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Abstract 

The retrieval characteristics for a city-scale satellite experiment was explored over a 
Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city 
atmosphere. We utilized the MSA Altair 5x gas detector and CW-HAT200 particulate counter 
to investigate the city-scale monitoring capabilities of satellite pollution observing 
instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the 
troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-
angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To 
achieve this, we employed the Kriging interpolation technique to collocate the satellite 
pollutant estimations over 19 ground sample sites for the period of 2015 - 2016. The 
portable pollutant devices were validated using the WHO air filter sampling model. To 
determine the city-scale performance of the satellite datasets, performance indicators: 
correlation coefficient, model efficiency, reliability index and root mean square error, were 
adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide 
(CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite 
measurements for ground equivalents in Zaria, Nigeria. Our findings were within the 
acceptable limits of similar studies that utilized reference stations. In conclusion, this study 
offers direction to Nigeria’s air quality policy organizers about available alternative air 
pollution measurements for mitigating air quality effects within its limited resource 
environment. 
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1. Introduction 

Air quality is undoubtedly a key subject of public concern (Gozzi et al., 2016). Petroleum 

derivatives and biomass consumption are the major sources of air pollution in developing 

cities and have been linked to unfriendly respiratory impacts (Marais et al., 2014). Exposure 

to air pollutants is increasing respiratory and cardiovascular morbidity and mortality (2.8 

million deaths), with developing countries still experiencing the worst air pollution (WHO, 

2016). With over a decade of global awareness on air pollution, studies are still reporting the 

effects of criteria pollutants on the human cardiovascular and respiratory systems (Ghozikali 

et al., 2015; Miri et al., 2016; Ren et al., 2017). 

 

Rapid economic development coupled with scarce administrative policies within the 

African continent is leading to an increased level of air pollution, thus putting the wellbeing of 

its major population at risk (Marais and Chance, 2015). In Africa, studies on surface air 
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pollution monitoring are insufficient, with only a few nations having established 

environmental procedures. South Africa is the only African country that appears to have 

established well-defined standards and a comprehensive monitoring network (Kgabi, 2014; 

Hersey et al., 2015).  

 

Nigeria is Africa’s most populated country (182 million people as at 2015) and also the 

largest economy, recently surpassing South Africa (The Economist, 2017; UN, 2017). 

Nigeria’s rapid growth stimulates a variety of environmental worries, most especially air 

quality. Outdoor air pollution is majorly worsened by inept automobiles, unsystematic road 

structure leading to traffic obstruction, dependence on power generating sets by commercial 

outlets due to poor electricity infrastructure and congested road side activities (Adewunmi et 

al., 2015; Orogade et al., 2016). The measurements of outdoor pollutants are essential for 

human exposure awareness (Duvall et al., 2012; Bereznicki and Kamal, 2013).  

 

Since urban air pollution undergoes several processes which generates its spatial 

variable concentrations, a network of pollution station units can be employed to predict 

concentrations at unmeasured locations and also effectively monitor urban air pollution 

(Kanaroglou et al., 2005; Adams et al., 2012; Dash, 2016). The density of an urban 

environment combined with natural variability and unpredictable anthropogenic emission 

sources, compels for the constant appraisal of pollution models by means of up-to-date 

datasets (Neophytou et al., 2011).  

 

Low-cost pollutant monitors are getting extra attention in the area of air pollution 

monitoring, when compared with established reference devices (Kumar et al., 2015). The 

majority of the lower cost sensors is robustly designed using micro-electro-mechanical 

techniques and energy efficient sensor circuits. This makes them cost effective, light-weight 

and compact, thus consuming minimum power for detecting selected toxic gases and 

particulates in any industrialized environment (Mead et al., 2013). Their user-friendliness 

enables efficient near real-time resolution data acquisition, thus allowing for larger spatial 

coverage especially in remote/developing areas (Snyder et al., 2013). The availability of 

portable pollution monitoring detectors has considerably increased the possibility of 

identifying pollution hot spots, enriching air pollution maps, evaluating air quality policies and 

safeguarding public health (Engel-Cox et al., 2013; Gozzi et al., 2016). Cities across the 

globe are embracing the concept of portable test sites for gathering air quality variability and 

statistics for mitigation planning. Validated portable pollutant monitors can be adopted as 

ground-based retrieval stations, as they provide fast and transparent dissemination of 

observed dataset (Kumar et al., 2015; Gozzi et al., 2016). However, the challenges 
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regarding the deployment of portable sensors for air pollution monitoring are their 

operational maintenance which in most cases eventually exceeds the actual cost of sensor. 

