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Abstract

Recent years have seen a growing interest among investors in the new technology of blockchain
and cryptocurrencies and some early investors in this new type of digital assets have made
significant gains. The heuristic algorithm, differential evolution has been advocated as a
powerful tool in portfolio optimization. We propose in this study two new approaches de-
rived from the traditional Differential Evolution (DE) method: the GARCH Differential
Evolution (GARCH-DE) and the GARCH Differential Evolution t-copula (GARCH-DE-t-
copula). We then contrast these two models with DE (benchmark) in single and multi-period
optimization on a portfolio consisting of five cryptoassets under the coherent risk measure
CVaR constraint. Our analysis shows that the GARCH-DE-t-copula outperforms the DE
and GARCH-DE approaches in both single and multi-period frameworks. For these no-
toriously volatile assets, the GARCH-DE-t-copula have shown risk-control ability, hereby
confirming the ability of t-copula to capture the dependence structure in the fat tail.
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1. Introduction

The increasing adoption of cryptocurrencies has contributed to the global dependence be-
tween cryptoassets. Due to both contagion effects and volatility spillovers, modelling this
dependence is important for asset allocation and management. Cryptocurrency which still
in its infancy of development and adoption is known to be highly volatile and susceptible
to important changes driven by speculations and institutional regulations. These extreme
dynamics can results in dependence shifts and portfolio losses (see e.g. [7, 28, 15, 3]).
It is therefore important for cryptocurrency portfolio optimization, to find technical tools
that are able to deal with such underlying interactions. For portfolio optimization, several
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models have been developed following the traditional approach based on the bilateral cor-
relation coefficient algorithm. However, these models appear to be restrictive. An example
of these models is given by the class of multivariate GARCH models developed to alleviate
the normality assumption sustaining the pioneered meanvariance approach. Deterministic
by nature, these models rely on parametric multivariate distribution likely to be erroneously
specified when the distribution of all the variables are not the same. This is likely the case
for financial assets in general and for cryptoassets returns in particular, exhibiting various
underlying distribution properties such as non-normality, asymmetric correlations, volatility
clustering, heavy tail behaviour (see e.g. [30, 31, 1]). A positive response to these deter-
ministic and restrictive shortcomings of the traditional models can be obtained through the
copula approach, particularly the t-copula (see e.g. [12, 14]) which represents implicitly the
dependence structure in a multivariate t-distribution. It has recently received much attention
in the context of modeling multivariate financial time series. It has also been advocated that
its empirical fit is in general superior to that of the dependence structure of the multivariate
normal distribution, given by the Gaussian copula (see e.g., [27, 4]). This is explained by the
ability of the t-copula to successfully capture the extreme values dependence phenomenon,
which is generally perceived in financial data return.
Markowitz original approach provides a fundamental basis for portfolio selection in a single
period model of investment. In this model of investment, at the beginning of a selected
period, the investor make once and for all allocation decisions which remain unchanged until
the end of the period, disregarding the market behavior during that locked period. This is
why, single-period models lead to what is named myopic policies.
Because markets are risky, as changes arise in financial markets and create imbalances in the
portfolio allocations, investors need to respond to these changes by rebalancing/realigning
their portfolios. This leads to what is called multi-period models. The problem of multi-
period portfolio allocation have been studied by Hakansson [18], Sahalia and W. Brandt
[35] and Calafiore [8] and many others. Boudt et al. in [5] make use of the differential
evolution (DE) algorithm in a single and multi-period settings to numerically solve portfolio
optimization problems under complex constraints and objectives. DE was introduced by
Storn and Price in [37] and they found that DE was more efficient than genetic algorithms
and simulated annealing. It has become a powerful and flexible tool to solve optimization
problems arising in finance. Similar to classic genetic algorithms, DE algorithm is an evolu-
tionary technique which can be used to solve global optimization problems. This algorithm
has shown remarkable performance on continuous numerical problems [32] and optimizing
portfolios under non-convex settings, see [2, 21, 22, 24, 38].
In the literature, GARCH models have been applied to analyze and understand the dynam-
ics of cryptocurrencies price movement. For example, Dyhrberg [11] used the asymmetric
GARCH methodology to explore the Bitcoin hedging capabilities.
In this paper, we investigate the performance of the GARCH-Differential Evolution (GARCH-
DE) and GARCH-Differential Evolution t-copula (GARCH-DE-t-copula) models; and com-
pare them to the existing DE model in single and multi-period optimization. These models
are performed on a portfolio consisting of 5 cryptocurrencies, namely, Bitcoin , Ripple ,
Litecoin, Dash and Dogecoin representing at the time of this writing, nearly 50% market
share of the cryptocurrency market.
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Our optimisation problem is subject to the minimisation of the Conditional Value at Risk
(CVaR) introduced by Rockafellar and Uryasev [33] as a coherent risk measure.
Contrasting our two approaches in Multi-period portfolio optimization under the above-
mentioned risk measure, we are aiming in this way in identifying under which methodology,
cryptocurrency portfolio may be more profitable or risky than the other. Though innovative,
our approach is closely related to that of Bekiros et al. in [3] who estimated the multivariate
dependence using pair vine copula to optimise a portfolio consisting of the Australian mining
stocks, subject to the minimisation of five risk measures including CVaR. Since the extreme
value distribution (EVT) is able to accurately model tails risk, we used in this study, the
Generalized Pareto Distribution (GPD) based t-copula (GARCH-DE-t-copula) instead of
Pair Vine Copula-GARCH as in [3], to explicitly capture the tail events.
The rest of the paper is organised as follows: Section 2 presents introduces the new opti-
mization models. Section 3 discusses the empirical findings and the last section 4 concludes
the work.

