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Various solutions to the Simultaneous Localisation and Mapping (SLAM) problem have been proposed

over the last 20 years. In particular, extending the fundamental solution of the SLAM problem has

attracted a great deal of attention. Most extensions address shortcomings such as data association,

computational complexity and improving predictions of a vehicle’s state. However, nearly all SLAM

implementations still depend on analytical models to provide estimates for state transitions.

Learning data-derived non-analytical models for use during localisation and mapping provides an

alternative that could significantly improve estimates and increase the flexibility of models. A method-

ology to learn motion models without knowledge of the higher-order dynamics is therefore proposed

using tapped delay-line neural networks (TDL-NN). Incorporating the learned Nth-order Markov

model into a recursive Bayesian estimator requires that the learned model be assumed independent of

the transitional model, forming a black box estimator. Both real-world and simulated training data

were evaluated, along with changes to the input data’s format, to determine the best vehicle motion

predictor.



Furthermore, an evaluation methodology is defined to asses how well the models could learn each

motion type. A comprehensive analysis of the one-forward prediction using various statistical measures

was used to determine the most appropriate metric. The methodology evaluated the predictions at

different levels of depth, providing supplementary information on the type of motions that are learnable.

Outcomes of the experiments revealed that inherently learning a vehicle’s dynamics cannot be achieved

using TDL-NNs. Currently the best that such an approach can learn is the delta between the vehicle’s

states. Consequently, modifications are required to the learning algorithms as well as the input data’s

format that will force the strategies to learn the higher-order dynamics.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Present-day robotic vehicles are increasingly required to accomplish complicated tasks. Usually these

tasks aim to increase efficiency and safety of users through automation. Most, however, are single-

purpose solutions that have limited functionality and considerable focus has therefore been placed on

diversifying the tasks that a single robot can accomplish. Achieving general-purpose robotic systems

requires that the systems exhibit intelligent behaviour during operation. In particular, spatial awareness

is of the utmost importance for any system that needs to interact with its environment.

A fundamental requirement is therefore for a vehicle to observe and understand the surroundings as

well as its placement within the environment at all times. The Simultaneous Localisation and Mapping

(SLAM) problem refers to placing a vehicle in an unknown environment and procedurally generating a

map while the vehicle is traversing the environment [1, 2, 3]. One of the first methods used to solve

SLAM is based on recursive Bayes estimators, where the next vehicle and map state is predicted and

updated according to environmental observations [4]. Commonly a vehicle’s next state is predicted

using motion models such as generalised odometry or velocity models [5].

Both models assume that a vehicle’s state remain constant and that movement is directly related to

vehicle control. For the odometry-based models the control is modelled as a change in each state

variable, while velocity-based models use the current velocity vector. However, as with any generalised

model, vehicle-specific motion remains largely unmodeled, leading to incorrect predictions. Correcting

the predictions using landmarks and data-association techniques has allowed such systems to remove
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these discrepancies during small-to-medium scale tests [3, 6, 7]. While the assumption does hold for

small maps where the distances between loop-closures are relatively small, large loop traversals with

many changes in trajectory cannot be as readily adjusted. The main cause of this shortcoming is drift

in sensor measurements, which accumulate over large loops.

Graph solvers for the back-end of SLAM implementations have been used to improve the trajectory

estimates [8, 9]. However, these methods have no verification metrics or methodologies that definitively

prove that the approach improves motion estimates. Instead, graph solvers use the pose predictions to

limit the motion to a maximum likelihood estimate.

An alternative method is using the vehicle’s structure to improve predictions [10]. Commonly,

characteristics such as the drive-type, kinematics and dynamics are included in the motion model

to provide improved estimates [11, 12]. However, some motion models are highly non-linear and

complex to solve analytically, thus requiring a thorough analysis of all vehicle and environmental

parameters. In addition, many of the parameters are dynamic in nature, requiring constant revision as

the vehicle traverses an environment. Lastly, there have also been approaches that learn some form of

vehicle motion to improve vehicle predictions during SLAM [13, 14, 15].

1.1.2 Research gap

To form a more generalised model that encapsulates vehicle motion, machine learning techniques have

been applied. Four methodologies exist to determine the vehicle models created during estimation:

Classifying a vehicle according to drive-type or motion-mode [16, 17], learning to predict some of a

vehicle’s dynamic parameters to improve estimation [18, 19], learning the effect of control on a vehicle

[20, 21, 15, 22] and learning an abstract representation of a vehicle’s motion model [23, 14].

By classifying vehicles by type or motion mode, one is able to use the appropriate models to predict

the next pose. However, classification approaches still rely on analytically defined models to predict

the vehicle’s next state. The second method, while simplifying some of the vehicle’s calculations, still

inherently depend on defining the vehicle’s dynamic parameters, thus offering limited improvements.

Learning the error of a motion model or the vehicle’s plant model can help compensate for any errors

that the model produces during estimation. As such, a model that represents a vehicle’s motion model

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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isn’t explicitly learned. Instead an estimator is learned that approximates the error that a change in

vehicle state produces. Consequently the estimators are unable to provide predictions of what the

vehicle’s actual state should be.

The fourth method does not have any of the constraints of the other methods, as an abstract repres-

entation of the vehicle’s motion model is learned. Thus learning the dynamics involved is not limited

to those defined by the inputs. Similarly, any motion learned already contains motion compensation.

However, most methods that learn an abstract representation of a vehicle’s motion do not learn the full

spectrum of vehicle dynamics. In addition, these methods are unable to provide accurate predictions

outside of the training interval or the specific motion learned without biasing from analytical or plant

models. Learning a fully abstract model that is able to encapsulate a vehicle’s dynamics has therefore

not yet been achieved. In addition, using such an abstract model in a SLAM context has yet to be

demonstrated.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The proposed research aims to provide answers regarding motion model learning. Specifically, the

research aims to provide answers regarding data-derived non-analytical models for use in a SLAM

context. Hence the following research questions are addressed:

1. Is it possible to learn data-derived non-analytical motion models using neural networks?

(a) Can low-order state data be used to encapsulate higher-order dynamics?

(b) To what extent must the data’s format be altered/filtered in order to provide suitable training

data?

(c) What impact does memory of the previous state data have on learning?

(d) What are the types of motion that can be represented by the learned model?

2. How can one evaluate whether a motion model has been learned and what metrics should be

used?

3. Can the data-derived non-analytical models provide an improvement over the corresponding

analytical models in a SLAM context?
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CHAPTER 1 INTRODUCTION

1.3 HYPOTHESIS AND APPROACH

A vehicle’s motion can be described using its kinematic and dynamic characteristics. Kinematics are

subject to a vehicle’s dimensions, position, orientation and time. Any other variables represented within

a kinematic setup are related to one or more of the aforementioned variables. By taking the dynamics

of a vehicle and environment into account a fuller representation of the motion can be defined. As

such, dynamic model takes mass/gravity, external forces and friction along with the vehicle’s pose,

dimensions and time into consideration.

Any analytical model is therefore limited to the higher-order dynamics and kinematics that have been

taken into consideration. However, including additional variables leads to an increase in vehicle

state and complexity that needs to be monitored. Furthermore, many of the dynamics involved in

vehicle motion are unknown or approximated in order to make analytical solutions tractable and

sequential.

A solution to the aforementioned problem is to define an abstract model that inherently captures the

higher-order dynamics without explicitly defining what the dynamics are. The abstract model can then

be trained by reducing the prediction error of the vehicle’s next state. The challenge, however, is how

to learn the higher-order dynamics given the data.

By noting that many of the higher-order dynamics are related to the low-order state variables as the

difference changing over time, the dynamics can be encapsulated by including more previous states as

input to the abstract model. Tapped delay-line neural networks (TDL-NN) offer an ideal mechanism

through which the motion model can be trained, as a TDL-NN makes use of multiple previous states in

order to predict the next state.

As the abstract model will be used in a SLAM context, a recursive Bayesian estimator is required

to predict the vehicle’s next state and update the prediction using some measurement model. The

fundamental recursive Bayesian technique used in for SLAM is the Extended Kalman Filter (EKF)-

SLAM algorithm. Thus the TDL-NN is incorporated into the EKF-SLAM algorithm to predict and

update the vehicle’s state.
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1.4 RESEARCH GOALS

The primary aim of the research is to develop a methodology that is able to learn a vehicle’s motion for

use in a SLAM context. Specifically, the research aims to substitute the analytically defined models

with a model derived from available data. Hence the learning approach followed should be able to

learn any type of vehicle motion model. Determining the data type and format to learn the models

therefore forms a significant portion of the research.

Furthermore, the learned model should be able to provide predictions for the vehicle’s next state, given

previously observed states. Thus, the learned model should be usable in practical applications such as

recursive Bayesian estimators. An approach therefore needs to be defined to incorporate the learned

model in a SLAM system. Lastly, the learned model should provide superior estimates of vehicle pose

when compared to generalised analytical models. The learned model should also provide improved

estimates irrespective of the measurement model selected.

1.5 RESEARCH CONTRIBUTION

The research conducted extended the current knowledge in three areas: Learning abstract motion

models using historic state data, including the models within a recursive Bayesian estimator and

an evaluation methodology to establish whether such a motion model could be learned. The first

contribution provides answers on the required input data format, the neural network’s (NN) activation

functions and the amount of memory required. The frame-rates of real-world datasets were evaluated

and a strategy was used to sub-sample the data without losing the majority of training data. In addition,

the performance of the NNs were evaluated when vehicle control was included with the memory as

input.

Incorporating data-derived models within recursive Bayesian estimators formed the second contribu-

tion. As recurrent NNs can be considered an Nth-order Markov process, incorporating the learned

model into a first-order Markov process was addressed by defining the memory as internal to the

NN. The recursive Bayesian estimator could therefore be considered conditionally independent

of the NNs memory. A framework was created within the Robot Operating System (ROS) to test
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the EKF-SLAM implementation and to evaluate the implementation’s performance to other SLAM

implementations.

Thirdly, a methodology was created to determine the accuracy of the learned models on different types

of motion, with different controls and at different starting poses. The methodology employed a top-

down approach whereby each individual trajectory was evaluated, followed by trajectories containing

the same control velocities and finally, by motion type.

A last contribution of the research was a strategy to create simulated datasets using a differential drive

vehicle’s kinematic model. By training and evaluating the NNs’ performance on single motion types,

the learned models could be quantified by type. The primary advantage of the approach was that

additional training data for each control and motion type could easily be generated. Consequently, the

diversity required by the learning algorithm to reach usable solutions could also be quantified.

1.6 OVERVIEW OF STUDY

The research conducted provided a comprehensive study of the current literature, the proposed approach,

evaluation methodology and experimental results. A summary of the available literature on SLAM,

neural nets and model learning is provided in Chapter 2. In Chapter 3 the model learning strategy and

SLAM implementation are discussed in detail. Chapter 4 provides an overview of the training data

manipulation, evaluation methodology and metrics, as well as motivating the specific experiments

conducted. Chapter 5 provides the results of the various experiments conducted and Chapter 6

discusses the observations, answers the research questions and reviews alternative machine learning

strategies. Lastly, Chapter 7 provides a summary of the research conducted and discusses any alternative

approaches and future work to extend and improve the findings.
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OBJECTIVES

Various solutions to the SLAM problem have been implemented in recent years. Most extensions on the

fundamental approaches address shortcomings such as data association, computational complexity and

state estimates. Most SLAM implementations still depend on analytical models to provide estimates

for state transitions and observations. Learning data-derived non-analytical models for use during

localisation and mapping provides an alternative that could significantly improve estimates and increase

the flexibility of models.

The following chapter therefore provides a comprehensive review of the literature concerning both

SLAM and model learning. The SLAM algorithm’s fundamental implementations are detailed in

Section 2.2. Specifically, the EKF-SLAM and FastSLAM approaches are discussed in order to illustrate

the challenges faced to reach a solution. Next, implementations that provide improvements to some of

the deficiencies are detailed, along with any shortcomings that still needs to be addressed. Specifically,

the problems associated with sensor drift and motion models are described.

In Section 2.3 the various model learning methodologies that have been used to learn dynamical models

are investigated. Emphasis is placed on learning vehicle motion in order to predict the next state. The

strategies are categorised according to the type of information that the model aims to learn. Lastly,

Section 2.4 investigates the model learning strategies that have be applied in a SLAM context. The

different machine learning algorithms are discussed, along with the methods employed to incorporate

the learned motion models into SLAM.
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2.2 SIMULTANEOUS LOCALISATION AND MAPPING

The key objective of SLAM is solving the problem of placing a mobile robot (or vehicle) in an unknown

location, in an unidentified environment, and allow the vehicle to incrementally build a consistent

map of the environment. The robot should also be able to ascertain its location within the map during

traversal [1, 2, 3]. The theoretical problem of SLAM has been solved using a number of approaches in

various domains. However, there are still a number of problems concerning the practical realisation of

SLAM solutions [2].

The first general solution for SLAM emerged when probabilistic models were exploited to model

vehicle motion and the environment. Notably, the work of Smith, Self and Cheeseman [1] played a

crucial role in developing localisation and mapping techniques for mobile vehicles. In their paper, they

described the use of uncertain spatial information to create a stochastic map of the environment [1].

The stochastic map tied together all the uncertain spatial information, and, in doing so, incrementally

built a map as the information was obtained.

Creating such a map was achieved by using the movement of the robot along with the sensed objects

(also called landmarks) that were in the robot’s field of view. The solution was a two-step procedure that

first estimated the movement using the odometry of a vehicle, followed by an update (or correction) step.

The latter step compared new locations of the landmarks to previous observations to improve vehicle

motion [1]. A key assumption for the SLAM solution was that a high degree of correlation existed

between the landmark estimates and that these correlations would grow with successive observations.

The implication was that in order to reach a full, consistent solution, the joint state of vehicle pose and

landmark location was needed. In addition, every landmark and vehicle pose needed to be updated

after each new observation.

Incorporating all the landmarks into the state vector, however, meant that the computational complexity

scaled quadratically with the number of landmarks. Moreover, the approach assumed that the landmark

errors would not converge and thus never exhibit steady-state behaviour [2]. With the realisation

that the errors would converge and that the correlations between landmarks were crucial to finding

convergent solutions, the first true solution to SLAM was created.
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2.2.1 Fundamental SLAM approaches

Two main approaches are used to solve the SLAM problem. The first is commonly referred to as visual

SLAM implementations [24, 25], while the second is known as GraphSLAM [26, 27]. The difference

between the two is that visual SLAM implementations use visual landmarks to estimate vehicle pose

as a robot moves through an environment (or vice versa), while GraphSLAM implementations create a

graph where the nodes represent the poses and landmarks connected to each other. Another difference

between the two approaches is that visual SLAM implementations update the vehicle pose and map

during operation, while GraphSLAM approaches commonly exploit all the poses to estimate the full

trajectory before creating the map.

As a result, GraphSLAM can more readily be employed in large-scale mapping applications, as the

approach does not create maps before all the initial poses have been captured. A consequence of

capturing all the available information before mapping is that GraphSLAM approaches mainly operate

off-line. Visual SLAM, in comparison, uses odometry information to provide pose estimates, which

are correlated to the map or landmarks to provide an estimate of the transform between frames. Note

that both approaches adopts a state-space model to perform updates of the map and poses.

2.2.1.1 EKF-SLAM

The EKF-SLAM algorithm provides estimates of the vehicle’s state transition using analytical models

for the motion and environmental observations. Thus EKF-SLAM is very similar to the standard

EKF algorithm [28] for tracking problems, where the EKF linearises a Gaussian distribution using a

first order Taylor expansion. However, the EKF-SLAM algorithm has notable shortcomings, as listed

below:

1. Convergence of the map is subject to a lower bound, determined by the initial uncertainty in the

position of the robot.

2. As the correction step requires the joint covariance matrix of all the landmarks be updated, the

computation required scales quadratically with the number of landmarks detected.

3. EKF-SLAM is sensitive to incorrectly associated landmarks and observations, especially the

loop-closure problem where the robot returns to re-observe landmarks in the map.
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4. As EKF-SLAM linearises around the local mean to handle non-linear models, the algorithm can

run into substantial problems regarding consistency. Convergence and consistency can therefore

only be guaranteed for linear models.

2.2.1.2 FastSLAM

The FastSLAM algorithm [29, 30] removed the linear Gaussian assumption of EKF-SLAM for state

transition. Instead, the FastSLAM algorithm uses Monte Carlo sampling (a particle filter) [31, 32]

to represent the non-Gaussian probability distribution. However, the state space becomes markedly

high-dimensional, making the algorithm practically infeasible because of the amount of computation

required. To overcome the computational limitations, Rao-Blackwellization [33] is applied to the

state-space, which exploits the product rule of probability to partition the joint state space. The result

is that only the marginal probability needs to be sampled, which significantly reduces the computation

required.

Particle propagation for FAST-SLAM can be implemented in a number of ways. A frequently used

method is sequential importance sampling (SIS) [33] which weighs all the samples in the distribution.

Consequently, only samples with some minimum weight are propagated forward as the samples

approximate the actual distribution. A known problem with SIS is that the variance of the samples

grows as the approximation error increases. Re-sampling allows the weights to be returned to uniformity

at the cost of losing the history of the particle’s information. Thus SIS with re-sampling assumes that

the system becomes increasingly independent of the process noise from the preceding states.

2.2.2 Improvements to SLAM

Many SLAM solutions are built upon the basis of the aforementioned approaches. Recent work

to improve SLAM solutions include using better representation methods such as OctoMaps [34],

improving vehicle odometry estimates using embodied information [10] and applying visual odometry

to create dense 3D maps [35]. In addition, methods for handling dynamic environments [36], fusing

sensor data [37] and increasing the robustness of loop-closures [38, 39] have allowed SLAM solutions

to function in both indoor and outdoor environments. Most SLAM improvements can be categorised

as:
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1. Reducing the computational complexity.

2. Improving data association.

3. Extending environment representation.

4. Improving the accuracy of predictions.

5. Optimising the predicted trajectory (loop-closures).

The subsequent sections provide a brief summary of the improvements offered in each of aforemen-

tioned fields.

2.2.2.1 Computational complexity

As the SLAM problem scales quadratically with the number of landmarks in the map, computational

complexity is one of the core problems that had to be addressed. To decrease computational complexity,

methods such as linear-time state augmentation, sparsification of information, partitioning updates and

sub-mapping the environments have been used [3].

A notable SLAM algorithm that reduces an EKF-SLAM implementation to O(n) was proposed by Perez

et. al. [40]. Using a divide and conquer strategy to join local maps in a hierarchical fashion allowed

the algorithm’s computational complexity to scale linearly with an increase in map size. Furthermore,

the approach did not approximate the state as many other O(n) EKF-SLAM approaches.

2.2.2.2 Data association

Data association is the ease with which a landmark is recognized at different time instances and

how such landmarks are related to one another. Data association is particularly important when a

vehicle returns to a previously mapped environment, as incorrect association can lead to catastrophic

failures (also known as the loop-closure problem). Methods used to solve data association include

batch-validation, multi-hypothesis techniques and appearance-based methods [3].

Much research in appearance-based SLAM approaches have focused on increasing the recall rates of

previously visited locations while maintaining a very low number of false positives [6, 41, 39]. One of

the most successful approaches to achieve the recall rates was using a visual "bag-of-words" to match
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images to each other, as demonstrated by the fast appearance-based mapping (FAB-MAP) [6, 41] and

continuous appearance-based tracking (CAT)-SLAM [39] algorithms.

The CAT-SLAM algorithm made use of appearance-based place recognition along with spatial filtering

of geometric SLAM algorithms to create a continuous trajectory. In addition, loop-closure detection

was more robust because the vehicle’s pose was taken into consideration along with multiple subsequent

observations of the environment. Furthermore, the algorithm was able to map the environment using

either visual or odometry information, as well as a combination of the two.

The Realizing, Reversing and Recovering (RRR) algorithm [38], which is one of the more recent

SLAM variants, pays particular attention to place recognition and how to handle incorrect decisions.

The aim of RRR is to reduce the impact that any incorrect decision during loop-closures has on the

environment model. A consensus-based approach was therefore implemented to detect and correct

any faulty loop-closures. The approach used all the available sensor information to facilitate the best

possible correction. Furthermore, the RRR algorithm is able to handle data from multiple sessions and

incorporate new information into previously mapped areas that are spatially unconnected to create a

larger map.

An alternative approach that has been used to increase the robustness of data association is data

fusion. Strategies such as multi-sensor point estimate fusion SLAM (MPEF-SLAM) [37] fuses sensor

information from a monocular camera and laser range finder. MPEF-SLAM fused the state variables

and covariance estimates of a mono SLAM and laser SLAM implementation and back-propagated

the fused values to each individual SLAM process. By employing two parallel SLAM algorithms the

system increased robustness with regard to sensor failure. Furthermore, MPEF-SLAM demonstrated

an improvement in localisation and a reduction in the state’s covariance. However, the cost of these

improvements is an increase in computational overhead that does not allow for real-time localisation

and mapping.

An approach by Indelman et. al. fused sensor information by incorporating all the data into factor

graphs [42]. Factor graphs, in essence, provide connectivity between variable nodes and sensor

measurements. The advantage of using factor graphs is that new sensors are considered to be new

factors and can therefore easily be incorporated into the graph. Similarly, if sensor measurements

suddenly become inaccessible as a result of communication loss or faulty sensors, the system simply
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removes the factors from the graph. A difficulty in using these factor graphs is that sensors operate

at different frequencies. An inertial measurement unit (IMU), in particular, usually operates at a

much higher rate than a global positioning system (GPS), range sensor or camera. Hence, an IMU

pre-integration technique was used to reduce the frequency at which the measurements are taken.

Handling landmarks that change dynamically over time was one of the failure points of early SLAM

implementations. The reason was that early SLAM implementations assumed that the environment

would remain static during localisation and mapping. As a result, dynamic landmarks often had serious

effects on the system during localisation.

An EKF-SLAM system that was able to handle dynamic changes in landmark locations [36] was

recently implemented. A key assumption of the approach was that the dynamic landmarks were

independent of static landmarks. Thus the system classified the landmarks as new, existing, ingoing

or outgoing [36]. The new and existing landmarks were assumed to be static and the ingoing and

outgoing landmarks dynamic. The ingoing landmarks represented landmarks that were detected in

a different location from where the landmarks were previously observed, while outgoing landmarks

were used when a landmark disappeared from previously the observed location.

An alternative approach by Luo et. al. preformed dynamic object detection using the concurrent

outdoor SLAM and moving object tracking (SLAMMOT) algorithm [43]. The algorithm was derived

from graph-based SLAM with dynamic object detection solved through a multi-sensor fusion strategy.

To achieve recognition of the moving objects, two processes were required. The former fused the laser

measurements with stereo vision cameras to establish if two objects were the same, while the latter

associated moving objects with one another.

2.2.2.3 Environmental representations

Simple, discrete landmarks described by geometrically primitive structures are often unable to describe

complex environments satisfactorily. Improving the representation of an environment in which a

robot finds itself has consequently seen much improvement. Solutions such as delayed mapping,

non-geometric landmarks and trajectory estimation [3] are some of the implementations that effect

improvements to environmental representations.
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Occupancy grids were one of the first representations adopted in autonomous robotics to model an

environment [44]. As the name suggests, each map is represented in a grid format, of which each

grid cell could only be in one of two states, occupied or unoccupied. Occupancy grids are commonly

used in robot navigation tasks such as path planning and obstacle avoidance. A core limitation of

occupancy grids is that inconsistent maps are created due to the high-dimensional environment space

being decomposed into a one-dimensional estimation of occupancy [45].

Point-clouds [46] are used to model 3D environments and objects as simple points in 3D space.

However, point-clouds do have a few well-known limitations. The first, and largest, limitation is that

point-clouds cannot represent any type of volume, and thus no information can be gleaned about size

or shape without first relating a point to neighbouring points. Point-clouds also regularly have missing

data in the form of empty spaces, or "holes". The holes are not only due to point-cloud’s lack of

volume, but also to the resolution of the devices capturing the points as well as occluding objects.

Better 3D representations have therefore been developed to overcome the point-clouds’ limitations,

which include implementations such as octrees [47] and OctoMaps [34].

Octrees [47] are a hierarchical data structure that describes and models large 3-D spaces as cubic

volumes (commonly referred to as voxels). The tree structure represents each of the corners of a cube

as a node in the tree. To obtain a full tree structure each parent node can be recursively subdivided into

child nodes by using the corners. The procedure continues until the minimum voxel size is reached.

The advantage of octrees is that the tree can be cut at any level to provide a coarser representation of

the 3D space. Generally octrees are used to represent the occupancy of the cubes where occupancy

corresponds to a Boolean value stating whether the node is occupied or not. However, the problem

with octrees is that nodes in the tree exist that are uninitialised, which could represent both free and

unknown space.

Newer 3D representation techniques, such as OctoMaps [34] provide methods to handle large 3D maps.

OctoMaps improve upon point-clouds and octrees by creating discrete labels for each of the three

states in which the cubic volumes could be. These states allow the OctoMap to specifically represent

unmapped areas instead of just denoting the areas as free space. To handle dynamic environments

OctoMaps define occupancy using a probabilistic approach that adaptively changes occupancy as

observations occur.
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2.2.2.4 State predictions

Drift in sensor measurements over time is still one of the main failure points of SLAM [48]. As the

drift becomes larger, estimates for the movement model become less coherent and hence limit the

size of the map that can be generated. To reduce sensor drift, methods such as bundle adjustment

[49] have been used. Bundle adjustment seeks to produce the optimal 3D structure by estimating the

best possible parameters of the system. To achieve the optimal parameters requires minimizing a cost

function associated with the model. An alternative approach that has recently been used to reduce

odometry errors was to periodically reinitialise the system using "keyframes" [48]. Specifically, the

keyframes were used to relocalise the motion of a vehicle by using every second frame to estimate the

trajectory and account for drift reduction. Once estimated, the remaining frames are corrected by the

frames before and after them.

Embodied SLAM implementations exploited the embodied information inherent in a robot to improve

localization and mapping [10]. The advantage of incorporating embodied information into the SLAM

problem is that the interactions of a robot with the environment can be taken into account. This

SLAM implementation not only uses visual-visual and embodied-embodied associations, but also

visual-embodied information to improve localisation and navigation through a Rao-Blackwellized

particle filter. Furthermore, the implementation combines a pose-graph-based SLAM implementation

with particle filter SLAM to perform explicit loop-closing.

The Closed-form Online Pose-Chain (COP)-SLAM [50] algorithm aims to decrease computational

complexity by sparsifying a pose-graph into a pose-chain. An important property of pose-chains is that

each node has two distinct edges. The first represents successive edges, while the second represents

loop-closures to connect the current node to previous nodes. The pose-chains are optimized using

trajectory bending to provide relative transformations until an absolute transformation is reached. The

implication is that when a loop-closure encompasses the previous loop, the weights of the loop’s

transformation are lower than the weights not in the previous loop, making COP-SLAM piecewise

optimal with regard to loop-closures.

There are also a number of approaches that have taken vehicle motion into consideration with respect

to SLAM. A vehicle’s motion model was exploited within a MonoSLAM implementation to provide

relative pose constraints in [12]. MonoSLAM implementations are highly dependent on the number
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of features maintained within a map and consequently often have large computational overheads. By

calculating the relative pose constraints from the image points, vehicle motion could be limited. The

implementation differed from previous approaches by employing vehicle models with non-holonomic

constraints [12] (such as differential drives, skid steer models and Ackermann steering) instead of a

generalised odometry or velocity models. Thus the vehicle did not have free motion in each dimension.

One constraint experienced with the approach was that only 2D motion was estimated, thus limiting

the estimates to planar motion.

A similar approach was followed in [51] that used a single-track model. The single-track or bicycle

model is often used to simplify Ackermann steering models by reducing the number of wheels to one

front and one rear wheel. The single-track model was utilised within a local BA framework [49] to

improve pose estimates of the vehicles. To calculate the pose between frames a 1-point RANSAC

approach was followed, as described in [7]. In addition, the vehicle’s dynamical properties were taken

into consideration in order to account for vehicle side-slip. The experimental results obtained tested

both high and low velocity datasets. Their results indicated that using visual features, in-vehicle sensors

and a vehicle motion model provided the closest pose estimate to ground truth for the high-speed as

well as low-speed datasets.

Incorporating the dynamics of a vehicle into prediction models to improve dead-reckoning was also

proposed. One such approach investigated the effects of including the dynamics, such as wheel

slippage, during motion for a skid-steer drive system [11, 52]. Specifically, the approach determined

whether the inclusion of the geometrical relationships between the wheels’ Instantaneous Center of

Curvature (ICC) and the vehicle velocity could improve pose estimates. The approach demonstrated

how to experimentally obtain a bounded ICC [11] within the motion plane using genetic algorithms

[53]. The results showed a marked improvement in dead-reckoning when compared to the default

symmetric model.

Making use of multiple motion models to provide estimates during localisation extended some of the

previous work [54]. As different motion models performed better under certain conditions than others,

the authors proposed a framework to incorporate the models into SLAM by fusing multiple recursive

Bayesian estimators. Specifically, an Interacting Multiple Model (IMM) [55] was created that fused the

dynamic and kinematic models for a single-track vehicle. The kinematic model was used to represent

low-speed, low-slip conditions, while the dynamic model was used to represent high-speed, high-slip
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conditions. All the tests were conducted in the CarSim simulated environment, with the IMM filter

yielding fewer errors than each individual model over various driving conditions.

In [56] the IMM filter approach was extended to include sensor fusion for onboard inertial navigation

systems (INS) and a GPS. Similar simulations were implemented as in [55], along with practical

experiments with a car. The results demonstrated that dynamic models were less error-prone during

high-speed simulations, while kinematic models provided better accuracy during low-speed simulations.

Furthermore, the tests demonstrated that the IMM filter outperformed both individual filters.

2.2.2.5 State optimisation

Motion compensation refers to the correction of initial pose/trajectory estimates and involves exploiting

current knowledge of the vehicle’s pose to correct previous estimates to ensure consistency throughout

the localisation and mapping process. Motion compensation can be introduced using three distinct

methods. The first method that most SLAM implementations make use of is direct compensation

through filtering algorithms such as the EKF and particle filters [33]. Thus the estimate is implicitly

compensated through the limits defined within the filtering algorithm. A second technique that can be

used is a consensus-based approach [7, 57] that fuses multiple odometry measurements from various

sources.

Loop-closure is the third form of motion compensation that most SLAM implementations apply. As

detected loop-closures have fixed start- and end-points, a vehicle’s trajectory can be limited to certain

upper bounds [58]. A drawback to loop-closure rectification is that the limits are related to the length

of the loop. Thus as the loop’s length increases, the corrections become less accurate. The loss is

particularly observable in the middle of the loop, where most of the uncertainty lies [58].

In order to correct the aforementioned errors, back-end pose optimisation algorithms were used to find

a maximum likelihood solution for the trajectory [9]. Commonly, the optimisation algorithms operates

after a loop-closure has been detected to constrain the vehicle’s trajectory further. Many graph-based

SLAM approaches include an optimisation step to compensate any pose inconsistencies. In particular,

focus is placed on the inconsistencies between the pairwise pose estimates of pose-graphs. Non-linear
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optimisation methods such as Gauss-Seidel relaxation, Gauss-Newton and Levenberg-Marquart solvers

[59] are regularly used to correct the pose estimates.

The g2o graph-solver improved upon the aforementioned methods by exploiting the structure and

sparsity of graphs [9]. This included removing the assumption that all the parameters were part of

an Euclidean space and representing the parameters in an alternate space from the mean increments.

An alternative to g2o is the Tree-based netwORk Optimizer (TORO) [8] algorithm that makes use

of maximum likelihood with stochastic gradient descent to ascertain the most likely estimates of the

nodes in the graph. Furthermore, the nodes are parametrised using a tree structure where the difference

in pose is used between two nodes.

2.3 MODEL LEARNING

Recently there have been a number of implementations that learn some form of a vehicle motion model.

Popular among these methods are models that provide predictions for robotic arms as well as vehicle

motion. Generally the learning algorithms can be categorised into four types: Classification, parameter

estimation, control estimation and model estimation.

Classification focuses on identifying the type of motion detected and is used to identify the type of

vehicle (such as a car, motorcycle, truck, omni-steer, etc.) or type of motion (straight-line, rotation,

gradual turn, etc.). Parameter estimation, in comparison, learns to estimate a dynamical system’s

parameters in order to improve accuracy.

Control and model estimation are frequently used interchangeably in a model learning context. How-

ever, a distinction does exist between the two. Learning control can be equated to learning a plant

model, which in the case of no input, provides output identical to the input. Thus vehicle control

can learn the changes in state given control input. Model estimation, on the other hand, refers to

learning a complete model. Hence model estimation is able to provide estimates of the new state

given the previous state (which may include control). The subsequent sections describe some of the

implementations employed to achieve model learning.
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2.3.1 Classification

By identifying the type of vehicle or motion observed, the correct analytical model can be used to make

predictions. A vehicle classification strategy was implemented in [16] that categorised the vehicles

and corresponding motion paths in order to perform traffic flow analysis on highways. The approach

used a vehicle’s track patterns from live video to classify eight different types of vehicles. Furthermore,

blob features were transformed using linear discriminant analysis (LDA) [60] and a weighed k-nearest

neighbour classifier in order to ease identification.