The operation maintenance comprises of device stability (such as sensor re-calibration, 

sensor/battery replacement), data management costs and operational longevity before 

replacement (Kumar et al., 2015). 

 

Considerable achievements are still being realised in the area of space-based 

atmospheric pollution monitoring. Satellite pollution sensors have continued to show 

increased capability of observing chemical species at high 4-D resolutions that can be 

utilized for a wide range of environmental-friendly atmospheric related applications (Duncan 

et al., 2014; Zhang et al., 2016). While the particle satellite instruments measure the 

extinction of light to retrieve the chemical aerosols, the trace gas instruments measures the 

number density of the trace gas, all in a vertical column of air. This approach is also used to 

further estimate the chemical particles precisely under that column of air, as long as their 

movement and chemical conversion are minimally interfered with or compensated for 

(Streets et al., 2013). The advantage of satellite pollution data is its spatial and temporal 

coverage. This coverage serves as a surrogate for long-term regional air quality monitoring, 

as well as development of emission inventories (Engel-Cox et al., 2004; Schaap et al., 

2009). The space-based pollution measurements are also being embraced as a distinctive 

resource for detecting air quality in regions with scarce ground-based information (Marais et 

al., 2014). The main challenge of satellite pollution instrument is its resolution at low-altitude. 

The measurements at low altitudes is perceived to be influenced by all kinds of atmospheric 

attenuations thus generating errors. For this reason, the satellite brochures continue to 

encourage researches to utilize the retrieved satellite datasets for surface test/validation 

procedures. Another familiar challenge of the satellite pollution instrument with limited 

resources establishments, is the technical know-how to access, process and accurate 

interpret the satellite pollution observational datasets (Duncan et al., 2014). 

  

The dependence on portable monitors for air pollution monitoring is on the rise. There is 

also no record of Nigeria’s air quality planners acknowledging the use of satellite pollution 

data resources. These are the motivation for the study. Thus we attempt to determine, the 

level of pollution measurements these satellite pollution estimates represent in a developing 

Nigerian city. It is on this basis, that this study pilots an approach for appraising city-scale 

monitoring capabilities of multi-satellite pollution datasets using ground-positioned, portable 

pollutant monitors.  
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2. Methods 

2.1. Study Area 

Zaria metropolis is the centre for educational advancement for Northern part of Nigeria. 

The city is experiencing rapid population increase and urban sprawl thus deteriorating the air 

quality within the city. It covers an area of 296.036 square kilometres, with an estimated 

population of 938, 521. The topography is mainly flat at 670 m above mean sea level (Figure 

1). The climate is categorized into dry (October – May) and wet (June – September) 

seasons. The seasons are distinguished by low temperature (14.1°C) during the harmattan 

in January and peak temperature (35.2°C) in April. The population is majorly Hausa 

speaking and dominant land use outside the built up area is sparse vegetation except during 

the rainy season. The area is drained by the Kubanni River and its many tributaries. 