2. Optimization periods mathematical formalism

In this section, we review the mathematical formalism of portfolio optimization methods
used in this current study, i.e., single period optimization, multi-period optimization, DE,
GARCH-DE, GJR-GARCH, GARCH-DE-t-copula.

2.1. Single period optimization

In portfolio optimisation process, the main challenge resides in designing a proper model
that empirically best fits the data and at the same time feasible and robust enough to gen-
erate simulation-based inference for risk evaluation.
The basic Mean-Variance optimization can be formulated as follows (see Markowitz [26]):

min
ω

n∑
i=1

n∑
k=1

σikωiωk

subject to
n∑
i=1

ωi = 1

n∑
i=1

E[ri]ωi = µp

ωi ≥ 0, i = 1, 2, · · · , n.

(2.1)

where ωi are portfolio weights, ri is the rate of return of asset i and E[ri] its expectation,
σik = cov(ri, rk) is the covariance between ri and rk, µp is the portfolio expected return.
Among various risk measures, Value-at-Risk (VaR) is a popular measure of risk that rep-
resents the percentile of the loss distribution with a specified confidence level. Let ω ∈ Rn

denote a portfolio vector indication a proportion of investment of a given budget in each of
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the n financial assets. Let α ∈ (0, 1) and f(ω, r) denoting respectively a confidence level and a
loss function for the portfolio ω and the return vector r ∈ Rn. Then the VaR function, ξ(ω, α)
results to the smallest number satisfying ψ(ω, ξ(ω, α))) = α, where ψ(ω, ξ) = Pr[f(ω, r) ≤ ξ]
is the probability that the loss f(ω, r) does not exceed the threshold value ξ. However, VaR
does not satisfy the sub-additivity axiom. Furthermore, VaR is nondifferentiable as well as
non-convex when using scenarios analysis. Hence, it is difficult to find a global minimum
using conventional optimization techniques.

