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Abstract 

Patterns of transmission of drug-resistant tuberculosis (TB) remain poorly understood, 
despite over half a million incident cases worldwide in 2017. Modeling TB transmission 
networks can provide insight into drivers of transmission, but incomplete sampling of TB 
cases can pose challenges for inference from individual epidemiologic and molecular data. 
We assessed the effect of missing cases on a transmission network inferred from 
Mycobacterium tuberculosis sequencing data on extensively drug-resistant TB cases in 
KwaZulu-Natal, South Africa, diagnosed in 2011–2014. We tested scenarios in which cases 
were missing at random, missing differentially by clinical characteristics, or missing 
differentially by transmission (i.e., cases with many links were under- or oversampled). 
Under the assumption that cases were missing randomly, the mean number of transmissions 
per case in the complete network needed to be larger than 20, far higher than expected, to 
reproduce the observed network. Instead, the most likely scenario involved undersampling of 
high-transmitting cases, and models provided evidence for super-spreading. To our 
knowledge, this is the first analysis to have assessed support for different mechanisms of 
missingness in a TB transmission study, but our results are subject to the distributional 
assumptions of the network models we used. Transmission studies should consider the 
potential biases introduced by incomplete sampling and identify host, pathogen, or 
environmental factors driving super-spreading. 
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Tuberculosis (TB) is the leading infectious cause of death worldwide (1). The ongoing 
transmission of extensively drug-resistant (XDR) TB, which is resistant to both first- and 
second-line antibiotics, is a severe threat to public health. South Africa has among the highest 
rates of TB and human immunodeficiency virus infection globally, and KwaZulu-Natal 
Province has the highest XDR TB incidence in South Africa (3 per 100,000 population) (2–
5). In South Africa and elsewhere, the majority of drug-resistant TB cases are due to 
transmission of already-resistant strains, rather than inadequate treatment (6, 7). This 
underscores the importance of locating where and between whom TB transmission occurs to 
develop interventions targeting key transmission locations and at-risk groups (8). 

Identifying transmission events is a challenge given the airborne transmission route of TB 
and the dramatic variability in the duration of latent TB infection. However, bacterial whole 
genome sequencing allows for high-resolution characterization of Mycobacterium 
tuberculosis sequences at the level of individual base pairs. Cases with similar M. 
tuberculosis sequences are likely to be linked through recent transmission; collectively, such 
links can be used to infer networks of transmission events (9). Previous studies have inferred 
transmission events using social-contact or molecular data, but a key limitation of these 
studies in high-incidence settings is that it is virtually impossible to identify all TB cases. 
Half of TB cases are estimated to be undiagnosed (10–12). Among diagnosed cases, 
epidemiologic or sequencing information may be missing, either because a clinical sample 
could not be collected or because a case died prior to diagnosis or study enrollment—a 
particular concern with XDR TB, given its low survival rate (though survival continues to 
improve) (13, 14). Thus, a major challenge of characterizing TB transmission networks is 
inferring a complete, or at least representative, set of transmission links from incomplete data. 
If an empirical network constructed from incomplete data poorly resembles the true 
transmission network, inferences about transmission may be biased. 

A modeling approach to the problem of missing network data could provide insight into what 
the structure of the complete transmission network, had it been measured, would have looked 
like. Missing network data are different from missing data in traditional epidemiologic 
studies, because the dependence among cases in a network violates the assumption that data 
are independent and identically distributed. Even if cases are missing at random, inference 
from a partially sampled transmission network could be biased. However, we can still make 
inferences about the complete network if certain conditions are met (15). Most importantly, 
sampled cases must not differ systematically from unsampled cases with respect to their 
transmission potential (15). This may occur if, for example, undiagnosed cases have longer 
infectious periods and therefore contribute disproportionately to transmission as compared 
with diagnosed cases who receive prompt treatment. Failing to sample these highly connected 
cases could have a pronounced effect on network structure and, as a result, bias conclusions 
made from the empirical network (16). 