 

 

Figure 1. Study area displaying the Kufena hill, meteorological station and distribution of the 

19 sample sites (Sites 3, 6 and 18 are control sites) 

 

2.2. Ground CO and PM datasets 

Figure 1 shows the distribution of the 19 sampling sites across study area. The sample 

sites were distributed to represent the majority of outdoor activities contributing to air 

pollution in the study area. 16 sites are located along major road intersections with dense 
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population activity across residential and commercial settlements, while the remaining 3 

control sites are positioned strategically at the outskirts of the city with minimal population 

activity. The control sites were adopted to serve as checks for results comparison. The 

portable monitoring devices are: the MSA Altair 5x which measures carbon monoxide (CO) 

in parts per million (ppm) and the CW-HAT200 which measures particulate matter (PM10) in 

microgram per meter cube (µgm-3). The use of these devices have been assessed by Liu et 

al., (2014): Mishra et al., (2015); Shibata et al., (2015). The devices were procured solely to 

collect ground level pollution concentrations of selected criteria pollutants across the study 

period (1 December 2015 – 30 November 2016).  

 

Prior to the commencement of the ground sample collection using the portable monitors, 

the devices were validated using filter sampling papers to obtain total suspended 

particulates (TSP) at 2 sample test sites. This is based on the WHO air sampling model 

equation described in Efe and Efe (2008).  

-3 -
 ( ) (1)S OM M
gTS mP

V
µ   

Where TSP is the particulate matter, Mo is mass of filter paper prior to sampling, Ms is the mass 

filter paper after sampling, V is the TSP volume. To determine the concentration (µgm
-3

), the 

model equation 1 was divided by the sample time in hours. 

 

102 filter samples were utilized to collect totally suspended particles (TSP) concurrently 

with the portable devices’ measurements. Validation samples were obtained on Mondays, 

Wednesdays, Fridays and Sundays in the month of November 2015. One of the sample site 

had dense outdoor population activity and the other had minimal population activity (control 

site). Samples were collecting for morning, afternoon and evening periods. The portable 

devices and sample filters were positioned at the same 1.5m above ground elevation. The 

obtained measurements at each site were weighted in order to obtain the 8-hr day-time 

average for outdoor activities over the 17 sampling days. Since our study is interested in air 

pollution resulting from outdoor population activities, we believed all pollutant emissions 

resulting from the population activities would strongly correlate against one another (Guo et 

al., 2017). It is for this reason that we utilized the filter samples from the two selected sample 

sites for validation of CW-HAT200 particulate counter and MSA Altair 5x multi-gas detector 

using PM10 and CO values respectively. The validation statistics showed that the correlation 

coefficient between the TSP concentrations from filter sampling and PM10/CO for the CW-

HAT200/MSA Altair 5x were highly significant. The correlation value (R) of TSP/PM10 and 

TSP/CO were very strong across the two sites. The WHO procedure validated the reliability 

of the portable devices (Figure 2). 
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(a) 

 

 

 

(b) 

 

 

 
 

Figure 2. Linear regression showing validation of portable pollutant monitors and TSP 

samples using the WHO air sampling model. (a) Control site, (b) dense activity site 

 

The criteria pollutants measured across the study site are: ground level carbon 

monoxide (GCO) and particulate matter with diameter less than 10 microns (GPM). The 

accuracy obtained was similar to those stated in the instrument configuration. To determine 

day-time averages, ground in-situ samples were collected daily across three epochs. The 

epochs are: peak morning (0730 – 0845 hrs), moderate afternoon (1300 – 1415 hrs) and 

peak evening (1700 – 1815 hrs) (Bell and Davis, 2001; Yazdi et al., 2015). A sample 

resolution time of 3 minutes was adopted per site. For each sampling, the highest perceived 

CO and PM10 concentrations were recorded based on instrument configuration. The values 

were weighted for the morning, afternoon and evening epochs respectively (Llanes, 2016). 

The samples were collected with devices positioned at 1.5 metres above ground level. 

Ground pollution samples (N) for GCO and GPM were collected for 339 out of the 366 days. 