Alternatively, Conditional VaR (CVaR), introduced by Rockafellar and Uryasev [33] is a
coherent risk measure with more interesting features such as sub-additivity and convexity.
Moreover, it is more appropriate to the loss function of the tail distribution. CVaR is given
by

ψα(ω) = (1− α)−1
∫
f(ω,r)>ξ(ω,α)

f(ω, r)p(r) dr (2.2)

To avoid complications resulting from the implicitly defined function ξ(ω, α), Rockafellar
and Uryasev [33] provided an alternative function given by

Fα(ω, ξ) = ξ + (1− α)−1
∫
f(ω,r)>ξ

[f(ω, r)− ξ]p(r) dr (2.3)

for which they show the minimum of CVaR can be found by minimizing Fα(ω, ξ) with respect
to (ω, ξ).
Given returns data rj for j = 1, · · · , n, Fα(ω, ξ) can be approximated by

F̃α(ω, ξ) = ξ + [(1− α)n]−1
n∑
j=1

max{fj(ω)− ξ, 0} (2.4)

where fj(ω) = f(ω, rj).

In this study, our three models are designed to solve the following CVaR-optimization prob-
lem

min
ω
ξ + [(1− α)n]−1

n∑
i=1

max{fi(ω)− ξ, 0}

subject to
∑n

i=1 ωi = 1∑n
i=1E[ri]ωi = µp

ωi ≥ 0, i = 1, · · · , n.

(2.5)

We intend to find the portfolio that minimizes CVaR under 90% confidence level subject
to the following weight constraints: Weights must sum to 1 (

∑n
i ωi = 1) and no short-selling

is allowed (ωi ≥ 0).
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2.2. Multi-period optimization

In multi-period portfolio optimization, the portfolio optimization problem is to choose a
sequence of transactions/trades to perform over a chosen set of periods. One of the advan-
tage of multi-period portfolio optimization is its ability to naturally handle multiple return
estimates on different time scales (see for example, [16, 29]).

Consider a universe of n assets {a1, a2, · · · , an} and an investment planning horizon that
extends T periods of equal duration δ (δ = 1 month or δ = 1 quarter). Let si(t) be the dollar
value of the total wealth portion invested in asset ai at time t. Let s(t) = [s1(t) · · · sn(t)]T ,
then the total wealth invested at time t is given by

v(t) =
n∑
i=1

si(t) = 1T s(t) (2.6)

where 1 denotes a n× 1 column matrix of ones.
The investor has the opportunity at the end of each period to adjust the portfolio com-
position. Let u(t) = [u1(t) · · · un(t)]T be the vector of adjustments. A value of ui(t) > 0
means that the value of asset ai is increased by ui(t) dollars (by buying more of the asset ai),
whereas ui(t) < 0 means that the value of asset ai is decreased by ui(t) dollars (by selling
part or all of the asset ai).
Let s+(t) be the portfolio composition after the adjustment u(t) is made at time t.

s+(t) = s(t) + u(t) (2.7)

Without loss of generality, we assume in this study, a self-financing portfolio, i.e.,
∑n

i=1 ui(t) =
0, for all t. The weight corresponding to asset ai at time t is ωi(t) = si(t)/v(t) and
ω(t) = [ω1(t) · · · ωn(t)]T is the vector of weights with ωi(t) ≥ 0 and

∑n
i=1 ωi(t) = 1.

Let pi(t) be the price of the asset ai at time t. Let ri(t) be the log-return given by

ri(t) = ln[
pi(t+ 1)

pi(t)
], then r(t) = [r1(t) · · · rn(t)]T will denote the return vector.

Portfolio dynamics

Let ω(0) be the initial portfolio allocation at time t = 0. If at time t = 0, transactions
are conducted on the market, then the portfolio will be adjusted, either by increasing or
decreasing the amount invested in each asset. So, the rebalanced portfolio will be

ω+(0) = ω(0) + ũ(0) (2.8)

where ũi(t) =
ui(t)

v(t)
and ũ(t) = [ũ1(t) · · · ũn(t)]T .