Once detected, the vehicle was tracked through a standard Kalman filter. Using the aforementioned ap-

proach, both flow and behaviour analysis was used to determine the vehicle’s speed and predicted path,

as well as to detect anomalies in the environment. The experimental outcomes of [16] demonstrated

that vehicle speed and path could regularly be estimated. However, the system failed when vehicle

occlusion or irregular motion was observed.

Identifying a vehicle’s motion-mode energy was proposed by [17]. The purpose of the research was

to control the vehicle’s suspension depending on the mode in which the vehicle found itself. The

motion-modes were identified by a NN using the suspension deflections as input. Three motion-modes

needed to be identified by the NNs: Ground excitation, a fishhook manoeuvre (steering wheel input)

and combined braking and steering operations. Once identified, the correct strategy could be applied

for vehicle handling. The approach compared the NN’s performance to a motion-mode energy method

and demonstrated that the correct motion-mode could be identified under various conditions.

2.3.2 Parameter estimation

A number of approaches have learned some of the characteristics of vehicle models. One notable

approach is that of Sun, Wang, Er and Liu [19], which applied extreme learning machines (ELC)

[61] to track surface vehicles with unknown dynamics. The general idea of an ELC is to randomly

generate hidden nodes in a single feed-forward NN [62] and analytically determine the weights using

a pseudo-inverse technique. The main advantage ELCs is that no iterations are required over the data

to resolve the hidden node parameters, as randomness is embedded into the ELC’s regressors.
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The authors of [19] used such a network to determine unknown dynamics and external disturbances

of 3-DOF (degrees of freedom) surface vehicles (i.e. boats, ships, etc.) by adopting a sliding surface

of tracking errors and first derivatives. Consequently, unknown dynamics and uncertainties were

encapsulated by a non-linear function and used as system states. The result was an ELC scheme

that did not require any prior information of the dynamics for vehicle tracking and approximation.

Simulation results of the scheme revealed that the NN could estimate the dynamics of the system

within 20-25 seconds.

Learning the dynamic parameters for unmanned aerial vehicles was investigated in [18] by incor-

porating NNs with an Iterative Bi-Section Shooting (IBSS) methodology. In their work, NNs were

trained to estimate a subset of the parameters in order to ease the computational load. Once estimated,

the system continued to bisect the remaining parameters until the estimates reached a predefined

minimum. The resulting structure required less bi-sectioning loops to reach convergence. Furthermore

the NN-IBSS method consistently provided errors that were half an order of magnitude less during

parameter estimation when compared to individual IBSS and NN methods.

2.3.3 Control

Learning how control parameters affect dynamical systems is one of the first model learning strategies

followed. One of the first instances of learning control was by learning plant models using NNs [20].

Both multi-layer and recurrent networks with various configurations were used to model the non-linear

dynamics inherent in plant models. A core assumptions of the approach was that the outputs were

bounded within a certain interval. The experimental results demonstrated that non-linear control could

be learned by using the correct configuration and learning rates.

Batch vs. online learning for non-linear control was evaluated by [63] using both multilayer and

feed-forward networks. Most of the work was based on [20], with the focus on establishing what

strategy best suited learning plant models for control. Online training was demonstrated to reach

similar error rates to batch training, with online training providing a more stable decrease in error over

the epochs.
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Learning the control of robotic arms with NNs was investigated by [13, 64]. In their work, a sliding

motion on the surface was applied in order to adaptively control the arm for different payloads. While

the results demonstrated that control could be learned, both contained significant errors during initial

control/start-up. The strategy was further extended by [65], where two distinct NNs were trained, one

for equivalent control and one for corrective control. Although the work demonstrated that the strategy

could smooth arm control, a direct comparison of the arm’s accuracy was not provided.

An adaptive strategy for inverse control of dynamic systems was created using NNs [66]. The approach

divided adaptive filtering into three main components: Identifying the dynamical system, controlling

the system’s response and a disturbance canceller to minimise output disturbances. The dynamical

system was modelled using a feed-forward NN, while the disturbance canceller was modelled using

a TDL. Hence a recurrent NN was formed that re-incorporated the previous outputs into the system.

While system identification could be learned almost perfectly, the feed-forward tests revealed that the

system could only provide correct predictions by including a copy of the controller to estimate the

disturbances. Thus the algorithm was still dependent on the actual plant during execution.

An adaptive controller that compensated for wheel-slip and external forces was presented by [22]. The

controller made use of NNs to provide estimates of wheel slip of a differential drive vehicle. Online

training was implemented by assuming that the error was bounded by the desired trajectory and actual

trajectory output from the adaptive controller. Thus the NN could account for any erroneous forces

acting on the vehicle by adapting the weights. Simulations conducted in Matlab demonstrated that the

adaptive controller quickly stabilised to account for the errors while still updating the weights when

necessary. However, practical experiments still need to be conducted to verify the improvements.

2.3.4 Model estimation

An approach to incrementally learn motion patterns and predict future motion was proposed in [14, 67].

The implementation allowed motion models to be learned in parallel with the predictions by using

Hidden Markov Models (HMM) that can be grown as the observations increase (also known as

Growing HMM). The implementation employed a topological map that had discrete state-spaces

between state transitions, allowing a transition only if the states were neighbours. The topological

map would then be updated after every observation while keeping the number and distance between
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nodes to a minimum. Both simulated and real-world experiments were conducted in [14, 67], using

visual tracking of vehicles in a parking environment. The approach was compared to an expectation

maximisation (EM) and hierarchical fuzzy K-means (HFKM) clustering algorithms and shown to

provide less prediction errors over 200 tested trajectories. Additionally, the actual model size of the

Growing HMMs were significantly less than both the EM and HFKM algorithms.

2.3.5 Other types of learning

Bootstrapping consists of designing agents that learn models without any prior knowledge to achieve

useful tasks. Using sensorimotor cascades (i.e. the actuators, external world and sensors), models for

robots were learned using such an approach [68]. The primary focus was on designing agents that

could learn any robot’s dynamics or sensor model where the observations were high-dimensional and

the dynamics non-linear. These sensori cascades were learned using diffeomorphisms (a "nice" smooth

invertible mapping) of the sensory elements’ space and used to provide long-term predictions.

The learned agents’ prediction were extended to include motion planning in [69]. To accomplish

learning, each action of a diffeomorphism needed to the associated in the observation domain. A

generic search algorithm was implemented based on graph searching techniques. Furthermore, as

node expansion is costly, a method to identify a redundant motion plan was implemented along with a

method to pre-compute composite actions.

The bootstrapping algorithm was expanded to bilinear models for simple vehicles [70]. The vehicle

models, which were an idealisation of mobile robots, were considered along with a set of sensors. The

sensori dynamics were approximated by non-linear systems that assumed an instantaneous bilinear

relation among the observations, commands and changes in observations. The robot was therefore

described by the body (actuators and sensors) and the environment, while the vehicle itself was

described as the vehicle body (the kinematics and sensors) and the environment. The outcome of

the work demonstrated that the vehicles were able to perform servoing (or homing) using individual

sensors.
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2.4 MODEL LEARNING IN SLAM

Model learning approaches have also been applied in a SLAM context. The following section discusses

some of the most notable approaches that have been successfully used within a localisation and

mapping framework.

2.4.1 Gaussian processes

There have been a number of approaches that exploited Gaussian processes (GPs) to learn model

dynamics. Notably the work of [71, 72] used GP dynamical models (GPDM) to learn the non-

parametric models for human motion. In the aforementioned approaches each human pose was defined

by a number of Euler angles for various joints along with the torso and translational velocities. A

motion capture system was used to collect training data for each of the motions. The actual learning

is based on a GP latent variable model [73] to reduce the latent positions into a generative model

for the poses. Hence training the GPDM requires estimating the latent positions as well as kernel

hyper-parameters. Once learned, the GPDM could be used to track people by extracting the locations

of joints in image data.

GPs have also been employed to learn transitional and observational models in Bayesian filtering

applications [23, 74]. The Bayesian filters utilised consisted of an EKF, unscented Kalman filter

(UKF) and a particle filter. The GP was trained using the ground truth states as output, with the state

transitions (deltas) and control as input. An application to track a robotic blimp using the trained GPs

was demonstrated to show that the GPs could be sufficiently trained. One caveat of the approach in

[23, 74] was that the GPs could not provide accurate estimates for test data whose distance was not

within the training data’s limits. To overcome the problem of a narrow prediction interval, a parametric

model was included in the transitional and observational models (also called an enhanced-GP process).

The algorithm therefore depended on both the learned GP model as well as an analytically defined

model to provide predictions.

Other GP approaches that have been used in a SLAM framework consist of providing pose estimates

given magnetic sensor readings [75], [76] and Wi-Fi-based sensor readings [77, 78]. In [76] and [75] a

Rao-Blackwellized particle filter was used to provide pose estimates, while a GP was employed to
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model the magnetic field map. The magnetic field vector was modelled by three independent GPs to

generalise the multivariate normal distributions into metric sensing space. The measurements were

then used to correct the odometry information by using the deviation in the magnetic fields. However,

the method relied heavily on loop closures to provide proper compensation.

Wi-Fi-SLAM [77], in comparison, made use of GPs to provide pose predictions by exploiting Wi-Fi

signals. The approach used the signal strength to determine the latent variables (2D xy-coordinates) of

the device and assumed that the locations and signal strength were highly correlated. The implication

is that similar signal strength observations would be observed at similar locations and that locations

near one another should observe similar signal strengths. Furthermore, the signal strength maps had

to be built without relying on location data, thus treating the locations as hidden/latent. In [78] the

computational complexity of Wi-Fi SLAM was improved by using a GraphSLAM approach.

Lastly, estimating a continuous-time non-linear batch state using a non-parametric model was addressed

in [79]. By combining a GP with Gauss-Newton optimisation the scarcity of measurements was

addressed while simultaneously providing a transitional model dependent on the physical properties

of the system. Both simulation and experimental results demonstrated an improvement over the

Gauss-Newton approach when using the system in a SLAM context.

2.4.2 Neural networks

There have also been various approaches to incorporate NNs into the SLAM. One such approach was

implemented in [21], where a NN was combined with an EKF to improve the pose estimates. The

approach used a NN as a plant for the EKF in order to model the non-linear errors, as an EKF assumes

white Gaussian noise [80]. Hence the NN augmented the EKF state predictions by modelling the errors

inherent in the transitional model. An Ackerman steering system traversing a 100m × 100m map was

used to test the validity of the system [21]. The results showed no significant improvement with an

unbiased model. However, there was some improvement in bounding the errors over a standard EKF

when a biased model was used. Furthermore, the biasing was based on known vehicle parameters and

assumptions and would therefore not necessarily hold for other dimensions or vehicle models.

An improvement on the work in [21] was suggested by [81]. The approach differed from the previous
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implementation by changing the input vector of the NN to only operate on the control command instead

of the robot’s pose. In addition, the NN’s structure was altered and the activation function changed to a

hyperbolic tangent. The NN could therefore model the velocity error correction vector to compensate

for the vehicle’s velocity. A clear improvement over a standard EKF when using a differential drive

robot was demonstrated using this approach.

The NN odometry error estimator in [21, 81] was improved by using a FastSLAM implementation

instead of EKF-SLAM [82]. Simulations based on an Ackermann steering model and the DLR-

Spatial Cognition dataset [83] were used as verification of the improvement over a Fast-SLAM 2.0

implementation. Another variant on the previous approaches is using a recurrent NN based on an

Elman network [84] to improve the state estimates [85]. The results demonstrated an improvement over

a general EKF-SLAM implementation as well as the NN-EKF implementation detailed in [21].

Radial basis function NNs have also been used for trajectory tracking in robotic manipulators [86].

Specifically, the approach was used in cleaning and detecting robots for control using sliding modes. A

three hidden layer NN was used where the weights were updated using Lyapunov’s stability theorem.

This allowed for a robust, adaptive controller whose errors converged to a specified precision.

Adaptively adjusting the error covariance in an EKF by using NNs was investigated by [87, 88]. The

NNs were trained to adaptively adjust the amount of noise within both the transitional and measurement

models based on the amount of error between the theoretical and actual covariance in the innovation

process. When such an error was sufficiently large the NN adjusted a scaling factor for both noise

sources in order to eliminate the discrepancy.

Recently a new SLAM approach called Neuro-Evolutionary Optimization SLAM (NeoSLAM) was

published that employed NNs with evolutionary programming to learn the motion error [15]. To train

the NN, the input vector was defined as the difference between two consecutive poses of the robot

along with the feature positions at each pose, while the output vector was the odometric error of the

robot. As real-world experiments do not have ground truth, an evolutionary optimization algorithm

was applied to evolve the weights using a cost function to estimate the ground truth [15]. Thus the

NeoSLAM algorithm was able to implicitly model the robot kinematics and sensor characteristics.

From their experiments, NeoSLAM outperformed both EKF-SLAM and FastSLAM [29].
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2.5 SUMMARY

While numerous approaches have been aimed at improving vehicle motion and the corresponding

predictions, most only aim to reduce the error of the prediction or by identifying the exact mode

of operation. Approaches that focus on learning the motion model’s dynamics require some bias

or additional plant model to provide predictions outside the training interval. As such, the models

that were learned do not explicitly encapsulate the entire problem spectrum and can therefore not be

considered a fully learned motion model.

The aim of the subsequent research is to determine if a full motion model can be learned and incor-

porated into a SLAM system. Specifically, focus will be placed on learning models using NNs. The

approach differs from the other NN implementations (such as NeoSLAM [15]) by using the vehicle’s

current state to predict the next state instead of the odometric error. Furthermore, instead of using

knowledge of the vehicle, such as the Euler angles for various joints and translational velocities [71],

memory of the state is used to learn the motion dynamics.

In addition, the research takes data formatting into consideration, including preprocessing steps required

to provide usable training data, the amount of memory required to learn the vehicle’s dynamics and

the creation of simulated datasets to cover the problem space. Lastly, an evaluation methodology to

determine the models’ performance and types of motion that could be learned is described.
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3.1 CHAPTER OVERVIEW

The following chapter provides an in-depth description of the model learning approach adopted in this

work to learn a vehicle’s motion model. In addition, an approach is defined to incorporate the learned

model into a recursive Bayesian estimator for use in SLAM. Using the general motion kinematics and

dynamics, the variables of interest (state) are identified in Section 3.2. The higher-order dynamics are

related to the base state variables and described as the change over the variables through time. Thus

the model learning strategy is detailed in Section 3.3 by using a number of previous base variables in

order to model the higher-order dynamics.

Section 3.4 describes the learning strategy using TDL-NN [66] with two types of inputs. The first con-

siders using only the vehicle’s state memory to learn the motion model, while the second incorporates

vehicle control with the memory. Parameters that affect learning, such as momentum, annealing and

activation functions, are discussed and the parameter’s impact on robustness explained.

Incorporating the learned model into a SLAM algorithm is detailed in Section 3.5 after the two learning

strategies have been defined. The model’s predictions are analysed from a statistical viewpoint and

related to an nth order Markov model. The assumptions used to create a first-order Markov model are

stipulated so that the model can be incorporated into an EKF-SLAM system. A full description of

the SLAM algorithm with 3D landmarks is subsequently provided and related to the learned model.

Figure 3.1 provides an overview of the general approach employed.



CHAPTER 3 APPROACH

Previous
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Figure 3.1. Overview of the procedure to incorporate a learned model into a recursive Bayesian

estimator. The previous vehicle states (memory) is used by the learned model to provide a prediction.

The recursive Bayesian estimator fuses the prediction with the environmental observations (landmark

locations, etc.) to produce the current vehicle state. The current state then becomes part of the previous

states and the estimation procedure continues.

3.2 MOTION KINEMATICS AND DYNAMICS

Any vehicle’s motion can be described by taking the kinematic or dynamic characteristics into consid-

eration. The kinematics are subject to the vehicle’s dimensions, position, orientation and time. Any

other variables represented in a kinematic setup are related to either one or more of the aforementioned

variables. A vehicle’s dynamics, in comparison, uses additional variables to provide a more accurate

representation of the vehicle’s motion. Specifically, dynamic equations incorporate a vehicle’s mass,

external forces, pose, dimensions and time into the model. Other variables such as friction are also

often included in higher-order dynamic equations.

The following section describes two of the most commonly used motion models employed in a SLAM

framework. The first is an odometry-based model that is directly linked to a vehicle’s odometry control,

while the second is a kinematic model of a differential drive vehicle. Both can be used as a baseline

for comparison when evaluating the performance of a learned motion model during SLAM. For

more information regarding the dynamic equations for a differential drive the reader is referred to

Addendum C.
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3.2.1 Odometry motion model

An odometry-based motion model defines the vehicle’s state (xk) as the previous state that received

some control input [5]. Consequently, if no control input is provided to the analytically defined model,

the state will remain the same (see (3.1)). For odometry-based models the control input (uk) is defined

as the change in a vehicle’s position and orientation between subsequent measurements. As such, the

transitional model for an odometry-based model can be defined as

xk = f (xk−1,uk)

=


xk−1

yk−1

θk−1

+


cos(uθ ) −sin(uθ ) 0

sin(uθ ) cos(uθ ) 0

0 0 1




ux

uy

uθ

 , (3.1)

where:

• xk−1 and yk−1 is the vehicle’s previous position in 2 dimensions,

• θk−1 is the vehicle’s previous orientation (yaw),

• ux and uy is the change in the vehicle’s position,

• uθ is the change in the vehicle’s orientation.

As any control applied to a vehicle model contains a certain amount of noise, a probabilistic definition

of motion is needed. Specifically the probability p(xk|xk−1,uk) needs to be determined for each

prediction. Incorporating the predictions into a recursive Bayesian estimator such as an EKF requires

linearisation of the non-linear function through first-order Taylor expansion. Consequently, the

Jacobians for both the state (3.2) and control (3.3) were calculated. The previous state’s variables are

therefore independent of each other, while the control is highly dependent on the change in yaw.
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A =
∂ f (xk,uk)

∂x
=


1 0 0

0 1 0

0 0 1

 (3.2)

U =
∂ f (xk,uk)

∂u

=


cos(uθ ) −sin(uθ ) −ux sinuθ −uy cos(uθ )

sin(uθ ) cos(uθ ) ux sinuθ −uy cos(uθ )

0 0 1

 . (3.3)

3.2.2 Differential drive kinematics

The following section details the general kinematic motion for a differential drive vehicle [89]. As stated

previously, kinematic motion depends on a vehicle’s dimensions, pose and control. For a differential

drive vehicle, the kinematics can be related to the vehicle’s instantaneous center of curvature (ICC) and

each wheel’s velocity (vr and vl). In turn, these variables depend on the base-length of the vehicle (lb) ,

the signed distance from the ICC to the vehicle’s center (R), the heading angle (θ ) and the rotational

velocity (ω). Figure 3.2 provides the general kinematic setup for a differential drive vehicle.

From the dependencies, one can define the rotational velocity (ω), forward velocity (v f ) and signed

distance from the ICC to the vehicle’s center (R) as a function of each wheel’s velocity and the

base-length as

ω =
vr− vl

lb
, (3.4)

v f =
vl + vr

2
, (3.5)

R =
lb(vl + vr)

2(vr− vl)
. (3.6)

Using the aforementioned results, each wheel velocity is therefore calculated as:
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X

Y
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(x,y)
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R ω

Figure 3.2. Differential drive kinematic setup using world coordinates as reference (x,y). The vehicle’s

characteristics depend on the base-length (lb), instantaneous center of curvature (ICC) and each wheel’s

velocity (vr and vl). In turn, these variables depend on the signed distance from the ICC to the vehicle’s

center (R), the heading angle (θ ) and the rotational velocity (ω).

vr = ω

(
R+

lb
2

)
, (3.7)

vl = ω

(
R− lb

2

)
. (3.8)

From the equations, the ICC of a differential drive vehicle can be calculated. By using the vehicle’s

current pose and and the signed distance to the ICC, the exact location of the ICC is defined as:

ICC =

xk−Rsinθ

yk +Rcosθ

 . (3.9)

A vehicle’s current pose can therefore be defined in terms of the previous pose, the ICC, rotational

velocity and time increment. As such, the general kinematic equations for a differential drive are [89]:
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xk

yk

θk

=


cos(ωk∆tk) −sin(ωk∆tk) 0

sin(ωk∆tk) cos(ωk∆tk) 0

0 0 1




xk−1− ICCx

yk−1− ICCy

θk−1

+


ICCx

ICCy

ωk∆tk

 . (3.10)

Using (3.10), the probability model p(xk|xk−1,uk) can be defined. For a differential drive’s kinematic

model the control input is defined as the left and right wheel velocities and the change in time.

However, many datasets provide control in terms of the forward and rotational velocity instead of

the wheel velocities. Thus, by substituting the forward velocity and rotational velocity into (3.6), the

kinematics can be redefined as shown in (3.11).

f (xk,uk) =


xk−1

yk−1

θk−1

+


cos(ω∆t) −sin(ω∆t) 0

sin(ω∆t) cos(ω∆t) 0

0 0 1




v f

ω
sinθk−1

−
v f

ω
cosθk−1

ω∆t

+

−

v f

ω
sinθk−1

v f

ω
cosθk−1

0

. (3.11)

As with the odometry model, incorporating the model into a recursive Bayesian estimator requires

linearisation. Hence the Jacobians for both the state A (3.13) and control U (3.12) variables were

calculated. Observe from the equations that both the state and control variables are now dependent

upon each other. Note that for readability (3.12) is written as a 9×1 vector instead of a 3×3 matrix

and the subscript k is removed from all the variables.

U =
∂ f (xk,uk)

∂u

=



sin(θ)
(

cos(ω∆t)
ω

− 1.0
ω

)
+

sin(ω∆t)cos(θ)
ω

v f cos(θ)
ω

(
∆t cos(ω∆t)− sin(ω∆t)

ω

)
+

v f sin(θ)
ω

(
1.0
ω
−∆t sin(ω∆t)− ∆t cos(ω∆t)

ω

)
−v f sin(θ)sin(ω∆t)+ v f cos(θ)cos(ω∆t)
cos(θ)

ω
(1− cos(ω∆t))+

sin(θ)sin(ω∆t)
ω

v f sin(θ)
ω

(
∆t cos(ω∆t)− sin(ω∆t)

ω

)
+

v f cos(θ)
ω

(
∆t sin(ω∆t)+

cos(ω∆t)
ω

− 1.0
ω

)
v f sin(θ)cos(ω∆t)+ v f sin(ω∆t)cos(θ)

0

t

ω



.

(3.12)
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A =
∂ f (xk,uk)

∂x
=


1 0 cos(ω∆t)

(v f

ω
−

v f

ω

)
cos(θk−1)−

v f

ω
sin(ω∆t)sin(θk−1)

0 1 cos(ω∆t)
(v f

ω
−

v f

ω

)
sin(θk−1)+

v f

ω
sin(ω∆t)cos(θk−1)

0 0 1

 (3.13)

3.3 PREREQUISITES FOR LEARNING

In order to learn the dynamics or kinematics of a vehicle the structure of the equations needs to be

taken into consideration. Most models define the next state of a vehicle in terms of the previous or

base state. This ensures that as the vehicle’s motion progresses the variables are updated to reflect the

most recent state. As such, learning a vehicle’s motion model can be considered a regression problem

where the predicted vehicle state is dependent on the previous state.

Learning how states transition from one to the next requires that each state variable be used during

training along with the vehicle’s kinematics, higher-order dynamics and control variables. However,

the variables are difficult to calculate analytically for large training durations. Furthermore, any sensor

used to capture the information will only be relative to the sensor’s placement on the vehicle, thus

offering subjective information. Since higher-order variables such as velocity, acceleration, torque

and inertia can be related to the base variables, one can eliminate the higher-order variables from

consideration during the learning process. Thus removing the higher-order variables during learning

required that the dynamics be learned implicitly.

Most of the higher-order variables depend on the change in time and can therefore be exploited during

the learning process. By using multiple previous states of the lower-order variables, a reasonable

representation of the higher-order variables should be learnable. As an example, consider a vehicle’s ac-

celeration, which is dependent on the change in velocity over time ( dv
dt ) and therefore dependent on the

change in position ( d2x
dt2 ). If multiple vehicle positions are known at certain time instances, the velocity

and acceleration can be calculated. Similarly, if multiple previous states are included during training,

one should be able to learn the interaction between the variables. Thus, the learning algorithm must be

able to satisfy (3.14), where xk is the state of the vehicle, the function f (xk−1, ... ,xk−n) is some abstract

function that was trained to represent a vehicle’s motion and n is the number of previous states included.

xk = f (xk−1, ... ,xk−n). (3.14)
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3.3.1 Relaxation of the constraints

The previous section provided a methodology to learn a vehicle’s motion model using only the base-

state variables. However, as noted with the differential drive’s kinematics, the motion depends on

the type of control provided as well as the vehicle’s structure. A logical alternative to the previous

approach would therefore be to include control variables as input during training.

Note that any control input will affect the base-state variables (or pose) and will therefore also be

contained implicitly within the trajectory of a vehicle, as explained in the previous section. However,

the learning process may be overburdened in learning the exact relationship between all the base state

variables. In such a case, including control variables may reduce the number of relationships that need

to be learned by the algorithms to provide accurate predictions.

Equation 3.15 therefore provides an alternative function that can be used to learn a vehicle’s motion.

From the function one can see that only the state’s control input (uk) is added. As an example, the

control can be provided as the previous state’s forward and rotational velocity to match a differential

drive’s kinematic model.

xk = f (uk−1,xk−1,xk−2 ... ,xk−n). (3.15)

3.4 MODEL LEARNING USING NEURAL NETWORKS

3.4.1 Primary approach

Learning an abstract function such as (3.14) can be implemented with NNs. By using a TDL-NN

configuration, a number of previous states can be kept in memory to ensure that the higher-order

variables are modelled during estimation [66]. TDL-NNs are very similar to recurrent neural nets

(RNN) due to the fact that both keep some history of the previous inputs. The difference between the

two is that RNNs keep some function of the previous inputs as memory, while TDLs keep the actual

inputs as memory [84, 20].
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In general, a TDL-NN can be described using (3.16) where xk is the state vector, Nh and No are the

hidden and output weight matrices and tanh(·) and s are the activation functions and scale factors,

respectively. The variables encapsulated by the state will therefore only use the base variables. For 2D

motion only the vehicle’s pose will be considered as the state (i.e. [x,y,θ ]).

xNN
k = FFNN (xk−1, ... , xk−n,Nh,No)

= tanh
(

tanh
(xk−1, ... , xk−n

s
Nh

)
No

)
s. (3.16)

Figure 3.3 provides the general configuration for the TDL-NNs where the estimate is dependent on the

three previous states. As shown in the figure, the memory of the NN is assumed to be internal to the

NNs structure by making use of a shift register. Consequently, the NN operates in much the same way

as an Elman net [84], the difference being that instead of using the outputs from the hidden layer as

memory, the actual states are used as memory.

3.4.2 Alternative approach

An alternative network training approach is also possible using (3.15). A similar reasoning as the

primary approach is followed, with control added as input to the NN. For completeness (3.17) provides

the function used by the NNs and Figure 3.4 the corresponding network structure. Note that the control

input is not included in the shift register.

xNN
k = FFNN (uk−1,xk−1, ... , xk−n,Nh,No)

= tanh
(

tanh
(uk−1,xk−1, ... , xk−n

s
Nh

)
No

)
s. (3.17)

3.4.3 Training

The advantage of using a TDL is that one avoids the vanishing gradient problem [90] that occurs

in other RNNs during training. Also, as the structure remains feed-forward, any standard training

algorithm can be applied to learn the model. A third advantage of the structure is that all the input

states can be calculated before training commences, removing the need to calculate the contents of
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xk−1

xk−2

xk−3

Bias

Memory/

Internal

state

xNN
k

Figure 3.3. Basic TDL-NN configuration where the output is dependent on three previous states.

the shift-register during training. Thus either batch or online training methods can be used while still

maintaining consistency.

In order to train the NNs, a gradient-descent algorithm (back-propagation) was implemented [91].

As is conventional with the back-propagation algorithm, both learning-rate and momentum factors

were included in the training algorithm to limit overshoot and oscillations. Algorithm 3.1 provides

the general procedure for an online back-propagation approach using a tanh activation function

where:

• Ah,Ao are the hidden and output layer’s activations,

• Wk and Wj are the quantities by which the weight matrices have been adjusted,

• Go and Gres are the output and residual gradients,
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uk−1

xk−1

xk−2

xk−3

Bias

Memory/

Internal

state

xNN
k

Figure 3.4. Basic TDL-NN configuration where the output is dependent on the control and three

previous states.

• lr is the learning rate,

• m is the momentum,

• ns is the number of training samples.

To increase robustness of the training algorithm further, an annealing factor was included that decreased

both the learning-rate and momentum factors as the training epochs progressed [92]. The reason for

including the annealing factor is that the NNs will eventually reach and oscillate around a local

minimum. By lowering the amount of adjustment to the weights, the NNs should be able to reach a

new local minimum, bringing NNs closer to an optimal solution. Thus systematically decreasing the

adjustment factors will lead to a lower convergence value and consequently better representations for
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Algorithm 3.1 Back-propagation

1: for i in ns do

2: Ah,Ao = FFNN(input[i],Nh,No)

3: error = target−Ao

4: SquaredError += error2

5: Go =
∂x
∂ t

(tanh(Ao))

6: δk = Go× error

7: Ek = Ah×δk

8: Wk = (−1)× lr×Ek +m×Wk

9: No+= Wk

10: Gres = δk× tanh(Ah)

11: δ j = Gres× (No×δk)

12: E j = input[i]×δ j

13: Wj = (−1)× lr×E j +m×Wj

14: Nh+= Wj

15: end for

the actual model.

One drawback, however, is that the annealing factors could adjust the learning-rate and momentum

factors too quickly, leading to slower convergence and (possibly) worse models. To limit the adverse

affects that the annealing factor may have on training, the annealing factor was only applied at intervals

during training. As a result, the NN should reach a relatively stable error before these factors are

lowered. Equation 3.18 provides the equations used to anneal each of the factors systematically. Let

lr(curr) =
lr(prev)

1+
k
T

, (3.18)

where:

• lr(curr) is the current learning rate,

• lr(prev) is the original learning rate,

• k is the current epoch number,

• T is the annealing factor (epochs).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

38



CHAPTER 3 APPROACH

To confirm that the general back-propagation algorithm works as expected, unit tests were im-

plemented that solved a number of simple learning problems. These test problems included the

XOR-problem, learning cosines and an unbounded linear problem. The functions used to verify that

the back-propagation algorithm was able to find a solution were

y1 = xa⊕ xb, (3.19)

y2 = sin(ωt), (3.20)

y3 = αt−β . (3.21)

where:

• xa and xb is the input to NN (binary symbols of either +1 or −1),

• t is the input to the NN (floating point values),

• omega is the rotational velocity (chosen as π),

• α and β where arbitrary constants (chosen as 1.8 and 2.4),

• y1 to y3 is the output of the respective NNs.

3.4.4 Activation functions

The type of activation function used during training influences the complexity of functions that can be

learned. For gradient-based learning approaches the most common activation function applied is the

tanh function. Other functions that are also often used are the sigmoid, linear, sinusoid and rectified

linear unit (ReLU) activation functions [93]. Each of the functions are used primarily based on the

type of information available as well the type of outputs required.

The sigmoidal activation functions are commonly applied when input data is between the interval [0,1],

while the sinusoid activation functions are commonly used when the input values form a repeating

pattern. Linear and ReLU activation functions are adopted when the input data range is unknown

or when the data cannot be properly scaled. The difference between the linear and ReLU activation

function is that the linear activation’s working interval is [−∞,∞], while the ReLU function’s interval

is [0,∞]
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While the aforementioned activation functions significantly alter the behaviour of the NNs, it should

be noted that only the sigmoidal activation function offers similar performance with regard to the

tanh function using gradient descent algorithms. However, as the NNs needed to solve a regression

problem, other functions could potentially be more appropriate. Evaluating the performance of

different activation functions in a model learning context was therefore considered prudent to ensure

correct operation. Specifically, the performance of a linear activation function was compared to the

tanh activation during training. For completeness, the activation functions were defined as

Φ(x) = tanh(x), (3.22)

Φ(x) = 0.1x, (3.23)

where:

• x is the input.

• Φ(x) is the activation’s output.

Note that the linear activation included a small scaling factor to ensure that large training errors were

underestimated. An added benefit was that the scaling factor limited the corresponding gradient error

of the NN’s weight adjustment, increasing the likelihood of convergence.

3.5 SLAM WITH THE LEARNED MODEL

The previous section described the general procedure employed to train abstract motion models. One

important consequence of the training procedure is the fact that the previous states need to be known

in order to provide predictions. Many practical applications, however, cannot provide direct estimates

for the state with reasonable accuracy. Consequently, most localisation algorithms fuse the sensor

information using some predefined measurement model that relates the measurements to the actual

state.

Sensors usually capture motion as either raw odometry, velocity, inertial measurements or by comparing

visual landmarks. Recursive Bayes filters and HMMs [94] are some of the most widely accepted

statistical methods to infer the actual unobserved state through measurements. Specifically, the EKF
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[28] has been widely adopted in many systems to provide estimates for the state. The subsequent

sections provide the implementation details concerning an EKF-SLAM algorithm that makes use of

the learned model.

