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The Living Planet Index (LPI) is a standardised indicator for tracking 

population trends through time. Due to its ability to aggregate many time-

series in a single metric, the LPI has been proposed as an indicator for the 

Convention on Biological Diversity’s post-2020 Global Biodiversity Strategy. 

However, here we show that random population fluctuations introduce 

biases when calculating the LPI. By combining simulated and empirical data, 

we show how random fluctuations lead to a declining LPI even when overall 

population trends are stable, and imprecise estimates of the LPI when 

populations increase or decrease non-linearly. We applied randomisation 

null models that demonstrate how random fluctuations exaggerate declines 

in the global LPI by 9.6%. Our results confirm substantial declines in the LPI, 

but highlight sources of uncertainty in quantitative estimates. 

Randomisation null models are useful for presenting uncertainty around 

indicators of progress towards international biodiversity targets. 

 

Nations of the world are in the process of negotiating the post-2020 Global Biodiversity 

Framework under the Convention on Biological Diversity. One of the ambitions of the 

post-2020 framework is “bending the curve of biodiversity loss” by first slowing down 

declines by 2030 and then improving the state of biodiversity by mid-century1–3. 

Reliable biodiversity indicators are essential for tracking progress towards global 

biodiversity targets4. A prominent indicator of species abundance over time is the Living 

Planet Index (LPI)5–7. The LPI aggregates population time-series for vertebrates from 

terrestrial, freshwater and marine systems into a relative index (where the baseline is 
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scaled according to population levels in 1970), which is reported biennially as part of 

the Living Planet Report8. 

In addition to being widely reported by the popular press, the LPI has developed a 

significant policy footprint. Global declines, as measured by the LPI, were reported in 

the Global Assessment of the Intergovernmental Science-Policy Platform for Biodiversity 

and Ecosystem Services9, the most authoritative synthesis of policy-relevant biodiversity 

science. Similarly, the index was also used in the Global Biodiversity Outlook Report 510 to 

monitor progress toward Aichi Target 12 (Reducing Risk of Extinction) for the period 

2010-2020. Recently, the LPI was a central feature in pioneering efforts to model 

adaptation and mitigation pathways for biodiversity in the upcoming century2. There is, 

therefore, considerable policy inertia behind the Living Planet Index. 

Despite the LPI’s broad influence, it has several known caveats11,12. First, since each 

time-series is standardised as a relative rate of change, declines in small populations are 

viewed as equivalent to similar proportional declines in large populations, even though 

the absolute declines are much larger in the latter6,11. Second, population trends are 

summarised using the geometric mean, which is always lower than the arithmetic mean, 

resulting in an index that is sensitive to a small minority of extremely declining 

populations12. Third, the LPI weighs time-series prior to averaging to account for 

imperfect regional and taxonomic sampling, essentially giving greater weight to time-

series from poorly studied geographic areas or taxonomic groups.   

Each of these caveats is the result of a deliberate trade-off in the design of the LPI. 

Standardisation is necessary because abundance is often estimated from indices of 

varying units (e.g. densities or breeding pairs) and because populations that may be 

naturally common or rare (although it has been shown that weighing sub-populations in 
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proportion to their contribution to the global population of a species does not affect the 

LPI qualitatively6). The geometric mean accommodates multiplicative population 

dynamics, where averages may be distorted by exponentially increasing populations13. 

Finally, weighting is necessary to account for misleading estimates caused by incomplete 

data coverage7, because populations from certain taxa or regions are more likely to be 

represented in monitoring databases. 

It seems impractical to redesign the LPI to address caveats that were introduced due to 

deliberative trade-offs, especially considering how the index is already embedded in 

global conservation monitoring frameworks. The usefulness of the LPI should be 

evaluated by distinguishing between inconvenient drawbacks that require more careful 

interpretation, and fundamental flaws that may render the index uninformative. 

Population time-series (the input data for the LPI) combine two components: 

deterministic increasing or decreasing tendencies, and the stochastic fluctuations 

around these tendencies14,15. The three known caveats of the LPI (standardisation, 

geometric mean, and weightings) affect estimates of the deterministic tendencies of the 

LPI. While this can be seen as an inconvenient drawback, it can be addressed by 

explaining carefully how to interpret the LPI. For example, the technical supplement to 

the latest Living Planet Report16 describes clearly how the LPI should be interpreted as 

the average trend in population change, rather than the average loss in the absolute 

number of animals or species.  