We may be able to mitigate bias if we can quantify it, by identifying characteristics of cases 
that are undersampled and using this information to infer the structure of the true network. 
For example, TB cases without detectable mycobacteria in sputum (“smear-negative”) are 
both less infectious and more difficult to diagnose than smear-positive cases, leading to a 
scenario in which diagnosed cases may be responsible for more transmission than 
undiagnosed and unsampled cases (17). Conversely, transmission studies may tend to capture 
cases among people who present promptly to a health-care provider upon experiencing 
symptoms, resulting in shorter infectious periods among cases enrolled in the study than 
among unsampled cases. Cases diagnosed late in their disease course may be less likely to 
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participate in a transmission study, either because they are very ill by the time they are 
diagnosed or because they have generally lower engagement with the health-care system. 
Understanding the effects of biased sampling is a first step in evaluating the robustness of 
empirical transmission networks of TB cases in different settings. Lastly, understanding the 
structure of complete networks can permit testing of hypotheses about drivers of TB 
transmission. Super-spreading, defined by the existence of cases that cause a disproportionate 
number of secondary infections, is increasingly being recognized as an important 
phenomenon shaping transmission dynamics but is difficult to measure empirically (18, 19). 
Detecting signatures of this phenomenon in transmission networks will improve our 
understanding of its role in TB epidemiology. 

In this analysis, we used data from the Transmission Study of XDR TB (TRAX Study), 
which enrolled culture-confirmed XDR TB cases diagnosed from 2011 to 2014 in KwaZulu-
Natal Province, South Africa. We constructed an empirical transmission network based on M. 
tuberculosis sequence data and used network models to infer “complete” transmission 
networks based on different assumptions about how data were missing from the empirical 
network. We tested models including a “super-spreading” factor to understand its impact on 
network structure. Our goal was to identify the typology of missingness most consistent with 
the empirical network in order to assess the extent to which our transmission study reflected 
true XDR TB transmission patterns. 

METHODS 

Study design and procedures 

The TRAX Study investigators identified 1,027 XDR TB cases through the single referral 
laboratory that conducts drug-susceptibility testing for all public health-care facilities in 
KwaZulu-Natal Province and selected a convenience sample of 404 cases (6, 20). All 
participants provided written informed consent; for deceased or severely ill participants, 
consent was obtained from next-of-kin. We interviewed participants and performed medical 
record review to collect demographic and clinical information. The diagnostic XDR TB 
isolate was obtained for all enrolled participants. Raw paired-end sequencing reads were 
generated on the Illumina MiSeq platform (Illumina, Inc., San Diego, California) and aligned 
to the H37Rv reference genome (NC_000962.3). Single nucleotide polymorphisms (SNPs) 
were detected using standard pairwise resequencing techniques (Samtools, version 0.1.19) 
against the reference (21). A total of 344 cases had M. tuberculosis sequences that passed all 
quality filters (see Web Appendix 1 and Web Figure 1, available at https://academic-oup-
com.uplib.idm.oclc.org/aje). Sequencing data are available in the National Center for 
Biotechnology Information’s Sequence Read Archive (https://www-ncbi-nlm-nih-
gov.uplib.idm.oclc.org/sra; BioProject: PRJNA476470). 

Constructing the empirical network using M. tuberculosis sequence data 

We defined a genomic link as a pair of XDR TB cases with 5 or fewer SNP differences 
between their M. tuberculosis sequences (9). We constructed genomic transmission networks 
of TRAX cases, in which each node in the network represents a case and each edge 
represents a transmission event. The degree of each node is the number of edges per case (or 
the sum of the source and forward transmission links); the degree distribution represents the 
edge count across all nodes in the network. We considered this empirical genomic network a 
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subset of the cases and links in the true, complete transmission network that includes all XDR 
TB cases and transmission events in KwaZulu-Natal during the study period. 

Exponential random graph models 

Conventional statistical models assume that the characteristics of each individual are 
independent from others’—an assumption that is not met in disease transmission networks. In 
a transmission network, the unit of interest is a transmission link, comprising 2 cases whose 
attributes may be correlated. Exponential random graph models (ERGMs) are a tool for 
statistically modeling the propensity of links to form between nodes (cases) in a network, 
accounting for correlation among attributes of cases. We used ERGMs to express the 
probability that a transmission link will occur between 2 cases as a function of their 
demographic and clinical characteristics (Web Appendix 2). 