3.5.1 Derivation of the transitional model

The EKF algorithm is based on a first-order HMM that assumes that the current state is only dependent

on the previous state, while the measurement model is only dependent on the current state. Furthermore,

the first-order HMMs assume that the probability distribution of the system is Gaussian. The learning

strategy described previously, however, is dependent on more than one previous state and can be

considered an nth-order Markov model. To use the learned model in an EKF-SLAM implementation,

the Nth-order Markov model first needs to be related to a first-order Markov model.

Two possible models are defined to learn vehicle motion models, each dependent on the vehicle’s

state. However, the second approach has additional control input that needs to be taken into account.

The following therefore provides the reasoning used to incorporate both models into an EKF-SLAM

implementation followed by any assumptions required to produce a tractable solution.

3.5.1.1 Primary approach

For an Nth-order Markov model joint probability of any number of states is defined as

p(x1,x2, . . . ,xM) = p(x1)p(x2|x1), . . . , p(xn−1|xn−2, . . . ,x1)
M

∏
m=n

p(xm|xm−1, . . . ,xm−n), (3.24)

where p(xm|xm−1, . . . ,xm−n) is the function to be learned. The complexity of recursively providing

estimates for the joint probabilities therefore scales with the number of previous states used. However,

as noted in Section 3.3, the previous states are mainly used to provide information to model the

higher-order dynamics in the system. By using the memory to model the higher-order dynamics along

with the assumption that the actual model remains unknown, we assume that the NN’s prediction,

xNN
m = FFNN(xm−1,rm,Nh,No), (3.25)
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is dependent on the previous state and some internal state (rm). Thus the joint probability can

be redefined using (3.25), where the internal state represents the information used to model the

higher-order dynamics as

p(x1, x2, . . . ,xM|r1, . . . , rM) = p(x1|r1)p(x2|x1,r2), . . . , p(xn−1|xn−2,rn−1)
M

∏
m=n

p(xm|xm−1,rm).

(3.26)

The internal state therefore encapsulates the external forces that act on the system without explicitly

defining the variables. In essence, the NN becomes a "black box" estimator from the EKF’s viewpoint.

Furthermore, because the previous vehicle states are defined as internal to the NN, conditional

independence can be assumed between the NN’s internal state and the current state’s prediction. Hence

the following simplification can be made for the EKF:

p(xn|xn−1, rn−1) = p(xn|xn−1). (3.27)

Using the aforementioned assumption with (3.26), the joint probability of the state can be simplified to

a first-order Markov model:

p(x1,x2, . . . ,xM|r1, . . . , rM) = p(x1)p(x2|x1), . . . , p(xn−1|xn−2)
M

∏
m=n

p(xm|xm−1)

= p(x1)
M

∏
m=2

p(xm|xm−1). (3.28)

Note that a trade-off now occurs whereby the joint probabilities become tractable at the cost of

knowledge of the state’s transition (see Section 3.5.1.3).

3.5.1.2 Alternative approach

Adding control to the NN still results in an nth-order Markov model. The difference is that both the

state and control variables needs to be included in the model. The full joint probability for all the

states and control can therefore be defined as
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p(x1,x2, . . . ,xM,u0,u2, . . . ,uM−1) = p(x1|u0)p(x2|x1,u1,u0), p(x3|x2,x1,u2,u1,u0) . . . ,

p(xn−1|xn−2, . . . ,x1,un−2, . . . ,u0)×
M

∏
m=n

p(xm|xm−1, . . . ,xm−n,um−1, . . .u0). (3.29)

However, from (3.17) only the current control is used. Furthermore, the past controls are independent

of the current control conditioned on the current and previous state. Hence the current control is only

dependent on the current and previous state and therefore conditionally independent of past controls,

leading to the following simplification:

p(xm|xm−1, . . . ,xm−n,um−1, . . .u0) = p(xm|xm−1, . . .xm−n,um−1). (3.30)

Substituting (3.30) into (3.29) the full joint probability becomes:

p(x1,x2, . . . ,xM,u0,u2, . . . ,uM−1) = p(x1|u0)p(x2|x1,u1), p(x3|x2,x1,u2) . . . ,

p(xn−1|xn−2, . . . ,x1,un−2)×
M

∏
m=n

p(xm|xm−1, . . . ,xm−n,um−1).

(3.31)

Defining the NN to contain the memory as an internal state with an added dependency on control

results in

xNN
m = FFNN(xm−1,um−1,rm,Nh,No). (3.32)

Assuming again that the internal state is conditionally independent, the current vehicle state can be

simplified to

p(xn|xn−1, un−1, rn−1) = p(xn|xn−1, un−1). (3.33)

Substituting (3.33) into (3.31) then produces the following
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p(x1,x2, . . . ,xM,u1,u2, . . . ,uM|r1, . . . , rM) = p(x1|u1)p(x2|x1,u2), p(x3|x2,u3) . . . ,

p(xn−1|xn−2,un−1)×
M

∏
m=n

p(xm|xm−1,um). (3.34)

The resulting model (3.34) is the same as the previous result, with an added dependency in the form of

the current control. Both approaches can therefore be integrated into a standard EKF algorithm using

aforementioned assumptions.

3.5.1.3 Consolidating the NN and EKF

The previous results do contain one caveat that still needs to be taken into account. By assuming that

the learned model contains some unknown internal state, the NN is reduced to a black-box estimator.

This, however, is not problematic, as previous work by [21, 81, 82, 85, 88] demonstrated that a NN

can operate in a recursive Bayesian filter. To make the solution tractable, the transitional model is

simply assumed to be a linear function of the TDL-NN as

x̂k = f (xk−1,uk−1)

= xNN
k

=


xNN

k

yNN
k

θ NN
k

 , (3.35)

where

• uk represents the control,

• x̂k the EKF prediction,

• xNN
k the NN’s prediction,

• xNN
k , yNN

k and θ NN
k the 2D pose predicted by the TDL-NN.

One important characteristic to note is that the EKF does not provide the actual predictions. Rather the

NN provides the prediction while the EKF simply incorporates the predictions into the transitional

model. As such the EKF has no knowledge of the NN’s model, leading to the assumption of a linear
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transitional model. The Jacobians of the transitional model (3.35) are therefore also linear

A =
∂ f (x,u)

∂x
=


1 0 0

0 1 0

0 0 1

 , (3.36)

U =
∂ f (x,u)

∂u
=


1 0 0

0 1 0

0 0 1

 , (3.37)

having no effect on the other state variables. The implication is that the EKF is only used to fuse

the sensor information from the measurement model to recursively update the state. Using these

requirements, one can now construct a first-order HMM for the transitional and measurement models.

This, in turn, allows the EKF to provide updates to the predicted state.

3.5.2 Measurement model definition

In order to correct the predictions provided by the NN, a measurement model needs to be defined. Any

measurement model that can be related to the state can be used. However, the purpose of the learned

model is to provide improved predictions during localisation and mapping. Hence using 3D landmarks

for the measurement model was selected, as landmarks are most representative of a complete SLAM

system.

Landmarks in a SLAM context refer to a structure in 3D space that can be uniquely recognised.

These structures can be tracked while a vehicle moves through an environment to provide estimates

of the vehicle’s absolute pose within a global frame. In addition, landmarks can be used to detect

loop-closures in an environment when a scene is revisited. Usually the absolute global position of

landmarks cannot be measured directly. However, the measurements are observed as some relative

distance and angle from the sensors. The following therefore defines how the landmarks are measured:
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yi =


xi

yi

zi

 (3.38)

ȳi =yi	 (xv⊕xs). (3.39)

where

• yi is the global coordinates for the landmark,

• ȳi is the landmark’s coordinate relative to the vehicle’s pose,

• xv is the vehicle’s pose,

• xs is the transform from the sensor to the vehicle’s pose,

• ⊕ and 	 are the motion composition operators (see Addendum B).

To make use of the relative landmarks a standard range-bearing measurement model (range, yaw and

pitch) can be employed to update the state, given by

zi =h(ȳi,vk)

=



√
x̄2

i + ȳ2
i + z̄2

i

arctan(
ȳi

x̄i
)

−arctan(
z̄i√

x̄2
i + ȳ2

i

)

+


vr

vθ

vφ

 . (3.40)

Thus the measurement model depends on the relative landmark measurement, the pose, as well as

some noise (vk). Using the equations for the relative landmark’s range-bearing measurements, the

Jacobians can be calculated as
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H =
∂h(ȳi,vk)

∂ ȳi

=



x̄i√
x̄2

i + ȳ2
i + z̄2

i

ȳi√
x̄2

i + ȳ2
i + z̄2

i

z̄i√
x̄2

i + ȳ2
i + z̄2

i

− ȳi

x̄2
i + ȳ2

i

x̄i

x̄2
i + ȳ2

i
0

x̄iz̄2
i√

x̄2
i + ȳ2

i

(
x̄2

i + ȳ2
i + z̄4

i

) ȳiz̄2
i√

x̄2
i + ȳ2

i

(
x̄2

i + ȳ2
i + z̄4

i

) −
2z̄i

√
x̄2

i + ȳ2
i

x̄2
i + ȳ2

i + z̄4
i


(3.41)

V =
∂h(ȳi,vk)

∂v

=


1 0 0

0 1 0

0 0 1

 . (3.42)

However, one should note that the actual state is encapsulated within the relative landmarks. Thus

each relative landmark position should be replaced with the actual state and landmark variables and

the partial Jacobians calculated. Detecting and associating the landmarks in the map is a significant

problem that still needs to be addressed. However, as data association and landmark handling was not

the primary focus of the research, details regarding the implementation is not provided in this chapter.

Instead, the reader is referred to Addendum A for further information.

3.5.3 EKF-SLAM implementation

The following section provides a general overview of the EKF-SLAM implementation. Note that

the implementation follows the general guidelines specified in [95]. EKF-SLAM is based on the

assumption that a large state variable describes both the landmarks and actual vehicle motion, thus

forming a complete representation of the map as well as the vehicle state. In general the state for an

EKF-SLAM implementation is defined as:
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x =



xv

y1
...

yL


, (3.43)

where yi is the ith landmark and xv is the vehicle pose. An important characteristic for the

EKF-SLAM’s transitional model is the static landmark assumption, which simplifies calculation of the

Jacobian matrices. As such the Jacobian is defined as:

∂ f
∂x
|(3L+3)×(3L+3) =



∂ f
∂xv
|3×3 0|3×3 . . . 0|3×3

0|3×3 I|3×3 . . . 0|3×3
...

...
. . . 0|3×3

0|3×3 0|3×3 . . . I|3×3


, (3.44)

where the subscript |3×3 indicates the size of the matrix. The covariance associated with the state can

be defined using (3.45), where sub-covariance matrices are each individual landmark’s covariance with

itself, other landmarks or the vehicle pose.

Pk |(3L+3)×(3L+3) =


Pxx|3×3 Pxy1|3×3 . . . PxyL|3×3

Py1x|3×3 Py1y1|3×3 . . . Py1yL|3×3
...

...
. . .

...

PyLx|3×3 PyLy1|3×3 . . . PyLyL|3×3

 . (3.45)

Using the aforementioned definitions for the state, covariance, transition and measurement models,

the general EKF algorithm can be defined using the regular prediction-update procedure. The generic

equations for the two-step algorithm are defined as:

Prediction:

x̂k|k−1 = f (x̂k−1|k−1,uk), (3.46)

Pk|k−1 =
∂ f
∂x

Pk−1|k−1
∂ f
∂x

T

+WwkW, (3.47)
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Update:

ŷk|k−1 =zk−h(x̂k|k−1,0), (3.48)

Sk =
∂h
∂x

Pk|k−1
∂h
∂x

T

+VvkV, (3.49)

Kk =Pk|k−1
∂h
∂x

T

S−1
k , (3.50)

x̂k|k =x̂k|k−1 +Kkŷk|k−1, (3.51)

Pk|k =(1−Kk
∂h
∂x

)Pk|k−1. (3.52)

The computational complexity of the general EKF algorithm is therefore O(N3), where N is the size

of the state vector given in (3.43). However, by noting that the Kalman innovation matrix (Sk) is

scalar with each measurement, the EKF can be implemented to execute in O(N2) instead of O(N3).

As the O(N2) EKF-SLAM only allows for a computational speed-up, the procedure used to implement

a O(N2) EKF-SLAM system is not described. Instead, the reader is referred to [95] for the exact

implementation details of an O(N2) EKF-SLAM algorithm.

Map expansion is the last component of the EKF-SLAM implementation that needs to be taken into

account. For every newly detected landmark, the covariance matrix’s row and columns need to be

increased and corresponding covariance P|3×3 added. In addition, the newly detected landmark’s

global coordinates need to be calculated using the inverse sensor model. Thus by substituting (3.40)

into (3.39) the inverse sensor model can be defined as:

yi =xv⊕xs⊕


zr cos(zθ )cos(zφ )

zr sin(zθ )cos(zφ )

−zr cos(zφ )

 , (3.53)

and used to calculate the global coordinate.

3.5.4 Full implementation

Now that the SLAM implementation for the learned model has been derived, the full execution process

of the algorithm can be explained. Figure 3.5 provides an overview of the block diagram for the model

learning approach. As stated in Section 3.4, the TDL-NN made use of a shift register to encapsulate
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the previously observed states. Hence only the current state was be added to the NN predict the next

vehicle state. If the alternative approach was used, the current control was also added to the NN before

calculating the prediction.

The Jacobians were calculated using the state and noise variables, followed by the EKF’s prediction

and covariance using (3.46) and (3.47). Subsequently, the predicted state and covariances were

used along with the landmarks and measurement noise to update state. As with the prediction step,

the measurement Jacobians were calculated before updating the vehicle’s state using the procedure

described in (3.48) to (3.52). Thus the normal EKF-SLAM algorithm was followed, with an added

step for the TDL-NN to calculate a prediction.

xk−1 NNT DL uk

xNN
k

EKFPredictwk−1,Pk−1

δ f
δx , δ f

δw

x̂k|k−1, P̂k|k−1 EKFupdate

zk

vk−1, δh
δx , δh

δv

xk,Pk

Figure 3.5. General prediction and update procedure once the neural net has been trained. The

TDL-NN provides a prediction based on the previous state (and optional control). The prediction is

incorporated into the EKF, with its corresponding covariance calculated. Finally, the prediction and

covariance are updated using the landmark measurements.

A framework was created within ROS to execute the SLAM implementations. The framework included

loading the correct datasets, algorithms and incorporating the NNs within the EKF-SLAM process.

Furthermore, both the O(N3) and O(N2) EKF-SLAM systems were implemented using the sympy

symbolic math libraries, while the NN implementation made use of the numpy libraries. Additional

information on the framework can be found in Addendum D.1.
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3.6 SUMMARY

A detailed discussion for learning data-derived non-analytical motion models and using the learned

models in an EKF-SLAM system was provided in this chapter. Investigation of analytical motion

models led to suppositions regarding the required information to learn data-derived non-analytical

models. Specifically, the approach used low-order state data with memory (and control) as input data

to a TDL-NN implementation.

In addition, the chapter analysed the Nth-order Markov process of the TDL-NN and proposed a method-

ology for incorporating TDL-NN into the EKF-SLAM system. Finally, the full SLAM implementation

was described to update the NN predictions with landmark observations.
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METRICS

4.1 CHAPTER OVERVIEW

The previous chapter described the approach followed to learn a motion model and incorporate the

model into a SLAM system. However, the type, size and scope of training data required to learn the

models have yet to be addressed. In addition, performance metrics for the learned models and the

models’ parameters need to be considered. The following chapter therefore provides an extensive

overview of the training data requirements, evaluation metrics and influential parameters.

For the training data requirements, both real-world and simulated trajectories are discussed in Sec-

tion 4.2 and Section 4.3, respectively. In each section, changes to the data’s format such as scale,

sampling rates and any discontinuities that may exist within the data are detailed. In addition, the types

of motion required to create simulated datasets are discussed, along with how to diversely cover the

problem space with control trajectories.

The second part of the chapter describes the evaluation metrics used to quantify the performance of

the learning approach and SLAM implementation. Specifically, the evaluation metrics measuring the

suitability of NNs are described in Section 4.4, while Section 4.5 details the metrics used to assess the

performance of a SLAM system. In addition, Section 4.6 describes the evaluation procedure proposed

to determine the types of motion learned by the model. The nature and information supplied by the

metrics in the evaluation procedure are also examined.
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Lastly, Section 4.7 characterises the parameters that could influence learning. To this end, the para-

meters that could affect learning and estimation are identified. Permutations between the parameters

are detailed as well as the impact that each parameter has during training. Finally, all the parameters

are ranked according to those that have most influence on learning and the sequence of evaluation

stipulated.

4.2 REAL-WORLD DATASETS

Real-world datasets containing information of various platforms are freely available for evaluation

with SLAM implementations. However, most provide different types of information, depending on the

sensors used, the vehicle’s drive-type and scale of the map. An overview of frequently used SLAM

datasets is therefore provided.

Subsequently, an extensive overview of the TUM Freiburg datasets [35] is provided. Specifically,

the format, scale, sampling rates and discontinuities were evaluated to provide suitable training data.

Solutions to any problems/inconsistencies in the data are described and removed to ensure an effective

learning process.

4.2.1 Available datasets

The New College dataset [96] was gathered in Oxford by a robot driving around the campus and

parks for several kilometers. The platform was based on a modified Segway [97] fitted with various

sensors. The data available from the platform included a five degree-of-freedom (DOF) trajectory using

dead-reckoning, two laser range finders mounted vertically (to measure height ranges), a stereoscopic

camera and a five-view omnidirectional camera. A GPS and an IMU sensor were also mounted on the

system to provide further information on the vehicle’s odometry and position.

A significant difficulty with the New College dataset is that the laser range data cannot be correlated to

each other because the ranges were measured in the vertical axis. As such, the stereoscopic camera

needed to create a depth map of the environment while the omni-directional camera handled data-

association. In addition, the vehicle’s odometry, while fairly accurate, does produce a large error in

the trajectory, leading the dead-reckoned poses completely astray. While the dead-reckoned poses is
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not a problem in itself, as the GPS and other sensors can account for location errors, the pose data is

unsuitable for training.

An alternative that was considered was a multi-session dataset captured using the Azimut-3 robot

[98, 99, 100]. The Azimut-3 robot operates with four omni-directional wheels that provide raw

odometry information as the robot moves around an environment. Both a Kinect sensor and laser

scanner were mounted to provide colour and depth information to the system. The platform captured

five overlapping maps of an office environment over multiple sessions and are available as ROS

Bag-files. The sessions were used to test whether SLAM algorithms were able to detect loop closures

with previously mapped environments [101]. The vehicle odometry for the Azimut-3 datasets were

fairly accurate and could possibly be used for training. However, as the platform was based on a

non-standard omni-drive system, it seemed prudent to use a platform that had holonomic constraints

that were easier to define.

The Malaga datasets [102] are a collection of datasets captured in urban scenarios. The platform was

built into a Citroen C4 and mounted with eight sensors to provide information to the entire system.

The sensor platform consisted of a stereo camera, five laser scanners, one IMU and one GPS. Two

types of laser scanners were employed in the dataset: three Hokuyo UTM-30LX running at 40 Hz

and two SICK LMS-200 laser scanners running at 75 Hz. The two SICK lasers were placed to sense

objects in the horizontal plane, while two of the Hokuyo lasers were placed to provide vertical scans.

The last Hokuyo scanner was placed pointing forwards and slightly downwards in order to provide

scans of the road.

The IMU sensors made use of MEMS technology to provide three-axis acceleration, three-axis angular

velocity as well as attitude dead-reckoned 3D pose. Lastly, a low-cost GPS sensor was installed

to provide approximate positioning at a rate of 1 Hz. However, some occlusion was present in the

datasets owing to the buildings, which led to lost GPS measurements at certain times. As with the New

College dataset, the accuracy of the vehicle’s trajectory could not be verified, as the GPS’s accuracy

and frame-rate were not high enough. Furthermore, the trajectory of the dataset is approximately 37

km, making the scale very large for training. Consequently, the Malaga datasets were also insufficient

to provide accurate training data.
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The TUM Freiburg datasets [35] was captured using a Pioneer robot using a differential drive system.

As with the Azimut platform, the Poineer robot used a laser scanner and Kinect to provide depth and

colour information, while an IMU sensor provided the inertia. Furthermore, the dataset provided the raw

odometry information along with the ground-truth poses of the vehicle. The ground-truth was obtained

from a motion capture system in order to compare the predicted poses of SLAM algorithms.

Four sessions of the same environment are available for the dataset as either ROS Bag-files or as

raw image data with log files containing other sensor information. One session of the data could

therefore be used as a test set without concern that specific motions were excluded from the training

set. The different sessions, along with the ground-truth provided by the motion capture system, made

the datasets ideal for training on real-world data.

4.2.2 Precision

The model learning strategy made use of a number of previous states to estimate the next state of the

vehicle model. Ensuring that the training data is as close as possible to the actual vehicle’s pose is

therefore of significant importance. The ground-truth from the motion capture system provides such

data by capturing a Pioneer robot’s pose at a rate of 300 FPS [35]. The four datasets of interest are the

Robot 360, Robot SLAM, Robot SLAM2 and Robot SLAM3 datasets. The datasets are available in

two formats, as a ROS Bag-file or a compressed archive containing all the sensor and odometry data.

Furthermore, the ground-truth poses of the Freiburg datasets are provided as a text-file containing the

time-stamps, translations and quaternions using the format:

timestamp tx ty tz qx qy qz qw

with a resolution of four floating point values. Motion models are usually expressed in Euler angles

instead of quaternions, which allows the model define simpler states. As the preliminary TDL-NN

methodology aims to learn 2D motion, only the x,y and yaw measurements are required. A conversion

was therefore necessary to provide the data in the correct form. An additional preprocessing step was

required by the Freiburg datasets to remove any duplicate measurements from the ground-truth. Most

of the datasets contained between two and six duplicate timestamps in the raw data, which could lead
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to potential errors. While the source of the duplicate timestamps were unknown, it was speculated that

a small error in synchronisation between the motion capture and storage system was the cause.

4.2.3 Input-output training pairs

Using previous states to learn the next vehicle state required that the data be divided into two separate

sets: the input consisting of data from index 0 to n−1 and the output consisting of data from index 1 to

n. Furthermore, as the model learning strategy incorporated multiple previous states, the shift-register

needed to be filled. As a result, the input training data of a TDL-NN using m previous states for any

given trajectory was in the interval [m,n− 1]. Similarly the target training values’range was in the

interval [m+1,n]. Hence for the first training sample for a trajectory the shift register contained states

x0 to xm, while the desired (target) state is xm+1. During the actual training, the shift-register’s content

and TDL-NN’s target values were calculated beforehand to increase data throughput. Figure 4.1

provides a visualisation of the training data, where xm refers to a specific state/pose and T1 refers to

the first training sample.

x0 x1 xm xm+1T1:
. . .

x1 x2 xm+1 xm+2T2:
. . .

Training

input

Target

value

Figure 4.1. Graph of the first two training input/output pairs (T1 and T2) containing m states as

memory, where xm refers to the mth state/pose. In the figure above, the each training sample represents

the contents of the shift-register at a given point during training, while the target value represents the

desired output of the TDL-NN.
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4.2.4 Scaling

Gradient-based learning in NNs commonly require data to be normalised to the interval [−1,1] for a

tanh(·) activation function. However, since regression is required in order to learn the model, the input

data should not be normalised, as normalisation can lead to warping. Specifically, by performing both

scaling and shifting on the data, one effectively removes the measurement unit from the data. Even

though NNs do not take measurement units into account, the learning problem is dependent on the

interactions between different state variables and the variable’s measurement unit (e.g. meters and

radians). Hence if the input data to the NNs becomes unit-less, then the NNs are unlikely to learn the

correct interactions between the state variables.

To limit potentially incorrect interactions being learned by the NNs, only scaling was applied to the

input data. By scaling the values the NN would only be able to provide estimates for the vehicle model

between the scaling interval. Hence the poses needed to be adjusted to overcome the limited training

interval. The simplest method to circumvent the narrow training interval is using local and global poses

to handle poses outside of the training data’s spectrum. Thus when one of the boundaries is reached,

the global location is updated with the current local pose while the local location is reinitialised to zero.

Likewise, the shift register within the NN should also be updated with the adjusted previous locations

to ensure continuity.

In addition, if the values used to scale the different state variables are too far from each other, warping

could potentially ensue. As an example consider that a vehicle can move within a 20×20 meter field

during training. Typically the required scaling values would need to be [20,20,π] to perform proper

scaling. Hence the scaling values between the position an orientation could have a negative affect

during the learning process.

Unfortunately there is no proper way to limit the effects that different scaling values have on the

variables. If all the variables are uniformly scaled, one of the state variables may become too small (in

the previous example the yaw would be limited to maximum value of 0.1570). Thus the only solution

is using training data where the variables have similar intervals. Alternatively, one can use linear

activation functions that do not require scaling.

The Freiburg datasets’ ground truth data all remain between the interval [−3.5,3.5] meter for the
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position while the orientations remain between [−π,π] radians. As such, the aforementioned problems

should not cause undue warping. Hence, the scaling values were therefore chosen as [3.5,3.5,3.2].

While the interval is quite small, training data can be provided over most of the activation function’s

spectrum, which is key for proper training.

4.2.5 Sub-sampling

The ground truth obtained from the motion capture system has a very high frame-rate, as mentioned

previously. Commonly odometry measurements are obtained at a frame-rate between 5 and 20 FPS.

For the Freiburg datasets the odometry was captured at a frame-rate of 10 FPS. Thus learning to predict

at a rate of 300 FPS would prevent the use of vehicle odometry or control during estimation.

Furthermore, owing to the high frame-rate, the difference between consecutive poses become very

small. Consequently the NN would estimate the input to be equal to the output. The solution therefore

is to select a certain sampling rate and to extract only poses that meet the required time-difference. In

this case, the sampling rate was set to 10 FPS in order to match the odometry measurements of the

Freiburg datasets. Note that by sub-sampling the data, only 3% of the available data is used. There was

therefore a need to increase the number of training examples, as discussed in the next section.

4.2.6 Decimation

As noted in the previous section, sub-sampling the datasets to train on a specific sampling rate has an

impact on the amount of training data available. A simple method to increase the amount of training

data is to sample at different indexes of each dataset, thereby creating more training examples. Hence,

the same trajectory can be sampled at distinct intervals, each having slightly different values than the

previous one to provide multiple subsets of the original data. Consequently, all the available data can

be utilised. For clarification on the approach, consider the following sequential data:

[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2]

where the data was captured at a rate of 20 FPS. By sub-sampling the data at a rate of 4 FPS, only the

following sequence is available for training:
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[0.0,0.5,1.0,1.5,2.0]

which is a fifth of the data available. By sampling at different indexes, the number of training examples

can be increased while still maintaining the sub-sampling rate. Thus, assuming sampling is conducted

at index 0,1,2,3,4, the following subsets can be generated:

0: [0.0,0.5,1.0,1.5,2.0]

1: [0.1,0.6,1.1,1.6,2.1]

2: [0.2,0.7,1.2,1.7,2.2]

3: [0.3,0.8,1.3,1.8]

4: [0.4,0.9,1.4,1.9]

In each case, the forward sequence of the series is maintained while providing more diverse training

data. Note, however, that a maximum of five datasets can be formed in the example sequence, as the

data starts to repeat itself. Using the aforementioned approach, more diverse data can be applied for

training the NNs without adding repetitive data. Figure 4.2 illustrates how the decimation subsets are

formed for each dataset, while Algorithm 4.1 details the procedure used to train the subsets generated

from decimation. .

x0 xn x2n xN−mSubset 0
. . .

x1 xn+1 x2n+1 xN−m+1Subset 1
. . .

xm xn+m x2n+m xNSubset m
. . .

...

Figure 4.2. Creation of the decimation subsets where xn refers to the nth state or pose
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Algorithm 4.1 BPSubsetTrain(datasets,maxEpochs, ∆Wi, ∆Wj )

1: lr, m = NN.calcAnnealing(lr, m)

2: numEpochs = 0

3: Nsamples =
N
∑

n=0
trainDatasets[n].size()

4: while currEpochError > minError AND numEpochs < maxEpochs do

5: while len(usedIndexes) < len(datasets) do

6: usedIndexes, idx = getNewRandomIndex(usedIndexes, len(datasets))

7: sqerr,∆Wi, ∆Wj = NN.backPropTrain(datasets.in[idx], datasets.out[idx],lr, m, ∆Wi, ∆Wj )

8: terr+= ∑(|sqerr|)

9: end while

10: epochErrors.append(
terr

Nsamples
)

11: numEpoch += 1

12: end while

return epochErrors, ∆Wi, ∆Wj

4.2.7 Iteratively appending data

The Freiburg robot datasets all contained the same motion dynamics because the same vehicle was

used. The only difference between the datasets is that some may contain more information on certain

executed motions. A relatively accurate model should therefore be trainable with only one dataset,

provided the dataset contains diverse enough motions.. Consequently, additional data from other

datasets should only improve training and prediction if information on a certain movement is not

encapsulated by the original dataset. Thus, training should be independent of the actual trajectories

within the dataset.

In addition, the order that different datasets are added during training should not have an impact

on performance. For example, the Robot 360 dataset contains significantly more positive angular

velocities than negative velocities, which could cause a bias in the NNs. From the aforementioned

conditions, all of the training data need not be included during initial training. Instead, the data can be

added incrementally in order to refine the model after every nth epoch using:

n =
epmax

D+α
, (4.1)
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where:

• epmax is the upper limits set on the epochs,

• D is the number of datasets that was used and,

• α is an addition constant that was set to 2.

The addition constant was arbitrarily selected to ensure that a larger fraction of training would be spent

using all the data than any individual increment. A further modification that should be noted with the

iterative strategy is that the learning rates could only be adjusted every nth epoch. Thus any additional

data is ensured to make smaller adjustments per epoch to the NN’s weight and therefore the motion

model. Lastly, to ensure that no bias is provided towards a particular dataset, the order in which the

datasets are added during training was randomised.

Once all the data had been included, the NNs continued to train until either a minimum error was

reached or the maximum number of epochs was reached. For the incremental procedure, early stopping

conditions were not included to ensure that all the data was added during training. However, a method

that could been used with early stopping was to add the next dataset and continue training when the

stopping condition was met. The datasets would then be added until all of the data was included

before halting training. Algorithm 4.2 provides the general procedure used to include the datasets

incrementally.

The advantage of incrementally adding the training data is that the NNs may initially over-train on the

data and create biases, but then refine the weights to account for the new motions as the data becomes

available. However, there is a risk that the new data would not be sufficient to escape local minima.

Consequently, the effects of iteratively appending the datasets were evaluated in Section 5.2.2.3.

4.2.8 Discontinuities

Pose data contain discontinuities, specifically where the orientation changes between −π and π .

However, such large orientation changes occur infrequently and would only provide a small number

of training samples. Furthermore, NNs using gradient descent algorithms are known to provide sub-
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Algorithm 4.2 Train multiple datasets iteratively
1: NN.createFFNN(numInputs, numHidden, numOutputs)

2: Initialise ∆Wi and ∆Wj

3: datasetEpochs =
maxE pochs

numDatasets+additionalIterations
4: for all i in range(numDatasets + additionalIterations) do

5: if i≤ numDatasets then

6: rI = randint(numDatasets)

7: trainDatasets.append(datasets[rI])

8: end if

9: errors, ∆Wi, ∆Wj = BPSubsetTrain(trainDatasets,datasetEpochs, ∆Wi, ∆Wj )

10: epochErrors.append(errors)

11: vResults, earlyBreak = validateTraining(errors, vResults)

12: if earlyBreak is True then

13: Break

14: end if

15: end for

optimal results for discontinuous data [103]. As a result the discontinuities may have a negative effect

during training by biasing the weights towards more extreme changes during estimation.

Splitting the datasets at the discontinuities therefore simplifies the learning process, leaving the

Bayesian filter to handle such occurrences. However, by splitting the dataset some of the subsets’ size

can become very small and lead to unnecessary biasing. To ensure that none of the subsets becomes

too small, each of the subset’s sizes were compared to the original dataset’s size and filtered if the

subset contained too few training examples. The following equation was used to evaluate whether any

subset was too small:

Nsub >
Norig

Msub×α
, (4.2)

where:

• Norig is the number of training examples of the original set,

• Nsub is the number of training examples in the current subset,
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• Msub is the number of subsets created by the discontinuity split,

• α is some multiplication factor to increase robustness (chosen values were between 2 and 3).

In practice, the NNs could still be exposed to discontinuities and cause significant errors. Three

possible solutions exist to handle when discontinuities occur: Allow the EKF to compensate for the

errors of the discontinuities, ensure that the NN never observes the discontinuities or re-factor the

shift-register once a discontinuity is observed. The first approach requires no modifications, as the

assumption is that the landmark observations would correct the predictions until the discontinuity was

out of the shift-register. Hence compensation will function similar to a spring-damper system where

disturbances induce oscillatory behaviour until the NN stabilises. Consequently, the amount of time

that the oscillations occur is directly related to the amount of memory in the shift register.