The other, previously ignored, point of concern is the potential effect of random 

population fluctuations on the LPI. If the LPI is disproportionately affected by random 

population fluctuations relative to deterministic tendencies, then any meaningful 

association between the index and underlying populations breaks down. If this is the 
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case, careful interpretation of the LPI will be insufficient. Random population 

fluctuations might be caused by ecological drift17,18; environmental or demographic 

stochasticity19,20; or random observational error21,22. Ecological drift, demographic 

stochasticity, and observational error tend to cause symmetrical positive or negative 

population fluctuations because randomness affects individual births, deaths, or 

detections (note: demographic stochasticity is often treated as a synonym for ecological 

drift18). By contrast, environmental stochasticity leads to asymmetrical positive and 

negative population fluctuations, because randomness causes variability in 

multiplicative birth or death rates20. The LPI is formulated to consider exponential 

population dynamics, so it should also accommodate asymmetrical environmental 

stochasticity. In their analysis of time-series in the Living Planet Database, Daskalova 

and colleagues15 used state-space models to distinguish between population tendencies, 

process noise, and observational error. They used Gaussian distributions to model 

process noise and observational error additively and found that population fluctuations 

in time-series from the Living Planet Database are relatively small (approximately 2.2 % 

per year on average for terrestrial time-series and 2.8 % per year for freshwater and 

marine populations) but were greater in rare and threatened species15. The 

consequences of these symmetrical population fluctuations for the LPI have yet to be 

investigated. 

Here we quantified the effect of random population fluctuations on the magnitude of the 

LPI by answering two questions. First, what is the effect of random population 

fluctuations on the LPI assuming that populations are stable on average (i.e. no 

deterministic directional tendencies)? Answering this question identifies a more 

accurate counterfactual for the LPI, which is currently assumed to be static in the 

absence of general positive or negative trends. Second, what is the effect of random 
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population fluctuations on the LPI when populations do show increasing or decreasing 

tendencies? This identifies whether stochasticity over- or underestimates the LPI. To 

answer each of these two questions, we began by illustrating general principles using 

simple simulation models and then combined empirical data with null models to 

estimate the contribution of random population fluctuations to the LPI. 

Results 

The effect of random fluctuations on the LPI for stable populations 

The formulation of the LPI means that the index can decline, even when populations are 

stable on average (Fig. 1).  The LPI was designed for multiplicative population dynamics, 

so additive population fluctuations mean that random increases cannot compensate for 

random declines even when of equal magnitude. We demonstrated this effect by 

simulating sets of 500 populations that fluctuate along a random walk (Fig. 1a) and 

subsequently calculating the LPI for each of these sets (Fig. 1b). The LPI declined in 

these simulations by as much as 8 % over 50 years (Fig. 1b), even when the average 

population sizes remained unchanged. The LPI is based on annual changes in 

populations, λ = log10(Nt+1/Nt), where N is the time-dependent population size (see 

methods and Extended Data Fig. 1). The log10-transformation used to calculate λ means 

that the relative effects of positive or negative fluctuations are asymmetrical (Fig. 1c) 

and this asymmetry is exaggerated in small starting populations due to smaller 

denominators (Nt) when calculating λ. We then investigated different starting 

population sizes and annual fluctuations and found that the LPI in otherwise stable 

populations was mostly unaffected when annual fluctuations were less than 1 % per 

year but declined by as much as 40 % once annual fluctuations exceeded 4 % (Fig. 1d). 
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We simulated how random population fluctuations might affect the empirical LPI by 

iterating three separate null models with starting populations identical to those in the 

Living Planet Database. For each null model, we simulated random positive or negative 

fluctuations of 1 %, 3 % and 5 % annually (see methods). This represented how the LPI 

would be affected by population fluctuations in otherwise stable populations. Empirical 

declines in the global LPI were much greater than could be attributed to random 

fluctuations in stable populations (Fig. 2a). Here, the LPI declined by 64 %, which 

differed from the 68 % reported in the Living Planet Report8, but this is because we used 

the public dataset, which excludes several private time-series (see methods). 