Assume that the portfolio remains unchanged for the first period of time δ. The portfolio
allocation at the end of the first period is ω(1) = R(1)ω+(0) = R(1)ω(0) +R(1)ũ(0), where
R(t) = diag(r(t)) is a diagonal matrix of asset returns over the interval period [t− 1, t], for
t ≥ 1. Iteratively, the composition of the portfolio at the end of period t+ 1 is:

ω(t+ 1) = R(t+ 1)ω(t) +R(t+ 1)ũ(t), t = 0, 1, · · · , T − 1 (2.9)
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Since the asset returns ri(t) are random, the iterative equations in 2.9 defines a stochastic
process ω(t), t = 1, · · · , T

ω(t) = ψ(1, t)ω(0) + [ψ(1, t)ψ(2, t) · · · ψ(t− 1, t)ψ(t, t)][ũ(0) ũ(1) · · · ũ(t− 2) ũ(t− 1)]T

(2.10)
where ψ(k, t), k ≤ t, is the compounded return matrix from the start of period k to the end
of period t:
ψ(k, t) = R(t)R(t− 1) · · ·R(k), ψ(t, t) = R(t), so that
ψ(k, t+ 1) = R(t+ 1)ψ(k, t). From 2.10, we have the weights constraint

ψT (1, t)ω(0) +
t∑

j=1

ψT (j, t)ũ(j − 1) = 1, (2.11)

where ψT (j, t) = 1Tψ(j, t).

The multi-period optimization problem is formulated as follows:

min
ũ1(t), ··· , ũn(t)

T∑
t=1

λ(t)(ξ(ω(t), α) + [(1− α)n]−1
n∑
i=1

max{fi(ω(t))− ξ(ω(t), α), 0})

subject to
ω(t) = ψ(1, t)ω(0) + [ψ(1, t)ψ(2, t) · · · ψ(t− 1, t)ψ(t, t)][ũ(0) ũ(1) · · · ũ(t− 2) ũ(t− 1)]T ;

ψT (1, t)ω(0) +
∑t

j=1 ψ
T (j, t)ũ(j − 1) = 1;

λ(t) ≥ 0;∑n
i=1E[ri(t)]ωi(t) ≥ 0

(2.12)

where ri(t) are the returns or the standardized residuals filtered from GARCH model.

2.3. Optimization methods mathematical formalism

2.3.1. Differential Evolution (DE)

Differential Evolution (DE), introduced by Storn and Price [37], is a stochastic, population-
based evolutionary algorithm for solving nonlinear optimization problems. This algorithm
uses biology-inspired operations of initialization, mutation, recombination, and selec-
tion on a population to minimize an objective function through successive generations (see
[20]). Similar to other evolutionary algorithms, to solve optimization problems, DE uses
alteration and selection operators to evolve a population of candidate solutions.
Let N denote the population size. To create the initial generation, the optimal guess for N
is made, either by using values input by the user or random values selected between lower
and upper bounds (choosing by the user).
Consider the optimization problem 2.5 and let
ξ + [(1− α)n]−1

∑n
i=1max{fi(ω)− ξ, 0} = h(ω). where ω = {ω1, ω2, · · · , ωn}.

Given the population
ωgki = {ωgk1, ω

g
k2, · · · , ω

g
kn
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where g is the generation and k = 1, 2, · · · , N . The process is achieved through the following
stages:

1) Initial population
The initial population is randomly generated as

ωki = ωLki + rand()(ωUki − ωLki)

where ωLi and ωUi represents the lower and upper bounds of ωi respectively and i =
1, 2, · · · , n.

2) Mutation
The differential mutation is accomplished as follows: A random selection of three members
of the population ωgr1k, ω

g
r2k

and ωgr3k to create an initial mutant vector parameter ug+1
k ,

called donor vector, which is generated as

ug+1
k = ωgr1k + F (ωgr2k − ω

g
r3k

)

where F is the scale vector and k = 1, 2, · · · , N .