The second approach can be implemented by assuming that the yaw is not constrained to the interval

[−π,π] by taking the periodic nature of orientation into account. Thus once a phase-change is reached,

the values will continue to increase/decrease without adverse effects. Upon completion, the estimated

yaw can be re-factored to the desired interval. This method, however, can only be implemented for

NNs whose working interval is unconstrained (such as the linear activation functions).

Re-factoring the shift-register once a discontinuity has been detected could be used to avoid the

oscillatory behaviour of the first approach. The easiest method to re-factor the shift register is changing

all the yaw variables to the currently estimated yaw (after the discontinuity). An important assumption

of the approach is that the angular velocity is zero after a discontinuity has occurred. Effectively the

NN is partly reinitialised, which could potentially lead to unforeseen behaviour. Furthermore, the

approach breaks the consistency of the system by essentially removing the memory from the NN.

Partial reinitialisation was therefore eliminated from consideration during testing.

4.3 SIMULATED DATASETS

The real-world datasets provide an abundance of information on a vehicle’s motion and encapsulates

the dynamics inherent in the vehicle. However, the datasets all contain some form of noise. The most

common types of noise present are due to either the sensors’ precision or the environment. Another

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63



CHAPTER 4 TRAINING DATA AND EVALUATION METRICS

problem with real-world data is that there may only be a few samples of a particular motion or control.

Thus large trajectories with a specific motion/control may not be available in the dataset.

To evaluate the performance of a learning strategy under ideal absolute ground-truth conditions one

must therefore employ simulated trajectories. In addition, because the simulated datasets are easily

separable, the data can more readily be used to determine whether specific motions and motion types

can be learned. The following section details the requirements and use of such simulated datasets in

order to determine the types of motion that are learnable under ideal circumstances. Note that the

simulated datasets were also subject to sub-sampling, decimation and discontinuity splits, as discussed

in the previous section.

4.3.1 Motion model

The first requirement that needs to be addressed is which motion model should be used to create

simulated datasets. To ensure that the simulated data are comparable to the real-world datasets, both

should have the same form and characteristics of the actual platform. Hence the simulated data needs

to be generated based on the Pioneer robot’s physical characteristics. The second question to address

is whether to use physics engines to create vehicle simulations or analytical models to generate the

kinematics or dynamics.

Physics engines are commonly used to simulate the dynamics of vehicles within an environment.

Consequently, all of the dynamical properties of both the vehicle and environment needs to be defined

in order to create accurate simulations. Gazebo [104] is a physics engine that can communicate with

ROS to simulate robots. By default Gazebo uses the open dynamics engine (ODE) [105] to simulate

the dynamics, with options to use Simbody [106] and other physic engines.

Gazebo can also incorporate the unified robot description format (URDF) (specified in ROS) to

simulate different platforms. In addition, various sensors such as the Kinect, laser scanners and IMUs

can be simulated within Gazebo and provide feedback to ROS. However, the standard differential

drive controller available in ROS Indigo was found to be insufficient to provide accurate odometry

information. Additional information on ROS and Gazebo can be found in Addendum D.2.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

64



CHAPTER 4 TRAINING DATA AND EVALUATION METRICS

Dynamic models make use of a vehicle’s weight, dimensions and inertia to take into account both the

kinetic and potential energy while the vehicle traverses a trajectory. Hence, a large state is required to

model the vehicle’s trajectory. Based on the characteristics, a simple dynamic model of the Pioneer

robot will provide the most accurate representation of the vehicle’s trajectory. However, a dynamic

model’s control is commonly specified as some input torque on the wheels, allowing the vehicle to

undergo acceleration. While there are methods to limit the acceleration by specifying the control as

input voltages (a spring and damper system for the motor), the additions generally further complicates

the system being modelled.

In comparison, a kinematic model only considers the vehicle’s dimensions, with control velocity

as input. As a result, a kinematic model is much simpler to generate constant velocity trajectories.

Furthermore, the type of control inputs are in the same format as those provided by the Freiburg

datasets. While constant velocity trajectories are not completely representative of real-world data, the

trajectories do simplify the training data. Furthermore, as the state variables have fewer interactions, the

simulated kinematic model’s data should be simpler to learn than the dynamic or real-world data

As the aim of the simulated datasets is to simplify the training data to determine the type of motions

that could be learned, the kinematic model should be used. It should be noted that once simple constant

velocity models (such as the kinematic model) can be learned, simulated data of the dynamic models

can be evaluated to establish if more complex models are learnable. One can also extend the approach

further by using the learned models on real-world data to determine which model provides a better

representation.

4.3.2 Motion types

A vehicle displays different behaviour depending on the type of motion executed. Generating datasets

that contain all motion types for a specific vehicle was therefore necessary. For a kinematic model of a

differential drive, the following types of motion needed to be representable:

1. Linear or straight-line motion,

2. A curved or circular trajectory,

3. Pure rotational movement and,
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4. A stationary vehicle.

From the motion types defined, the curved trajectory was considered the "normal" vehicle motion, with

the linear, rotational and stationary motion types considered "special cases". Stationary motion implies

that no forces are acting on the vehicle to provide motion and thus should obviously be considered a

special case. However, the reason why pure linear or rotational motion were considered special cases

may not be as evident.

The first argument why the motions were considered special cases was based on physics, while the

second was mathematical. Any object moving in the real world is constrained by external forces acting

on the object and will therefore never undergo complete linear or rotational motion. Mathematically, if

one investigates the changes that a vehicle’s motion undergoes during pure linear and rotational motion,

it becomes apparent that not all the state variables are changing (either the orientation or position

remains constant). Linear and rotational motion can therefore be considered "simpler" than curved, or

arc, motion.

From the motion types defined, simulated datasets were created to provide a comprehensive training

set of a vehicle’s motion. Combined, the datasets can be used to train a model of all kinematic motion

for a specific vehicle. Comparing the simulated data’s model to the real-world data’s model would

then highlight any unforeseen discrepancies. An additional test that can be performed is dividing the

simulated datasets into sub-types to train a specific type of motion. The primary advantage of learning

a specific motion type is evaluating if the NNs are able to learn each type of motion. Quantifying what

the NNs are able to learn individually can therefore be grouped by the motion types. Thus if the NNs

are unable to learn a specific type of motion, one can focus on the causes and solutions for that specific

type.

4.3.3 Sampling, discontinuities and decimation

For the simulated datasets the trajectory was generated at a rate of 100 FPS with a time interval of 5

seconds. The premise for choosing 5 seconds was to ensure that no trajectory reached full circular

motion, thus creating duplicate poses. While a longer time interval could have been selected, a decision

was made to limit the amount of data generated during training.
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The frame-rate of 100 FPS was selected so that decimation was required to meet a sampling rate of

10 FPS, as in the case of the Freiburg datasets. Since decimation was primarily used to increase the

training examples for the real-world datasets, the number of decimation indexes used by the simulated

datasets was limited to three (30% of the generated poses). Similarly, the datasets were also split at

discontinuities to ease the learning process.

4.3.4 Vehicle control

One question that remains unanswered when generating the simulated datasets is the amount and

diversity of data required. Specifically, the extent and range of control velocities required for training

need to be addressed. The range of velocities that were used to create training data was set to between

0 and 2.5 m/s for the forward velocities with a rotational velocity between −0.3 and 0.3 rad/s. While

not completely matching the Pioneer robot’s specifications, the velocities should provide a large enough

spectrum of trajectories to reach conclusive results.

The second aspect to address was how extensive the training data within the range should be. Spe-

cifically, the number of variations on control required to provide predictions that yield a predefined

minimum error needed to be answered. Furthermore, the point at which additional training data no

longer added significant improvements needed to be found. Answering these questions required gener-

ating datasets that contained varying amounts of control and evaluating the training results. Hence, the

number of different controls to train on were chosen as 10, 100, 300 and 418. Addendum F.2 provides

the exact control velocities used to generate the training data.

4.3.5 Initial poses

As with the control, the range and extent of the initial poses also needed to be taken into account when

generating the simulated data. Ideally the learned model should be able to provide estimates for any

control-pose pair provided. However, providing a full dataset for training is practically infeasible.

Consequently, a number of limitations were set on the initial poses used for training and testing.

For the simulated data, the initial states were all initialised in the same interval as the Freiburg datasets.

Note, however, that a limit on the range of poses was not specified to allow the simulated datasets
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to provide estimated trajectories outside the Freiburg dataset’s bounds. The range of the trajectory’s

poses were therefore only limited by the control inputs as well as the time interval.

The number of different initial poses required to train the motion models was another uncertainty that

needed to be addressed. Thus datasets were generated with a varying number of initial poses to establish

if an optimal number of poses exists and at which point the additional poses stop increasing the NN’s

accuracy. The number of initial poses generated were selected as 15, 28, 56 and 112. Addendum F.2

provides the exact initial poses used to generate the training data.

4.3.6 Storage

Each simulated trajectory was stored in two text-files, one containing the ground-truth poses and one

containing the raw odometry. The ground-truth poses were stored in the same format as the Freiburg

dataset’s ground-truth data (Section 4.2.2). In comparison, the raw odometry data was used to provide

the control and odometry of the vehicle during traversal. Consequently, the raw odometry was only

included when control inputs were required by the NNs. The format used to store the data was based

on ROS’s odometry message:

timestamp tx ty tz qx qy qz qw vx vy vz ωx ωy ωz

where vx and ωx are the linear and rotational velocity in the x-axis, respectively. The file-name format

was generated according to the model used, the pose number and the control number. Two examples

are provided below for clarity on the file’s format:

• diffKinematic-p3-c12-groundtruth.txt,

• diffKinematic-p12-c02-rawOdom.txt.

Each file also contained a header describing the format of the file. In each case the header was denoted

by a number sign (#) at the start of the line. Directories were also generated because of the large

number of simulated datasets. The directories were grouped according to the pose, where each directory

contained all the controls applied at a single pose. The directories were named with a "p" followed by

the pose number (e.g. p9)
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4.4 NEURAL NETWORK EVALUATION

To evaluate whether a NN is able to represent a specific function, a number of measures can be

employed. The aim is to establish whether the NNs have converged to some minimum error/energy,

given the training data supplied. Commonly these measures include training error, the NN’s stability

and some test vectors to ensure correct operation. A brief description of each evaluation measure is

therefore provided in the subsequent sections.

4.4.1 Training errors

Evaluating the error that a NN produces while training is one of the fastest and easiest methods to verify

that the NN is converging. The most common error metrics used to determine a NNs performance

are:

• Mean Absolute Error (MAE)

MAE =
1
m

m

∑
i=1
|yi− ŷi|, (4.3)

• Mean Absolute Percentage Error (MAPE)

MAPE =
100
m

m

∑
i=1
|yi− ŷi

yi
|, (4.4)

• Least Squared Error (LSE)

LSE =
1
m

m

∑
i=1

1
2
|yi− ŷi|2. (4.5)

Most of the error metrics are very similar in form, with subtle differences. The MAE measures

the average absolute distance between the predicted and actual values, while the MSE measures

the deviations of the errors through the squared loss. For an unbiased estimator the MSE therefore

measures the variance of the estimator. The LSE is very similar to the MSE, with only the division

term included in the metric. The division term is mainly used when calculating the gradient, where the

term cancels out the division constant. In comparison, MAPE is used to measure the accuracy as a

percentage. There are, however, well-known limitations to MAPE [107].

All of the aforementioned metrics can be graphed over epochs and used to verify whether the NN is

converging to a local minimum. Furthermore, by combining the graphs for multiple training iterations
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the overall learning ability of the NNs can be gauged. Thus if most of the training data do not reach

similar local minima, then there is some problem with the network’s configuration. In subsequent

experiments the training errors were plotted using a semi-log graph using the LSE metric.

4.4.2 Network stability

An alternative approach to evaluating the NN’s convergence is determining stability. To measure

stability the actual weights for each neuron were stored and plotted over the number of training epochs.

Each neuron’s weight can then be plotted as either stability graphs or as delta graphs. The difference

between the two is that the stability graphs plot each weight directly over the epochs, while the delta

graph plots the difference between the weights over the epochs. Hence as training progresses, each

weight in the stability graph should converge around a certain value. In comparison, all the weight

changes in the delta graphs should converge at 0 as training progresses. Note that very small deltas do

not necessarily imply that the neuron’s weight has stabilised. Instead small deltas only indicate that

large weight changes over an epoch have been eliminated.

4.4.3 Test vectors

One of the first methods to test whether the NN has learned the model is using test vectors (known

input-output pairs). Specifically, one of the datasets not used during training can be used to determine

the NN’s accuracy by calculating the mean error. An alternative method for evaluating how close the

NN’s estimates are, is plotting each output variable against the actual output. The plots can then be

used to establish if and where the NN’s are unable to provide the correct estimates.

The advantage of plotting the output variables against one another is that the graph can easily reveal if

the NN is able to learn the model. Furthermore, if the NNs are unable to learn the model, the plot can

provide visual information on the type of motion that disrupts convergence during training. The plots

can also reveal which of the outputs the NN did not train on properly. If only one or two of the outputs

are not estimated correctly, the result could indicate that the input data was insufficient to estimate the

transitions properly.
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4.5 SLAM EVALUATION

Evaluating SLAM requires that both the trajectory and map’s accuracy be measured. Since the aim of

the research is to determine if the learned models offer any improvement in localisation, evaluation of

the maps were not taken into consideration. Instead, focus was placed on different measures used to

establish the accuracy of an estimated trajectory. The first part of this section therefore provides the

relevant evaluation metrics for poses and trajectories.

Determining whether the learned model improves the trajectory estimates forms the second part of this

section. The metrics stipulates how the models were compared, along with which models were used

during the evaluation. Lastly, the data association problem is addressed during SLAM. In particular

the use of simulated landmarks is discussed to eliminate association errors.

4.5.1 Trajectory/Pose

The following section describes the most commonly used evaluation metrics for vehicle trajectory and

pose.

4.5.1.1 Pose-graphs

A vehicle’s pose or trajectory can be evaluated by either creating pose-graphs or through some error

metric. Pose graphs provide a visual output of the estimated poses supplied by localisation and

mapping. The estimated trajectory for different algorithms can therefore easily be evaluated and

compared. Furthermore, an algorithm’s performance during specific motions can be interpreted much

more readily than when using statistical methods.

Usually only the vehicle’s position is supplied by pose-graphs, with a comparison to other algorithms

and ground truth. However, in some cases the uncertainty that the algorithm has over the vehicle’s

position is also included. Commonly, ellipsoids are plotted for each vehicle’s pose to demonstrate the

amount of uncertainty in the estimates.
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In order to test how close the estimated pose is to the actual pose, both the translational and rotational

offsets need to be taken into account. The absolute trajectory error (ATE) [108] and relative pose

error (RPE) [109, 35] are two methods commonly used to provide analytical comparisons between

trajectories. A brief description of each metric is therefore provided.

4.5.1.2 Absolute trajectory error

The ATE metric, as the name suggests, is used to calculate the absolute error between poses by calcu-

lating the rigid body transformation between two poses [108]. The rigid body transform between the

two trajectories can be calculated by using the centroid of each and solving the least squares problem.

Once the transform is calculated, the error is defined as the remainder between the multiplication of

the inverse ground truth pose matrix with the rigid body transform and the estimated pose, and given by:

Fi = Q−1
i ×S×Pi, (4.6)

where:

• Fi is the ATE error at time-step i,

• Qi is the ground truth pose at time step i,

• Pi is the estimated pose at time step i,

• S is the rigid body transformation that maps the estimated trajectory onto ground truth.

The root mean squared error (RMSE) is regularly used to calculate the translational components of the

ATE over a vehicle’s trajectory. However, in some instances the mean error is preferred, as the metric

is less susceptible to outliers. The RMSE is given by

RMSE(F(i:n),∆) =

√
1
m

∑
n
i=1‖trans(Fi)‖2. (4.7)
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4.5.1.3 Relative pose error

The RPE measures the accuracy of trajectories during localisation and mapping and is frequently used

in visual odometry systems and during loop closures. The advantage of the RPE over the ATE is that

the RPE is able to evaluate the trajectories when only sparse, relative pose relations are available as

ground truth [109, 35]. Equation 4.8 demonstrates how the RPE can be calculated for a particular time.

Ei := (Q−1
i Qi+∆t)

−1(P−1
i Pi+∆t), (4.8)

where:

• Qi is the ground truth pose matrix at time step i,

• Pi is the estimated pose matrix at time step i,

• Ei is the RPE error at time step i,

• ∆t is the fixed time interval.

As with the ATE metric, the RMSE over a certain time interval is calculated to provide an overall

rotational and translational error, given by

TransRMSE(E(i:m),∆) =

√
1
m

∑
m
i=1‖trans(Ei)‖2, (4.9)

RotRMSE(E(i:m),∆) =

√
1
m

∑
m
i=1‖rot(Ei)‖2. (4.10)

However, the relative errors are only evaluated for a certain time interval. As a result the metric

penalises the rotational error more at the beginning of the trajectory than at the end. To provide a

robust error that is independent of time, the average error is therefore calculated over all possible time

intervals. Note that the computational complexity becomes quadratic because a double summation is

required. Thus the RPE errors are commonly sub-sampled before calculating the average RMSE to

speed up computation, as shown below:

RMSE(E(i:n)) =
1
n

n

∑
∆=1

RMSE(E(i:m),∆). (4.11)
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4.5.2 Model comparison

Establishing whether the learned models improve performance during localisation and mapping requires

that the models be evaluated against the analytical models. Both the odometry-based and differential

drive models were therefore used as a comparison.

4.5.3 Data association

The data association problem within SLAM can significantly affect the accuracy of SLAM algorithms.

Sparse environments and scenes that closely resemble each other can lead to false positive and false

negative matches. By using simulated landmarks the data association problem can be bypassed, thus

ensuring no false positive or negative measurements are obtained.

Creating simulations that avoid many of the practical problems of data association requires the ground-

truth poses, the vehicle’s control/odometry as well as the landmark locations. The Freiburg datasets can

be used for the simulations, as the datasets contain both ground-truth and odometry control. Vehicle

control (in the form of odometry) can therefore be used with the analytical models to provide state

predictions as one would implement in a normal SLAM implementation. However, since no landmarks

are provided by the dataset, the simulated landmarks were generated. Figure 4.3 provides a plot of the

simulated landmarks generated for the simulated SLAM tests.

The measurements for each landmark can be calculated by using the ground-truth pose data and the

measurement model as described in (3.39) and (3.40). During simulation a simplistic assumption

is made regarding landmark measurement: all the landmarks can be detected at each time-instance,

regardless of the vehicle’s pose. Random noise is induced on the landmark measurements to create

a more realistic simulation. In addition, the random noise introduced is uniformly distributed on the

covariance interval specified within the parameters.

While simulated landmarks offer valuable information on the performance of each SLAM system, the

simulation cannot offer realistic results. Consequently, real-world data association should be included

during evaluation. The algorithms used to accomplish real-world data described in Addendum A. In

particular, the methods employed to create and match the landmarks using the estimated state of the
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Figure 4.3. The simulated landmark locations.

SLAM system are described. If the learned models can be shown to consistently provide estimates

with smaller errors than the analytical models, then the model will have learned a better representation

of the vehicle’s motion model.

4.6 MODEL LEARNING EVALUATION

Determining whether the motion models can be learned requires the evaluation to encompass a

representative sample of the actual motion. Tests therefore need to be conducted over the entire

working interval of the model in order to reach statistically relevant conclusions. The following section

defines the scope and metrics needed to reach statistically conclusive results.
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4.6.1 Requirements and approach

To resolve whether a motion model has been learned requires that the predictions be evaluated. Spe-

cifically, the one-forward prediction for many trajectories should be determined with no statistical filter

or compensator connected to the output. The approach is similar to the test vectors that NNs commonly

make use of, only on a much larger scale and with additional restrictions and requirements.

The scope of the evaluation therefore needs to be representative of the motion model that was learned.

A number of factors needs to be taken in account to fully realise the evaluation, most of which are

similar to generating the simulated datasets described in Section 4.3. In particular, the learned model

should:

• Be able to provide predictions for any type of motion included in the training set,

• Provide accurate predictions for any trajectory whose initial pose starts within the training set’s

interval,

• Provide accurate predictions for any trajectory generated by control inputs within the training

data’s scope.

Foremost is ensuring that each type of motion is evaluated for a model. By defining specific motion

types within the scope of evaluation, one can determine whether the model is able to provide accurate

predictions for each specific type. To establish the error for a specific motion type, errors need to take

into account both the initial poses as well as the control used to generate the trajectory.

As stated above, the learned model needs to provide similar errors at any starting pose and control.

However, each trajectory tested contains multiple predictions over the entire trajectory. Hence, the

overall error for a specific trajectory needed to be determined, and was considered the deepest level

of evaluation. Using different pose and control pairs to generate the trajectories therefore provided

measurable outcomes for each individual trajectory. However, the trajectory’s error cannot quantify

the error for the motion types or even a particular control.

The next level used to evaluate the models established the error for a specific control. To provide a

measurable outcome for a specific control, the evaluation needed to be independent of any initial pose.
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Thus various trajectories needed to be generated where the control remained constant while the initial

poses varied. To ensure that the true control’s error was approximated, a broad spectrum of initial

poses needed to be tested. Combining the trajectories’ errors and calculating a summary would then

represent the overall error for a specific control. The approach can be extended to multiple controls in

order to quantify the errors for different controls.

In addition, the different controls can be combined to form the overall error for the learned model.

However, the aim is to determine the types of motion that the models were able to learn. Thus by

grouping the tested controls according to motion type and calculating a summary, one can define the

error for each motion type. As with the initial poses, a broad enough spectrum of controls needed to be

tested to ensure that the true motion type’s error is approximated.

The advantage of evaluating the predictions at different levels of depth is that the errors are first defined

by a specific trajectory, then controls and finally motion type. As such, both the general performance

of the models can be evaluated along with any specific trajectory predictions. More information on the

exact poses and controls used to evaluate the motion types can be found in Addendum F.1.

4.6.2 Evaluation metrics

The previous section described the use of many initial poses and controls to generate trajectories that

were used to determine if a motion model had been learned. However, owing to the large number of

trajectories used during evaluation, the results can easily become biased if a single trajectory/control

produces much larger errors, leading to incorrect conclusions. This section therefore investigates

the evaluation metrics required to reach conclusive results. In particular, the relevance of statistical

components for the errors is established.

Various metrics can be used to define an error between a predicted and target value, some of which

were described in Section 4.4. However, each metric only provides information on a certain aspect of

the errors. In order to determine whether model learning succeeds, one will need to evaluate various

components in order to reach conclusive results.

Furthermore, the learned models can both under- and over-estimate the next state, which can have
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dramatic effects on the outcome. Consequently the absolute error was used to define the error for each

prediction. The only exception was when creating histograms of a specific trajectory’s error. In such a

case, knowledge of whether the model over- or under-estimated the movement was more informative.

For evaluation at the different levels, the following metrics can be used to measure the various aspects

of the model’s suitability:

1. MAE (see (4.3))

2. Mean Squared Error (MSE)

MSE =
1
m

m

∑
i=1
|yi− ŷi|2, (4.12)

3. Median Absolute Error

AEmedian = median(|yi− ŷi|) (4.13)

4. Minimum Absolute Error

AEmin = min(|yi− ŷi|) (4.14)

5. Maximum Absolute Error

AEmax = max(|yi− ŷi|) (4.15)

6. Standard Deviation

AEstdDev =

√
1
m

m

∑
i=1

(ŷi−MAE)2 (4.16)

7. Variance

AEvar =
1
m

m

∑
i=1

(ŷi−MAE|)2 (4.17)

8. Median Absolute Deviation of the Absolute Error

AEmedianAD = median(|ŷi−AEmedian|) (4.18)

9. Skewness

AEskew =
3× (MAE−AEmedian)

AEstdDev
(4.19)

10. Kurtosis

AEkurtosis =
1

m×AE4
stdDev

m

∑
i=1

(ŷi−MAE)4−3. (4.20)

The maximum and minimum absolute error metrics are mainly used to determine if there are any

trajectories with errors far larger than those commonly observed. In such cases one can investigate the
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individual errors to ascertain where the errors lie and if the error is an outlier. Similarly, the variance

and standard deviation can be used to establish the interval of the trajectory’s errors. Any cases where

the aforementioned metrics vary significantly for different trajectories should therefore be closely

investigated.

Using the AEmedianAD, skewness and kurtosis [110] allow for further statistical analysis that could

provide deeper insight into the nature of the learned model. The median absolute deviation (MAD) is a

measure of the variability of the absolute errors, comparable to the standard deviation. However, the

MAD is more robust to outliers when compared to the standard deviation. As such the AEmedianAD can

provide a closer estimate of the actual deviations in cases where large outliers are present. The yaw

discontinuities and other outliers will therefore not have as large an effect on the AEmedianAD metric

during the evaluation.

Skewness is defined as the third standardised moment and is used to determine if the weight of a

probability distribution is evenly distributed. Thus any large skew values indicates that the errors

are not normally distributed. Instead, the mass of the errors will lie either to the right or left of the

mean. Similarly, kurtosis is defined as the fourth standardised moment and is used to establish both the

peakedness and heaviness of the tails of a distribution. For the tests the excess kurtosis was used, as

the metric is normalised to 0 instead of 3.

Large kurtosis values indicate that the distribution has a sharp peak with heavy tails, which is also

known as leptokurtic. Under certain conditions, very high kurtosis values could indicate that the errors

are the same for the entire trajectory. Conversely, negative kurtosis values (also known as platykurtic)

indicate that the distribution is broader with thinner tails. Specifically, a negative kurtosis value of

approximately -1 is close to the uniform distribution, while a kurtosis value less than -1.25 is close to

a bimodal distribution. In such cases, the kurtosis could indicate that the learned model is unable to

provide consistent error predictions for the trajectory.

4.6.3 Implementation

The general procedure used for the model learning metrics are described in Algorithm 4.3 and Al-

gorithm 4.4. In general, Algorithm 4.3 is configured to allow different learned models to be evaluated,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

79



CHAPTER 4 TRAINING DATA AND EVALUATION METRICS

each containing multiple iterations of the same test. Furthermore, multiple motion types can be defined

that the system will test. In each case, the algorithm will graph the statistics and calculate a summary

of each motion type.

Algorithm 4.3 calcMotionStats(dir, numModels motionTypes, testVel, initPoses, doControl )

1: for currDir in dir do

2: for all m in motion types do

3: currVel = testVel.get(m)

4: for all i in len( numModels) do

5: allStatistics = testModelKinematics(currDir, initPoses, currVel, doControl, i )

6: Append all statistics

7: end for

8: Process statistics and plot all results on the same graph.

9: end for

10: Calculate summary statistics and create bar graphs.

11: end for

Algorithm 4.4 is the actual implementation that loads the learned models, generates the kinematic

model’s test trajectory and calculates the trajectory-level statistics. Each trajectory’s individual statistics

were calculated and graphed along with the trajectory’s histograms.

Lastly, all of the raw estimates were combined and used to calculate the motion type’s statistics. The

primary reason for combining the raw estimates and calculating the statistics after all the permutations

had been tested was to ensure that no bias existed in the data. In particular, metrics that make use

of a median (such as the AEmedian and AEmedianAD) can contain biased information if each individual

trajectory’s mean statistics were calculated. Thus, to ensure that the true median over all of the

trajectories were calculated, all of the raw estimates were used.

4.7 EXPERIMENTAL PROCEDURES

The internal parameters used during training can significantly affect a NNs performance and learning

ability. Similarly the nature of the information encapsulated by the data determines the complexity

required to learn the motion model. Hence both the data and the NN’s parameters needs to be
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Algorithm 4.4 testModelKinematics(currDir, initPoses, currVel, doControl, i )
1: model = loadLearnedModel(currDir, i)

2: for control in currVel do

3: for pose in initPoses do

4: kinPoses = vehicleMotionGen.genDiffKin(baselen, pose, control, ∆t, numSamples)

5: if doControl then

6: modelEstimates = testTrajectoryControl(kinPoses, control, numSamples, model)

7: else

8: modelEstimates = testTrajectory(kinPoses, numSamples, model)

9: end if

10: Save raw kinematicPoses and modelEstimates

11: allRawEstimates.append(modelEstimates)

12: allRawOutputs.append(kinPoses)

13: stats = calcPredictionStatistics(kinPoses, modelEstimates)

14: individualStats.append(stats)

15: end for

16: end for

17: Plot and save all individual statistics

return calcPredictionStatistics(allRawOutputs, allRawEstimates)

investigated comprehensively in order to evaluate whether the NNs are able to learn a vehicle’s motion

model.

Utilising the learned model for localisation and mapping adds another level of complexity to the

evaluation of the models. Specifically, the learned model’s practical applicability needs to be evaluated,

as well as the learned models’ performance with regard to analytically defined models. The following

section therefore provides a brief description of the parameters that need to be taken into account in

order to reach a usable solution.

4.7.1 Parameter characterisation

Various parameters need to be taken into account to determine if the NNs are able to learn a vehicle’s

motion model. The learning rates, network structure, activation function, dataset and state memory can

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

81



CHAPTER 4 TRAINING DATA AND EVALUATION METRICS

have a large impact on the network’s performance during estimation. Other factors that need to be taken

into account include the spectrum of training data, the rate at which the model can provide estimates

and the state’s complexity and memory. In addition, different permutations of the aforementioned

parameters can have an impact on the training results. For practical applications the noise in the

transitional and measurement models can also affect the EKF’s accuracy. Thus each of the parameters

needs to be carefully evaluated using various configurations.

One example of how the parameters could influence learning is given by considering the network

structure and the learning rates. For this test, the variable of interest is the NN’s convergence/training

error. Another would be the effect that the activation function type has on the dataset and how the

function can affect the working interval or range. A third example is the number of previous states

used versus the NN’s structure. The focus of the test would be to establish if using more previous

states requires more complex network structures in order to provide accurate estimates.

4.7.2 General test parameters

For the subsequent experiments various parameters were evaluated to find the most effective solution

to model learning. Table 4.1 therefore provides the general setup parameters that were used to

test the models’ learning capabilities. Explanations for the landmark’s parameters can be found in

Addendum A. Any alterations or modifications to the parameters provided are specified in the actual

experiments.

The purpose of the parameters listed are easily identifiable and interpretable, with a few exceptions.

In general any parameters specified within block brackets (i.e. "[]") can be considered as a range of

values or interval that the test requires, while a dash ("-") is used to indicate a NN with multiple hidden

layers (e.g. 23−8 has 23 neurons in the first hidden layer and eight in the second). Furthermore, any

parameters specified in curly brackets (i.e. "{}") are parameters that were adjusted for different tests in

order to find an optimal solution.
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Table 4.1. General parameters used for the NN and EKF-SLAM implementations.

Parameter Value Parameter Value

Algorithm Back-propagation Activation function tanh

Weight range [−0.2,0.2] Sampling rate 10 FPS (0.1s)

Maximum epochs 10000 Decimation indexes [0−29] (all)

Min training error 0.000001 Learning rate 0.12

Momentum 0.03 Annealing factor [2000]

Number of previous

states

3 Batch/Online pro-

cessing

Online

NN structure 15 Scaling factor (x,y,θ ) [3.5, 3.5, 3.2 ]

Feature-detector SIFT Landmark increment 20

FLANN match ratio 0.6 Stability ratio 0.5

Group volume (Euc-

lidean)

0.2m Image memory (land-

mark creation)

6

Matching distance

(Euclidean)

0.5m Minimum matches

within group

3

Training set [ Robot SLAM1, Ro-

bot SLAM2, Robot

SLAM3]

Test set Robot 360

Transitional noise

(x,y,θ )

[0.00001, 0.00001,

0.00001]

Measurement noise

(x,y,θ )

[0.05, 0.05, 0.05]

Initial covariance

(x,y,θ )

[ 0.00025, 0.00025,

0.00025 ]

4.8 SUMMARY

This chapter detailed the investigations into the training data, any manipulations required as well as

the evaluation metrics used during the experimental results. The creation of simulated datasets was

discussed, along with a methodology to evaluate the types of motion that could be learned. Lastly, the

experimental procedures were described, along with the parameters of interest.
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A framework was created to generate the simulated datasets automatically, apply the specified data

manipulations to the training data and evaluate the various aspects of the learned models. The

framework included providing summaries of training iterations, the statistical metrics used for the

model learning evaluation methodology and the pose/trajectory results of the SLAM algorithms.

Both the raw and processed results were stored for all the experiments. This includes the NN’s

weights, epoch errors, predictions for each tested trajectory and the raw trajectory of the EKF-SLAM

algorithms.
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5.1 CHAPTER OVERVIEW

The following chapter details all the experimental protocols used to test the model learning strategy,

as well as the outcome of each experiment. The chapter is divided into 3 main experiments: The

real-world experiments using a tanh activation function (Section 5.2), using a linear activation function

(Section 5.3) and determining the motion types that could be learned by the NNs (Section 5.4).

Additional experimental results are also available in Addendum E.

For the initial tests only the real-world datasets with the primary approach (no control inputs added)

were used to establish if a model could be learned. Subsequently, the impact of the linear activation

function was evaluated to determine if any improvements could be observed. The performance of the

NNs were compared to the analytical models after training to verify if any could be used to predict

the vehicle’s next state. Specifically, the accuracy of the models was quantified with respect to the

ground-truth data. Both simulated landmarks and real-world data association were tested with various

amounts of assumed noise for both the measurement and transitional model.

