RANSAC Iterations for Ground Plane fit 2000

RANSAC threshold for Rut Plane fit 2 mm

RANSAC Iterations for Rut Plane fit 2000

Stereo-vision

SAD Window size 25x25 Pixels

Minimum Disparity 9 Pixels

Maximum Disparity 128 Pixels

Gradient rut detection

Rolling average filter 20
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APPENDIX B ALGORITHM PARAMETERS

Parameter Value Units

Polynomial rut detection

Polynomial window size 80 Pixels

RANSAC Iterations for model fit 160

RANSAC threshold for model fit 1 mm
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