A null model with 1 % annual random fluctuations resulted in a global LPI decline by 

2016 of only 0.2 % (sd = 0.3 %) (Fig. 2b). When fluctuations increased to 3 % in the null 

model, the LPI in an otherwise stable populations declined by 1.5 % (sd = 0.8%), while 

annual fluctuations of 5 % reduced the LPI by 4.9 % (sd = 1.7 %) (Fig. 2b). These 

patterns were consistent for LPIs calculated for terrestrial, freshwater and marine 

realms separately, as well as for different biogeographical regions (Extended Data Fig. 

2). Although LPI declines attributable solely to population fluctuations are small, they 

do suggest that the null expectation of the LPI should be a declining counterfactual 

rather than a static baseline set at 1970. This is likely to become more important in 

upcoming years because the effects of random fluctuations are exacerbated in small 

populations (Fig. 1d) and the starting populations of newly added time-series in the 

Living Planet Database have declined exponentially between 1950 and 2015 (ln-

transformed starting populations have declined by 6.4 % ± 0.2 % annually; Extended 

Data Fig. 3). 
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The effect of random fluctuations on the final LPI for increasing or decreasing populations 

The extent of declines in the empirical LPI cannot be ascribed to random population 

fluctuations (Fig. 2), so we explored whether fluctuations affect the quantitative 

precision of LPI estimates for populations with increasing or decreasing tendencies. For 

this, we simulated sets of populations that declined along concave-up, linear, and 

concave-down trajectories23 and showed how random annual population fluctuations 

can lead to biased estimates of the final LPI in declining populations (Fig. 3; comparable 

simulations for increasing populations are shown in Extended Data Fig. 4). Although the 

final LPI estimates at the end of the time interval are relatively robust for both linear 

and non-linear declines when population fluctuations are small (Fig. 3a,c), large 

fluctuations biased final LPI estimates by more than 10% for non-linear trajectories 

(Fig. 3b,d). This is likely an artefact introduced by the Generalised Additive Models 

(GAM) used to smooth population trends and interpolate missing data when calculating 

the LPI (see methods, Appendix 1, Extended Data Figs. 5 and 6). Random population 

fluctuations cause the GAM to underestimate the curvature of non-linear trajectories, 

which underestimates the magnitude of population losses for declining trajectories 

(Extended Data Fig. 5) and population gains for increasing populations (Extended Data 

Fig. 6). 

We were able to correct for the effect of random fluctuations on the LPI using a null 

model that maintained the starting and ending populations in time-series, but which 

randomised the order of incremental changes to the population (see methods and 

Extended Data Fig. 7). By iterating this null model 100 times, we were able to generate a 

distribution of LPI estimates at the end of the time-series. Each estimate in the 

distribution represents a possible population trajectory to the same end-state and thus 
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averages out any artefacts introduced when fitting the GAM to non-linear trajectories. 

Although this approach cannot be used to approximate the whole trajectory of the LPI 

across the entire time-series, it provides a more accurate estimate of the true final state 

in our simulated populations (Fig. 3 e,f and Fig S4 e,f) because it calculates the same 

cumulative population changes across 100 possible trajectories that are approximately 

linear on average (Extended Data Fig. 7). 

We applied this null model to empirical population time-series in the Living Planet (Fig. 

4) and found that random fluctuations exaggerated declines in the global LPI in 2016 

(empirical LPI = 0.36; null model LPI = 0.46 ±0.03) (Fig. 4a). This demonstrates how 

declines in the LPI can differ by 9.6 % even when all the time-series start and end at 

exactly the same population sizes. Empirical declines in the LPIs were also 

overestimated by 23.2 % in terrestrial systems and by 8.1 % in freshwaters systems 

compared to the null model, but were underestimated by 19.6 % in marine systems (Fig. 

4b). Similarly, declines in empirical LPI for biogeographical realms were overestimated 

in the Neotropics (by 14.2%), Paleartic (by 5.9%) and Indo-Pacific (by 6.9%) realms, but 

were slightly underestimated in the Nearctic (by 2.8%) and Afrotropical (by 11.6%) 

realms (Fig. 4c). 