Lastly, the learning capability of the NNs were evaluated using the metrics described in Section 4.6.

Both the real-world and simulated datasets were compared during these tests. For the simulated datasets

both approaches described in Section 3.4 were used to train the models. The amount of training data

required to learn a specific motion was also evaluated during the tests.
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5.2 FREIBURG DATASET WITH TANH ACTIVATION FUNCTION

The initial tests conducted used the Freiburg datasets with no control input to train the NNs. The

aim was to establishing the impact of various parameters during the learning process. The network

structure, number of previous states and data format were considered the most important tests and

were therefore evaluated first (see Section 4.2 ). Lastly, the NN’s performance within a SLAM system

was determined using the optimal configuration.

5.2.1 Experimental setup

As described by the parameters in Section 4.7.2, the NNs made use of the back-propagation algorithm

with learning-rate, momentum and annealing factors. Three of the ground-truth datasets were used as

training data where the poses were sub-sampled to a frame-rate of 10 FPS. Furthermore, decimation

was employed between the indexes to increase the number of training examples. Various tests were

conducted, each focusing on a specific parameter to find an optimal solution. Table 5.1 provides a

summary of the parameters used during the subsequent tests.

The first test performed investigated the structure of the NNs using both single and two hidden-layer

networks. While not all of the possible network structures were tested, the number of neurons used

were distributed over relatively large interval to provide clear indications of the regions that yielded

the best estimators. The expectation was that relatively small single layer networks (between 10 and

30 neurons) would provide sufficient interactions to represent the motion, with the learning rates,

momentum and annealing factors reducing the oscillatory behaviour and the number of epochs required

to reach convergence.

The amount of memory within the NNs was the third parameter investigated. For the memory tests

three previous states were expected to provide sufficient information to learn second-order derivatives

(acceleration) of the system, with additional memory introducing redundancies and potential learning

of higher-order derivatives. It should be noted that since the number of inputs were altered during

the memory tests, that the optimal NNs structure could differ from those found in previous tests. To

account for such a possibility, a number of alternate network structures were also evaluated during the

tests.
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Table 5.1. Parameters for the initial NN tests.

Parameter Value Parameter Value

Learning rate (lr) {0.45, 0.36, 0.3, 0.22, 0.12,

0.08 }

Number of previ-

ous states

{ 1, 2, 3, 5, 7, 9, 11, 13 }

Momentum (m) {0.34, 0.29, 0.11, 0.03,

0.04, 0.03 }

Annealing factor

(a f )

{1000, 3000, 5000, 10000 }

NN structure {62, 45, 33, 25, 19, 13, 7,

31-19, 24-9, 19-7, 17-11,

13-5, 7-5 }

Initial pose

(x,y,θ )

[−1.8478,2.9448,0.839]

NN approach Memory only, no control Initial covariance

(x,y,θ )

[0.00025,0.00025,0.00025]

Transitional noise

(Nt)

[0.01,0.01,0.01],

[0.001,0.001,0.001],

[0.005,0.005,0.005],

[0.0001,0.0001,0.0001],

[0.00001,0.00001,0.00001]

Measurement

noise (Nm)

[0.1,0.1,0.1]

[0.05,0.05,0.05],

[0.001,0.001,0.001]

Subsequently, the effects that data manipulation had on the NN’s learning ability were investigated.

The first manipulation investigated was splitting the datasets into smaller subsets whenever large

discontinuities were observed between poses. While the NNs would not be able to provide accurate pre-

dictions whenever the shift-register contained discontinuities, the learning process would be simplified,

leading to better representation of the motion. As with the data decimation, all of the discontinuous

subsets were used as long as the subsets contained a minimum percentage of the total dataset (see

Section 4.2.8). To ensure that no pattern was learned from the data, the order of training for the subsets

were selected randomly during each epoch.

The second manipulation investigated incrementally added the datasets as described in Section 4.2.7.

By incrementally adding the datasets after every nth epoch, a significant speed-up in computation time

should be observed while maintaining similar (or fewer) errors than when using the previous strategy.

Furthermore, the NN’s stability should also improve using the iterative approach, as more specific data

was included initially. In addition, the discontinuity and iterative strategies were combined during
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training and evaluated. The expectation was that if both strategies resulted in smaller errors, then a

combination of the strategies would further improve the learned models.

Lastly, the best performing NNs were used with the SLAM implementation to establish if the NNs

could provide accurate estimates. For the initial tests, data association was not taken into consideration.

Instead, simulated landmarks were used along with different transitional and measurement noises in

order to gauge the effects on the predictions. The performance of the SLAM systems were compared to

a generalised 2D odometry model, a differential drive’s kinematic model and the ground-truth provided

by the Freiburg datasets. If the correct model was learned, the outcome of the experiments were

expected to improve predictions as more confidence was placed in the transitional model. In addition,

the learned model’s SLAM algorithm would also have smaller ATE and RPE errors than the analytical

models.

5.2.2 Summary of results

5.2.2.1 NN structure and learning rate test results

Comparing the different NNs’ structures LSE revealed that most single hidden-layer networks con-

verged to a similar error (between 0.0015−0.0025), with the smaller networks producing the smallest

training errors. The largest difference between the different network sizes were the number of epochs

required to reach a stable solution. The two hidden-layer networks, in comparison, showed that the

errors either remained the same or increased as training progressed. Furthermore, none of the NNs

could provide accurate estimates with the test vectors.

Changing the learning-rate, momentum and annealing factors also seemed to produce little improve-

ment during training, with only slightly smaller errors observed (0.00065−0.0011). In addition the

results showed that higher annealing factors required more epochs to reach the same error as lower

annealing factors. In some cases the effects of higher annealing factors led to downward "steps" of

the error. The reason the "step" were observed was due to annealing only being applied at certain

intervals for learning rates and momentum, as discussed in Section 3.4.3. Figure 5.1 provides graphs

showcasing typical errors observed during the aforementioned tests.
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(a) NNsize = 62, lr = 0.18, M = 0.07,

A f = 2000, memory = 3.
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(b) NNsize = 15, lr = 0.12, M = 0.04,

A f = 10000, memory = 3.
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(c) NNsize = 33, lr = 0.12, M = 0.04,

A f = 2000, memory = 5.
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(d) NNsize = 13−5, lr = 0.12, M = 0.04,

A f = 2000, memory = 11.

Figure 5.1. LSE error during training for the various NN structures.

5.2.2.2 NN memory test results

Increasing the size of the shift-register had two observable effects. For single hidden layer networks,

an increase in memory brought about a slight increase in the error. Two hidden-layer networks, in

comparison, brought about a slight decrease in errors. However, the training error of two hidden-

layer networks was still larger when compared to single hidden-layer networks. Table 5.2 provides a

summary of the training errors observed when the amount of memory was varied.

The test vectors for the NNs also revealed that large "jumps" between the estimates existed. Specifically,
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Table 5.2. Range of NN training errors with regards to the amount of memory in the network.

Memory 15 hidden-layer

network

33 hidden-layer

network

13-5 hidden-layer

network

3 0.00026 - 0.00124 0.00079 - 0.00262 0.00206 - 0.01816

5 0.00082 - 0.00172 0.00122- 0.00235 0.00127 - 0.01651

7 0.00065 - 0.00171 0.00184 - 0.00270 0.00123 - 0.01749

9 0.00132 - 0.00179 0.00184 - 0.00296 0.001767 - 0.01726

11 0.00102 - 0.00185 0.00191 - 0.00291 0.00145 - 0.016297

13 0.00111 - 0.00195 0.00162 - 0.00386 0.001279 - 0.01173

many of the jumps occurred during the vehicle’s orientation discontinuities. In Figure 5.2 the weights

of the first three hidden neurons are graphed for the NN with five previous states as well as the fourth

to sixth neuron’s weights for the NN with thirteen previous states. In both cases, a significant increase

in the weights were observed. For a tanh activation function such large values should not exist, as 98%

of its range can be found in the interval [−2.5,2.5]. The implication is that the NN may not be able to

reach stable, convergent weight values.

Usually, when such large values are observed for a tanh activation function, then the input values

are not scaled properly to the function’s working interval. However, the problem was not with the

scaled Freiburg datasets as the scaled data’s maximum values were [0.9419,0.9220,0.9810]. Rather,

the discontinuities appears to be the cause of the large weight values. The yaw output’s neuron weights

were consistently larger than the x- and y-outputs by a factor of 5, which also affected the hidden layer’s

neuron weights. Consequently, tests were conducted to determine if removing the discontinuities from

the data allowed the NNs to converge to lower errors.

5.2.2.3 Discontinuity and iterative test results

Observations of the training results for the discontinuity, iterative and combined tests (Figure 5.3) show

that removing the discontinuities reduces the LSE training error to between 4.5×10−6 and 7.2×10−6.

The results therefore indicate that NNs have difficulty learning how to handle discontinuous data,

especially in scenarios where such discontinuities occur infrequently.
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(a) Stability graph of the NN with 13
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(b) Stability graph of the NN with 5 previous states.

Figure 5.2. Stability graph of the NN’s hidden layer (partial) for a NN with 15 hidden nodes.

In comparison, the iterative tests show almost no improvement over previous results except in rare

instances where one of the NNs outperformed the rest (an LSE of 4.5×10−5). Combining the discon-

tinuity and iterative tests also confirmed that the iterative tests did not affect the overall performance.

In fact, comparing the combined tests with the discontinuous tests revealed that the combined tests

performed slightly better on average (LSE between 4.1×10−6 and 6.8×10−6 ).

The test vectors (Figure 5.4) also confirm the result of the training error. Iteratively appending the

datasets offers no real improvement on the estimates, while splitting the data at discontinuities signific-

antly reduces the errors except when the discontinuities were inside the shift register. Furthermore, the

combined tests produced similar results to the discontinuous tests, with some slight improvement at the

discontinuities. Lastly, examining the stability of the NNs revealed that removing the discontinuities

significantly lowered the overall weights in the NNs. Specifically, the weights for the iterative tests were

regularly an order of magnitude higher than the NNs trained with the discontinuities removed.
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(a) Training error where the datasets are

added iteratively.
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(b) Training error with the discontinuities

removed from the input data.
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(c) Training error where discontinuities

are removed and datasets added iteratively.

Figure 5.3. LSE error during training for the discontinuities and iterative tests.

5.2.2.4 SLAM with simulated landmarks

The results of the simulated SLAM experiments are given in Figure 5.5. Two observations can be made

with regard to the amount of noise on the system. The first is that the NN’s pose estimates tend to the

previous estimate as the transitional noise decreases. Secondly, the yaw estimates tend to a constant

value as the transitional noise decreases.

The ATE results also concur with the observations that a lower transitional noise leads to larger errors

during estimation (see Table 5.3 and Figure 5.6). Further investigation into possible causes revealed

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

92



CHAPTER 5 EXPERIMENTAL RESULTS

0 10 20 30 40 50 60 70 80
Time(s)

−3

−2

−1

0

1

2

3

Po
si

tio
n 

(m
)

(a) NN output (x).

0 10 20 30 40 50 60 70 80
Time(s)

−3

−2

−1

0

1

2

3

Po
si

tio
n 

(m
)

(b) NN output (x).

0 10 20 30 40 50 60 70 80
Time(s)

−3

−2

−1

0

1

2

3

Po
si

tio
n 

(m
)

(c) NN output (x).

0 10 20 30 40 50 60 70 80
Time(s)

−3

−2

−1

0

1

2

3

Po
si

tio
n 

(m
)

(d) NN output (y).
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Figure 5.4. Plot of the test vector’s results compared to the actual output for the iterative tests (left)

discontinuous tests (middle) and the combined tests (right).

that the actual learned weights may be the reason for the estimates. In almost all the tests conducted

the bias variable’s weight had a significant impact on the final estimate. Thus, a likely explanation

is that the NNs were unable to learn the inherent model, as a significant portion of the final estimate

was not dependent on any of the previous states. One possible reason for the NN learning to add

significant weight to the bias variable is that the activation function is unsuitable for motion model
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(a) Pose-graph of the NN-EKF with Nt = 0.01 and

Nm = 0.05 .
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(b) Pose-graph of the NN-EKF with Nt = 0.0001

and Nm = 0.1 .

Figure 5.5. Pose graphs of the NN-EKF with different transitional and measurement noise parameters

with a NN structure of 15 hidden nodes.

learning. Because the tanh activation function adds an incremental gradient between two extremes

(either −1 or 1), an activation function that is unconstrained may be able to encapsulate the motion

model more accurately.

5.3 FREIBURG DATASETS (LINEAR ACTIVATIONS)

The previous experiments demonstrated that the NNs were highly inconsistent during localisation

and mapping. As such the NNs could not be used to predict or update the vehicle state accurately.

The following experiment therefore determined the effects that a linear activation function had on

the learning process. As with the previous experiments, no control input was added to the training

data.
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Table 5.3. ATE results for the different EKF-SLAM simulations.

Nt = 0.01, Nm = 0.05 Nt = 0.0001, Nm = 0.1

Algorithm RMSE σ RMSE σ

Odometry EKF-SLAM 0.2791 0.1312 0.4040 0.1341

Differential drive EKF-

SLAM

0.6300 0.2659 0.3751 0.89116

NN EKF-SLAM 1 0.2106 0.1019 1.3782 0.3502

NN EKF-SLAM 2 0.1748 0.0771 1.3035 0.3302

NN EKF-SLAM 3 0.2576 0.0985 1.4751 0.3787

NN EKF-SLAM 4 0.2834 0.1042 1.4325 0.3634

NN EKF-SLAM 5 0.2045 0.0807 1.3065 0.3315
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Figure 5.6. Graph of the transitional noise vs. the RMSE of the ATE metric where measurement noise

was assumed to be Nm = 0.05.
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5.3.1 Experimental setup

Changing the activation function influences the learning process significantly and as such most of the

parameters evaluated previously were re-evaluated. In particular, the NN’s may require additional

neurons and layers to learn any non-linearities inherent in the motion. Hence changes in the NN’s

structure was re-evaluated during the experiments. While a memory of three was still expected to

be sufficient to learn the higher-order dynamics, tests were conducted for verification and to ensure

consistency.

Factors that were not specifically re-evaluated included the learning rate, momentum and annealing

factors. Instead, the values found in the previous experiments were used. Similarly, splitting the

datasets at discontinuities and adding the datasets iteratively were also not re-evaluated. Instead, both

formats were included from the onset, as this was found to decrease the training errors significantly.

To eliminate any bias, the training and test sets were also changed for the experiments, as shown in

Table 5.4.

The best performing NNs were used within the EKF-SLAM system to determine the performance

of localisation and mapping. The SLAM implementation made use of the simulated landmarks

with the transitional and measurement noises varied to establish the noise’s effects. As a final test,

the data association problem was taken into consideration to produce a full SLAM implementation.

Specifically, the landmarks were created from data received from a Xbox Kinect and updated as

described in Addendum A. The results were again compared to a generalised 2D odometry model, a

differential drive’s kinematic model and the ground-truth provided by the Freiburg datasets.

5.3.2 Summary of results

5.3.2.1 Linear activation function training results

Observations of the training results appeared to reach stable minimums. Both single- and two-layer

networks converged to a training error of approximately 3.74× 10−5, as shown in Figure 5.7. In

addition, the NN’s structure did not appear to have a large impact on the training error, with all the

tested NNs producing similar errors.
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Table 5.4. Parameters for the linear activation function tests.

Parameter Value Parameter Value

NN structure { 15, 28, 36, 43, 13-7, 24-

11 }

Activation func-

tions

Linear

Discontinuity split Yes NN approach Memory only, no control

Training set [ Robot SLAM1, Robot

SLAM2, Robot 360]

Test set Robot SLAM3

Number of previ-

ous states

{ 1, 2, 3, 5, 7, 9, 11, 13 } Image memory 3

Initial covariance

(x,y,θ )

[0.00025, 0.00025,

0.00025]

Initial pose (x,y,θ ) [−1.8478,2.9448,0.839]

Transitional noise

(Nt)

[0.01,0.01,0.01],

[0.001,0.001,0.001],

[0.005,0.005,0.005],

[0.0001,0.0001,0.0001],

[0.00001,0.00001,0.00001]

Measurement

noise (Nm)

[0.1,0.1,0.1]

[0.05,0.05,0.05],

[0.001,0.001,0.001]

The amount of memory did not have a significant impact on the training error either. The only exception

was when no memory was added to the NN. In that case, the errors were approximately 1.9×10−4.

The tests vectors, however, did reveal that using more memory resulted in larger oscillations around the

yaw discontinuities. The cause of these oscillations were due to the discontinuity remaining longer in

the NN’s memory. Furthermore, the NN’s weights reached stable values in fewer epochs and tended to

remain at those values when compared to the tanh activation functions (see Figure 5.8). Comparisons

of the weights with the tanh activation function’s NNs also revealed that the bias variable’s weight no

longer had a large influence on the estimates. Instead, the prediction of the next state mostly depended

on the previous state, with the memory contributing less weight to the prediction.

The only concerning result from the linear activation functions was that the training errors were ap-

proximately one order of magnitude higher than the NNs with tanh activations. One explanation for the

higher error is that linear activation functions do not perform as well as tanh activation functions when

using gradient descent algorithms. An alternate explanation is that the NNs with tanh activation never
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(b) Training error with a linear activation

function, 15 hidden nodes and 13 previous

states.
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(c) Training error with a linear activation

function and 43 hidden nodes and three
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(d) Training error with a linear activation

function, 13-5 hidden nodes and 11 previous

states.

Figure 5.7. LSE error during training for the discontinuities and iterative tests.

learned the model, which is why the bias variable had a significant influence to the prediction.

5.3.2.2 SLAM with simulated landmarks

The simulation results obtained from the linear activation functions showed a marked improvement

over the previous results. Specifically, the warping observed with the tanh activation function was

not observed and the yaw estimates did not converge to some constant value. Instead, the trajectories
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Figure 5.8. Stability graph of the NN’s hidden layer (partial) and output layer for a NN with a hidden

node structure of 15 and a memory of 3.

tended to follow the vehicle’s trajectory, with some oscillations at certain poses.

These oscillations were more pronounced when a lower transitional noise was used with the tests, as

shown in Figure 5.9 and Figure 5.10. Furthermore, the oscillations occurred most frequently during

phase-changes, which indicates that the oscillations may have been caused by discontinuities in the

NN’s memory.

The observations of the different NN-EKF simulations indicate that a number of problems still exist

during estimation. The first one is the oscillations occurring at the phase-changes. As the phase-

changes are the primary cause of the oscillations, the best solution would be to ensure that the NNs

never observe the phase-change. By allowing the yaw estimates to be unconstrained, the NNs will

never observe the phase changes. Once the full trajectory has been observed, the yaw estimates can

then just be re-factored to the interval [−π,π]. Hence the strategy was implemented and evaluated in

the subsequent section’s experiments.

The second problem is that lower transitional noises do not result in lower ATE errors. Thus learned
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(a) Pose-graph of the NN-EKF with Nt = 0.001 and

Nm = 0.05.
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(b) Yaw of the NN-EKF with Nt = 0.001 and Nm =

0.05.

Figure 5.9. Pose graph of the NN-EKF using a NN with 15 hidden nodes.

models may not provide accurate predictions to the system. Instead the measurement model appears to

compensate the incorrect predictions. Furthermore, the compensation occurs more readily when a larger

noise is assumed for the transitional model. Data association was therefore taken into consideration to

determine whether the learned models provide similar real-world results.

5.3.2.3 SLAM with data association

The results obtained for the NN-EKF confirmed that the NNs were unable to provide accurate predic-

tions of the vehicle’s motion, as shown in Figure 5.11. While the yaw estimates no longer contained

the oscillations seen with the simulated landmarks, the predicted trajectory still did not resemble the

ground-truth.

The RPE and ATE results further demonstrated that the learned models could not provide accurate

predictions to the NNs. Even though the errors for the differential drive and odometry models were

also high because of misalignments in the trajectory, both still yielded smaller RPE and ATE errors
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(a) Pose-graph of the NN-EKF with Nt = 0.01 and

Nm = 0.05.
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(b) Yaw of the NN-EKF with Nt = 0.01 and Nm =

0.05.

Figure 5.10. Pose graph of the NN-EKF using a NN with 13-7 hidden nodes.

than the learned models, as shown in Table 5.5. In addition, the standard deviation and maximum error

over the trajectory were generally also lower for both analytical models.

Further tests were also conducted using the Robot 360 dataset (a training set) to ascertain whether

the NNs learned the specific trajectories instead of a general model. However, the results remained

similar to the ones obtained using the SLAM3 dataset. Further investigation was therefore needed to

determine if the NNs could learn even the most simplistic motion.

5.4 MODEL LEARNING TESTS

The previous experiments demonstrated that the NNs could not learn a vehicle’s motion model

sufficiently to provide accurate predictions. However, no information was obtained as to why the NNs

could not properly learn the vehicle models. Furthermore, questions on the types of motion that could

be learned, if any, also required investigation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

101



CHAPTER 5 EXPERIMENTAL RESULTS

−10 −8 −6 −4 −2 0 2 4
x [m]

−10

−8

−6

−4

−2

0

2

4

y 
[m

]

(a) Pose-graph for the NN with 15 hidden nodes

and a memory of three.

0 20 40 60 80 100 120
t (s)

−4

−3

−2

−1

0

1

2

3

4

ya
w

 (R
ad

)

(b) Yaw-graph for the NN with 15 hidden nodes

and a memory of three.

Figure 5.11. Pose-graphs of the NN EKF-SLAM with the Nt = 0.001 and Nm = 0.05.

Table 5.5. RPE results for the different SLAM simulations with Nt = 0.001 and Nm = 0.05.

Algorithm Translational component Rotational component

RMSE (m) σ(m) RMSE (◦) σ(◦)

Odometry EKF-SLAM 1.3190 0.5484 80.6468 37.1605

Differential drive EKF-

SLAM

1.2627 0.5211 78.9587 35.4953

NN EKF-SLAM 1 1.6309 0.6773 85.8827 44.8140

NN EKF-SLAM 2 1.5766 0.7047 83.5064 40.6333

NN EKF-SLAM 3 1.6443 0.7637 83.6391 41.3253

NN EKF-SLAM 4 1.5607 0.6789 91.0661 44.7849

NN EKF-SLAM 5 2.2952 1.4413 86.9623 43.4606

5.4.1 Experimental setup

Determining the types of motion that the NNs are able to learn requires that each type be isolated from

the others during training. As discussed in Section 4.3, simulated datasets can be used to easily create
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separable datasets for different motion types. Hence the subsequent experiments trained each motion

type both separately and as a combined set. The various setup parameters used during these tests are

described in Table 5.6.

Table 5.6. Parameters for the linear activation function tests.

Parameter Value Parameter Value

NN structure {3, 7, 11, 25, 33, 45, 150,

11-5, 23-9 }

Activation func-

tions

linear

Discontinuity split Yes Test set Simulated test sets

Training sets (sim-

ulated)

[Arc, linear, rotational, sta-

tionary]

NN approach [Memory, memory with

control]

Number of previ-

ous states

{ 1, 3, 7, 11 } Increasing training

data

[Initial poses, control tra-

jectories ]

The learned models were evaluated following the methodology specified in Section 4.6. Thus each

trajectory was evaluated using the metrics defined and a summary of each control and subsequent

motion type was made. For completeness, the models learned from the Freiburg datasets were evaluated

initially to provide a baseline for comparison. In addition, the influence that the amount of training

data had on each motion type was investigated. Specifically, increasing the number of initial poses and

controls included in a training set was expected to increase the accuracy of the learned models. The

NN’s structure and memory were also re-evaluated for the experiments to determine if the simulated

trajectories impacted the parameters previously found during training.

Lastly, the alternative approach as described in Section 3.4.2 was investigated. Hence the vehicle

control used to generate each trajectory was added as input to the NNs and used during training.

Comparisons were drawn between the NNs with and without control, where the NNs with control

were expected to outperform the NNs without control. The network structure, memory and diversity

of the training data used during training were again evaluated in order to cover the problem space

comprehensively.
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5.4.2 Summary of results

Analysis of the metrics for the overall motion types and individual trajectories revealed that some

metrics were more suitable than others. Specifically, the AEmin and AEmax only provided limited

information on the errors, while the MSE errors differed significantly from the MAE and AEmedian,

especially at the yaw estimates. Similarly, the standard deviation of the yaw error did not correspond

with the median absolute deviation (AEmedianAD).

In both cases, the disagreements of the metrics were due to the yaw discontinuities. Lastly, the large

kurtosis and skew values observed individually indicated that any mean value might not effectively

represent the probability distribution of the errors. Therefore, the AEmedian, AEmedianAD, AEskew and

AEkurtosis were the preferred metrics used during evaluation.

5.4.2.1 Freiburg dataset results

The various tests conducted on the Freiburg datasets revealed that the type of motion tested produced

different errors. Histograms of the errors for each motion type were therefore investigated. Typical

results for each type are provided in Figure 5.12 and Figure 5.13 , where histograms in green indicate

that a large skew was detected (larger than |4|) while blue was used when a kurtosis less than −1.4 was

detected. Histograms in red were used when both a large skew and small kurtosis were detected.

For arc motion, skew values exceeding either −4 or 4 were regularly observed for the yaw estimates

with large excess kurtosis values. Small values for the kurtosis were also common for the x- and y

estimates during the predictions, leading to a probability distribution that appeared to be uniformly

distributed over the error interval. Linear motion, in comparison, regularly had large skew and kurtosis

values for both the x- and y- estimates, while the yaw estimates were prone to vary, depending on the

initial pose and control.

Pure rotational motion showed that the x-estimates generally had small skew and kurtosis values,

while the yaw estimates had large skew and kurtosis values. The y-predictions for rotational motion,

however, produced both skew and kurtosis values that varied not only over different trajectories but also

over training iterations of the NNs. Tests using stationary motion provided a number of noteworthy
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(a) Pinit =−0.6,−1.7,−0.3, v f = 1.5, ω = 0.15.
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(b) Pinit = 0.8,−1.2,−1.78, v f = 2.4, ω = 0.0.

Figure 5.12. Histograms for the NN with 15 hidden nodes and a memory of three. Pinit is the initial

pose, v f the forward velocity and ω the rotational velocity used to generate the test trajectory.
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(b) Pinit = 1.2,1.2,0.5, v f = 0.001, ω = 0.001 .

Figure 5.13. Histograms for the NN with 15 hidden nodes and a memory of three. Pinit is the initial

pose, v f the forward velocity and ω the rotational velocity used to generate the test trajectory.

observations. When the forward velocity was set to 0.0, the skew and kurtosis for the x-estimates

remained close to zero. However, as soon as a small amount of forward velocity was provided (e.g.
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0.001), large skew and kurtosis were observed. The y-predictions provided similar results to the

rotational motion when using no forward velocity, with large kurtosis and skew values when a small

forward velocity was provided. For the yaw estimates large skew and kurtosis values were observed

irrespective of the forward velocity supplied.

The overall errors for each motion type were determined and graphed as shown in Figure 5.14. From

the AEmedian graph one can observe that linear motion produced the largest x- and y errors, while arc

and rotational motion produced the largest yaw errors. Furthermore, each motion type except for

stationary motion were subject to large deviations over the tested trajectories. The NNs could therefore

only be used to represent stationary motion.

Further analysis of different NNs revealed that increasing the memory significantly reduced the overall

performance. From Table 5.7 one can observe that less memory provides better estimates. However,

even with a memory of 3 the x-, y- and yaw errors were significant, which explains why the NNs could

not provide accurate estimates when executing the EKF-SLAM algorithm. In addition, the NNs that

contained no memory were able to provide better estimates than those containing memory. Hence the

results for the NNs’ memory contradict the training errors observed in previous experiments, which

could indicate that the NNs cannot learn higher-order dynamics.

5.4.2.2 Network structure tests (simulated datasets)

The first tests conducted with the simulated datasets were intended to establish whether the network

structure had any impact on the models’ performance. Furthermore, each motion type was trained

separately on the various NNs to determine if a specific type of motion could be learned. The number

of initial poses used by the training data was set to 15, with the arc motion control set to 10. For

the linear and rotational motion the control was set to eight, while stationary motion made use of six

controls (see Section F.2). In addition, each motion type was evaluated after training, irrespective of

the training data type. However, only the relevant test type’s results are discussed in this section.

The results observed showed that all the NNs with two hidden layers could not train properly. Con-

sequently, the two hidden layer networks’ results are not discussed further. Table 5.8 and Table 5.9

provide the overall results for training the NNs with varying amounts of neurons, with and without
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Figure 5.14. Bar graphs of each motion type’s error for a NN with 15 hidden nodes and a memory of

11. The x-, y- and yaw errors were each graphed next to each other for direct comparison.

control. As in the previous tests conducted using linear activations, the number of hidden neurons did

not seem to have a large impact on the estimates.

The type of motion used, however, did have a significant impact on the results. Predictions for stationary

motion without control input could be represented with a fair degree of accuracy. Furthermore,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

108



CHAPTER 5 EXPERIMENTAL RESULTS

Table 5.7. The overall AEmedian results for the NNs trained with Freiburg datasets using various

amounts of memory.

Memory

Test Data 1 3 5 7 11 13 15

Arc 0.047 0.089 0.174 0.259 0.425 0.51 0.595

motion 0.047 0.096 0.189 0.283 0.467 0.56 0.651

(x,y,θ ) 0.015 0.0259 0.053 0.082 0.14 0.17 0.193

Linear 0.062 0.118 0.229 0.342 0.567 0.68 0.794

motion 0.066 0.127 0.253 0.39 0.633 0.76 0.884

(x,y,θ ) 0.0078 0.0055 0.0033 0.003 0.0035 0.0044 0.0053

Rotational

motion

(x,y,θ )

0.0092

0.0033

0.013

0.0011

0.00045

0.028

0.00095

0.00058

0.058

0.001

0.00063

0.089

0.0014

0.0007

0.145

0.00145

0.001

0.176

0.00155

0.0008

0.2

Stationary

motion

(x,y,θ )

0.0092

0.0029

0.0027

0.00105

0.00045

0.00075

0.001

0.004

0.00065

0.001

0.0005

0.001

0.0015

0.0006

0.001

0.0013

0.0009

0.0014

0.0014

0.00085

0.0016

any variables that remained constant also had low prediction errors, as indicated by the linear and

rotational motion’s results. However, the errors for any variables that required some interaction could

not be properly represented using the original approach with a median error of up to 0.128m per

prediction.

By including the control variables as input (Table 5.9), a significant improvement was observed.

In particular, the NNs were able to provide reasonably accurate estimates for the special case mo-

tions. However, the arc motion errors were generally an order of magnitude higher than the special

case motions, with errors reaching as high as 0.018m for both the x- and y estimates over certain

trajectories.
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Table 5.8. The overall AEmedian error (measured in meters and radians) for the NNs using various NN

structures with a memory of 3.

NN structure

3 7 11 33 45 150

Test Data Training data: Arc motion

Arc motion 0.085 0.085 0.087 0.086 0.087 0.085

(x,y,θ ) 0.095 0.095 0.095 0.094 0.0945 0.094

0.029 0.029 0.029 0.029 0.029 0.030

Training data: Linear motion

Linear 0.115 0.115 0.113 0.115 0.112 0.115

motion 0.128 0.126 0.126 0.125 0.126 0.128

(x,y,θ ) 0.00018 0.00018 0.00019 0.00019 0.00019 0.00018

Training data: Rotational motion

Rotational 2.40×10−6 2.38×10−6 2.40×10−6 2.40×10−6 2.38×10−6 2.32×10−6

motion 2.0×10−6 1.90×10−6 1.90×10−6 1.85×10−6 1.78×10−6 1.74×10−6

(x,y,θ ) 0.0299 0.0299 0.0299 0.0299 0.0299 0.0299

Training data: Stationary motion

Stationary 0.00011 8.9×10−5 9.9×10−5 9.6×10−5 8.8×10−5 8.8×10−5

motion 7.1×10−5 7.6×10−5 9.6×10−5 7.9×10−5 6.5×10−5 7.1×10−5

(x,y,θ ) 0.00028 0.00031 0.00025 0.00028 0.00032 0.00026

5.4.2.3 Memory tests

The effects that the amount of memory had on the simulated datasets’ performance were also investig-

ated using both approaches, as shown in Table 5.10. Arc motion was the primary focus of the tests

because arc motion was considered the general vehicle motion. The results for the NNs without control

input were found to be similar to the Freiburg datasets. However, when control was included and the

NNs contained no memory, the prediction accuracy decreased for the x-estimates while increasing for

the yaw estimates. Thus, simply adding control without memory did not allow the NNs to learn the

motion.
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Table 5.9. The overall AEmedian error (measured in meters and radians) for the NNs using various NN

structures with control input included and a memory of 3.