A time-series plot for a control site (Site 6) and a seeming polluted site (Site 16) is displayed 

in Figure 3. The characteristics of the portable devices employed is highlighted in Table 1 

and the descriptive statistics of recorded concentrations are shown in Table 2. 
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a) 

 

 
 

(b) 

 

 
 

Figure 3. Times-series of the GCO and GPM concentrations (a) control site 6 (b) populated 

site 16, for the study period (1 December 2015 – 30 November 2016). Note that the blue, red 

and black scatter plots represents the morning, afternoon and evening sampling periods 

respectively. 
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Table 1. Specifications of the portable pollutant monitors utilized for ground measurements 

Specifications MSA Altair 5x Gas Detector
a
 

Chinaway CW-HAT200 Particulate 
Counter 

Dimension (cm) 17 (H) x 8.94 (W) x 4.88 (D) 18 (H) x 9.3 (W) x 4.8 (D) 

Weight (kg) 0.45 0.60 

Measuring method Internal pump; 
Catalytic/electrochemical 
sensor 

Internal pump; laser light scattering 

Pollutant measured CO; SO2; H2S; LEL 
(Combustible)  

PM2.5, PM10 

Concentration Range CO (0 - 500 ppm) 
SO2 (0 - 25 ppm) 
H2S (0 - 100 ppm) 
LEL (0 - 100 %) 

PM2.5 (0 - 500 µgm
-3

) 
PM10 (0 - 1000 µgm

-3
) 

Sample/Response 
Time 

CO (15 secs) 
SO2 (20 secs) 
H2S (15 secs) 

PM2.5 (60 secs) 
PM10 (60 secs) 

Accuracy ±10% of reading ±5% of reading 

Operating 
temperature 

-10 °C to 40 °C 5 °C to 45 °C 

Operating humidity 15 - 90% RH <90% RH 

Calibration Due 6 months 1 year 

Battery Rechargeable lithium-ion Rechargeable lithium-ion polymer 

Display Monochrome LCD 

Certification CE, UL, CSA, IEC, IP CE 

.aInstrument was re-calibrated during the data collection stage (January 2016 and June 
2016). The calibration mixed gas specifications are: CO – 50 ppm; SO2 – 5 ppm; H2S – 15 
ppm; LEL – 58 %. 
 

Table 2. Descriptive statistics of the GCO and GPM for the study area in 2015 – 2016 (N = 

19, 104) 

Ground 
Measurements 

Period Mean Median SD 

GCO (ppm) 

Whole Year 29.2 23.0 28.3 

December-January-February 20.3 16.0 20.1 

March-April-May 34.3 28.0 30.2 

June-July-August 34.2 27.0 32.2 

September-October-November 28.0 23.0 27.1 

GPM (µgm
-3

) 

Whole Year 451.9 403.0      251.4 

December-January-February 401.8 350.0 213.5 

March-April-May 442.5 405.0 248.1 

June-July-August 405.7 363.0 251.0 

September-October-November 557.6 529.0 265.9 

 

2.3. Satellite CO and AOD datasets 

The National Aeronautics and Space Administration (NASA) has a catalogue of 

datasets generated from several nadir-viewing earth observing system (EOS) instruments 

which include:  atmospheric infrared sounder (AIRS); multi-angle imaging spectroradiometer 

(MISR); moderate resolution imaging spectroradiometer (MODIS); measurements of 

pollution in the troposphere (MOPITT) and ozone monitoring instrument (OMI) (Streets et al., 
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2013). The NASA-funded exploration aims to enable researches trace, link and cite these 

data to the scientific literature (NASA, 2017). 

 

Carbon monoxide is a gaseous pollutant that usually results from incomplete 

combustion of anthropogenic sources, or oxidation of hydrocarbons (Rinsland et al., 2006). 

CO retrievals are exceptional for detecting anthropogenic activities, assessing emissions, 

and resolving wind effect on emission sources (Fisher et al., 2010). NASA’s EOS instrument 

records nadir measurements of CO at 4.6 µm from low Earth orbit using varying retrieval 

algorithms: AIRS (McMillan et al., 2005) and MOPITT (Deeter et al., 2003). For the city-scale 

evaluation, the vertical mixing ratio for satellite CO estimates were utilized based on 

recommendation. The reason is that the AIRS CO total column is the integral over the entire 

atmospheric column (AskAirs, personal communication, 16 February 2016). The lowest 

altitude/pressure level for AIRS and MOPITT CO mixing ratios are 925 hPa and 900 hPa 

respectively.  These pressure levels are a weighted average of a good portion of the lower 

and middle troposphere. Normally, the same altitude/pressure level should be adopted for 

consistency. However, the lowest collocating CO mixing ratio altitude between the AIRS and 

MOPITT sensor is 700 hPa. This pressure level is not good enough for comparison with 

ground level data (Marey et al. 2015).  