 

Discussion 

Precise quantitative targets are essential for meeting international biodiversity 

commitments24–26, and so are reliable indicators to track progress towards these 

targets1,4. The zero draft of the Convention on Biological Diversity’s post-2020 Global 

Biodiversity Framework3 lists as one of the milestones for 2030 (Goal A.2) that “the 

abundance of species has increased on average by [X%]”. The LPI is proposed as an 
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indicator towards this goal, but our findings demonstrate that random population 

fluctuations can compromise the accuracy of the LPI for tracking progress towards 

international biodiversity commitments. 

Our results do not detract from the main message of the LPI, which is one of dramatic 

declines in populations since 19708,9. Even though random fluctuations caused declines 

in the LPI for otherwise stable populations, these effects were too small to explain 

empirical declines. Recent evidence suggests that the declining LPI may be caused by 

major declines in relatively few population time-series, rather than consistent decline 

across the majority of species12. This is supported by other studies that do not 

corroborate wholesale population declines15,27. These studies show that while many 

populations have declined, an equivalent number of populations have increased. Thus, 

on average, monitored populations seem to be quite stable. Such observations are 

consistent with the technical supplement to Living Planet Report, which also showed 

that the frequencies of increasing and decreasing populations were approximately 

equal16.  

This raises the question: why does the LPI show dramatic declines while other studies 

do not? We offer two reasons, neither of which invalidates the use of the LPI. First, the 

LPI assumes that population dynamics are exponential, so doubling a population is the 

positive equivalent of halving the same population even though the absolute change in 

the populations is twice as much. By contrast, other studies of global population change 

do not always assume exponential growth, favouring instead population data 

standardised between 0 and 115 or square-root transformed population data27. These 

transformation imply that population increases could more easily compensate for 

population declines mathematically.  



11 

 

The second reason for the disparity between declines in the LPI and related studies is 

that the LPI measures cumulative population changes since 1970 rather than average 

population changes (Extended Data Fig. 8). Declines tend to be greater when population 

sizes in the first year of monitoring are larger than the long-term average population28, 

so selecting a fixed starting year standardizes this potential sampling artefact. More 

importantly, setting a fixed baseline has the important advantage of avoiding shifting-

baseline syndromes29,30. This is illustrated using a hypothetical population that declined 

rapidly from 100 individuals in 1970 to 60 individuals in 1980 due to habitat loss and 

then approached a new equilibrium of 40 individuals by 2020 (Extended Data Fig. 9 a). 

In this example, the LPI approaches 0.4 as new data are collected (Fig S9 d), while the 

mean rate of decline becomes smaller as new survey data is added and the large initial 

declines are averaged out by subsequent smaller declines. Perversely, mean rates of 

decline in this hypothetical scenario tend to zero as the length of the time-series grows 

(Extended Data Fig. 9 b & c) because average declines become smaller as populations 

settle in alternative equilibria and newly collected data are added to time-series. 

Maintaining consistent baselines is essential when populations settle into alternative 

stable equilibria; something that is likely to become more prevalent in the upcoming 

decades31.  Hence, the LPI is superior when the aim is quantifying cumulative population 

change over a time-period, rather than estimating mean annual rates of change. 

Even though the LPI represents cumulative population change, we have shown that we 

must be cognisant of the effect of random fluctuations on the LPI (Figs. 1 & 2). We 

suggest that the LPI should be interpreted against declining counterfactuals, similar to 

the way economists interpret investments relative to inflation. The appropriate 

counterfactual for population fluctuations is still unclear because estimates from the 

Living Planet Database suggest that the median population fluctuations for vertebrate 
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species is likely around 2.2 - 2.8 %15. However, these estimates are strongly right-

skewed across populations and may be higher for smaller populations and for 

threatened species15. Moreover, population fluctuations estimated retrospectively from 

empirical data do not necessarily reflect future fluctuations, so we should be cautious of 

using these to estimate the potential effect on the LPI by 2050 (the year of the 

Conventional on Biological Diversity’s mid-century goals). Instead, we recommend using 

a range of fluctuations to simulate multiple scenarios of stable, but fluctuating, 

populations (e.g. Fig. 2), which can be used as alternative frames of reference against 

which real declines can be interpreted32,33. 