We used infectiousness estimates from the literature to define target statistics for the degree 
of a case based on their attributes (e.g., smear-negative cases had, on average, 25% fewer 
edges than smear-positive cases) (12, 22). If there was limited information in the literature for 
a given attribute, we used data from TRAX to define target statistics. We specified models 
under each missing-data scenario. Since the mean degree (number of links per case) in the 
complete network was unknown, we tested each scenario across a range of mean degrees 
(Web Appendices 2–5, Web Tables 1–7). 

To model complete transmission networks, we estimated the total number of diagnosed and 
undiagnosed XDR TB cases in KwaZulu-Natal during the study period (2011–2014). We 
used data from the South African Tuberculosis Drug Resistance Survey to estimate the 
number of diagnosed XDR TB cases and active case-finding studies to estimate the number 
of additional, undiagnosed cases (23). We assumed a complete transmission network size of 
2,000 cases for our primary analyses (Web Appendix 6). 

From each scenario, we simulated 1,000 complete transmission networks (Figure 1). ERGMs 
were constructed using the ergm R package (24, 25). The software code is available at 
https://github.com/kbratnelson/tb-ergms. 
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Figure 1. Modeling approach for assessment of the effect of missing cases on a transmission network inferred 
from Mycobacterium tuberculosis sequencing data on extensively drug-resistant tuberculosis, KwaZulu-Natal, 
South Africa, 2011–2014. HIV, human immunodeficiency virus. 
 

Missing-data scenarios 

We modeled 4 different scenarios in which information was missing from the empirical 
network (Table 1). First, we assumed that cases were missing at random (scenario 1). Second, 
we assumed systematic oversampling of cases involved in either many transmission events 
(“high transmitters”) or few transmission events (“low transmitters”) (scenario 2). Third, we 
hypothesized that cases were sampled differentially on the basis of smear status (scenario 3). 
Smear-negative cases are more difficult to diagnose and may therefore be underrepresented in 
empirical transmission networks (22). The final scenario modeled an unmeasured factor 
strongly related to the likelihood of transmission (scenario 4). We modeled this factor in a 
subset of cases (varying its prevalence from 10% to 40%) with varying strengths (the number 
of links among cases with this factor ranges from 10–40 times the network mean degree). 
This tested the hypothesis that an unmeasured characteristic in a minority of cases, 
representing super-spreading, could explain the structure of the empirical transmission 
network (Web Appendix 7). 
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Table 1. Hypothetical Scenarios for Assessment of the Effect of Missing Cases on a Transmission Network 
Inferred From Mycobacterium tuberculosis Sequencing Data on Extensively Drug-Resistant Tuberculosis, 
KwaZulu-Natal, South Africa, 2011–2014 
 

Scenario 
Changes to Complete Transmission Network Model or Sampling 

Procedures 

1. Cases missing at random  No changes to model terms.  

2. Cases missing by 
transmission  

No changes to model terms. Sample from complete network nonrandomly using 
degree to define sampling weights.  

  
 I. Highly connected cases (“high transmitters”) more likely to be sampled: 
sampling weighted by degree  

  
 II. Poorly connected cases (“low transmitters”) more likely to be sampled: 
sampling weighted by inverse degree  

3. Cases missing by smear 
status  

No changes to model terms. Increase proportion of smear-positive cases in 
complete network relative to sampled network.  

4. Latent, unmeasured (super-
spreading) factor  

Add model term corresponding to unmeasured factor strongly related to 
transmission in a minority of cases. Vary strength and prevalence of factor.  