NN structure

3 7 11 33 45 150

Test Data Training data: Arc motion

Arc 0.0016 0.0021 0.0019 0.002 0.0019 0.0017

motion 0.0019 0.0018 0.0019 0.0023 0.0019 0.0018

(x,y,θ ) 0.0013 0.0012 0.0012 0.0013 0.0012 0.0013

Training data: Linear motion

Linear 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005

motion 0.0003 0.0003 0.0003 0.0005 0.0005 0.0003

(x,y,θ ) 1.1×10−5 1.1×10−5 9.1×10−6 8.3×10−6 8.5×10−6 1×10−5

Training data: Rotational motion

Rotational 4.0×10−6 2.9×10−6 1.9×10−6 4.0×10−6 3.1×10−6 4.2×10−6

motion 2.9×10−6 3.9×10−6 3.8×10−6 4.1×10−6 2.5×10−6 2.6×10−6

(x,y,θ ) 0.00117 0.00128 0.00128 0.00121 0.00128 0.00124

Training data: Stationary motion

Stationary 6.5×10−5 6.7×10−5 7.7×10−5 7.7×10−5 6.5×10−5 7.9×10−5

motion 4.3×10−5 6.7×10−5 7.3×10−5 5.5×10−5 7.1×10−5 6.4×10−5

(x,y,θ ) 8.1×10−5 9.8×10−5 9.9×10−5 8.4×10−5 8.8×10−5 0.00011

Even though adding control without memory did not improve the predictions, the NNs that contained

memory as well as control inputs did outperform the NNs with memory. However, NNs containing

more than three previous states did not improve the accuracy of the NNs, with most reaching similar

errors to NNs with a memory of three. The one exception observed was when a memory of seven was

used, where the NN’s accuracy decreased. The cause of the decrease may have been due to the NNs

failing to converge to the same local minimum. Nevertheless, the estimates with a memory of seven

still outperformed the NNs that did not contain any control inputs.

Another notable observation was that adding control with memory resulted in decreases for both the

arc and linear motion, even though the models were only trained with arc motion. In comparison,

adding control had almost no effect on stationary motion, while only improving the yaw estimates
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Table 5.10. The overall AEmedian error (measured in meters and radians) for a NN with 11 hidden

nodes trained with the arc motion simulated datasets using various amounts of memory.

Memory (No Control) Memory (Control)

1 7 11 1 7 11

Test Data Training data: Arc motion

Arc motion

(x,y,θ )

0.057

0.041

0.016

0.254

0.280

0.089

0.422

0.464

0.149

0.085

0.036

0.0016

0.0082

0.0372

0.0018

0.0018

0.0012

0.0014

Linear mo-

tion (x,y,θ )

0.071

0.041

0.009

0.339

0.379

0.0006

0.563

0.634

0.0009

0.096

0.043

0.0016

0.0054

0.0016

0.00015

0.0021

0.0016

7×10−5

Rotational

motion

(x,y,θ )

0.025

0.020

0.006

0.0017

0.0012

0.089

0.00082

0.00065

0.1496

0.036

0.039

0.001

0.0023

0.0019

0.0019

0.0009

0.0006

0.0017

Stationary

motion

(x,y,θ )

0.041

0.031

0.0036

0.0017

0.0009

0.0006

0.0010

0.0006

0.001

0.035

0.037

0.0008

0.0025

0.0024

0.0001

0.0008

0.0005

3.1×10−5

for rotational motion. Thus including control generally improves the NNs predictions, even though a

certain type of motion was not specifically used during training.

5.4.2.4 Training data spectrum tests

The subsequent tests investigated whether an increase in training data improved the estimates of the

NNs. Both implementations with and without control were tested with the increase in training data.

The subsequent tests focused on increasing the arc motion’s training data, which performed worst in

the previous tests as well as being the prevalent motion for a differential drive system.

The number of initial poses used to generate the training sets was increased from 16 to 29, 57 and

113 poses respectively. However, no improvement was observed for the NNs, as shown in Table 5.11.

In particular, the results for NNs trained without control remained almost identical regardless of the
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Table 5.11. The overall AEmedian error (measured in meters and radians) for a NN with 11 hidden

nodes using different numbers of initial poses.

Initial poses

16 (original) 29 57 113

Test Data Training data: Arc motion

Arc 0.085 0.085 0.085 0.085

motion 0.095 0.094 0.095 0.095

(x,y,θ ) 0.029 0.029 0.029 0.029

Linear 0.114 0.113 0.113 0.114

motion 0.126 0.126 0.127 0.127

(x,y,θ ) 0.0002 0.0002 0.0002 0.0002

Rotational 0.0016 0.0008 0.0011 0.0016

motion 0.0008 0.0009 0.0011 0.0005

(x,y,θ ) 0.0299 0.0299 0.030 0.030

Stationary 0.0011 0.0007 0.0011 0.0016

motion 0.0006 0.0007 0.0006 0.0007

(x,y,θ ) 0.0006 0.0002 0.0002 0.0002

Training data: Arc motion with control

Arc 0.0019 0.0019 0.0021 0.0019

motion 0.0018 0.0015 0.002 0.0013

(x,y,θ ) 0.0012 0.0012 0.0012 0.0012

Linear 0.0022 0.0018 0.0025 0.002

motion 0.0018 0.0016 0.0019 0.00132

(x,y,θ ) 6.6×10−5 5.1×10−5 4.5×10−5 4×10−5

Rotational 0.0012 0.0009 0.0009 0.0008

motion 0.0014 0.0010 0.0013 0.0007

(x,y,θ ) 0.0013 0.0013 0.0013 0.0013

Stationary 0.0008 0.0008 0.0008 0.0008

motion 0.0007 0.0009 0.0006 0.0005

(x,y,θ ) 2.4×105 4.7×10−5 2.2×10−5 1.8×10−5
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number of initial poses, while the NNs with control showed a small variation at different numbers of

training poses used.

Similarly, using additional controls during training did not offer marked improvements of the pre-

dictions. Table 5.12 shows that additional controls slightly reduces the accuracy of the estimates.

Thus additional training data does not appear to increase the model’s accuracy during training. As a

last test, the number of initial poses was increased to 29, with 100 controls used at each initial pose.

As with previous observations, the results were similar to those found previously with an error of

[0.0023,0.003,0.00118] for tested arc motion.

Table 5.12. The overall AEmedian error (measured in meters and radians) for the NN with 11 hidden

nodes using differing numbers of controls.

Number of controls

10 (original) 100 300 418

Test Data Training data: Arc motion

Arc 0.085 0.0845 0.085 0.085

motion 0.095 0.096 0.095 0.095

(x,y,θ ) 0.029 0.029 0.029 0.029

Training data: Arc motion with control

Arc 0.0019 0.0014 0.0019 0.0026

motion 0.0018 0.0024 0.0031 0.00195

(x,y,θ ) 0.0012 0.0012 0.0012 0.0013

Furthermore, from Table 5.11 it is evident that the NNs were better able to represent stationary motion

even though the NNs were trained using arc motion. In addition, the median deviations and skew for

the stationary motion tests were significantly lower than in the arc motion tests. The implication is

that the NNs were either learning to adjust the current state by very small amounts or to reproduce the

current state.

5.5 SUMMARY

A summary of the experimental results were provided in this chapter. The three main experiments

evaluated the performance of different NN configurations, using both tanh and linear activation
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functions. The results indicated that tanh activation functions lead to warping during predictions. In

addition, changes to the data’s format revealed that splitting the datasets at discontinuities resulted

in better convergence of the NNs. However, the SLAM algorithms with data association taken into

consideration were still unable to provide accurate predictions.

Consequently, the chapter evaluated the performance of the learned models using the model learning

metrics defined. For model learning evaluation both real-world and simulated datasets were trained

and evaluated, as well as the effects of including control during training. The metrics revealed that

increasing the amount of memory lead to a degradation in performance of the NNs. Adding control

during training, in comparison, significantly improved the prediction accuracy of the NNs. However,

diversifying the training data lead to almost no improvements in all test cases.

The NNs trained with the special-case motions also had significantly smaller errors than arc motion.

Moreover, the arc motion training sets provided the best estimates when tested with stationary motion.

Using the aforementioned observations, a conclusion was reached that NNs were not learning any of

the higher-order dynamics or kinematics.
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6.1 CHAPTER OVERVIEW

The primary focus of the research was to learn motion models by making use of low-order state data

and to employ the learned models in a SLAM context. To facilitate learning, a number of facets of the

data and learning methodology required investigation. Section 6.2 provides a concise overview of the

experimental results obtained in order to address the research questions.

In addition, Section 6.3 briefly investigates alternative machine learning strategies that could potentially

be used to learn a vehicle’s motion model. In particular, alternate recurrent NN implementations,

particle swarm optimisation (PSO) [111, 112] and genetic programming [113] are investigated. Each

solution was evaluated using the model learning strategy for straightforward comparison to the previous

results.

6.2 LEARNING DATA-DERIVED NON-ANALYTICAL MODELS

6.2.1 Data formatting

The results obtained from both the Freiburg and simulated datasets demonstrated that pose data need

to be carefully handled. Determining the sampling rate is an obvious filtering method to use when

using data with a high frame-rate. Sub-sampling is also one of the most important, as the sampling

rate dictates the rate at which the learned model can produce predictions. However, by sub-sampling

the data, the amount of usable training data was drastically reduced. Decimation allowed the subtle



CHAPTER 6 DISCUSSION

differences that were discarded by sub-sampling to be captured and included in the training data. As a

consequence, the diversity for a single trajectory could be increased.

While sub-sampling and decimation made alterations to the datasets, the information contained was

the same as the original set. Splitting the datasets at the yaw discontinuities, in comparison, changed

the datasets into smaller subsets. By removing the discontinuities from the learning process, the NNs

were able to converge to significantly more accurate results, as discussed in Section 5.2.2.3. However,

the yaw discontinuities needed to be handled by the SLAM algorithm.

Iteratively appending datasets was found to have a small effect on the entire learning process. While

the strategy did reduce the computational time required to reach a solution, almost no changes were

observed on the training error, except in rare cases. An application where iteratively appending datasets

might be useful is during online learning, where a "basic" model is learned with additional pose

information added to refine the NNs as the vehicle traverses an environment. Scaling the training

data also has a negative impact on the entire system. While not in itself the cause, combined with

a non-linear activation function, scaling can warp the predictions. Hence any non-linear activation

functions and scaling should not be applied to the datasets.

A further difficulty observed with real-world datasets was that only a limited amount of any type of

motion was observable at specific poses. Hence the creation of simulated datasets aimed to overcome

the limited training data by decomposing specific motion into a number of trajectories. While the

simulated datasets cannot reproduce conditions in the real world, the simulated data does offer a simpler

framework to test the learning approach. Specifically, the simulated datasets can be used to generate

specific types of motion that can be evaluated in isolation, thus leading to additional knowledge of a

learning algorithm’s performance.

Once a methodology has been shown to learn the actual motion model, one can revert to using real-

world datasets. While the Freiburg datasets offered a large variety of motion, not all types of motion

were documented. Creating real-world datasets that contain extensive examples of different types of

motion would therefore benefit learning algorithms such as these. Specifically, additional information

on the vehicle state should be included that provides the wheel torque, friction coefficients of the

surface and detected wheel-spin or skid, which would allow for a more in-depth evaluation of the
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motion type. In addition, a large number of vehicle control and initial poses will need to be generated

to cover the problem space, similar to what was done with the simulated datasets.

6.2.2 Model learning metrics

The experimental results demonstrated that training error metrics were insufficient to establish if a

motion model had been learned. Analysis of the NNs’ weights and the weight changes over training

epochs could highlight some of the discrepancies. In particular, the significant contribution of the bias

variable to the prediction indicates that a model could not be learned. Similarly, if large changes in the

weights are observed during the latter stages of training with no marked improvement on the error, the

changes could indicate that an incorrect solution has been reached.

While investigation of a network’s weights can provide an indication of discrepancies during training,

the weights cannot be used to measure if a correct model had been learned. Furthermore, the weights

could not be used to determine the nature of the models that were learned, which led to the creation

of the strategy for measuring the types of motion learned. The resulting measurements revealed that

different types of motion had an impact on the network’s prediction accuracy at all levels of observation.

In addition, testing the models at the trajectory and control level revealed that the error increased as the

control velocities increased.

Comparisons of the different metrics used during evaluation also revealed that some metrics were

too optimistic, while others could be biased by outliers. In particular, yaw prediction errors were

significantly influenced by discontinuities when measured with the MAE, MSE, standard deviation and

variance. In comparison, the outliers’ influence was limited when using the AEmedian and AEmedianAD

metrics.

Large skew and kurtosis values were also regularly observed during the model learning tests. While

some of the large kurtosis values can be explained by the outliers caused by the discontinuities, the

values still indicate that some bias is present in the learned models. Hence both should be used with the

AEmedian and AEmedianAD metrics to determine the overall performance of the model over the problem

space.
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6.2.3 The impact of memory

The primary motivation for using memory during the learning process was to allow the learning

algorithm to encapsulate the higher-order dynamics of the system. Consequently, a number of experi-

ments aimed to find the optimal amount of memory required by the system. Initial tests conducted

showed that an increase in memory did not lead to a significant increase in errors except at the discon-

tinuities. In comparison, the evaluation methodology used to determine if vehicle motion models could

be learned (Section 5.3) indicated that an increase in memory led to significantly worse estimates.

Furthermore, the NNs with no memory were observed to have the least error (when no control was

included) using the evaluation methodology.

Some of the degradation of including additional memory can be explained by the shift-register con-

taining the discontinuities for longer periods of time. However, the discontinuities in the test data

were irregular, and can therefore not account for all of the performance degradation. In particular, the

linear motion tests were observed to have larger errors with an increase in memory, even though no

discontinuities were present in the test trajectories.

Conversely, when control was included during the learning process the NNs with no memory performed

worst. Moreover, the number of previous states in the shift register did not have a large impact when

control was included, with most of the NNs yielding similar errors. A likely explanation of the observed

results is that the NNs are not learning the higher-order dynamics from the memory. Instead, the NNs

might only be learning some delta of the previous states or learning to ignore most of the memory

when control is included.

6.2.4 Learning the higher-order dynamics

The learning approach followed demonstrated that models could not be learned with sufficient accuracy.

The results revealed that the NNs only provide some degree of accuracy when control was included

as input (Section 5.4.2.2). Specifically, the models learned using the simulated linear, rotational and

stationary motion seem to be able to provide fairly accurate estimates. As noted previously, all these

motions were considered "special-case", as all the state variables do not interact with one another

during execution.
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For linear motion the yaw estimates remain stationary, with the x and y locations dependent on the

previous x,y pair. While the x and y states do interact with each other according to the differential

drive’s motion model (see Section 3.2.2), the interaction is limited because the rotational velocity is

zero (or at least very close to zero). Thus the motion can easily be approximated by a delta calculation

or by using the forward velocity. Similarly, the rotational motion’s yaw is the only variable that changes

with time and can therefore either be calculated by using the angular velocity or through a delta of the

previous yaw values.

Tests conducted using arc motion as training data produced the smallest errors when tested with

stationary motion (see Table 5.10 and Table 5.11). Further examination of the results revealed that

the larger the forward and angular velocities tested for arc motion, the larger the prediction error.

Using linear and rotational motion as training and test data also resulted in larger prediction errors

as the velocities increased. Hence, the prediction error scaled with the increase in velocity. Similar

observations were noted when control was added to the training data. The only discernible difference

between the NNs trained with and without control was that the prediction errors were less pronounced

when using control.

The expectation was that the NNs would be able to encapsulate the higher-order dynamics from historic

data in its structure. In addition, the NNs should be able to predict the vehicle’s next state, given that

the higher-order dynamics were learned. However, given the aforementioned observations, the NNs

could, at best, learn some form of delta using the previous states and control variables. At worst, the

models were only able to learn to reproduce the current state from the state input and memory. Two

factors are largely responsible for the NNs failure to learn vehicle motion: The NNs ability to model

complex functions and the input data format supplied to the NNs.

While NNs are able to model any mathematical function [114], learning complex mathematical

functions, where the variables interact with additions, multiplications and periodic functions, seem

to be unachievable using NNs. While not explicitly shown, tests conducted on NNs with a mixture

of activation functions within each layer were also unable to overcome the deficiencies in training.

Furthermore, NNs aim to learn the least complex function that fits the data in order to avoid over-fitting

(through regularisation). Hence the fact that previous states are included as inputs suggests that the

NNs will either learn a delta to add to the current state or simply reproduce the current vehicle state.

Consequently, the higher-order dynamics for an N-dimensional motion model cannot be learned with a
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TDL-NN that only uses low-order state data with memory.

6.2.5 Data-derived non-analytical models in a SLAM context

While the simulated and real-world SLAM experiments that were conducted did not yield any note-

worthy results, the experiments did demonstrate that non-analytical models can be used in a SLAM

context. The simulated SLAM experiments (Section 5.3.2.2) demonstrated that if the full map and

motion state could be observed, the estimates were fairly close to the ground-truth. The results,

however, were mainly due to the measurement model being able to observe the full vehicle state with

minor contributions from the actual motion model.

The only observable influence that the transitional model had on the simulated dataset was the os-

cillations that occurred during phase changes. Tests conducted on the amount of assumed noise for

both the transitional and measurement models showed that oscillations occur with more frequency as

more belief is placed in the transitional model. Removing compensation for the orientation’s in the

EKF seemed to limit the oscillations significantly. However, even with the removal, the system still

could not provide accurate results when data association was taken into account. Consequently, the

suitability of using a data-derived model in an EKF-SLAM algorithm cannot be substantiated at this

stage, as proof of a working model first needs to be obtained.

6.3 ALTERNATIVE LEARNING APPROACHES

The following section describes some of the alternative machine learning methodologies that were

briefly tested to determine if a vehicle’s motion model could be learned. In particular, tests were

conducted using other recurrent structures, particle swarm optimisation [111] and genetic programming

[113]. For the tests, the original simulated arc motion training sets were used, containing 15 initial

poses with 10 different controls.

6.3.1 Other recurrent neural network structures

Alternative NNs that are regularly used with time-series data are recurrent neural nets (RNN) [115, 116]

and long short-term memory (LSTM) neural nets [117, 118, 119]. The primary difference between
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RNNs and tapped delay-line networks is that memory is modelled as the layer’s output weights instead

of the previous states. The weights are consequently fed back into the layer as additional inputs in

order to model the memory. LSTM networks, in comparison, contain a separate memory block with

gated activation units to select the memory and inputs to use for the predictions. Typically, LSTMs also

contain "forget" gates that reset the memory blocks once the information becomes outdated.

Both implementations were briefly evaluated to determine if notable improvements could be observed

during evaluation. The standard RNN and LSTM implementations available from Keras [120] were

used with linear activation functions. A single hidden-layer network with 15 hidden nodes with a state

memory of three was used to train the NNs. Furthermore, the MSE metric was used during training to

ascertain each network’s fitness.

In Figure 6.1 the AEmedian summary for both the RNN and LSTM networks are provided. Both the

LSTM and RNN networks produced similar errors to the TDL-NNs when tested with arc motion.

However, when tested with the other types of motion, both the RNN and LSTM networks performed

worse. Specifically, the RNN had larger yaw errors while the LSTM networks’ estimates were worse

across all three state variables. Preliminary results therefore indicate that neither of the alternative

recurrent NN implementations offered direct improvements during motion model learning.
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(a) LSTM.
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Figure 6.1. Summary of the AEmedian for the alternative NNs trained with Keras.
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6.3.2 Particle swarm optimisation

Particle swarm optimisation [111, 112] makes use of swarm theory to search for an optimal solution

within a problem space. PSO implementations rely on a population, or swarm, of individual particles

to emulate the social behaviour of bird flocking. A swarm will keep track of the location of the

hyper-parameters with the least error, as well as each individual particle’s best performing error to

calculate the velocity of each particle. A random acceleration constant and velocity multiplier are also

commonly added to ensure that the particles overshoot the current best solutions. Hence each particle

will strive to reach the best solution through an indirect trajectory. Consequently the particles search

through the problem space, covering most of the possible solutions.

As PSO is a search algorithm, any arbitrary function can be used as long as the hyper-parameters are

defined. Given that the NNs failed to learn the motion’s mathematical function, PSO will make use

of an alternative solution to represent an arbitrarily complex function. To achieve such a function,

a "dictionary" of base functions were defined in terms of the inputs (x) and hyper-parameters (w).

The base functions selected were constant, scaling, multiplication, division and periodic functions, as

shown below:

yconstant =
i=n

∑
i=0

wi (6.1)

yscale =
i=n

∑
i=0

wixi (6.2)

ysin =
i=n

∑
i=0

wi sin(xi) (6.3)

ycos =
i=n

∑
i=0

wi cos(xi) (6.4)

ymutiply =
i=n

∑
i=0

j=n

∑
j=0

w( jn+i)xix j (6.5)

ydivide =
i=n

∑
i=0

j=n

∑
j=0

w( jn+i)
xi

x j
. (6.6)

Combining all the base functions (as shown in (6.7)) leads to a full representation that should be able

to represent a large range of mathematical models. The one caveat of using a number of base functions

is that each input and output variable increases the number of hyper parameters by m× (2n2 +4n),
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where n is the number of inputs and m is the number of outputs. Assuming a memory of 3, the number

of hyper-parameters will therefore be 720. As such, one would expect most of the hyper-parameters to

be sparse, with only a few contributing to the overall function. The concept is similar to dictionary

learning approaches [121], with the exception of sparsely representing the signal. Instead, a set of

functions is learned to represent an output that is not necessarily the same length as the input.

yest = yconstant + yscale + ysin + ycos + ymutiply + ydivide. (6.7)

The PSO implementations were evaluated to determine if the strategy could learn the motion model.

The impact of the amount of memory was evaluated by training the PSO implementations with one and

three previous states, as well as the impact of control on the results. For training, the swarm size was

set to 300 particles, which is approximately 40% of the total number of hyper-parameters when using

a memory of 3. Thus the initial particle initialisation should cover a relatively diverse parameter space.

The hyper-parameters were randomly initialised between the interval [−2.0,2.0]. The assumption

was that constant and scaling factors would have a limited contribution to the full solution, with the

hyper-parameters mainly used to "activate" a particular function.

By convention the maximum particle velocity is set to the absolute value of the initialisation interval,

while an acceleration constant of 2.0 is selected . For the tests the maximum particle velocity was set to

4.0 to allow each particle to traverse the expected problem space. Furthermore, the maximum number

of training epochs was set to 2000 as the expectation was that each particle would reach relatively

stable solutions by that time. Lastly, the MSE metric was used to establish the fitness of each particle

in the swarm during training.

Observations of the results (Figure 6.2) show that the PSO implementations performed significantly

worse than the NNs (see Table 5.9 and Table 5.10 for a comparison). Further investigation revealed

that most of the hyper-parameters at the end of training were non-zero. Thus each particle made use

of the full function defined in (6.7) to predict the next state. The results therefore suggest that the

PSO implementation cannot easily learn sparse representations of such an arbitrary function. Instead,

the particles seem to converge on local minimums that minimise the function rather than learning the

actual motion. Consequently, algorithms that are better able to learn sparse representations such as

genetic programming were evaluated.
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(a) PSO with no memory and no control.
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(b) PSO with control and no memory.

Figure 6.2. Summary of the AEmedian for the PSO implementation.

6.3.3 Genetic programming

Genetic programming refers to processes that learn a "program" or expressions using evolutionary

techniques [113]. Typically genetic programs are built from a number of base functions with the

terminals described through S-expressions (or LISP expressions). The full program can then be

described using a tree structure containing an arbitrary number of nodes. As with genetic algorithms

[122], genetic programming is based on a population that evolves through generations to search

the problem space. Commonly the program’s evolution is achieved through crossover, mutation,

substitution, pruning and reproduction [123].

Hence the fittest individuals in each generation undergo modifications by combining sub-trees of

individuals, randomly changing or removing sub-trees or simply copying the individual to the next

generation. Various strategies have been proposed that use the semantics (base functions) to determine

how individuals will be combined, many of which are briefly described in [123]. Commonly, the

initialisation of genetic programs are implemented using the ramped "half-and-half" approach [113]

that creates half of the individuals up to a specified depth (called the "full" method), while the rest are

initialised with varying depths (called the "grow" method). Thus the "half-and-half" approach allows a

population to represent various program structures, ensuring initial program diversity.
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While genetic programs with multiple outputs have been used for both regression and classification

[124], most implementations make use of only one output. The gplearn library [125] is such an imple-

mentation that allows for fast prototyping and testing, with the standard genetic programming measures

implemented with one output per program. Consequently, gplearn was used to train vehicle motion

models using the simulated datasets with the general training parameters described in Table 6.1.

Table 6.1. Parameters for the initial genetic program tests.

Parameter Value Parameter Value

Crossover [0.65, 0.4] Hoist Mutation [0.05, 0.1]

Point Mutation [0.15, 0.2] Subtree Mutation [0.05, 0.25]

Initialisation Method half-and-half Reproduction [0.1, 0.05]

Initialisation Depth [5-10, 10-20] Maximum Generations 2000

Base Functions [addition, subtraction, multi-

plication, division, sin, cos ]

Population Size 400

Training sets with and without control were also included in the evaluation using memory of either one

or three states. Thus three separate programs were learned to predict each state variable, each using all

the input data available. After training, the gplearn libraries were used to visualise the tree’s structure,

as illustrated in Figure 6.3 and Figure 6.4. In addition, the model learning metrics were used with

the programs for a direct comparison to the previous strategies. Table 6.2 provides a summary of the

AEmedian error when the genetic programs were trained and tested with arc motion.

Observations of the model learning metrics combined with the graphed program structure showed that

the genetic programs tended to learn a delta between the states when more than one previous state was

used. Conversely, in certain cases the genetic program could only learn to reproduce the current state

variable as the next state, as shown in Figure 6.3 (b). Furthermore, in the cases where a delta between

the states was learned, the errors made by genetic programs were found to be smaller than the errors

made by the NNs, which indicated that the NNs did not learn an actual delta of the states. Including

the control variables with additional memory also did not appear to improve the estimates, with the

genetic programs learning to ignore the control inputs.
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Figure 6.3. Genetic programs learned for each state variable using a memory of three without control

and an initialisation depth of 5-10.

add

mul X2

X0 mul

add 0.015

add add

cos add

X4 div cos

cos 0.536

X4

X4

add cos

cos cos

X4 X4

X4

(a) Genetic program to

predict x(m).

div

X3 0.980

(b) Genetic program to

predict y(m).

sub

add mul

X4 X1 mul 0.991

X1 cos

-0.432

(c) Genetic program to

predict θ(rad).

Figure 6.4. Genetic programs learned for each state variable using no memory with control inputs and

an initialisation depth of 10-20.
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Table 6.2. The overall AEmedian error (measured in meters and radians) for the genetic programs trained

with the simulated arc motion datasets.

Test Data Memory (No Control) Memory (Control)

1 3 1 3

Initialisation depth of 5-10 and crossover of 0.65

Arc motion

(x,y,θ )

0.03512

0.046576

0.01499

0.00021

0.046157

0.01499

0.03318

0.03372

0.01499

0.04047

0.04615

0.01499

Initialisation depth of 10-20 and crossover of 0.4

Arc motion

(x,y,θ )

0.0279

0.0392

0.0142

0.0405

0.0004

0.01499

0.0009

0.0372

5×10−5

0.0405

0.0004

0.01499

The genetic programs trained with no memory, in comparison, were prone to learn that the next state

was either the current state divided by some constant or the current state (see Figure 6.4 (b)). The only

exception for the aforementioned results was observed when control was included; the initialisation

depth increased and crossover percentage lowered. In this case the complexity of the programs learned

increased significantly (see Figure 6.4 (a) and (c)). Furthermore, the AEmedian for programs using a

larger initialisation depth decreased, leading to more accurate predictions.

However, while these programs were able to learn more complex functions, the programs were still

only dependent on the previous state, control variables and constants. The implication is that, at best,

some of the vehicle’s kinematics can be learned for a single state variable. As an example, consider the

program that learned to predict the yaw (Figure 6.4 (c)). Substituting X0 - X5 for the corresponding

input symbols and simplifying leads to (6.8), where the predicted yaw depends on the current yaw,

angular velocity and some constant.

θk+1 = (θk +ω)− (0.991ω cos(−0.432))

= θk +ω−0.899ω

= θk +0.11ω. (6.8)
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Similarly, the predictions for the x state variable can be simplified to (6.9). While the equation does

not contain all the kinematic or dynamic interactions, it does illustrate that more complex functions

can be learned.

xk+1 = xk +0.083v f cos(θk). (6.9)

The observations of the genetic programs trained therefore illustrate that providing states as memory

will result, at best, in learning a delta of the states. Furthermore, including control variables as input

during training were shown to result in learning at least part of the kinematics in a vehicle’s motion.

Thus none of the dynamics of a vehicle can be learned without significant modification to the input

data format and evolutionary strategies currently used.

6.4 SUMMARY

The research questions were addressed in the first part of the chapter. The current input format of the

data was found to be one of the primary short-comings during training. Another difficulty that the NNs

faced was learning the complex mathematical operations required to encompass the vehicle’s motion

dynamics. Furthermore, the real-world datasets were found to be insufficient to train distinct motion

types. Thus, simulated datasets were created to train a particular motion type while simultaneously

simplifying the motion to learn.

Analysis of the evaluation metrics revealed that the standard training metrics could highlight obvious

deficiencies during training. However, the standard metrics were largely insufficient to ascertain

whether a model learned the actual motion. In comparison, the methodology defined to evaluate

learned models could demonstrate differences between the NNs. In particular, the metrics showed a

distinct performance difference when additional memory was used or control added and that preference

should be given to metrics that are robust to outliers. Furthermore, it was concluded that TDL-NNs

could not be used to learn the higher-order dynamics of a vehicle’s motion. At best, the NNs could

learn some delta between the states. At worst, the NNs were only learning to reproduce the state.

Incorporating the learned models into a SLAM system was also addressed. While the simulated

landmarks tests could provide relatively accurate estimates, the yaw regularly oscillated once a
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discontinuity was observed. In addition, the full SLAM implementation with data association could not

provide accurate or stable predictions. Thus, incorporating learned models in an EKF-SLAM system

could not be verified as a model that actually learns the motion first needs to be demonstrated.

Lastly, the chapter briefly investigated alternative machine learning approaches. Similar model learning

results were obtained with RNNs and LSTMs, with the LSTMs producing worse estimates when tested

with motion types that were not trained on. In addition, the PSO implementation performed significantly

worse than the NNs, while the genetic programs showed some improvements under certain conditions.

However, the genetic programs were still prone to learn a delta calculation when memory was included.

Furthermore, individual programs needed to be trained for each state variable. Consequently, additional

investigation is required to fully investigate a genetic programming approach.
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7.1 OVERVIEW OF THE WORK

The research conducted aimed to learn an abstract representation of a vehicle’s motion model without

knowledge of any of the higher-order dynamics and to incorporate the model in a SLAM system. To

this end, the methodology made use of prior knowledge of the vehicle’ state to learn a data-derived

non-analytical model of the motion. The vehicle’s state was limited to 2D motion that contained

three DOF to describe the entire model. Models in the form of a generalised odometry model and a

kinematic model for a differential drive were used as a baseline for comparison.

To facilitate learning a TDL-NN was implemented that encapsulated the memory of the network’s

input in a shift-register. The TDL-NN used two methodologies for the input-data shift-register: A

straightforward shift register containing N previous states and a shift-register with bias inputs in the

form of vehicle controls. The primary difference between the two approaches was that control, in the

form of forward velocity and angular velocity, was added as additional input but not included in the

shift-register.

Including the NNs in an EKF-SLAM implementation was subsequently investigated. As an EKF is only

dependent on the previous state, the methodology for including an Nth-order Markov model needed to

be defined. To reach a tractable solution the NNs were regarded as black-box estimators. Consequently,

the EKF had no knowledge of the function that the NN had learned. As a result, the EKF’s prediction

step was handled by the NN at the cost of the effectiveness of the predictor’s derivatives (Jacobian

matrices). The rest of the EKF-SLAM algorithm then followed the general procedure to update the

predictions using a measurement model of the environment.
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Training the TDL-NN was implemented using the back-propagation algorithm. Extensive permutations

of the parameters were tested to find the optimal configurations for the NNs. The type of activation

function, learning rate and annealing factors were considered the most important hyper-parameters

for the NNs. In addition, changes to the input data format such as decimation, splitting the data at

discontinuities and sub-sampling the data were evaluated during learning.

Simulated datasets using a kinematic model of a differential drive vehicle were generated in order to

determine the types of motion that could be learned. The number of initial poses and controls used to

generate the datasets were varied to establish whether the scope of training data had any effect on the

learning process. An evaluation methodology was also defined to test each motion type. The metrics

comprehensively analysed the one-forward prediction using various statistical measures to ascertain

the model’s suitability.

Lastly, RNNs, LSTMs, PSO and genetic programming approaches were briefly investigated. The

RNN, LSTM approaches followed very similar methodologies to the TDL-NN, with the difference

being that no shift-register was used to encapsulate the memory. The PSO and genetic programming

methodology, in comparison, defined a set of base functions that could be used to create a larger system.

For the PSO implementation, the base functions were "activated" using the hyper-parameters, while

genetic programming randomly generated trees and evolved them over time.

7.2 RESEARCH FINDINGS

Inherently learning a vehicle’s dynamics using low-order state data is clearly a complex problem that

has yet to be solved. The research conducted illustrated a number of problems that need to be addressed

before such an approach can become feasible. Foremost is that NNs are incapable of learning the

higher-order dynamics. The complex mathematical operations required by the motion model and

the format of the data are the primary limiting factors that prevent the NNs from learning a motion

model.