Alternative frames of reference will be particularly important if the LPI is calculated 

using data containing many small populations because the effect of fluctuations is 

particularly strong in smaller populations (Fig. 1d). Such effects of small populations 

could be exacerbated by (a) incrementally adding new time-series of rare populations to 

the Living Planet Database (Extended Data Fig. 3); (b) real population declines caused 

by human pressures; or (c) smaller population sizes used for national or sub-regional 

LPI calculations (e.g. ref. 34). This latter point will become increasingly important if 

countries must calculate national LPIs as part of their reporting on the Convention on 

Biological Diversity. Therefore, regional assessment could be improved by following 

standard criteria for including time-series when calculating the LPI, such as minimum 

sampling frequencies or time-series length35,36. 

Even with realistic frames of reference, it is still necessary that the LPI reported at any 

given point in time should not be an artefact of the population trajectories at preceding 

time points. Our results suggest that this is not the case because declines in a reshuffled 

LPI may be 9.6% less severe than the empirical LPI reported in the most recent Living 
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Planet Report8, even though starting and ending population sizes were identical. This 

bias is introduced by the way the LPI smooths and interpolates time-series using GAM, 

which misidentifies starting and ending populations in noisy time-series (Figs. S5 & S6). 

Nevertheless, interpolation and smoothing are necessary features of the LPI because it 

allows messy data with sampling gaps to be aggregated in a uniform index. Therefore, 

rather than redesigning the LPI by changing the GAM, our results support efforts to 

account for biases using randomised null models (e.g. Fig. 4). These null models can be 

iterated to generate a distribution of final LPI values, which more accurately represent 

the uncertainty inherent in single composite metrics of biodiversity11,12. 

Efforts to bend the curve of biodiversity loss will require considerable transformation of 

all sectors of society2. Science should ensure that the indicators that guide these actions 

are as accurate as possible. Therefore, we need to explore and understand sources of 

bias and uncertainty in global biodiversity indicators such as the LPI. Our study 

confirms substantial population declines reported in global syntheses of policy-relevant 

biodiversity science9,10,16, but highlights how random fluctuations affect quantitative 

estimates. Reshuffling null models can account for the mathematical artefacts 

introduced when calculating the LPI. These null models not only provide more accurate 

estimates of population declines but can also be iterated to assess uncertainty around 

these estimates. Therefore, we recommend using null models to improve the accuracy of 

and uncertainty around global biodiversity indicators when measuring progress 

towards international biodiversity targets. 
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Data availability 

Empirical data of population time-series in the Living Planet database are available from 

the dedicated website maintained by the Zoological Society of London (ZSL) 

(http://stats.livingplanetindex.org/) and are subject to the Data Use Policy by the 

Indicators & Assessments Unit at the ZSL and WWF International. Simulated data to 

replicate the results are available from: http://doi.org/10.5281/zenodo.4744533. 

 

Code availability 

All simulation outputs and code (R-scripts) to reproduce the results in this manuscript 

are available from: http://doi.org/10.5281/zenodo.4744533.  
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FIGURE CAPTIONS 

Fig. 1 | Fluctuating, but otherwise stable, populations lead to a declining Living 

Planet Index. a, Three sets of 500 populations each (fine lines) that fluctuate randomly 

by two individuals on average each year, but which are stable on average (thick lines). 

The sets are identical except for their starting populations (N = 50, 100, 150). b, The 

Living Planet Index declines for these sets of populations even when they are stable on 

average because c, fluctuations upwards or downwards cause asymmetrical estimates of 

λ, which are exaggerated in smaller populations. d, The effect of fluctuations on the 

Living Planet Index is greatest in small populations that experience large fluctuations 

(here, the diagonal lines represent the magnitude of the fluctuations as relative 

percentages of the starting population).  