 

Particulate matter is reported to adversely affect respiratory health of varying age-

groups (Yoshizaki et al., 2017). The primary satellite parameter for PM is aerosol optical 

depth (AOD). AOD is the total extinction effects on the incident radiation after its 

atmospheric interaction with particulates of different dimensions (Liou, 2002). To evaluate 

AOD and PM, available literature have indicated that, there is a linear relationship between 

these two quantities. This empirical approach is the most recognised for distinguishing PM 

concentration from satellite data, whereby the degree of prediction can be determined using 

the level of correlation between the in-situ PM measurement and corresponding satellite 

AOD, of equal variables (Schäfer et al., 2008; Yap and Hashim, 2013). A detailed data 

processing method for distinguishing AOD from PM is described in Filip and Stefan (2011). 

For the satellite AOD estimates used in this study, the MODIS (1 km resolution) and OMI 

(13*27 km resolution) instruments provide daily global AOD coverage via recording of the 

Earth’s spectral radiance. The MISR as well, delivers AOD information at 17.6 km resolution 

approximately twice a month.  

 

2.4. Satellite data parameter 

Level 3 data was adopted for the various satellite instruments. This is due to their 

geophysical parameters which have been averaged into longitude/latitude grid cells. The 
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map coordinates are gridded from -180.0° to +180.0° across longitude and -90.0° to +90.0° 

across latitude (Tian et al., 2014). The NASA satellite data provides a global coverage of 

atmospheric pollution in Hierarchical Data Format-Earth Observing System (HDF-EOS) and 

Network Common Data Form (NetCDF) formats, which can be accessed using software 

such as Panoply (Vollmer, 2010). Users are encouraged to embrace the level 3 processing 

as every essential filters and rectifications have been effected (Streets et al., 2013). The 

NASA data acquisition portal also made provision for sub-setting locations and variables of 

interest. 

 

A subset covering the study area was adopted using spatial boundary box of (7.0, 11.0, 

12.0, 8.0) degrees for West, South, North and East respectively. The satellite data estimates 

were synchronized with the ground measurements using Kriging interpolation technique 

(Araki et al., 2015). The AIRS standard product and MOPITT (near and thermal infrared 

radiance) were utilized. The data variables used for this study are available on the NASA 

retrieval platform (https://reverb.echo.nasa.gov). Table 3 shows retrieval characteristics of 

the satellite instrument datasets adopted for the study.  

 

Table 3. Retrieval characteristics of the selected NASA satellite instruments 

Instrument Specie Version 
Sample 

size 
URL Variable 

AIRS CO 6 251 

http://disc.sci.gsfc.n
asa.gov/SSW/#key
words=AIRX3STD 
006 

ascending_TqJoint:CO
_VMR_TqJ_A 

MOPITT CO 6 79 
https://eosweb.larc.
nasa.gov/project/m
opitt/mop03j_table 

RetrievedCOMixingRat
ioProfileDay 

MODIS AOD 5.1 210 

http://disc.sci.gsfc.n
asa.gov/SSW/#key
words=MYD08_D3 
5.1 

Deep_Blue_Aerosol_O
ptical_Depth_Land_Me
an 

MISR AOD 4 47 
https://eosweb.larc.
nasa.gov/project/mi
sr/misr_table 

Optical_depth_averag
e 

 OMI AOD 3 143 

http://disc.sci.gsfc.n
asa.gov/SSW/#key
words=OMAEROe 
003 

AerosolOpticalThickne
ssMW: Best Fit 
Spectral Aerosol 
Optical Thickness 
derived with the Multi-
Wavelength method, 
scaled by a factor 
1000 

 