  
 I. Unmeasured factor that increases transmission by a factor of 10 
(prevalence: 10%)  

  
 II. Unmeasured factor that increases transmission by a factor of 20 
(prevalence: 10%)  

  
 III. Unmeasured factor that increases transmission by a factor of 40 
(prevalence: 10%)  

Sampling modeled networks and statistical analysis 

From each modeled, complete network, we sampled a similar number of cases (n = 350) as in 
our empirical network (Web Appendix 8). We aimed to determine which scenario produced 
sampled networks that most closely matched the degree distribution of the empirical network. 
To compare the empirical network with the modeled and sampled networks, we compared 
locations of the quantiles (10%, 25%, 50%, 100%) of the degree distribution (median and 
interquartile range) and assessed 2-sided P values from a modified Kolmogorov-Smirnov test 
calculated using bootstrapping techniques (26–28). 

Additional sensitivity analyses 

Because there is considerable uncertainty about the genomic threshold that should be used to 
define a direct TB transmission event, we assessed the effect of using a more stringent SNP 
threshold (3 SNPs). We also tested the sensitivity of our results to assumptions about the size 
of the complete transmission network (Web Appendix 6). 

RESULTS 

The empirical genomic network comprised 344 TRAX cases with 1,084 genomic links, or 
edges. Each case had an average of 6.3 links (the overall network mean degree), and 182 
(53%) cases in the network had at least 1 link. The 25th percentile of the degree distribution 
was located at 0, the 50th percentile (median) at 1, and the 75th percentile at 7 (Web Table 
8). The most highly linked case had a degree of 62; 62 (18%) cases had 10 or more links. 
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Figure 2. Degree distributions of empirical (≤5 single nucleotide polymorphisms (SNPs)) and modeled, 
sampled networks under scenario 1 (random sampling (panels A and D)) and scenario 2 (oversampling of high 
(panels B and E) and low (panels C and F) transmitters) as compared with an empirical network of extensively 
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drug-resistant (XDR) tuberculosis (TB) cases, KwaZulu-Natal, South Africa, 2011–2014. In panels A–C, the 
gray bars show the distribution of the number of links per case, or the degree distribution, of the empirical 
network (≤5 SNPs) from the Transmission Study of XDR TB (TRAX Study). Each colored line shows the 
median degree distribution across 1,000 modeled, sampled networks for the corresponding model. Line color 
indicates the mean degree, or the average number of transmissions per case, assumed in the complete, modeled 
network. Panels D–F show the range of the degree distributions of the modeled, sampled networks for 1 model 
(mean degree = 10). The gray dots show the degree distribution of the empirical network (≤5 SNPs) from the 
TRAX Study and are equivalent to the distribution shown by the gray bars in panel A. Colored box plots show 
the median, interquartile range, minimum, and maximum frequencies for each degree in the distribution across 
1,000 modeled, sampled networks. See Web Figure 3 for more detail on panel C. 

The hypothesis that cases were randomly sampled from the complete network was 
inconsistent with the empirical TRAX network (Figure 2, parts A and D; scenario 1). Models 
implemented under this scenario with a high mean degree could reproduce the median of the 
empirical degree distribution (for mean degree 20, the median was 2; Table 2). However, a 
mean degree greater than 20 in the complete network was required to reproduce the highly 
connected cases in our transmission study (Table 2; Web Figure 2). P values suggested that 
none of these models were consistent with the empirical network. 

Scenarios oversampling high- or low-transmitting cases (scenario 2) significantly changed the 
structure of modeled networks but did not produce networks fully consistent with the 
empirical network. If high transmitters were oversampled, the degree distributions of 
modeled networks were shifted to the right relative to the empirical network (Figure 2, parts 
B and E; Web Figure 3). The 25th percentile (range, 1–9), median (range, 2–14), and 75th 
percentile (range, 3–18) were close to those of the empirical network (0, 1, and 7, 
respectively). However, the maximum degree in modeled networks (range, 9–32) could not 
reproduce the highly connected cases in the empirical network (degree: 62), and all modeled 
networks under this scenario were statistically different from the empirical network (Table 2). 
When we assumed that low transmitters were oversampled, the degree distribution was 
shifted left relative to the empirical network (Figure 2 parts C and F), but the overall shape of 
the degree distribution was similar to the empirical network, with its median and mode at 0 
(Table 2). 