 

Fig. 2 | Larger random fluctuations in otherwise stable populations lead to greater 

declines in the empirical Living Planet Index. a The Global Living Planet Index (mean 

and 95% confidence intervals) between 1970 and 2016 compared against declining 

counterfactuals caused by random fluctuations (1 %, 3 %, 5 %) in otherwise stable 

populations. The shaded grey area in a shows the scaling of the following panel, b, which 

presents the LPI for fluctuating, but otherwise, stable populations (mean and 

interquartile range of 100 iterations of the randomisation null model). 

 

Fig. 3 | Larger population fluctuations cause less precise estimates of the Living 

Planet Index (LPI) in non-linear population trajectories. a and b, Simulated sets of 

populations each with 500 species that decline from 100 to 40 individuals along 

concave-up, linear and concave-down trajectories with low (a) and high (b) population 
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fluctuations. c and d, The accompanying trends in LPI for declining populations with low 

(c) and high (d) fluctuations; the confidence intervals around the LPI are negligible 

because the starting (solid horizontal grey lines) and ending (dashed horizontal grey 

lines) populations are identical in all sets. e and f, The LPI in the final year of the 

simulation, 2020. Here, vertical coloured lines correspond to the LPI from the simulated 

data (c and d) and the dashed black line is the true value based on the actual final 

populations. The distribution is the density of LPI values from a null model that 

approximated linear declines by randomly reshuffling the order of population changes 

(100 times), while keeping the starting and end values constant.  

 

Fig. 4 | Random population fluctuations cause the misestimation of the Living 

Planet Index (LPI) compared to a reshuffling null model. Violin plots show the 

distribution of final mean LPI values in 2016 from 100 iterations of a null model that 

randomises the order of incremental population changes between time-steps, while 

maintaining starting and ending population sizes. Data are grouped for the global LPI 

(a); terrestrial, freshwater and marine systems (b); and five biogeographical realms (c). 

Values show the magnitude by which the median LPI from the null model (white circles) 

is higher (blue) or lower (red) than the empirical LPI (white diamonds). 
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Methods 

A brief overview to calculating the LPI 

While others have explained the details of the LPI5-7, it is necessary to give a short 

overview of the method to understand how random fluctuations could affect the LPI 

(Extended Data Fig. 1). For all subsequent calculations, we used the purpose-built rlpi 

(v 0.1.0) package in R version 3.6.237 to ensure that our methods were identical to those 

used to generate the LPI. We also used the public data released with the 2020 Living 

Planet Report8. This dataset includes 15,348 population time-series between 1950 and 

2016, apart from 5,463 confidential time-series that are not publicly available.  

Calculating the LPI requires nine steps (Extended Data Fig. 1). The first step is obtaining 

a time-series for each population. Not all the time-series in the dataset are integer 

counts of abundance, but also include measurements of density, biomass, or proxies of 

abundance (e.g. number of breeding pairs). These time-series also have different start- 

and end-dates, and irregular sampling frequencies. The second step is, therefore, fitting 

a Generalised Additive Model (GAM) to each log10-transformed population time-series 

with at least six population measurements. This smooths the population time-series and 

interpolates missing data. Time-series with fewer than six measurements are 

interpolated using a chain rule, which assumes that populations changed linearly 

between each pair of subsequent measurements. The smoothed predictions from the 

GAM model are used to estimate sequential changes in population sizes over successive 

years (step 3), which is calculated as λ = log10(Nt+1/Nt) (step 4). The fifth step for 

calculating the LPI is standardising population trends by setting the value in 1970 to 

one, and calculating subsequent trends using the annual changes, λ, through time. 

Annual changes are summarised across all populations of the same species using the 
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geometric mean (step 6). These standardised species-level time-series are then 

aggregated across vertebrate classes (step 7) using a weighted mean relative to the total 

number of species in the taxonomic group and then aggregated into composite indices 

for terrestrial, freshwater and marine ecosystems (step 8) after weighting averages 

based on the total number of species of each vertebrate class per biogeographical 

realm7. These weighing processes account for geographic and taxonomic sampling 

biases in the population time-series. The final step is aggregating terrestrial, freshwater 

and marine indices into a global LPI, assigning equal weights to each system.  