3) Recombination
Let ωgki denotes the target vector.
From the target vector and the donor vector, a trial vector vg+1

ki is selected as follows

vg+1
ki =

{
ug+1
ki , if rand() ≤ Cp or i = Irand i = 1, 2, · · · , n;

ωgki, if rand() > Cp and i 6= Irand k = 1, 2, · · · , N

where Irand is a random integer in [1, n] and Cp the recombination probability.

4) Selection
At this stage, the target vector is compared with the trial vector and the one with the
smallest function value is the candidate for the next generation

ωg+1
ki =

{
vg+1
ki , if h(vg+1

ki ) < h(ωgki);

ωgki, Otherwise.

where k = 1, 2, · · · , N .

2.3.2. GARCH Differential Evolution (GARCH-DE)

Jeffrey et al. [9] fitted twelve GARCH models to each of the seven most popular cryp-
tocurrencies and realized that the IGARCH (Integrated GARCH) of Engle and Bollerslev
[13], and the GJR-GARCH of Glosten, Jagannathan and Runkle [17] models provide the best
fits, in terms of modelling of the volatility in the largest and most popular cryptocurrencies.
In this study, we use the GJR-GARCH (1,1).

The implementation of the GARCH-DE is as follows.
Let rt be the log-return at time t.

a) Fit the mean model ARMA(1,1) and the variance model GJR-GARCH(1,1) of the log-
returns as follows
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i) The mean model

rt = µ+ θ1(rt−1 − µ) + θ2εt−1 + εt (2.13)

where εt = σtht, ht ∼ N(0, 1).
ii) The variance model

σ2
t = ω + α1h

2
t−1 + γ1It−1h

2
t−1 + β1σ

2
t−1 (2.14)

Alberg, Shalit and Yosef [? ] showed that the GARCH models with fat-tail dis-
tributions are relatively better suited for analyzing returns on stocks. So, student
t-distribution have been chosen for our analysis.

b) From the predicted log-returns r̂t = µ+ θ1(rt−1 − µ), obtain the residuals

Dt = rt − r̂t (2.15)

c) Solve the following optimization problem using DE,

min
ω
ξ + [(1− α)n]−1

n∑
i=1

max{fi(ω)− ξ, 0}

subject to
∑n

i=1 ωi = 1∑n
i=1E[di]ωi ≥ 0

ωi ≥ 0, i = 1, · · · , n.

(2.16)

where α = 0.1, fi(ω) = f(ω, di) with di is the standardized residuals.

2.3.3. GARCH Differential Evolution t-copula (GARCH-DE-t-copula)

Modeling statistical dependence using linear correlation is deeply embedded in financial
risk management practice in such a way that many practitioners are not aware of any other
alternatives. Its attractiveness are its simplicity and the fact that, in terms of dependence in
an elliptical world, the correlations provide us with all information we need to know. But, it
is just one measure of dependence among others. It does have some limitations. For example,
it is not invariant to transformations of variables (e.g., the correlation between two random
variables X and Y is not generally the same as the one between ln(X) and ln(Y )). Moreover,
correlation is not defined in some circumstances, especially when the variance of one of the
variables is not finite or when the two variables are not cointegrated. In other circumstances,
especially in the tails, it tells us very little about the dependence. So, linear correlation will
often appear to be limited or even of no use in non-elliptical situations. Copulas provide a
better way to model dependence.
Statistically, given a collection of marginal distributions, copula is a function that joins these
marginals to form the multivariate distribution that captures how they all move together.
Conversely, copula is able to take a multivariate distribution and separate its dependence
structure from the marginal distribution functions.
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t-copula theory
The t-copula (see e.g. [12, 14]) is the copula type of the multivariate t-distribution use in
representing the dependence structure. Much attention has been given to t-copula, especially
in modelling financial time series and has be shown that its empirical fit is generally superior
to that of Gaussian copula, the dependence structure of the multivariate normal distribution
(see e.g. [27, 4]). This is due to the ability of the t-copula to better capture the dependency
of fat tails displayed by financial data.