To determine the city-scale performance of these satellite pollution datasets, four 

performance indicators; reliability index, correlation coefficient, root mean square error and 

model efficiency, were utilized. The indicators are described as follows: 
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The Cronbach’s alpha (α) is an index of reliability (RI) which reveals the internal 

consistency associated with the variation accounted for a test or scale. The internal 

consistency defines the extent to which all the items in an investigation are inter-related. The 

reliability should be determined before an investigation can be employed for research to 

ensure validity (Le Boennec and Salladarré, 2017). It is expressed as a number between 0 

and 1, with ≥ 0.7 regarded as acceptable reliability coefficient. It is expressed in Equation 2 

below. 

 
(2)

1

N C

N C







  
 

N is the sample size; c average covariance between the observed ground level pollutants Oi (i.e., 

GCO and GPM) and the predicting Pi (i.e., AIRS, MOPITT, MODIS, OMI and MISR) retrievals; v  

is the average variance 

 

The Correlation coefficient R, is the measure of how intimate the statistical data are to 

the fitted line of regression. As expressed in equation 3 below, it is the correlation coefficient 

or anomaly correlation coefficient (ACC) (Jolliffe and Stephenson, 2012).  

  

   

1
1
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1 1

)
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n

i i
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n n

i i
i i

P P O O

R

P P O O



 

 
 
 
 
  
  
   

 



  



 

 

The Root Mean Square Error (RMSE) is the square root of the variance of the residuals 

which describes how close the observed pollution data points are, to modelled predicted 

values (Chai and Draxler, 2014). It is expressed in equation 4 below.  

2

1

1
( ) (4)

n

i i
i

RMSE O P
n 

   

The Nash-Sutcliffe model efficient coefficient (NSE) is a statistic of fitness that evaluates 

how one model forecasts the other relative to the average of the observation between both, 

with values varying between 0 and 1 (McCuen et al., 2006). It is expressed by equation 5. 

 

   

2

1

2

1

1 (5)

( (

n

i
i

n

i i
i

Bias

NSE

P O O O





 

  




 

Oi and Pi are respectively the time series of the observed ground level pollutants (i.e., CO and 

PM) and the predicting (i.e., AIRS, MOPITT, MODIS, OMI and MISR) retrievals. The average of 
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the observed and predicted retrieval values are indicated by O and P, respectively, and the 

number of observations is indicated by N. 

 

The NSE and R, are unit-less prediction measures that are indicative of model fit. The 

model prediction performance is acceptable if the NSE and R, are respectively greater than 

0.4 and 0.5 (Engel et al., 2007).  

 

3. Results 

This section discusses the results of the various satellite retrievals evaluation at diurnal 

and seasonal scales, with relation to the respective validated ground measurements (GCO 

and GPM). Table 4 highlights the number of collocating samples size between the satellite 

retrievals and ground measurements as well as collocating samples size between co-

satellite retrievals for the study period. 

 

Table 4. Collocation sample size of the satellite retrieved estimates with ground 

measurements 

Indicators Pollutants Collocating Instruments Seasons 

  
 

DJF MAM JJA SON 

Sample size, N 

CO 

GCO-AIRS CO 78 75 64 11 

GCO- MOPITT CO 26 21 6 20 

AIRS CO-MOPITT CO 26 21 8 2 

PM (AOD) 

GPM-OMI AOD 40 40 8 19 

GPM-MODIS AOD 82 70 23 12 

GPM-MISR AOD 17 13 5 11 

OMI-MODIS AOD 41 31 2 3 

OMI AOD-MISR AOD 1 2 - 1 

MODIS AOD-MISR AOD 11 13 5 1 

 

3.1. Diurnal distribution of the satellite retrievals and ground measurements 

The collocated diurnal averages of satellite retrievals (AIRS-MOPITT CO and MODIS-

MISR-OMI AOD) were plotted respectively against GCO and GPM as shown in Figure 4. 