Sampling cases differentially by smear status (scenario 3) yielded few changes in the degree 
distributions of modeled networks (Table 3; Figure 3, parts A and C). Results from these 
models were similar to those from scenario 1. 

In the scenario including a latent factor representing super-spreading that increased 
transmission risk 40-fold in 10% of cases (scenario 4), we could not reproduce the full 
empirical degree distribution, in which the 75th percentile was higher (degree: 7) than the 
modeled networks (range, 0–2); all P values suggested that the degree distributions of the 
modeled and empirical networks were dissimilar (Figure 3, parts B and D). However, we 
could reproduce the target statistics for the maximum of the degree distribution (range (7–62) 
vs. empirical maximum (62)) (Table 3). 

When we assumed smaller complete transmission networks (n = 1,500), modeled networks 
more closely resembled the empirical network, with a higher median degree (range, 0–3) and 
more highly linked cases (75th percentile: 1–8; maximum: 5–23) than in our primary analysis 
(Web Figure 4 and Web Table 9). Thus, the empirical network was more consistent with 
assumptions of fewer XDR TB cases, rather than more, in the complete network. 
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We assessed the robustness of our results to the SNP threshold used to define a genomic link. 
Since a threshold of 3 SNPs requires cases’ TB strains to be more closely related to define an 
edge, the empirical degree distribution is shifted to the left relative to that of the network 
defined by a 5-SNP threshold (Web Table 10 and Web Figure 5). Under random sampling, 
the model with a mean degree of 20 (maximum degree: 21) could reproduce the maximum of 
the empirical 3-SNP network (maximum: 22), but not the median (2 in the modeled network, 
0 in the empirical network) (Table 2). 

Table 2. Target Statistics (Median (Interquartile Range)) for Modeled, Sampled Networksa Under Scenarios 1 
and 2 As Compared With an Empirical Network of Extensively Drug-Resistant Tuberculosis Cases, KwaZulu-
Natal, South Africa, 2011–2014 
 Degree and Percentile of Degree Distribution 

P Valueb Type of Sampling and Mean 
Degree 

10th 
Percentilec 

25th 
Percentile 

Median 
75th 

Percentile 
Maximum 

Target statistics for empirical 
network  

  

 5-SNP threshold  0  0  1  7  62    

 3-SNP thresholdd  0  0  0  1  21    

Random sampling (scenario 1)              

 2  0 (0–0)  0 (0–0)  0 (0–0)  0 (0–1)  4 (4–5)  0 (0–0)  

 5  0 (0–0)  0 (0–0)  0 (0–0)  1.(1–0)  7 (6–8)  0 (0–0)  

 10  0 (0–0)  0 (0,0)  1 (1–1)  3 (3–3)  
11 (10–
12)  

0 (0–0)  

 20  0 (0–0)  0 (0–0)  2 (2–3)  6 (6–6)  
21 (19–
22)  

0 (0–
0.00001)  

Oversampling of high 
transmitters (scenario 2)  

  

 2  0 (0–0)  1 (1–1)  2 (2–2)  3 (3–3)  9 (8–9)  0 (0–0)  

 5  1 (1–1)  2 (2–2)  4 (3–4)  6 (5–6)  
13 (12–
15)  

0 (0–0)  

 10  2 (1–2)  4 (4–4)  7 (7–7)  10 (9–10)  
20 (19–
21)  

0 (0–0)  

 20  4 (4–4)  9 (8–9)  
14 (13–
14)  

18 (18–19)  
32 (30–
33)  

0 (0–0)  

Oversampling of low 
transmitters (scenario 2)  

  

 2  0 (0–0)  0 (0–0)  0 (0–0)  0 (0–0)  0 (0–1)  0 (0–0)  

 5  0 (0–0)  0 (0–0)  0 (0–0)  0 (0–0)  0 (0–1)  0 (0–0)  

 10  0 (0–0)  0 (0–0)  0 (0–0)  0 (0–0)  1 (0–0)  0 (0–0)  