Let Y = (Y1, · · · , Yn) be a n-dimensional random vector. The vector Y is said to follow
a multivariate t distribution (non-singular), denoted Y ∼ tn(d, µ,Σ), if its density has the
form

f(y) =
Γ(d+n

2
)

Γ(d
2

√
(πd)n|Σ|)

(
1 +

(y− µ)′Σ−1(y− µ)

d

)− d+n
2

(2.17)

where d is the degrees of freedom, µ is the mean vector and Σ) is a positive-definite disper-
sion matrix. It is to note here that in these parameterizations

cov(Y) =
d

d− 2
Σ.

Given that marginal distributions of financial return data are generally not normally dis-
tributed, one can use the Sklar’s Theorem [36] to associate these distributions with a cop-
ula. Recent developments emerged several type of copulas from two families: Elliptical and
Archimedean copula. In our study, we use the functional forms of Student t-copula (i.e.,
t-copula) which derives from multivariate elliptical distributions. It is to be noted that the
copula is invariant under a standardization of the marginal distributions. As such, the copula
of a t-distribution tn(d, µ,Σ) is the same as that of a tn(d, 0, P ) distribution, where P is the
correlation matrix implied by the scatter matrix Σ. The unique t-copula is thus given by

Ct
d,P (u) =

∫ t−1
d (u1)

−∞
· · ·
∫ t−1

d (un)

−∞

Γ
(
d+n
2

)
Γ
(
d
2

)√
(πd)n|P |

(
1 +

x′P−1x

d

) d+n
2

dx, (4)

where t−1d denotes the quantile function of a standard univariate td distribution. In the bi-
variate case, the notation Ct

d,ρ is used, where ρ is the off-diagonal entry of P . In contrast,
the unique copula of a multivariate Gaussian distribution may be thought as the limit of
t-copula as d tends to infinity. It is denoted by CGa

P (see, [12]).

To simulate the t-copula, a multivariate t-distributed random vector X ∼ tn(d, 0, P ) is
generated using the representation X

n
= µ +

√
WZ, (where Z ∼ Nn(0,Σ) and W is in-

dependent of Z and has an inverse gamma distribution W ∼ Ig(
d
2
, d
2
)), and then return a

vector U = (td(X1), · · · , td(Xn))′, where td denotes the distribution function of a standard
univariate t. The density of the t-copula can be obtained from (3) and has the following
form

ctd,P (u) =
fd,P (t−1d (u1), · · · , t−1d (un))∏n

i=1 fd(t
−1
d (ui))

, u ∈ (0, 1)n, (5)

where fd,P is the joint density function of a tn(d, 0, P )-distributed random vector and fd
represents the density function of the univariate standard t-distribution with d degrees of
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Table 1: Multivariate Diagnostic tests

Normality Serial Correlation Arch effect
Skewness test Kurtosis test JB-Test Portmanteau Test Arch test

Chi-squared 2410.5∗∗∗ 103850∗∗∗ 106260∗∗∗ 303.89∗∗∗ 4241.3∗∗∗

p-value 2.2e−16 2.2e−16 2.2e−16 2.969e−06 2.2e−16

freedom.
The GARCH Differential Evolution t-copula (GARCH-DE-t-copula) method is implemented
as follows:

1) Obtain the standardized residuals di from GJR-GARCH.

2) Simulate using t-copula a sample data ci from the standardized residuals di
3) Solve the following optimization problem using DE

min
ω
ξ + [(1− α)n]−1

n∑
i=1

max{fi(ω)− ξ, 0}

subject to
∑n

i=1 ωi = 1∑n
i=1E[ci]ωi ≥ 0

ωi ≥ 0, i = 1, · · · , n.

(2.18)

where α = 0.1 and fi(ω) = f(ω, ci).