Our findings showed that the day-time 8-hour averaged samples from ground measurements 

were above the stipulated threshold (WHO, 2017) of 9 ppm and 50 µgm-3 for CO and PM10 

respectively. For the GPM measurements, there was a sudden increase in GPM 

concentrations in late 2016. This is attributed to the commencement of intense construction 

works (drainage and road rehabilitation) by the Kaduna state government across the study 

area. For satellite retrieved pollutants, AIRS  CO mixing ratio (ppb) and MOPITT CO vertical 

mixing ratio (ppbv) recorded CO peak values of 229.876 and 247.338 respectively (Figures 

4a and b), while MODIS AOD, MISR AOD and OMI AOD recorded 3.146, 1.135 and 5.817 

(no units) respectively (Figure 4c). This study notes that there was data breach from the 
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NASA download portal for the satellite instruments AIRS CO data from 25 September 2016 

and MODIS AOD data from 7 October 2016 to the end of study period (30 November 2016).  

 

(a) 

 

(b) 

 

(c) 

 

Figure 4. Collocating time series plots (a) GCO-AIRS CO (b) GCO-MOPITT CO (c) GPM – 

MODIS-MISR-OMI AODs.   

 

3.2. Seasonal relationship of the satellite retrievals with ground measurements 

For analysis suitability, the seasonal pollution estimates of AIRS CO, MOPITT CO, 

MODIS AOD, MISR AOD and OMI AOD were harmonized (i.e. pairing of common days in 

2015 and 2016) with the respective validated GCO and GPM measurements. The study 

period was also categorized into December-January-February (DJF); March-April-May 

(MAM); June-July-August (JJA); September-October-November (SON). Satellite retrievals 

were also harmonized against one another, to serve as check. Their statistical performance 

is displayed in Figure 5. 
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(a) Dec-Jan-Feb 

 

(b) Mar-Apr-May 

 
(c) Jun-Jul-Aug 

 
(d) Sep-Oct-Nov 

 
 

Figure 5. Seasonal performance of satellite retrieved estimates with collocating ground 

measurements. The α, R and NSE value ranges from 0 – 1 (Left axis). Note that the 

collocating instruments that did not display any information, is due their collocating sample 

size data being less than 5 (See Table 4). 
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3.2.1. CO analysis 

The seasonal coefficients of reliability amongst synchronized retrieval instruments 

varied between (0.923 – 0.973) and (0.838 – 0.964) for AIRS CO and MOPITT CO 

respectively. AIRS CO showed a higher RI which can be attributed to its higher paired 

measurement samples of 228 with GCO, compared to MOPITT CO’s 73. Both models 

reliability coefficients were within acceptable limits. Accuracy measures for the satellite 

retrievals showed acceptable results of RMSE for AIRS CO (3.629 – 18.289) and MOPITT 

CO (3.171 – 10.171). The MOPITT CO showed a better correlation compared to the AIRS 

CO. The efficiency of the models as indicated by the NSE in Figure 5, displayed that both 

AIRS CO and MOPITT CO had acceptable values (> 0.40) for all the season except for 

season SON where AIRS CO recorded 0.317. The correlation of paired data over the 2015 – 

2016 period yielded coefficient value for AIRS CO and MOPITT CO in the range of (0.493 – 

0.814) and (0.734 – 0.841) respectively. The reference AIRS CO - MOPITT CO model 

showed acceptable values for the four performance indicators except for the SON season, 

where paired common days was less than 5 (Table 4). The analysis revealed that the 

MOPITT CO product displayed the better performance and therefore, is deemed the better 

suited satellite CO measurement instrument for users in the Zaria. To further improve our 

findings on the MOPITT CO analysis, we compared the MOPITT CO surface variable 

(RetrievedCOSurfaceMixingRatioDay) with the GCO. Using the above listed performance 

measures, the results (Table 5) confirmed the performance of the MOPITT CO surface, as 

still, the well-matched satellite CO instrument for Zaria users. 