Neither linear nor non-linear activation functions seem to be capable of inherently encapsulating a

complex mixture of functions in which the inputs can interact with one another. Specifically, the

NNs seem incapable of learning complex operations such as the multiplication of two input variables
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combined with additions and periodic functions. This is primarily due to the fact that standard NNs are

based on a sum of the inputs and weights. Because different measurement units (meters and radians)

are used and multiple complex mathematical functions need to be learned, the NNs do not have the

capability to represent the dynamics.

Furthermore, standard evaluation methods applied during training do not provide an accurate indication

that the NNs have learned a correct model. Examining each neuron’s weight over time can indicate

whether a stable solution has been reached, as well as which input has the largest impact on the

prediction. An example of where the NNs did not train properly was observed when significant weight

was allocated to the bias variable, leading to incorrect estimates. However, while a network’s weights

can provide an indication of problems during training, this does not guarantee that a correct solution

has been reached.

Determining if a vehicle’s motion model has been learned requires that the problem be evaluated at

different levels of detail. Specifically, the learned models need to be evaluated at the trajectory, control

and motion type levels to provide a comprehensive overview of the models’ behaviour. Observations

found that the AEmedian metric was the most suitable to evaluate each motion error, as outliers caused

by the discontinuities did not have as large an impact. Similarly, the AEmedianAD is the preferred metric

when evaluating the deviations between estimates.

The amount of memory contained in the shift-register did not yield any improvements during estimation

either. Instead, the predictions were less accurate when larger amounts of memory were used. In

addition, using more diverse training data did not yield any observable improvements using the model

learning metrics. As these results are counter-intuitive, the indication is that the input data’s format

is unsuitable for a NN methodology. In particular, regularisation during training forces the NNs to

eliminate complex solutions given the observed data. Coupled with the format of the input data, motion

model learning is unlikely to learn anything more than a delta between the states. Similar results from

the genetic programs corroborate the findings for the NNs and imply that alternative learning strategies

that do not over-simplify the models needs to be considered.
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7.3 FUTURE WORK

A number of avenues of further investigation were revealed during the course of the work. Foremost

among these is implementing alternative learning strategies to learn the motion models. Genetic

programming, in particular, is the favoured approach to investigate. However, a number of modifications

are required before a solution that is able to learn the dynamics can be reached, such as allowing

multiple outputs to each program. In addition, a methodology will need to be developed that forces

the genetic programs to reduce the impact of regularisation. Hence the complexity of higher-order

dynamics should be favoured over delta calculations. To this end, the methodology and format to

supply input data will need to be re-evaluated.

Methods to automatically force the learning algorithms to incorporate the dynamics should also

be investigated. The simplest method to incorporate the dynamics would be to include integrators,

differentiators and matrix multiplication in the learning algorithm’s methodology. Lagrange’s equation

of motion could also be incorporated for similar reasons. With genetic programs, the first approach

should be fairly straightforward to implement. For the second approach, additional investigation will

be required.

Thirdly, there is a need for the creation of real-world datasets that emulate the simulated training and

test data. The datasets need to be created at various initial poses, with different controls at each pose.

Ideally, the datasets should also contain additional information on the dynamics of the platform, such

as wheel torque, wheel slippage, center of mass and friction coefficients of the wheels and surface. The

datasets should also define more diverse motion types for vehicle motion that include datasets where

wheel slippage is prevalent, where backwards motion is possible and where acceleration is present.

Lastly, different surface types can be included in the datasets to determine the impact of friction on a

vehicle’s motion.

Another avenue that requires investigation is incorporating the learned models into recursive Bayesian

estimators. While the current strategy was tested during the course of the work, unambiguous proof

that incorporating learned models into recursive Bayesian estimations improves estimates during

localisation and mapping is still required. Furthermore, research on how to include Nth-order Markov

models into recursive Bayesian estimators still needs to be conducted. Specifically, removing the
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assumption that the learned model is a black-box estimator, and therefore independent, needs to be

investigated and the resulting estimator’s performance determined.

Further extensions of the recursive Bayesian estimators that may yield promising results are training

multiple models for a vehicle and encapsulating them through an IMM filter. For example, models

could be trained on specific motion types (such as arc, stationary, skidding or acceleration) or for

different surfaces and then included in a larger system that statistically biases the predictions towards

the most likely model. Lastly, the work still needs to be extended to other vehicle types. Drive

types such as skid-steer models, Ackerman steering and omni-drive systems are examples of wheeled

vehicles that operate on a 2D plane. The learning strategy should also be extended to vehicles operating

on a 3D plane, such as quad-copters and legged robots.

7.4 SUMMARY

The work conducted revealed that NNs, while theoretically able to model any arbitrary function, are

largely unsuitable for complex regression problems. In particular, low-order state memory cannot be

used as a substitute to encapsulate the higher-order dynamics to provide predictions. Consequently,

alternative approaches need to be investigated that can facilitate learning using low-order state data,

such as genetic programs. In addition, there is a need to create real-world datasets that can be

divided into distinct motion types and comprehensively cover the possible movements of a particular

platform.

Incorporating Nth-order Markov processes and including them in a recursive Bayesian estimator is

also required once a suitable model has been learned. Once a simple kinematic motion model can be

learned using low-order state data and incorporated into a SLAM system, the work can be extended

to more complex models. Specifically, vehicles with complex kinematic and dynamic configurations

could then potentially be learned without any knowledge of the vehicle’s characteristics.
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ADDENDUM A LANDMARK DETECTION AND

MATCHING

Many SLAM applications do not have prior knowledge of what features are available in an environment.

The implication is that the vehicle needs to update the existing landmarks constantly in order to keep

track of its location. As a result landmark matching and maintenance become a significant hurdle that

needs to be addressed.

A.1 MATCHING LANDMARKS

Matching landmarks requires preprocessing of the image features in order to find their descriptors.

These descriptors can be used to match the detected features in an image to the landmarks. The most

common feature detector and descriptor algorithms used are the scale-invariant feature transform

(SIFT) [126, 127] and speeded-up robust features (SURF) [128], each offering similar performance

with regard to accuracy. However, SURF tends to be computationally less expensive and thus slightly

faster.

The actual matching of one set of descriptors to another can be done using either a Brute-force or

FLANN-based (Fast Library for Approximate Nearest Neighbours) matcher [129]. The difference

is that the FLANN-based matcher creates kd-trees [130] that allow for fast comparison. Note that

as with any kd-tree application, some accuracy is sacrificed for speed. Using these matchers, the

current image’s features can be matched to all the landmarks and their corresponding values can be

measured. For implementation, both the matcher and detector algorithms available from OpenCV were

used.
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To increase the robustness of landmark matching, Lowe [126] proposed finding the nearest two matches

for each feature descriptor and comparing the distance between the two landmarks. By calculating the

ratio between the two descriptors and filtering any matches that do not meet the required ratio, many

false positive matches can be eliminated from consideration. The ratio can consequently be varied

between 0.7 and 0.25, depending on the environment.

A further matching criterion is to determine whether the location of the match is close to the actual

landmark. A simple minimum Euclidean distance can therefore be stipulated that each match needs to

adhere to. The minimum distance therefore ensures that minimal false positives are detected and limits

the effect that any such false positives may have on the system as a whole. Algorithm A.1 provides the

general procedure used to extract measurements from an image.

Algorithm A.1 MatchLandmarks(currImageData)

1: for all i in len(stableLandmarks) do

2: matches = getFLANNMatches(stableDescriptor[i], currImageDescriptors)

3: if matches.size() >= minGroupMatch then

4: tgtPts, srcIdx, tgtIdx = extractImgKeyPts(matches, currImageKeypoints)

5: for all m in matches do

6: pt = depthToPoint(currDepthImage,tgtPts[p])

7: globalPt = currPose⊕ sensorT F⊕ pt

8: if isNear(globalPt, stableLandmarks[i]) then

9: measurement[i] = calcRangebearing(pt)

10: measIdx.append(i)

11: end if

12: end for

13: end if

14: end for

return measurements, measIdx

A.2 ADDING NEW LANDMARKS

Detecting new landmarks and adding them to the state is one of the largest problems faced during data

association. Adding landmarks that are observed infrequently only increases the state while offering
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no real benefit during localisation and mapping. Conversely, not including enough new landmarks can

lead to the system losing track of the vehicle’s pose.

The simplest method to add new landmarks is simply matching the previous image’s features to the

current one and then adding the newly detected landmarks. However, the number of landmarks added

to the system quickly becomes untenable and computationally expensive. The occurrence ratio of the

new landmarks is also not checked to determine their stability.

To increase robustness, a small subset of previous images can be used to determine if the descriptor

occurs frequently, as described in [131]. Thus the landmarks added are at least assured of being

detected frequently in the current observational window. To ensure that no duplicate landmarks are

added to the state, the currently detected landmarks are also compared to all the landmarks in the state

and any whose matching ratio is too close are removed.

The next challenge faced by landmark maintenance is deciding when to add the landmarks. Checking

if new landmarks are detected at each new processed image is computationally expensive, especially

since a number of previous images are used to ensure stability. A preferable approach would be to make

use of the number of landmarks detected during observation. If only a few landmarks are detected,

the likelihood of landmark sparsity is higher and future observations may not be able to detect any

landmarks. Adding new landmarks just before this sparsity occurs ensures that new landmarks are

available without unnecessarily increasing the number of landmarks in the state.

An additional improvement to landmarks handling concerns locations where they are detected. By

noting that feature detectors commonly detect descriptors around objects (because of the edges, etc.)

and that these points are relatively close to each other, the landmarks can be grouped using a consensus-

based approach [132]. By specifying that any descriptors within a minimum Euclidean distance from

each other belong to a certain landmark, a more descriptive representation of the environment can be

generated with the landmark’s location specified as the centroid of all the descriptors’ points.

Thus each landmark will contain a number of descriptors to use during matching where a minimum

ratio of descriptor matches needs to be present before the match is accepted. Moreover, a minimum

number of descriptors needs to be present within each landmark in order to ensure stability. Another

advantage of grouping landmarks is that other locations whose descriptors have a partial overlap
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need not be removed from consideration. Algorithm A.2 provides the basic setup used to find stable

descriptors in the current image and add the group to the stable groups of landmarks.

Algorithm A.2 UpdateLandmarks(currFeatureData)
1: tgtPts, tgtDesc = findStableDescriptors(featureDataMem)

2: for all p in tgtPts do

3: pts = depthToPoint(depthImage,tgtPts[p])

4: globalPt = currPose⊕ sensorT F⊕ pts

5: tmpLandmarks.append( createTmpLandmark(globalPt, descriptor[p], tgtPts[p]) )

6: end for

7: for all m in range(0, tmpLandmarks.size()) do

8: currGroup = tmpLandmark[m]

9: for all n in range(m, tmpLandmarks.size()) do

10: if isNear(tmpLandmark[m] ,tmpLandmark[n] ) then

11: currGroup.append(tmpLandmark[n])

12: end if

13: end for

14: if currGroup.size() >= minGroupSize then

15: addStableLandmark(currGroup)

16: end if

17: end for

A.3 REMOVING LANDMARKS

Computational overhead is a significant difficulty faced when using landmarks as the number of

landmarks gradually increases while a vehicle traverses an environment. As a result many algorithms

use a limiting factor to remove landmarks that become irrelevant to localisation and mapping.

One of the most common techniques employed is the moving window approach that removes landmarks

from consideration based on the time they were added. The advantage of this approach is that a limit can

be set on the number of landmarks that can be taken into consideration, thus limiting the computational

overhead. One problem with the moving window approach is that if an environment is revisited, no

loop-closure can occur, as the landmarks have been removed from memory.
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An alternative approach is removing the landmarks based on their occurrence ratio [133]. By setting

the minimum number of times that a landmark needs to be detected, any landmarks that are only

matched infrequently are removed. The largest difficulty faced with this approach is that the most

recent landmarks may not meet the minimum occurrence rate or that the rate is set too low. To eliminate

the first problem one can limit the landmarks that are evaluated by specifying a percentage value (e.g.

only the first 80% of the landmarks are evaluated).

Using the aforementioned approach, however, does not solve the problem of choosing an appropriate

minimum occurrence rate. Thus many landmarks may be removed initially while during the later

stages only a few are removed. To solve this problem, one can increase the minimum occurrence ratio

as the algorithm progresses, thus allowing the algorithm to remove landmarks that become irrelevant.

An alternative is to calculate the mean/median of the occurrences and to remove any landmarks whose

occurrence rate is less than half of the average.

A last component that needs to be taken into account during landmark maintenance is when to remove

the landmarks. If a fixed limit on the number of landmarks is set, the algorithm will eventually reach a

stage where landmarks are constantly being removed. To overcome this problem, one can simply scale

the number of landmarks allowed each time landmarks are removed. Algorithm A.3 provides the basic

implementation of removing the landmarks as the vehicle progresses through an environment.

Algorithm A.3 removeLandmarksMean()
1: N = len(stableLandmarks)

2: mn =
1
N

N
∑

i=0
numLandmarkObservations[i]

3: for i = 0 to N×0.8 do

4: if numLandmarkObservations[i] < mn×0.5 then

5: remove landmark’s location, descriptor and occurrence rate

6: remove corresponding rows and columns from the covariance matrix

7: end if

8: end for
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Data captured from a vehicle are relative to the sensor’s current reference frame. Hence the data need

to be converted from a local reference frame to the global frame using a homogeneous transformation,

more commonly known as the motion composition operator (MCO) [134]. The MCO is commonly

defined as:

psensor = pvehicle⊕prelative. (B.1)

The easiest method for calculating data’s global coordinates is first converting a vehicle’s pose and the

data into their corresponding 4×4 homogeneous matrices. The global pose of a vehicle is known to

be:

pvehicle = [tx, ty, tz,qx,qy,qz,qw], (B.2)

where tx, ty, tz is the translation from the origin to the vehicle and qx,qy,qz,qw are the quaternions

describing the vehicle’s heading. Assuming the quaternions have been normalised using:

qnormalised =
[qx,qy,qz,qw]

T√
q2

x +q2
y +q2

z +q2
w

. (B.3)

the homogeneous matrix describing a vehicle transform from the origin can be calculated as:

Hvehicle =


q2

w +q2
x−qy2−q2

z 2(qxqy−qwqz) 2(qzqy +qrqx) tx

2(qxqy +qwqz) q2
w−q2

x +qy2−q2
z 2(qyqz−qrqx) ty

2(qzqx−qwqy) 2(qyqz +qwqx) q2
w−q2

x−qy2 +q2
z tz

0 0 0 1

 . (B.4)
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Similarly, the homogeneous coordinates for the sensor relative to the vehicle can be defined. If the

sensor’s location from the vehicle’s origin can be defined as:

prelative = [tsx, tsy, tsz,qsx,qsy,qsz,qsw], (B.5)

its homogeneous transform can also be calculated. In order to determine the exact pose for the sensor,

the two poses need to be composed. For homogeneous matrices this can be achieved through matrix

multiplication, as shown in Equation B.6. Once calculated, the homogeneous matrix can be converted

back into a 7D pose to describe the sensor’s pose.

Hsensor = HvehicleHrelative. (B.6)

Hence to describe the global position of any landmark data captured by the sensor, the data needs to be

related to the global reference frame instead of the sensor’s reference frame. The global position of the

data thus can be defined as:

pglobal = plocal⊕ (pvehicle⊕prelative), (B.7)

where pglobal is the landmark’s global position and plocal is the landmark’s position detected by the

sensor. Similarly, the landmarks’ local position can be defined in terms of the landmark’s global

position (see Equation B.8). This is commonly referred to as the inverse motion composition operator

(IMCO).

plocal = pglobal	 (pvehicle⊕prelative). (B.8)

Calculating the IMCO can be achieved using homogeneous matrices. However, unlike the MCO, the

matrices are multiplied using the homogeneous matrix’s inverse, as shown below:

Hlocal = Hglobal(HvehicleHrelative)
−1. (B.9)
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DYNAMICS

The following appendix explains how a differential drive vehicle’s dynamics can be determined using

Lagrange’s Equations of motion. Figure C.1 details the general setup for a differential drive vehicle

where:

• W is the distance from the center of the wheel to the center of the vehicle,

• [XW ,YW ,ZW ] are world coordinates and are referenced according to the origin O,

• N is the vehicle’s inertial reference frame,

• [XR,YR,ZR] are the vehicle’s coordinates,

• θ is the vehicle’s heading angle in relation to the world frame,

• tw is the wheel thickness and rw the wheel radius,

• φ1 and φ2 is the angular position of each wheel,

• mb is the mass of the body,

• mw is the mass of the wheels,

• Ixx, Iyy, Izz is the moments of inertia of the body (assumed to be a cube).

Furthermore, the following assumptions are made regarding the differential drive:

1. The wheels have no slippage.

2. The body is symmetric (i.e. the wheels are symmetrically placed over the center of rotation).

3. Each wheel is in contact with the ground at a single point.
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XW

YW

ZW

2W

tw

XR

YR

ZR

θ

φ1

φ2

rw

Figure C.1. Differential drive dynamic setup, using the world coordinates [XW ,YW ,ZW ] as reference.

C.1 KINEMATICS

Before the dynamics can be defined, the kinematics of the vehicle need to be taken into consideration.

Specifically, the wheel velocity and non-holonomic constraints of the vehicle need to be described.

Note that the kinematics used in the following section differ slightly from those provided in the main

document. This is mainly due to the fact that the wheels’ position is taken into account, which can be

related to the vehicle’s velocity.

C.1.1 Wheel velocities

To calculate the wheel velocities at a certain point (VC), the velocity of each wheel hub (VH) first needs

to be calculated by making use of the linear (VR) and angular velocities (ωR) of the robot. In addition,

the vector from the center of the body to the hub point (dH1) and the relative orientation of the body to
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the fixed reference frame (R) is required. The following equations provide each of the aforementioned

requirements

~VR =[ẋ, ẏ,0]T (C.1)

~ωR =
[
0,0, θ̇

]T (C.2)

~dH1 =[0,−W,0]T (C.3)

R =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 . (C.4)

The velocity of the wheel hub can therefore be defined as:

~VH1 =~VR + ~ωR×R ~dH1

=


ẋ+W θ̇ cos(θ)

ẏ+W θ̇ sin(θ)

0

 . (C.5)

Similarly, the velocity of the second wheel hub can be calculated to produce:

~VH2 =


ẋ−W θ̇ cos(θ)

ẏ−W θ̇ sin(θ)

0

 . (C.6)

Once the velocity of the wheel hub is known, the wheel’s contact point velocity can be calculated by

making use of the angular velocity of the wheel (ωW1) and the vector from the hub’s center to the

contact point (dH1C1).

~ωW1 =φ̇1


sin(θ)

−cos(θ)

0

 (C.7)

~dH1C1 =[0,0,rw]
T . (C.8)
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The wheel velocities can then be defined as:

~VC =~VH + ~ωW × ~dHC

⇒ ~VC1 =


ẋ+W θ̇ cos(θ)+ rwφ̇1 cosθ

ẏ+W θ̇ sin(θ)+ rwφ̇1 cosθ

0

 (C.9)

⇒ ~VC2 =


ẋ−W θ̇ cos(θ)− rwφ̇2 cosθ

ẏ−W θ̇ sin(θ)− rwφ̇2 cosθ

0

 . (C.10)

C.1.2 Non-holonomic constraints

The assumption that no wheel-slip occurs during motion means that the velocities at the contact

points of the wheels are zero ( ~VC1 = 0, ~VC2 = 0). Using this assumption and assuming that the wheel

displacement (φ̇1 and φ̇2 ) is known, four simultaneous equations can be derived from Equation C.9

and Equation C.10 with three unknowns (ẋ, ẏ, θ̇ ). Rearranging the equations leads to:


ẋ

ẏ

θ̇

=
rw

2


(φ̇2− φ̇1)cos(θ)

(φ̇2− φ̇1)sin(θ)

−(φ̇2 + φ̇1)

W

 , (C.11)

which can also be expressed as :


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1




ẋ

ẏ

θ̇

=
rw

2


(φ̇2− φ̇1)

0

−(φ̇2 + φ̇1)

W

 . (C.12)
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C.2 DYNAMICS

The Lagrange’s equations of motion can be defined as:

L(qi, q̇i) =KE(qi, q̇i)−PE(qi), (C.13)

where (~q) is the Lagrange state vector that contains the generalised coordinates. For a differential drive

the state vector is defined as:

~q =[x,y,θ ,φ1,φ2]
T . (C.14)

Commonly, these system are assumed to be unconstrained. Hence the equations of motion as the

vehicle moves can be calculated by differentiating the Lagrangian, as shown in Equation C.15.

d
dt

∂L(~q,~̇q)
∂ q̇i

− ∂L(~q,~̇q)
∂qi

= ~Q, (C.15)

where ~Q are the generalised forces acting on the system. As a differential drive system has a number

of constraints due to the vehicle’s structure, the constraints must be included in the calculations by

using Lagrange multipliers. These non-holonomic constraints are described using Equation C.12 as:

C(q)~̇q =0 (C.16)

C(q) =


cos(θ) sin(θ) 0

rw

2
−rw

2
−sin(θ) cos(θ) 0 0 0

0 0 1
rw

2W
−rw

2W

 . (C.17)

Using these results, Lagrange’s equations take the form:

d
dt

[
∂L(qi, q̇i)

∂q

]
− ∂L(qi, q̇i)

∂q
−C(q)T

λ =T, (C.18)

where λ is the vector of undetermined Langrange multipliers.
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C.2.1 Kinetic Energy

The total kinetic energy can then be defined using each individual body’s linear velocity and angular

velocity at their centroids (center of mass) using:

KEtotal =
1
2

n

∑
i=1

(
mi‖Vi‖2 +ωi

T Iiωi
)
. (C.19)

As the velocity of the main body is related to the distance to its center of mass, an assumption can be

made that the velocity of the body is along the fixed reference frame’s x-axis of distance (db). The

body’s velocity can then be defined as:

~VB =~VR +ωR× ~rcmb (C.20)

=


ẋ

ẏ

0

+ θ̇ ×


db cos(θ)

db sin(θ)

0

 . (C.21)

Thus the kinetic energy of the main body is:

KEbody =
mb

2

(
ẋ2 + ẏ2 +d2

b θ̇
2 +2dbθ̇

(
ẏcos(θ)− ẋsin(θ)

))
+

Ib

2
θ̇

2. (C.22)

Calculating the kinetic energy of the wheels follows a similar approach, where the hub is assumed to

be the center of mass. This means that the hub velocities (Equation C.5 and Equation C.6) can be used

to calculate the kinetic energy. Note that the wheel’s angular velocity rotates about an axis that is

normal to the plane. Thus the angular velocities for both wheels are:

Ωw1 =


φ̇1 sin(θ)

φ̇1 cos(θ)

θ̇

 (C.23)

Ωw2 =


φ̇2 sin(θ)

φ̇2 cos(θ)

θ̇

 . (C.24)
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Furthermore, if the wheel is assumed to be a solid cylinder, the wheel’s inertia matrix can easily be

calculated. Hence each wheel’s inertia is:

Iw =


Iwxx 0 0

0 Iwyy 0

0 0 Iwzz

=


mw

12
(3r2

w + t2
w) 0 0

0
mwr2

w

2
0

0 0
mw

12
(3r2

w + t2
w)

 , (C.25)

and the subsequent kinetic energy for the wheels can be defined as:

KEw1 =
mw

2

(
ẋ2 + ẏ2 +W 2

θ̇
2 +2W θ̇

(
ẋcos(θ)− ẏsin(θ)

))
+

Iwzz

2
θ̇

2 +
Iwyy

2
φ̇1

2 (C.26)

KEw2 =
mw

2

(
ẋ2 + ẏ2−W 2

θ̇
2 +2W θ̇

(
ẋcos(θ)− ẏsin(θ)

))
+

Iwzz

2
θ̇

2 +
Iwyy

2
φ̇1

2
. (C.27)

The total kinetic energy for a differential drive is therefore:

KEtotal =
mT

2

(
ẋ2 + ẏ2

)
+mbdbθ̇

(
ẏcos(θ)− ẋsin(θ)

)
+

IT

2
θ̇

2 +
Iwyy

2

(
φ̇1

2
+ φ̇2

2
)
. (C.28)

where

mT =mb +2mw (C.29)

IT =Ib +mbd2
b +2mwW 2 +2Iwzz. (C.30)

C.3 LAGRANGE’S EQUATIONS OF MOTION

Substituting Equation C.28 into Equation C.13 and taking their derivatives (from Equation C.18)

results in the following terms (note the difference between
∂L
∂ q̇

and
∂L
∂q

) :
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∂L
∂ q̇

=



mT ẋ−mbdbθ̇ sin(θ)

mT ẏ+mbdbθ̇ cos(θ)

IT θ̇ +mbdb(ẏcos(θ)− ẋsin(θ))

Iwyy ˙phi1

Iwyyφ̇2


(C.31)

d
dt

∂L
∂ q̇

=M(q) = mbdbθ̇



mT 0 −mbdb sin(θ) 0 0

0 mT mbdb cos(θ) 0 0

−mbdb sin(θ) −mbdb cos(θ) IT 0 0

0 0 0 Iwyy 0

0 0 0 0 Iwyy


(C.32)

∂L
∂q

=B(q, q̇) = mbdbθ̇



0

0

ẏsin(θ)− ẋcos(θ)

0

0


. (C.33)

Using the above terms results in an equation of the form:

M(q)q̈+B(q, q̇)−C(q)T~λ =T. (C.34)

where:

C(q̇)T~λ =



cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1
rw

2
0

rw

2W−rw

2
0

−rw

2W




λ1

λ2

λ3

 , (C.35)
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and:

T =



0

0

0

τ1

τ2


. (C.36)

Thus the variables τ1 and τ2 are the torques applied to each of the wheels. To determine the Lagrange

multipliers (~λ ) of the dynamics, the constraint C(q) ˙(q) = 0 must be satisfied (see non-holonomic

constraints). These constraints must therefore also satisfy the following:

d
dt

[
C(q) ˙(q)

]
=0 (C.37)

⇒C(q) ¨(q)+Ċ(q)q̇ =0 (C.38)

which can be used to solve for~λ by using Equation C.34 and q̈. However, it should be clear that

solving for~λ is a lengthy process involving inverting matrices (and ensuring that the matrices are

invertible). For completeness the actual result is provided below.

~λ =−
[
C(q)M(q)−1C(q)T

]−1[
C(q)M(q)−1

(
T −B(q, q̇)

)
+Ċ(q) ˙(q)

]
. (C.39)

As a result of the complexity the following assumptions are made in order to ensure that formulas

remain tractable:

1. Let the main body’s center of mass lie along the wheel axes, i.e. db = 0. Using this simplification

means that B(q, q̇) = 0 and that M(q) becomes a diagonal matrix.

2. Evaluate the dynamical equations at θ = 0. While not a simplification, this choice allows some

of the terms to be eliminated, thus simplifying the process of solving~λ .

These simplifications reduce the calculations to:

~λ =−
[
C(q)M(q)−1C(q)T

]−1[
C(q)M(q)−1T +Ċ(q)q̇

]
, (C.40)
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where:

C(q)M(q)−1C(q)T =


α 0 0

0 m−1
T 0

0 0 β

 (C.41)

C(q)M(q)−1T =
rw

2


τ1− τ2

0
τ1 + τ2

W

 I−1
wyy (C.42)

Ċ(q)q̇ =θ̇


ẋsin(θ)− ẏcos(θ)

ẋcos(θ)+ ẏsin(θ)

0

 , (C.43)

and:

α =m−1
T +2I−1

wyy

(rw

2

)2
(C.44)

β =I−1
T +2I−1

wyy

(rw

2

)2
, (C.45)

Substituting these results into Equation C.40 and evaluating at θ = 0 produces:

~λ =
rw

2
I−1
wyy


α−1(τ1− τ2)

0

β−1 τ1 + τ2

W

+ θ̇


−α ˙(y)

mT ẋ

0

 , (C.46)

which can then be used in Equation C.34 to provide the system’s dynamics. Thus the full equation

for each of the terms Mqq̈,B(q, q̇) and C(q)T~λ is provided below. This equation can then be used to

describe the dynamical motion of a differential drive vehicle.
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0

0

0

τ1

τ2


= mbdbθ̇



mT ẍ−mbdbθ̈ sin(θ)

mT ÿ+mbdbθ̈ cos(θ)

−mbdb sin(θ)ẍ−−mbdb cos(θ)ÿ+ IT θ̈

Iwyyφ̈1

Iwyyφ̈2


+mbdbθ̇



0

0

ẏsin(θ)− ẋcos(θ)

0

0



−



cos(θ)
(rw

2
I−1
wyyα−1

(
τ1− τ2

)
− θ̇α ˙(y)

)
−sin(θ)

(rw

2
I−1
wyyα−1

(
τ1− τ2

)
− θ̇α ˙(y)

)
rw

2
I−1
wyyβ−1 τ1 + τ2

W
+ θ̇mT ẋ

r2
w

4
I−1
wyyα−1

(
τ1− τ2

)
− rw

2
θ̇α ˙(y)+

r2
w

4W
I−1
wyyβ−1 τ1 + τ2

W
+

rw

2W
θ̇mT ẋ

−r2
w

4
I−1
wyyα−1

(
τ1− τ2

)
+

rw

2
θ̇α ˙(y)− r2

w

4W
I−1
wyyβ−1 τ1 + τ2

W
− rw

2W
θ̇mT ẋ


. (C.47)
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The following appendix provides implementation details concerning the evaluation framework used

during the course of the work. Note that the system was implemented in ROS Indigo and Gazebo

2.2.

D.1 ROS

The following section provides additional information on the ROS implementation. In particular, the

evaluation framework is described along with the SLAM algorithms and datasets that can be used with

the framework.

D.1.1 Framework software

An evaluation framework was created in ROS to easily add SLAM algorithms, datasets as well as

Gazebo simulations. To achieve this, the framework had to automatically launch the correct ROS

nodes and link their respective topics for communication. In addition, the navigation stack and

vehicle model controllers needed to be generated and connected on request. Once execution was

finished the framework evaluated the trajectory and maps created and provided a summary of the

results. Furthermore, the algorithms needed to be compared to one another in order to gauge their

performance.

To allow the framework to perform this as autonomously as possible, the framework not only needed

to open the correct ROS nodes, but also close them once a particular test was finished. Hence

the framework executed an algorithms’ corresponding launch files, with additional command line
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parameters for the specific dataset’s topics and implementation. The framework was built using Python

and depended mainly on the standard ROS packages such as the sensor, geometry and navigation

messages. The framework also depended on the point cloud libraries and OpenCV to convert any

images and point-clouds for processing. Lastly the framework depended on the Gazebo libraries to

link the simulated vehicle models to ROS.

D.1.2 Configuration files

To facilitate ease of use as well as flexibility, most of the implemented software made use of the

YAML Ain’t Markup language (YAML) format. In particular, the main configuration file was was set

up to allow the framework to define multiple tests. The following provides an example of the main

configuration file that was used to start execution:

t e s t s :

navigationTestRTABMAP:

S k i p : [ 1 , 2 , 5 , 10 ]

V e h i c l e M o d e l s : p i o n e e r #Used i n Gazebo

D a t a s e t : Azimut # o r F r e i b u r g , New Col l ege , Malaga

A l g o r i t h m : RTABMAP # or DIFFEKFSLAM , modelLearn , Gmapping , e t c .

E v a l u a t i o n :

ATE: t r u e

RPE: f a l s e

genPoseGraph : t r u e

mapType: occupancyGr id

s t o r e R e s u l t s : t r u e

s h o w R e s u l t s : f a l s e

E n v i r o n m e n t : f r e i b u r g R o b o t #Used i n Gazebo

N a v i g a t i o n : #Used i n Gazebo

Type: Simple

S k i p : 10
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In most of the cases, each of the parameters defined in the main configuration file had their own

configuration files that provided additional setup parameters. Hence depending on the parameters

selected by a test, different configurations could automatically be loaded. In the example, the evaluation

framework was set up to evaluate one of the Azimut datasets using RTABMAP. In addition, the test

also conducted simulations in Gazebo with a vehicle model for comparison (see Section D.2.2 for

more information).

D.1.3 Datasets

A number of datasets could be loaded automatically by the evaluation framework. Furthermore, the

framework could automatically connect a particular dataset’s topics to an algorithm, as long as the

correct data was available. Currently, the following datasets can be loaded into system:

• The Freiburg Robot datasets,

• The New College Datasets,

• The Malaga Urban datasets,

• The Azimut-3 multi-session datasets.

As the Azimut and Freiburg datasets are available as ROS Bag-files loading them was implemented

by sending command line arguments to a new terminal. The New College and Malaga datasets’ data,

in comparison, were loaded during execution. Hence in each case an implementation was created

that published the raw data onto ROS topics, with their corresponding sensor transforms. For these

datasets a clock server also needed to be created that handled ROS’s internal time and synchronised

the data.

D.1.4 SLAM algorithms

A number of SLAM algorithms were setup in the evaluation framework. The following lists all of the

SLAM algorithms that were connected in the evaluation framework:

• Odometry EKF-SLAM,

• Kinematic model differential drive EKF-SLAM,
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• Learned motion model’s EKF-SLAM,

• HectorSLAM,

• GMapping,

• RTABMAP [101].