 20  0 (0–0)  0 (0–0)  0 (0–0)  0 (0–0)  2 (1–2)  0 (0–0)  

Abbreviation: SNP, single nucleotide polymorphism. 

a 1,000 networks were simulated from each model; each modeled network was sampled once. 

b P values from a Kolmogorov-Smirnov test with a 2-sided alternative hypothesis, calculated using 1,000 
bootstrap samples. P values shown as 0 were less than 2.2e−16. 

c Median of the 10th percentile of the degree distribution from 1,000 modeled, sampled networks. 

d Note that target statistics for both the 5-SNP and 3-SNP empirical networks are shown. These are independent 
of the results from the modeled networks under scenarios 1 and 2, which are shown in the body of the table. 
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When we accounted for a “super-spreading” factor (scenario 4), modeled networks could 
indeed reproduce a degree distribution similar to that of the 3-SNP empirical network. At a 
mean degree of 8, the modeled network closely matched the empirical network, with the 
median at 0 (empirical network: 0), the 75th percentile at 1 (empirical network: 1), and the 
maximum at 30 (empirical network: 22). However, the degree distributions were still 
statistically different (Table 3). 

DISCUSSION 

In this study, we explored whether partial and nonrandom sampling of TB transmission 
events may bias inferences we aim to make from transmission networks constructed using 
incomplete molecular and epidemiologic data. The methodological framework outlined in 
this study sheds light on the key assumptions required to make inferences from incomplete 
sampling of TB cases. On the basis of our models, missingness in our transmission study was 
unlikely to be random; rather, we more likely oversampled low-transmitting cases. Although 
super-spreading behavior may partially account for the structure of the empirical transmission 
network, it could not completely explain the transmission heterogeneity we observed. Our 
results advise caution when interpreting transmission networks measured from incomplete 
data in TB-endemic settings without a clear understanding of the sampling frame and factors 
potentially contributing to bias. 

The fact that none of our models fully explained the empirical network is unsatisfying but 
itself informative. It suggests that factors traditionally thought to be among the most 
important determinants of transmission risk, including the key clinical and demographic 
characteristics included in our models, do not explain the structure of transmission networks 
measured in real-world settings and heterogeneity in the number of transmission links 
attributed to cases. However, our models suggested several potential factors contributing to 
this mismatch. First, we found that the scenario in which cases were missing completely at 
random from our transmission study was unlikely based on our models, and that this finding 
was robust to our choice of SNP threshold to define transmission. Instead, we found that low-
transmitting cases were more likely to be sampled than high-transmitting cases. This may be 
due to preferential inclusion of symptomatic TB cases who present promptly to health-care 
providers: While these patients rapidly become noninfectious after initiating treatment, cases 
with mild symptoms may be infectious but relatively healthy and able to maintain their daily 
routines for an extended period of time, possibly resulting in many transmission events. 
Indeed, there is mounting epidemiologic and immunological evidence for a period of 
“subclinical” TB infection; understanding the potential for transmission at this stage of 
infection may be critical for explaining TB transmission heterogeneity (29–35). This 
explanation is also consistent with our finding that super-spreading may partially explain the 
network we observed, if a subclinical disease state accounts for more transmission than 
previously appreciated. Alternatively, or in addition to the potential role of subclinical 
disease, important sociobehavioral factors may also drive the transmission heterogeneity that 
we were unable to explain in our study. For example, the common practice in South Africa of 
traveling to urban centers for seasonal employment, which could lead to both higher contact 
rates and a lower likelihood of diagnosis due to lower engagement with the health-care 
system, could be driving XDR TB transmission in KwaZulu-Natal (36–41). 
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Table 3. Target Statistics (Median (Interquartile Range)) for Modeled, Sampled Networksa Under Scenarios 3 
and 4 As Compared With an Empirical Network of Extensively Drug-Resistant Tuberculosis Cases, KwaZulu-
Natal, South Africa, 2011–2014 
 Degree and Percentile of Degree Distribution  