 

Table 5.  Seasonal performance of MOPITT CO surface estimates against validated GCO 

Pollutant Collocating Instrument Indicators Seasons 

   DJF MAM JJA SON 

CO 

GCO/ 

MOPITT CO 

Surface Mixing Ratio 

 

Sample size, n 26 21 6 20 

Α 0.972 0.970 0.914 0.975 

RMSE 7.997 9.113 6.162 3.005 

NSE 0.417 0.450 0.462 0.520 

R 0.732 0.875 0.910 0.895 

 

Our evaluation of the MOPITT CO estimates for city-scale monitoring are similar to 

documented studies on comparison using validated ground measurements (Barret et al., 

2003; Asatar and Nair, 2010; Zhang et al., 2016; Buchholz et al., 2017) and better than 

Sukitpaneenit and Oanh (2014) (Figure 6a).  
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(a) 

 

(b) 

 

 
Figure 6. Range of correlation coefficient obtained in comparison with similar literature (a) 
ground CO-MOPITT CO, (b) ground PM-MODIS AOD;  (*) shaded bars – authors’ findings 

 

3.2.2. AOD analysis 

In Figure 5, the reliability of the collocating satellite datasets across the seasons 

averaged 0.885, 0.946 and 0.944 for OMI AOD, MODIS AOD and MISR AOD respectively. 

These values were within acceptable limits. RMSE ranged from 0.094 – 0.937, with MISR 

AOD recording the most precise of the three models. For model efficiency, the MODIS AOD 

averaged highest with 0.430, followed by MISR AOD with 0.424 and finally OMI AOD with 

0.406. They were all within acceptable limits (NSE > 0.40). Correlating satellite retrievals 

with respective GPM, the model estimations (R) varied from (0.343 – 0.878), (0.587 – 0.922) 

and (0.481 – 0.950) for OMI AOD, MODIS AOD and MISR AOD respectively. On the 

average, the MISR AOD outpaced other comparatives in the DJF and MAM seasons. The 

performance reduced in the later part of 2016. This can be attributed to its reduced sample 

size during the JJA and SON seasons (N = 16). Analysis between AOD satellite-satellite 

retrievals revealed that none of their comparison had collocating paired data (common days 

greater than 5) for all the seasons of the study period. While MODIS AOD - MISR AOD was 

affected in SON and OMI AOD - MODIS AOD in JJA and SON, OMI AOD - MISR AOD was 
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affected for the entire study period.  The MODIS AOD valuation using validated ground PM 

measurements are similar to results drawn from other comparative in-situ PM and MODIS 

AOD studies (Liu et al., 2007; Filip and Stefan, 2011; Yap and Hashim, 2013; Sukitpaneenit 

and Oanh, 2014; Bibi et al., 2015; Kong et al., 2016). Our findings are within the acceptable 

range established by similar literature (Figure 6b). This reveals that MODIS is the most 

suited satellite PM measurement instrument for users in the Zaria metropolis, Nigeria. 

 

4. Conclusion 

Studies have established that satellite datasets from remote sensing of surface air 

quality contains a wealth of knowledge that is still being exploited, thus, the need to evaluate 

satellite-based pollution monitoring to specific areas or regions of the world. In limited 

resource environment like Nigeria, portable pollutant monitors are being embraced for air 

pollution monitoring. This study utilized validated MSA Altair 5x gas sensor and the CW-

HAT200 particulate counter to evaluate the city-scale monitoring capability of selected NASA 

pollution monitoring instruments. The findings revealed that the MOPITT CO and MODIS 

AOD are the better suited satellite pollution estimates for representing ground level CO and 

PM10 measurement within Zaria metropolis, Nigeria. Our city-scale evaluation of satellite 

pollution estimates using portable monitors were within acceptable boundary limits when 

compared to other similar studies that utilized the reference pollution monitoring stations. 

This findings pilots a fundamental issue in air pollution monitoring within the Nigerian frontier, 

where none has been previously carried out. We are optimistic that that our findings offers 

Nigeria’s air quality planners with the framework of portable cost -effective pollutant 

monitors and satellite air pollution measurements, to mitigate the adverse impacts of air 

quality within its rapidly growing population and scarce air quality information. 
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