3. Results and Analysis

3.1. Data and Preliminary analysis

The data consists of the daily returns (100 times the difference in logarithms of Crypt/USD
exchange rates) of 5 cryptocurrencies representing at the time of this writing close to 50%
market share of the cryptocurrency market and was traded as early as 2014 with at least $300
millions market capitalization. The data spanning the period 01 March 2014 to 28 Febru-
ary 2018 comprises the following cryptocurrency assets: Bitcoin (BTC) , Ripple (XRP) ,
Litecoin (LTC), Dash (DASH) and Dogecoin (DOGE). These assets exhibit evidence of high
volatility clustering (see Figure 1) and the assumptions of serial correlation, non-normality,
and arch effect could not be rejected across the returns series (Table 1). The skewness and
kurtosis tests results in Table 1 and values in Table 2 point to the leptokurtic skewed type
of distribution for these returns, suggesting that large fluctuations are more likely on the
fat tails. Dash appear to be the most riskier among the 5 cryptocurrencies and as expected
offers the highest return. Though Bitcoin is the least riskier, it offers return higher than that
of Litecoin and Dogecoin (See Figure 2). More interestingly, they all display a significantly
positive correlation. (see Table 3).

10



Table 2: Fat tails parameters

α κ ω δ ς ξ
BTC 2.909 2.986 3.068 -0.009 -0.388 6.339
XRP 2.221 2.056 1.914 0.036 2.452 37.633
LTC 2.446 2.358 2.276 0.015 0.645 13.875

DASH 3.072 2.742 2.476 0.039 1.454 12.755
DOGE 2.801 2.646 2.507 0.021 0.749 10.214

Note: ς is the skewness parameter, ξ is the kurtosis parameter, α is the left tail parameter,
ω is the right tail parameter, κ is the harmonic mean of α and ω and describes a global tail
parameter and δ is the distortion parameter between the right tail parameter ω and the
left tail parameter α, satisfying the inequality −κ < d < κ. A negative value δ < 0 (resp.
positive value δ > 0) implies α < ω (resp. α > ω) and indicates that the left tail (resp. the
right tail) is heavier than the right tail (resp. the left tail).

3.2. Empirical findings

To account for the observed characteristics of the returns series in modelling their true
dependence, we consider a multivariate t-distribution.

3.2.1. Dependence estimation

The dependence properties are of great importance for portfolio selection and/or risk
evaluation. Though the Pearsons correlation coefficient4 could provide a substantial statis-
tical power even for distributions with moderate skewness or excess kurtosis, its sensitivity
to extreme values makes it a less powerful statistical test for distributions with extreme
skewness or excess of kurtosis (where the data with extreme values are more likely). Thus,
our choice of a Student t-copula with extreme value distribution in assessing the dependence
structure of the sample returns. We estimates the three main measures of dependence, Pear-
son, Spearman and Kendall5. The obtained coefficients are displayed in Table3.
Following Table36, unlike Dash, which exhibit a positive weak relationship with Bitcoin and
Ripple according to Pearson’s measure, there is a moderate positive relationship accross the
studied cryptocurrencies. This suggests that the prices of these cryptocurrencies move in
the same direction. The dependence structure between Dogecoin and Ripple seems to be the
strongest across the three measures.

4Pearson’s correlation coefficients provide the degree of linear relationship between two variables.
5It is a non-parametric test that measures the strength of dependence between two variables. It is given

by: τ =
nc − nd

1
2n(n− 1)

, where nc is the number of concordant (Ordered in the same way) pairs and nd is the

number of discordant (Ordered differently) pairs.
6Although, there are no absolute standards, many analysts view coefficients, in absolute values, of less

that 0.25 as describing weak relationships; coefficients between 0.25 and 0.50 as moderate relationships and
those greater that 0.50 as strong relationships
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Table 3: Correlation coefficients
Pearson Spearman Kendall

BTC vs XRP 0.42 0.41 0.27
BTC vs LTC 0.43 0.42 0.28

BTC vs DASH 0.17 0.42 0.29
BTC vs DOGE 0.41 0.43 0.29
XRP vs LTC 0.34 0.40 0.26

XRP vs DASH 0.17 0.42 0.28
XRP vs DOGE 0.50 0.41 0.25
LTC vs DASH 0.34 0.42 0.27
LTC vs DOGE 0.41 0.43 0.31