In general, the execution procedure for each algorithm is described by Algorithm D.1. The dataset

handler, as the name suggests, loads all of the parameters required by the dataset and returns a dictionary

containing the topics that the actual data will be published on. From this, the algorithm can be set

up to subscribe to the correct topics while providing information on the topics where the results are

published. These topics are subscribed by the evaluation framework and used to evaluate the results

once the algorithm has finished execution. Lastly, the paths that the files were stored to were returned

and used when a multiple tests were conducted. As such a comparison of different tests and algorithms

could automatically be generated.

Algorithm D.1 Execution procedure for the algorithms
1: dsetTopics = datasetHandler.loadDataset(dsetName)

2: topicDictionary = execHandler.loadAlgorithm(algName,dsetTopics, dsetName )

3: topicSubscriber = dataSubscriber.poseSubscriber(topicDictionary)

4: topicSubscriber.subscribeTopics()

5: datasetHandler.execDataset()

6: while execHandler.isNodeRunning(algName) do

7: Wait until dataset is done

8: end while

9: poses = poseHandler.loadGTPoses(dsetName)

10: resultHandler.processAlgorithmResults(topicSubscriber, poses)

11: storedPosePath, storedMapPath = resultHandler.getStoredFilesPath()

return storedPosePath, storedMapPath

D.2 GAZEBO

The following section provides a brief overview the Gazebo implementation along with the creation of

the vehicle models.
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D.2.1 Vehicle Control

Controlling a vehicle in Gazebo is commonly implemented using the vehicle’s joint state or velocity

controllers. As such the PID control for any joint needs to be defined and a controller implemented

to that can control the vehicle. However, a Gazebo-ROS plugin for a differential drive is available in

ROS to provide control. Thus the plugin was used to control differential drive and skid-steer vehicles

instead of creating a new controller.

D.2.1.1 Gazebo-ROS differential drive controller

The differential drive’s controller used to control a vehicle is based on the kinematic model of a

differential drive. The controller could therefore also be used to control a skid-steer drive vehicle

by specifying that both front and rear wheels received the same control commands. In addition, a

number of limitations could be specified to more accurately represent the vehicle’s dynamics. The

following list some of the parameters that can be used to model the vehicle’s motion and set additional

limitations:

• The wheel separation,

• Wheel diameter,

• Velocity limits,

• Acceleration limits,

• The update rate.

All of the aforementioned limitations was defined in a configuration file that was loaded in a launch

file. The launch file also loaded the vehicle’s unified robot description format (URDF) file into Gazebo,

launched the velocity controller, robot’s state publisher and a subscriber node. The state publisher

shared information of the vehicle’s state between ROS and Gazebo, while the subscriber node listened

for incoming velocity commands that the velocity controller used to drive the vehicle. Specifically, the

velocity controller made use of linear and angular velocities to control the vehicle.
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D.2.1.2 Vehicle Model Generator

Creating a simple vehicle model that works in ROS and Gazebo was done using the URDF format.

The URDF file describes the vehicle’s physical properties such as geometry, weight, inertia, friction

coefficients and links to other components. Additionally, any movable joints and sensors needs to

be defined along with their corresponding hardware interfaces and implementation. As such, the

more complex a vehicle becomes, the more one needs to keep track of the exact names used for

each component to ensure consistency across all the files. Furthermore, if multiple different vehicles

are used, one needs to ensure consistent naming conventions across all the vehicles if one wants to

incorporate any vehicle in an implementation that automatically loads these vehicles.

Thus, it was decided to create a vehicle model generator that could automatically generate the configur-

ation, launch and URDF files while maintaining consistency. To accomplish this, the YAML format

was used to define the basic structure of a vehicle, the sensors and type of controller used. From this

file, all the vehicle’s required files could be generated consistently. An example of the basic setup used

to generate an entire vehicle is shown below. Note that the YAML file was set up to generate multiple

vehicles using a single file.

v e h i c l e s :

p i o n e e r :

NumWheels: 2

I n i t i a l P o s e : [ 0 , 0 , 0 . 5 , 0 . 0 , 0 . 0 , 0 ]

C o n t r o l l e r :

Type: D i f f e r e n t i a l

U p d a t e R a t e : 20

h a s V e l o c i t y L i m i t s : F a l s e

p C o v a r i a n c e : [ 0 . 0 5 , 0 . 0 5 , 1 . 0 , 1 0 0 . 0 , 1 0 0 . 0 , 0 . 0 7 8 ]

t C o v a r i a n c e : [ 0 . 0 5 , 0 . 0 5 , 1 . 0 , 1 0 0 . 0 , 1 0 0 . 0 , 0 . 0 7 8 ]

B a s e :

D i m e n s i o n s : [ 0 . 4 5 5 , 0 . 3 8 1 , 0 . 1 7 5 ]

Mass: 7

C o l o u r : Blue

Whee ls :
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D i m e n s i o n s : [ 0 . 0 9 7 5 , 0 . 0 5 ]

Mass: 1 . 5

F r i c t i o n : [ 0 . 5 , 0 . 5 ]

T r a n s f o r m : [−0.1 , 0 . 2 1 5 5 , −0.042 , 1 . 5 7 , 0 , 3 . 1 4 ]

C o l o u r : DarkGrey

S e n s o r s :

K i n e c t :

P a r e n t : Base

T r a n s f o r m : [ 0 . 1 , 0 , 0 . 0 , 0 , 0 , 0 ]

C o l o u r : Black

L a s e r :

C o l o u r : Green

P a r e n t : Base

T r a n s f o r m : [ 0 . 0 , 0 , 0 . 2 , 0 , 0 , 0 ]

U p d a t e R a t e : 40

S c a n :

S a m p le s : 720

R e s o l u t i o n : 1

An g l e : 1 .5707

Range:

Min: 0 . 1

Max: 2 0 . 0

R e s o l u t i o n : 0 . 1

IMU:

P a r e n t : Base

T r a n s f o r m : [ 0 . 0 , 0 . 1 , 0 . 0 , 0 , 0 , 0 ]

While the system could only generate relatively simple vehicle models, it does ensure smooth operation

during testing as the naming conventions are standardised for all vehicles. Currently, 3 types of sensors

can be included in the generated vehicle models: A Kinect, a laser scanner and an IMU. Furthermore,

two types of controllers currently available for automatic generation is a differential and skid-steer

driven system. Figure D.1 provides an illustration of a the generated vehicles in both Gazebo and
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RViz.

(a) Pioneer robot with front caster.

(b) Skid-steer drive vehicle.

Figure D.1. Gazebo (left) and Rviz (right) visualisation of the generated vehicle models.

D.2.2 Navigation

ROS’s navigation stack was used to control the vehicle’s movement. Specifically, the move_base

package was used to calculate the control commands sent to the vehicles. The navigation stack allowed

the system to have repeatable control of the vehicle for various tests. In addition, the control could be

applied automatically, thus requiring no input from the user.

This allowed the system to compare different vehicles using the same exact control commands.

Furthermore, the vehicles could be compared to real-world datasets as long as a simulated environment

could be generated that matched the real-world environment. Two such environments were created

that roughly approximated the Freiburg dataset’s environment and a part of the Azimut multi-session
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datasets’ environment. Algorithm D.2 provides the general execution procedure used to compare the

performance of the simulated and real-world vehicles under such circumstances.

Algorithm D.2 Gazebo-Algorithm execution tests

1: for each defined test do

2: Load parameters

3: Execute algorithm using dataset

4: Save results to file

5: Unload algorithm node

6: Load Gazebo environment

7: for all vehicleModels in test do

8: Load vehicle model and Navigation stack

9: Execute algorithm using Gazebo topics

10: Compare vehicle tests to dataset’s results

11: Store all test results

12: Unload vehicle model, navigation nodes and algorithm nodes

13: end for

14: Unload Gazebo

15: end for
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RESULTS

E.1 MODEL LEARNING TESTS (TANH ACTIVATION)

The model learning tests were also conducted for TDL-NNs with a tanh(·) activation. Neural nets with

and without control were also tested as well as if an increase in initial poses provided any marked

improvements. Table E.1 the general parameters used during these tests.

Table E.1. Parameters for the linear activation function tests.

Parameter Value Parameter Value

NN structure {5, 7, 11, 15, 29, 45 } Activation func-

tions

tanh

Discontinuity split Yes Test set Simulated test sets

Training sets (sim-

ulated)

[Arc, linear, rotational, sta-

tionary]

NN approach [Memory, memory with

control]

Training sets

(Freiburg)

[ Robot SLAM1, Robot

SLAM2, Robot SLAM3]

Test set (Freiburg) Robot 360

Number of previ-

ous states

{ 3, } Increasing training

data

[Initial poses ]

Scaling factor (sim-

ulated) (x,y,θ )

[30.0, 30.0, 30.0 ] Scaling factor (sim-

ulated) (v f ,ω)

[30.0, 30.0 ]



ADDENDUM E ADDITIONAL EXPERIMENTAL RESULTS

E.1.1 Experimental results

E.1.1.1 Freiburg datasets

The following section provides the results for the TDL-NN implementation using a tanh(·) activation

function using the model learning metrics discussed in Chapter 4. Figure E.1 provides the overall

errors obtained for a tanh(·) activation function using a memory of 3 and 15 hidden nodes. The skew

and kurtosis values observed were significantly less than those observed with the linear activation

functions. In addition, arc and linear motion’s positional values the skew and kurtosis values were closer

to a Gaussian distribution. However, the AEmedian and AEmedianAD errors were significantly higher

compared to the NNs with linear activation function that were trained with the Freiburg datasets.

Analysis of the effects of the network’s structure on the NNs performance revealed that different

network sizes did have an impact on the AEmedian error (see Table E.2). Even though the NNs

performed better with one state variable, it was usually counteracted by worse performance in another.

A typical example of such a case is with a NN with 29 hidden nodes. While the x-estimate was

significantly less for linear and arc motion, the yaw-estimates were higher than what was observed in

other networks. However, the best value found were still significantly higher than the NNs with linear

activation functions.

E.1.1.2 Simulated Datasets

The previous results indicated that the TDL-NNs trained with the Freiburg datasets performed signific-

antly worse than the corresponding NNs trained with linear activation functions. However, because

variations on the errors were observed the TDL-NNs were trained with the simulated datasets to

determine if any improvements could be observed. In addition, NNs with control inputs included were

also trained to establish if the control had similar effect to those observed for the linear activation

functions.

The results observed, however, indicated that the simulated datasets performed slightly worse than the

Freiburg datasets (see Table E.3). In addition, no very little variations were observed over different

network structures. Similarly, additional control inputs had little observable effect on the network’s
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(b) AEmedianAD.
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Figure E.1. Bar graphs of each motion type’s error for a NN with 15 hidden nodes and a memory of 3.

The x-, y- and yaw errors were each graphed next to each other for direct comparison.

performance. One possible cause for the degradation in performance of the TDL-NNs is the scaling

values, which, for the simulated datasets was required to be 30. As a result, the control variables may

not have a significant impact during training. Nonetheless, TDL-NNs with a tanh(·) activation function

could not produce similar result to the linear activation function.
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Table E.2. The overall AEmedian error (measured in meters and radians) for a TDL-NN’s trained with

the Freiburg datasets.

NN structure

Test Data 7 15 29 45

Arc motion

(x,y,θ )

2.052

2.623

0.915

1.996,

2.660,

0.502

1.446,

2.500,

1.412

2.299,

2.741,

1.138

Linear mo-

tion (x,y,θ )

2.326,

3.270,

0.802

2.281,

3.297,

0.540

1.424,

3.085,

1.370

2.552,

3.393,

0.859

Rotational

motion

(x,y,θ )

1.282,

0.847,

0.936

1.210,

0.928,

0.473

1.480,

1.004,

1.547

1.394,

1.099,

1.196

Stationary

motion

(x,y,θ )

1.287,

0.859,

0.864

1.214,

0.951,

0.477

1.517,

1.020,

1.421

1.408,

1.110,

0.975

Lastly, the effects of increasing the amount of initial poses were tested. However, doubling the number

of initial poses used by the training data resulted in no observable improvements. As with the linear

activation tests, the AEmedian errors remained almost identical to the previous result.
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Table E.3. The overall AEmedian error for a TDL-NN’s trained with the arc motion simulated datasets

using 15 initial poses.

NN structure (No Control) NN structure (Control)

Test Data 5 11 45 5 11 45

15 initial poses

Arc motion

(x,y,θ )

2.174

2.787

1.210

2.179

2.749

1.192

2.222

2.816

1.216

2.254

2.723

1.189

2.221

2.812

1.212

2.224

2.813

1.215

Linear mo-

tion (x,y,θ )

2.438

3.433

1.046

2.438

3.400

0.970

2.489

3.479

0.992

2.494

3.384

0.921

2.484

3.474

0.988

2.489

3.477

0.992

Rotational

motion

(x,y,θ )

1.281

1.068

1.220

1.357

1.111

1.198

1.384

1.131

1.216

1.353

1.030

1.204

1.382

1.130

1.212

1.384

1.135

1.216

Stationary

motion

(x,y,θ )

1.286

1.078

0.991

1.364

1.113

0.972

1.389

1.134

0.992

1.353

1.925

0.980

1.386

1.131

0.988

1.389

1.136

0.992

28 initial poses

Arc motion

(x,y,θ )

2.187

2.792

1.214

2.216

2.804

1.213

2.223

2.813

1.221

2.196

2.811

1.194

2.225

2.814

1.210

2.217

2.809

1.223

Linear mo-

tion (x,y,θ )

2.451

3.454

0.987

2.476

3.463

0.988

2.488

3.478

0.994

2.458

3.471

0.982

2.486

3.473

0.987

2.483

3.475

0.997

Rotational

motion

(x,y,θ )

1.375

1.127

1.211

1.376

1.132

1.212

1.383

1.135

1.218

1.369

1.137

1.201

1.382

1.138

1.210

1.382

1.135

1.221

Stationary

motion

(x,y,θ )

1.387

1.129

0.988

1.380

1.134

0.989

1.388

1.138

0.994

1.379

1.136

0.984

1.386

1.139

0.988

1.387

1.137

0.998
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The subsequent sections provide the poses and controls used to generate the training and test sets used

in the model learning tests.

F.1 TEST SETS

Table F.1. Test poses used during the model learning methodology

Pose # X (m) Y (m) θ (rad) Pose # X (m) Y (m) θ (rad)

1 1.8 -0.7 -0.78 7 0.8 -1.2 -1.78

2 3.2 2.8 0.78 8 2.6 -1.5 2.34

3 0.6 1.3 1.578 9 -0.6 -1.1 -0.3

4 0.0 0.0 0.0 10 0.0 0.5 1.1

5 1.2 1.2 0.5 11 2.4 1.3 2.4

6 2.1 0.0 -0.9 12 -1.6 0.2 -1.9
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Table F.2. Test controls used to by the model learning methodology

Arc Motion Linear Motion

Control # Vf (m/s) ω (rad/s) Vf (m/s) ω (rad/s)

1 0.2 0.2 0.1 0.0

2 0.2 -0.2 0.25 0.0

3 0.4 0.12 0.4 0.0

4 0.4 0.12 0.6 0.0

5 0.7 0.08 0.8 0.0

6 0.7 0.08 0.9 0.0

7 1.1 0.05 1.2 0.0

8 1.1 0.05 1.5 0.0

9 1.5 0.15 1.7 0.0

10 1.5 0.15 1.9 0.0

11 2.0 0.2 2.2 0.0

12 2.0 -0.2 2.4 0.0

Rotational Motion Stationary Motion

Vf (m/s) ω (rad/s) Vf (m/s) ω (rad/s)

1 0.0 0.03 0.0 0.0

2 0.0 0.07 0.001 0.0

3 0.0 0.12 0.0 0.001

4 0.0 0.15 0.0 -0.001

5 0.0 0.19 0.001 -0.001

6 0.0 0.23 0.001 -0.001

7 0.0 -0.03

8 0.0 -0.07

9 0.0 -0.12

10 0.0 -0.15

11 0.0 -0.19

12 0.0 -0.23
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F.2 TRAINING DATASETS

Table F.3. The first 56 poses used to generate the simulated datasets

Pose # X (m) Y (m) θ (rad) Pose # X (m) Y (m) θ (rad)

1 1.8 -0.7 -0.78 29 0.0 0.0 -1.2

2 -1.8 0.7 -0.78 30 0.85 0.4 -0.5

3 1.8 -0.7 0.78 31 -0.85 0.4 0.5

4 -1.8 0.7 0.78 32 0.85 -0.4 0.5

5 3.2 2.8 0.78 33 -0.85 -0.4 -0.5

6 -3.2 -2.8 0.78 34 2.6 2.1 1.8

7 3.2 2.8 -0.78 35 -2.6 2.1 -1.8

8 -3.2 -2.8 -0.78 36 2.6 -2.1 -1.8

9 0.6 -1.3 1.578 37 -2.6 -2.1 -1.8

10 -0.6 1.3 1.578 38 1.6 1.3 0.9

11 0.6 -1.3 -1.578 39 -1.6 1.3 0.9

12 -0.6 1.3 -1.578 40 1.6 -1.3 -0.9

13 1.2 0.3 2.78 41 -1.6 -1.3 -0.9

14 -1.2 -0.3 -2.78 42 3.1 1.6 2.4

15 1.2 0.3 -2.78 43 -3.1 1.6 2.4

16 -1.2 -0.3 2.78 44 3.1 -1.6 -2.4

17 -2.3 1.2 1.24 45 -3.1 -1.6 -2.4

18 2.3 1.2 1.24 46 0.5 3.3 0.0

19 -2.3 1.2 -1.24 47 -0.5 3.3 0.0

20 2.3 1.2 -1.24 48 0.5 -3.3 0.0

21 -0.3 2.6 -0.24 49 -0.5 -3.3 0.0

22 0.3 2.6 0.24 50 2.4 0.2 1.3

23 -0.3 2.6 0.24 51 -2.4 0.2 1.3

24 0.3 2.6 -0.24 52 2.4 -0.2 -1.3

25 0.0 0.0 0.0 53 2.4 -0.2 -1.3

26 0.0 0.0 0.48 54 1.3 2.4 2.9

27 0.0 0.0 -0.48 55 -1.3 2.4 2.9

28 0.0 0.0 1.2 56 1.3 -2.4 -2.9
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Table F.4. The last 57 poses used to generate the simulated datasets

Pose # X (m) Y (m) θ (rad) Pose # X (m) Y (m) θ (rad)

57 -1.3 -2.4 -2.9 86 0.85 0.4 -2.1

58 1.8 -0.7 -1.9 87 -0.85 0.4 2.1

59 -1.8 0.7 -1.9 88 0.85 -0.4 -2.1

60 1.8 -0.7 1.9 89 -0.85 -0.4 -2.1

61 1.8 -0.7 1.9 90 2.6 2.1 0.6

62 3.2 2.8 2.4 91 -2.6 2.1 0.6

63 -3.2 -2.8 2.4 92 2.6 -2.1 -0.6

64 3.2 2.8 -2.4 93 -2.6 -2.1 -0.6

65 -3.2 -2.8 -2.4 94 1.6 1.3 1.3

66 0.6 -1.3 0.578 95 -1.6 1.3 1.3

67 -0.6 1.3 0.578 96 1.6 -1.3 -1.3

68 0.6 -1.3 -0.587 97 -1.6 -1.3 -1.3

69 -0.6 1.3 -0.587 98 3.1 1.6 0.9

70 1.2 0.3 0.0 99 -3.1 -1.6 0.9

71 -1.2 -0.3 0.0 100 3.1 -1.6 -0.9

72 -1.2 0.3 0.0 101 -3.1 -1.6 -0.9

73 1.2 -0.3 0.0 102 0.5 3.3 1.7

74 -2.3 1.2 2.8 103 -0.5 3.3 1.7

75 2.3 1.2 2.8 104 0.5 -3.3 1.7

76 -2.3 1.2 -2.8 105 -0.5 -3.3 1.7

77 2.3 1.2 -2.8 106 2.4 0.2 2.3

78 -0.3 2.6 -1.4 107 -2.4 0.2 2.3

79 0.3 2.6 1.4 108 2.4 -0.2 -2.3

80 -0.3 2.6 1.4 109 2.4 -0.2 -2.3

81 0.3 2.6 -1.4 110 1.3 2.4 2.2

82 0.0 0.0 1.7 111 -1.3 2.4 2.2

83 0.0 0.0 -1.7 112 1.3 -2.4 -2.2

84 0.0 0.0 2.3 113 -1.3 -2.4 -2.2

85 0.0 0.0 -2.3
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Table F.5. Arc motion control for the simulated datasets (1-56)

Control # Vf (m/s) ω (rad/s) Control # Vf (m/s) ω (rad/s)

1 0.05 0.03 29 0.2 0.11

2 0.05 -0.03 30 0.2 -0.11

3 0.05 0.06 31 0.2 0.14

4 0.05 -0.06 32 0.2 -0.14

5 0.05 0.09 33 0.2 0.17

6 0.05 -0.09 34 0.2 -0.17

7 0.05 0.11 35 0.2 0.19

8 0.05 -0.11 36 0.2 -0.19

9 0.05 0.14 37 0.2 0.22

10 0.05 -0.14 38 0.2 -0.22

11 0.05 0.17 39 0.2 0.25

12 0.05 -0.17 40 0.2 -0.25

13 0.05 0.19 41 0.2 0.27

14 0.05 -0.19 42 0.2 -0.27

15 0.05 0.22 43 0.2 0.29

16 0.05 -0.22 44 0.2 -0.29

17 0.05 0.25 45 0.35 0.03

18 0.05 -0.25 46 0.35 -0.03

19 0.05 0.27 47 0.35 0.06

20 0.05 -0.27 48 0.35 -0.06

21 0.05 0.29 49 0.35 0.09

22 0.05 -0.29 50 0.35 -0.09

23 0.2 0.03 51 0.35 0.11

24 0.2 -0.03 52 0.35 -0.11

25 0.2 0.06 53 0.35 0.14

26 0.2 -0.06 54 0.35 -0.14

27 0.2 0.09 55 0.35 0.17

28 0.2 -0.09 56 0.35 -0.17
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Table F.6. Arc motion control for the simulated datasets (57-112)

Control # Vf (m/s) ω (rad/s) Control # Vf (m/s) ω (rad/s)

57 0.35 0.17 85 0.5 0.25

58 0.35 -0.17 86 0.5 -0.25

59 0.35 0.19 87 0.5 0.27

60 0.35 -0.19 88 0.5 -0.27

61 0.35 0.22 89 0.5 0.29

62 0.35 -0.22 90 0.5 -0.29

63 0.35 0.25 91 0.7 0.03

64 0.35 -0.25 92 0.7 -0.03

65 0.35 0.27 93 0.7 0.06

66 0.35 -0.27 94 0.7 -0.06

67 0.35 0.29 95 0.7 0.09

68 0.35 -0.29 96 0.7 -0.09

69 0.5 0.03 97 0.7 0.11

70 0.5 -0.03 98 0.7 -0.11

71 0.5 0.06 99 0.7 0.14

72 0.5 -0.06 100 0.7 -0.14

73 0.5 0.09 101 0.7 0.17

74 0.5 -0.09 102 0.7 -0.17

75 0.5 0.11 103 0.7 0.19

76 0.5 -0.11 104 0.7 -0.19

77 0.5 0.14 105 0.7 0.22

78 0.5 -0.14 106 0.7 -0.22

79 0.5 0.17 107 0.7 0.25

80 0.5 -0.17 108 0.7 -0.25

81 0.5 0.19 109 0.7 0.27

82 0.5 -0.19 110 0.7 -0.27

83 0.5 0.22 111 0.7 0.29

84 0.5 -0.22 112 0.7 -0.29
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Table F.7. Arc motion control for the simulated datasets (113-168)

Control # Vf (m/s) ω (rad/s) Control # Vf (m/s) ω (rad/s)

113 0.9 0.03 141 1.0 0.11

114 0.9 -0.03 142 1.0 -0.11

115 0.9 0.06 143 1.0 0.14

116 0.9 -0.06 144 1.0 -0.14

117 0.9 0.09 145 1.0 0.17

118 0.9 -0.09 146 1.0 -0.17

119 0.9 0.11 147 1.0 0.19

120 0.9 -0.11 148 1.0 -0.19

121 0.9 0.14 149 1.0 0.22

122 0.9 -0.14 150 1.0 -0.22

123 0.9 0.17 151 1.0 0.25

124 0.9 -0.17 152 1.0 -0.25

125 0.9 0.19 153 1.0 0.27

126 0.9 -0.19 154 1.0 -0.27

127 0.9 0.22 155 1.0 0.29

128 0.9 -0.22 156 1.0 -0.29

129 0.9 0.25 157 1.15 0.03

130 0.9 -0.25 158 1.15 -0.03

131 0.9 0.27 159 1.15 0.06

132 0.9 -0.27 160 1.15 -0.06

133 0.9 0.29 161 1.15 0.09

134 0.9 -0.29 162 1.15 -0.09

135 1.0 0.03 163 1.15 0.11

136 1.0 -0.03 164 1.15 -0.11

137 1.0 0.06 165 1.15 0.14

138 1.0 -0.06 166 1.15 -0.14

139 1.0 0.09 167 1.15 0.17

140 1.0 -0.09 168 1.15 -0.17
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Table F.8. Arc motion control for the simulated datasets (169-224)

Control # Vf (m/s) ω (rad/s) Control # Vf (m/s) ω (rad/s)

169 1.15 0.17 197 1.3 0.25

170 1.15 -0.17 198 1.3 -0.25

171 1.15 0.19 199 1.3 0.27

172 1.15 -0.19 200 1.3 -0.27

173 1.15 0.22 201 1.3 0.29

174 1.15 -0.22 202 1.3 -0.29

175 1.15 0.25 203 1.45 0.03

176 1.15 -0.25 204 1.45 -0.03

177 1.15 0.27 205 1.45 0.06

178 1.15 -0.27 206 1.45 -0.06

179 1.15 0.29 207 1.45 0.09

180 1.15 -0.29 208 1.45 -0.09

181 1.3 0.03 209 1.45 0.11

182 1.3 -0.03 210 1.45 -0.11

183 1.3 0.06 211 1.45 0.14

184 1.3 -0.06 212 1.45 -0.14

185 1.3 0.09 213 1.45 0.17

186 1.3 -0.09 214 1.45 0-.17

187 1.3 0.11 215 1.45 0.19

188 1.3 -0.11 216 1.45 -0.19

189 1.3 0.14 217 1.45 0.22

190 1.3 -0.14 218 1.45 -0.22

191 1.3 0.17 219 1.45 0.25

192 1.3 -0.17 220 1.45 -0.25

193 1.3 0.19 221 1.45 0.27

194 1.3 -0.19 222 1.45 -0.27

195 1.3 0.22 223 1.45 0.29

196 1.3 -0.22 224 1.45 -0.29
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Table F.9. Arc motion control for the simulated datasets (225-280)

Control # Vf (m/s) ω (rad/s) Control # Vf (m/s) ω (rad/s)

225 1.6 0.03 253 1.75 0.11

226 1.6 -0.03 254 1.75 -0.11

227 1.6 0.06 255 1.75 0.14

228 1.6 -0.06 256 1.75 -0.14

229 1.6 0.09 257 1.75 0.17

230 1.6 -0.09 258 1.75 -0.17

231 1.6 0.11 259 1.75 0.19

232 1.6 -0.11 260 1.75 -0.19

233 1.6 0.14 261 1.75 0.22

234 1.6 -0.14 262 1.75 -0.22

235 1.6 0.17 263 1.75 0.25

236 1.6 -0.17 264 1.75 -0.25

237 1.6 0.19 265 1.75 0.27

238 1.6 -0.19 266 1.75 -0.27

239 1.6 0.22 267 1.75 0.29

240 1.6 -0.22 268 1.75 -0.29

241 1.6 0.25 269 1.9 0.03

242 1.6 -0.25 270 1.9 -0.03

243 1.6 0.27 271 1.9 0.06

244 1.6 -0.27 272 1.9 -0.06

245 1.6 0.29 273 1.9 0.09

246 1.6 -0.29 274 1.9 -0.09

247 1.75 0.03 275 1.9 0.11

248 1.75 -0.03 276 1.9 -0.11

249 1.75 0.06 277 1.9 0.14

250 1.75 -0.06 278 1.9 -0.14

251 1.75 0.09 279 1.9 0.17

252 1.75 -0.09 280 1.9 -0.17

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

191



ADDENDUM F SIMULATED DATASETS

Table F.10. Arc motion control for the simulated datasets (281-337)

Control # Vf (m/s) ω (rad/s) Control # Vf (m/s) ω (rad/s)

281 1.9 0.17 309 2.05 0.25

282 1.9 -0.17 310 2.05 -0.25

283 1.9 0.19 311 2.05 0.27

284 1.9 -0.19 312 2.05 -0.27

285 1.9 0.22 313 2.05 0.29

286 1.9 -0.22 314 2.05 -0.29

287 1.9 0.25 315 2.2 0.03

288 1.9 -0.25 316 2.2 -0.03

289 1.9 0.27 317 2.2 0.06

290 1.9 -0.27 318 2.2 -0.06

291 1.9 0.29 319 2.2 0.09

292 1.9 -0.29 320 2.2 -0.09

293 2.05 0.03 321 2.2 0.11

294 2.05 -0.03 322 2.2 -0.11

295 2.05 0.06 323 2.2 0.14

296 2.05 -0.06 324 2.2 -0.14

297 2.05 0.09 325 2.2 0.17

298 2.05 -0.09 326 2.2 -0.17

299 2.05 0.11 328 2.2 0.19

300 2.05 -0.11 329 2.2 -0.19

301 2.05 0.14 330 2.2 0.22

302 2.05 -0.14 331 2.2 -0.22

303 2.05 0.17 332 2.2 0.25

304 2.05 -0.17 333 2.2 -0.25

305 2.05 0.19 334 2.2 0.27

306 2.05 -0.19 335 2.2 -0.27

307 2.05 0.22 336 2.2 0.29

308 2.05 -0.22 337 2.2 -0.29
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Table F.11. Arc motion control for the simulated datasets (338-393)

Control # Vf (m/s) ω (rad/s) Control # Vf (m/s) ω (rad/s)

338 2.35 0.03 366 2.5 0.11

339 2.35 -0.03 367 2.5 -0.11

340 2.35 0.06 368 2.5 0.14

341 2.35 -0.06 369 2.5 -0.14

342 2.35 0.09 370 2.5 0.17

343 2.35 -0.09 371 2.5 -0.17

344 2.35 0.11 372 2.5 0.19

345 2.35 -0.11 373 2.5 -0.19

346 2.35 0.14 374 2.5 0.22

347 2.35 -0.14 375 2.5 -0.22

348 2.35 0.17 376 2.5 0.25

349 2.35 -0.17 377 2.5 -0.25

350 2.35 0.19 378 2.5 0.27

351 2.35 -0.19 379 2.5 -0.27

352 2.35 0.22 380 2.5 0.29

353 2.35 -0.22 381 2.5 -0.29

354 2.35 0.25 382 2.65 0.03

355 2.35 -0.25 383 2.65 -0.03

356 2.35 0.27 384 2.65 0.06

357 2.35 -0.27 385 2.65 -0.06

358 2.35 0.29 386 2.65 0.09

359 2.35 -0.29 387 2.65 -0.09

360 2.5 0.03 388 2.65 0.11

361 2.5 -0.03 389 2.65 -0.11

362 2.5 0.06 390 2.65 0.14

363 2.5 -0.06 391 2.65 -0.14

364 2.5 0.09 392 2.65 0.17

365 2.5 -0.09 393 2.65 -0.17
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Table F.12. Arc motion control for the simulated datasets (394-427)

Control # Vf (m/s) ω (rad/s) Control # Vf (m/s) ω (rad/s)

394 2.65 0.17 411 2.8 -0.09

395 2.65 -0.17 412 2.8 0.11

396 2.65 0.19 413 2.8 -0.11

397 2.65 -0.19 414 2.8 0.14

398 2.65 0.22 415 2.8 -0.14

399 2.65 -0.22 416 2.8 0.17

400 2.65 0.25 417 2.8 -0.17

401 2.65 -0.25 418 2.8 0.19

402 2.65 0.27 419 2.8 -0.19

403 2.65 -0.27 420 2.8 0.22

404 2.65 0.29 421 2.8 -0.22

405 2.65 -0.29 422 2.8 0.25

406 2.8 0.03 423 2.8 -0.25

407 2.8 -0.03 424 2.8 0.27

408 2.8 0.06 425 2.8 -0.27

409 2.8 -0.06 426 2.8 0.29

410 2.8 0.09 427 2.8 -0.29
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Table F.13. The linear, rotational and stationary motion control used to generate the simulated datasets

Linear Motion Rotational Motion Stationary Motion

Control # Vf (m/s) ω (rad/s) Vf (m/s) ω (rad/s) Vf (m/s) ω (rad/s)

1 0.25 0.0 0.0 0.05 0.0 0.0

2 0.6 0.0 0.0 0.11 0.001 0.0

3 0.85 0.0 0.0 0.16 0.0 0.001

4 1.15 0.0 0.0 0.27 0.0 -0.001

5 1.35 0.0 0.0 -0.05 0.001 -0.001

6 1.8 0.0 0.0 -0.11 0.001 -0.001

7 2.1 0.0 0.0 -0.16

8 2.6 0.0 0.0 -0.27
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