 

Mathematical asymmetries when calculating the LPI 

A limitation inherent to the LPI is that a population declining by a fixed value, Δ, has an 

asymmetrical negative effect on λ, compared to an equivalent increase by Δ. When 

fluctuations are truly stochastic and additive (i.e. due to ecological drift17,18, 

demographic stochasticity19,20; or random observational error21,22) then positive and 

negative changes by Δ should be equally probable. For fluctuations to have no effect on 

the LPI, it is necessary that an increase of Δ should have a positive λ, which is the same 

magnitude as the negative λ caused by a decrease in Δ: 

 λincrease = -λdecrease 

 log10 [(N + Δ)/N] = -log10 [(N - Δ)/N] 

 (N + Δ)/N = N/(N - Δ) 

 (N + Δ).(N - Δ) = N2 

 N2 - Δ2 = N2 
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Clearly, this is only true when Δ = 0, and false otherwise. The term -Δ2 also shows that 

the relationship between λ and the size of the fluctuation, Δ, is a quadratic concave-

down function indicative of an asymmetrical effect of positive and negative fluctuations 

(Fig. 1c). Another truism of this equation is that the inequality is proportionally smaller 

when the size of the fluctuation, Δ, is small relative to the starting population size, N, 

which also scales quadratically. Thus, a population fluctuating randomly around 

equilibrium conditions can result in a declining LPI because random increases cannot 

compensate fully for equivalent random declines, but this effect is less prevalent in large 

populations. 

 

The effect of random fluctuations on the LPI for stable populations 

To illustrate how randomly fluctuating populations can result in a declining LPI, we 

simulated a set of 500 populations, which fluctuated randomly through time. Each 

population in the simulation was from a unique species and each had the same starting 

population, N. We allowed the populations to fluctuate for each year between 1970 and 

2020, by randomly selecting the annual fluctuation, Δ, from a Poisson distribution and 

varying the sign of the fluctuation (i.e. positive or negative) with equal probability. After 

allowing all the populations to fluctuate for the duration of the simulation, we calculated 

the LPI for each set of populations. We simulated three sets of 500 populations for 

illustrative purposes (N = 50, 100, 150; mean Δ = 2: Fig. 1 a-c), but then also iterated the 

entire process 25 times for combinations of N (between 50 and 300 in increments of 10) 

and mean Δ (between 0.5 and 5, in 0.1 increments) (Fig. 1d). 

We then examined the potential effect of random fluctuations on the empirical data used 

in the LPI. To do this, we first identified the starting population size for each time-series. 
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We then allowed each population to fluctuate randomly in three separate simulations by 

1%, 3% and 5% each year. This range of fluctuations includes the mean fluctuations for 

terrestrial (2.2 %), freshwater and marine (both 2.8 %) populations15. For each 

simulation, the annual direction of the fluctuation was selected randomly so that 

positive and negative fluctuations were equiprobable. We allowed the simulated 

populations to fluctuate annually for the whole period between the first measurement in 

the time-series (which differed among populations) and 2016 (the final year of the 

publicly available LPI data). The empirical data had gaps in the time-series, so we 

removed the simulated time-series measurement that coincided with the gaps in the 

empirical dataset to ensure that the simulated and empirical data had identical sample 

completeness. After allowing all 15,348 populations to fluctuate randomly, we calculated 

the LPI using the same weightings as the empirical data to account for geographic and 

taxonomic biases7. This entire stochastic process was iterated 100 times for each of the 

three levels of fluctuation (i.e. 1 %, 3 %, 5 %). 

 

The effect of random fluctuations on the final LPI for increasing or decreasing populations 

To be a reliable indicator of biodiversity trends, the LPI for any given year should reflect 

the state of populations at that specific point in time, rather than the population state at 

an earlier time. In other words, the LPI at time t should be independent of the 

population trajectories at preceding time points. This is not the case for the LPI when 

populations fluctuate randomly because fluctuations affect the accuracy of GAM models 

fitted to population time-series (Extended Data Figs. 5 and 6). We explored the 

consequences of imprecise GAM estimates by simulating sets of species that all declined 

from a starting population size of N0 = 100 in the year 1970, to a final population of NF = 
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40 in 2020 (a 60% decline, consistent with the findings of the global LPI). We simulated 

these populations along varying trajectories as: 