Type of Sampling and Mean 
Degree 

10th 
Percentilec 

25th 
Percentile 

Median 
75th 

Percentile 
Maximum P Valueb 

Target statistics for empirical network  

 5-SNP threshold  0  0  1  7  62    

 3-SNP threshold  0  0  0  1  22    

Cases sampled preferentially by 
smear status (scenario 3)d  

  

 50/50 smear−/+ (empirical 
network: 30/70 smear−/+)  

      

 2  0 (0–0)  0 (0–0)  0 (0–0)  1 (1–1)  4 (4–5)  0 (0–0)  

 5  0 (0–0)  0 (0–0)  0 (0–0)  1 (1–2)  7 (7–8)  0 (0–0)  

 10  0 (0–0)  0 (0–0)  1 (1–1)  3 (3–3)  
11 (10–
12)  

0 (0–0)  

 20  0 (0–0)  1 (1–1)  3 (2–3)  6 (6–6)  
18 (17–
19)  

0 (0–0)  

 70/30 smear−/+ (empirical 
network: 30/70 smear−/+)  

      

 2  0 (0–0)  0 (0–0)  0 (0–0)  0 (0–1)  4 (4–5)  0 (0–0)  

 5  0 (0–0)  0 (0–0)  0 (0–0)  1 (1–1)  7 (6–7)  0 (0–0)  

 10  0 (0–0)  0 (0–0)  1 (1–1)  2 (2–3)  
11 (10–
12)  

0 (0–0)  

 20  0 (0–0)  0 (0–1)  2 (2–2)  5 (5–5)  
19 (18–
21)  

0 (0–0)  

Unmeasured factor (scenario 4) 
(40×, P = 0.10)  

      

 2  0 (0–0)  0 (0–0)  0 (0–0)  0 (0–0)  7 (6–8)  0 (0–0)  

 5  0 (0–0)  0 (0–0)  0 (0–0)  1 (1–1)  
14 (12–
15)  

0 (0–0)  

 8  0 (0–0)  0 (0–0)  0 (0–0)  1 (1–1)  
30 (28–
32)  

0 (0–0)  

 10  0 (0–0)  0 (0–0)  0 (0–0)  1 (1–1)  
36 (34–
38)  

0 (0–0)  

 20  0 (0–0)  0 (0–0)  0 (0–0)  2 (2–3)  
62 (60–
63)  

0 (0–
0.002)  

Abbreviations: SNP, single nucleotide polymorphism; TB, tuberculosis; TRAX Study, Transmission Study of 
XDR TB; XDR, extensively drug-resistant. 

a 1,000 networks were simulated from each model; each modeled network was sampled once. 

b P values from a Kolmogorov-Smirnov test with a 2-sided alternative hypothesis, calculated using 1,000 
bootstrap samples. P values shown as 0 were less than 2.2e-16. 

c Median of the 10th percentile of the degree distribution from 1,000 modeled, sampled networks. 

d Smear distribution among TRAX cases (in empirical network): 32% smear-negative, 68% smear-positive. 
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Figure 3. Degree distributions of empirical (≤5 single nucleotide polymorphisms (SNPs)) and modeled, 
sampled networks under scenario 3 (sampling biased by smear status (panels A and C)) and scenario 4 
(inclusion of an unmeasured “super-spreading” factor (panels B and D)) as compared with an empirical network 
of extensively drug-resistant (XDR) tuberculosis (TB) cases, KwaZulu-Natal, South Africa, 2011–2014. For all 
results shown, the models assumed an average mean degree in the complete network of 10. In scenario 4, 
unmeasured (“super-spreading”) factors are shown at a range of strengths (×10 indicates that super-spreaders are 
responsible for 10 times more secondary cases than other cases). We assumed that this unmeasured factor had a 
population prevalence of 0.10. In panels A and B, bars show the distribution of the number of links per case, or 
the degree distribution, of the empirical network (≤5 SNPs) from the Transmission Study of XDR TB (TRAX 
Study). Each line shows the median degree distribution across 1,000 modeled, sampled networks for the 
corresponding model. Line type indicates the distribution of smear status (scenario 3) or the strength and 
prevalence of the unmeasured factor (scenario 4) assumed in the complete, modeled network. Panels C and D 
show the range of the degree distributions of the modeled, sampled networks for an individual model. Dots 
show the degree distribution of the empirical network (≤5 SNPs) from the TRAX Study and are equivalent to 
the distribution shown by the gray bars in panel A. Box plots show the median, interquartile range, minimum, 
and maximum frequencies for each degree in the distribution across 1,000 modeled, sampled networks. 
 

Our results were sensitive to factors about which there is substantial uncertainty in TB, 
including key natural history features and the SNP threshold defining a direct transmission 
event. Our primary models varied the mean degree in the complete network from 2 to 20. 
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This range was selected after considering previous estimates of the effective reproduction 
number (Rf) of TB, which is not well-characterized (42). Interestingly, the models most 
consistent with the empirical network had a mean degree of 10 and above, which is 
substantially higher than previous estimates of Rf. This suggests either that Rf is truly higher 
in this setting because of a particularly high risk of XDR TB or, more likely, that our 
definition of a transmission event—5 SNPs—was too lenient (9). When we examined 
networks defined using a 3-SNP threshold, the empirical network was consistent with a wider 
range of models than the network based on a 5-SNP threshold. This result emphasizes the 
challenges of relying on pairwise genomic distances to define transmission events: 
Conclusions regarding transmission can be different based on the threshold being used. 

Lastly, our results were sensitive to assumptions about the total number of XDR TB cases 
comprising the complete network. Underdiagnosis of TB is a persistent challenge in low-
resource settings and is even more difficult for XDR TB, which requires culture-based drug 
susceptibility testing. In our primary analysis, we assumed that approximately half of all 
XDR TB cases are diagnosed. We found that larger complete networks were less likely to 
match the empirical network, suggesting it is unlikely that we greatly underestimated the 
number of XDR TB cases in KwaZulu-Natal. However, the results from this sensitivity 
analysis underscore the broader challenge of understanding the true magnitude of TB disease 
burden in low-resource settings and using this information to accurately model population-
level transmission dynamics. 

Limitations 

We did not distinguish the direction of transmission in modeled or empirical networks to 
avoid fitting of our models with uncertain parameter data, but this prevented us from being 
able to distinguish between individual attributes that increased the risk of transmission and 
those that increased risk of acquisition of infection and progression to TB disease. More 
sophisticated probabilistic methods to define genomic transmission links between cases that 
account for directionality are warranted in future analyses (43). Second, ERGMs utilize 
mixed Poisson distributions (conditional on nodal attributes and other network features) to 
model the number of edges per node, but there is evidence that this distribution may fail to 
capture fundamental properties of TB transmission or the phenomenon of super-spreading 
(18). Although our results could be attributed to the failure of these distributional 
assumptions to hold, ERGMs are powerful tools precisely because they are formulated with 
this constraint, as it allows for investigation of the fundamental processes driving 
transmission network formation. However, our findings on “super-spreading” should be 
interpreted in light of these limitations. 

Conclusions 

While a clearer understanding of transmission is critical in settings with a high burden of 
disease, sparse data pose serious challenges for interpretation of transmission studies. Our 
analysis suggests that super-spreading behavior and biased sampling may partially explain 
the observed network. However, we also found that none of our network models could fully 
explain the observed network, which should motivate further inquiry into what is missing 
from our current understanding of TB transmission in order to better target interventions 
aiming to interrupt TB spread in endemic settings. Our conclusions are likely to be 
generalizable to transmission studies of drug-susceptible TB, but we note that this study of 
XDR TB may have been especially susceptible to biases resulting from underdiagnosis and 
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survival, given the complexity of diagnostics and poor survival from XDR TB. Future 
research should focus on identifying host, pathogen, or environmental factors contributing to 
super-spreading. Transmission studies in high-incidence settings should aim to understand 
the impact of incomplete and potentially biased sampling and identify key assumptions about 
missingness on which inferences are based. These efforts will allow more accurate mapping 
of TB transmission patterns in endemic settings, where the need to design interventions 
tailored to local epidemics is greatest. 
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