𝑁𝑡 = 𝑁𝐹 + (𝑁0 − 𝑁𝐹). [1 − (
𝑡 − 𝑚𝑖𝑛(𝑡)

𝑚𝑎𝑥(𝑡) − 𝑚𝑖𝑛(𝑡)
)

𝑑

] 

In this equation, time is standardised so that the first year in the times-series is 0 and 

the final year is 1; and parameter d controls the shape of the trajectory, which is 

concave-up for d < 1, linear for d = 1, and concave down for d > 138. We simulated three 

general shapes by setting d to 0.2, 1 and 5 for concave-up, linear and concave-down 

trajectories respectively. We simulated 500 populations of unique species and added 

random noise to each annual population estimate, with the exceptions of the first and 

last values in the time-series to ensure that all time-series started and ended at the same 

population values. We simulated two fluctuation scenarios for each trajectory shape: a 

low fluctuation scenario, where error was randomly drawn from a normal distribution 

with a mean = 0 and a standard deviation = 1; and a high fluctuation scenario where the 

random normal variable was from a distribution with mean = 0 and standard deviation 

= 7. These standard deviation values represent the lowest (e.g. temperate grassland 

populations, where lower 95% confidence interval = 1 %) and highest (e.g. montane 

freshwater populations, where upper 95% confidence interval = 7.5 %) estimates of 

empirical fluctuations in the Living Planet Database15. We calculated the LPI for all six 

sets of 500 populations (three trajectory shapes and two levels of random noise), which 

all had identical starting and ending populations and should, therefore, have identical 

ending LPI. This entire process was also replicated for populations that increased from a 

starting population size of N0 = 100 in the year 1970, to a final population of NF = 160 in 

2020 (results shown in Extended Data Fig. 4). 
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Reshuffling null model to account for the effects of random population fluctuations 

We developed a reshuffling null model to account for the effect of random fluctuations 

on declining populations (Extended Data Fig. 7). The rationale for this null model was 

that maintaining the starting- and ending-populations while rearranging the trajectories 

of population time-series would average out the effects of imprecise GAM estimates 

across multiple iterations. Moreover, reshuffling population time-series would result in 

declines that, on average, approximated linear trajectories (Extended Data Fig. 7d), 

which were less sensitive to the effects of random fluctuations (Extended Data Figs. 5 

and 6).  

In the null model we calculated the incremental differences between subsequent 

population measures (i.e. Δ1 = N2 – N1; Δ2 = N3 – N2…) (Extended Data Fig. 7a), which 

represented a distribution of incremental population changes (Extended Data Fig. 7b). 

We then randomly sampled this distribution of Δ, without replacement, to simulate a 

time-series with identical starting and ending-populations, but with a randomised 

trajectory (Extended Data Fig. 7c). For time-series with non-monotonic trajectories, 

reshuffling could lead to temporary negative population sizes (i.e. if the order of a large 

increase and subsequent decline was reversed in a small population). In these rare 

instances, we completed the simulation, after which we removed the years with negative 

populations because λ cannot be calculated for negative populations. We repeated this 

for each population and calculated the LPI in the final year. By iterating the process 100 

times, we generated a distribution of final LPI values that were approximately linear 

(Extended Data Fig. 7d).  
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We first tested this reshuffling null model on the six sets of simulated population time-

series (Fig. 3 e,f for six sets of decreasing populations & Extended Data Fig. 4 e,f for six 

sets of increasing populations), which confirmed that the null model produced more 

accurate estimates of the LPI for time-series that changed non-linearly with large annual 

population fluctuations. We then applied this null model to the empirical LPI by 

reshuffling the trajectories of all 15,348 time-series in the Living Planet Database and 

calculating the final LPI in 2016 for the global dataset, three planetary systems 

(terrestrial, freshwater and marine), as well as the five biogeographical realms for the 

terrestrial and freshwater systems (Nearctic, Neotropics, Palearctic, Afrotropics, Indo-

Pacific). This entire process was iterated 100 times to produce a distribution of final LPI 

values, all of which had identical starting and ending population sizes as the empirical 

LPI, but population trajectories that approximated a linear decline over the 100 

iterations. 
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