DASH vs DOGE 0.31 0.42 0.28

3.3. Portfolio Optimization

Let’s recall here that in both our methods, the heuristic search algorithm, Differential
Evolution (DE) is used. The efficiency and reliability of different heuristic optimization
techniques in portfolio choice problems have been explored in [24, 25]. In the competition of
simulated annealing, threshold accepting and stochastic differential equations, they find DE
to be well-suited for non-convex portfolio optimization. It has shown efficient convergence to
one (presumably global) optimum. These are the raison-d’être of our choice of incorporating
DE into our portfolio optimization problems.

3.3.1. Single period optimization

We first implement the single period optimization with GARCH-DE and GARCH-DE-t-
copula. The weights obtained for the two methods are displayed in Table4. We observe that
GARCH-DE-t-copula seems to allow a well diversified portfolio through a well controlled
risk as compared to GARCH-DE. This is not surprising, given the ability of the Generalized
Pareto Distribution to model extreme events (in the heavy tails) and the t-copula which can
better capture the complex dependence structure between the analysed variables. Moreover,
the GARCH-DE-t-copula outperforms the GARCH-DE in terms of returns. it is important
to note here that, while GARCH-DE allocates the largest weight to DASH, it appears in
GARCH-DE-t-copula with the smallest weight.

3.3.2. Multi-period optimization

In our multi-period optimization, the 12 first months are used as training period after
which the portfolio is re-balanced monthly. There are in total 37 rebalancing periods, start-
ing on the 28 February 2015 and ending 27 February 2018.
The multi-period optimization using GARCH-DE-t-copula outperforms both the one using
DE and GARCH-DE as illustrated in Figure3 and Table3.3.2. Across the entire invest-
ment period, the returns given by GARCH-DE-t-copula are higher than that of DE and
GARCH-DE. Let’s also stretch out that, with the exception of 5 periods, the returns in the
multi-period GARCH-DE-t-copula are all greater than that in single period and nearly its
double in some periods. So, in portfolio optimization, the power of the DE algorithm is

14



Table 4: Optimal weights and Target return for single period optimization of DE, GARCH-DE and GARCH-
DE-t-copula models.

DE GARCH-DE GARCH-DE-t-copula
Bitcoin 0.494 0.000 0.150
Ripple 0.014 0.350 0.210

Optimal Weights Litecoin 0.480 0.000 0.224
Dash 0.008 0.638 0.090
Dogecoin 0.004 0.012 0.326

Target Return Return 0.418 0.5949 1.004
Risk Measure CVaR 1 1 0.4488

potential increased by combining it with t-copula.

Through our analysis, among our 5 studied crypto assets, it appears that the weights assigned
to Bitcoin, the leading cryptocurrency, although the lowest in our portfolio remaind relatively
constant across all the rebalancing periods. So, long term investor should consider including
Bitcoin in their portfolio. Weights allocation reveal that DASH and DOGE move in opposite
direction and share the highest weights in our portfolio. Cryptocurrencies investors should
consider have them both in their portfolio.

15
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4. Conclusion

Cryptocurrencies are new type of assets on the financial market with trade volumes
reaching billions of dollars a day and market capitalizations reaching hundreds of billions
of dollars. Highly volatile, they present investors with great opportunity of high returns.
Though cryptocurrencies are still in their infancy, recent years have seen some savvy indi-
viduals making significant amount of money by speculating on cryptocurrencies. It is then
important to develop portfolio optimization methods to assist cryptocurrencies investors in
controlling their exposure risk while maximizing their returns. This study has confirmed the
power of regular rebalancing of portfolio assets to adapt to market changes through GARCH
Differential Evolution t-copula method (GARCH-DE-t-copula). Due to the high volatility
that characterizes cryptocurrencies, the modeling of the tail dependence through t-copula
and extreme value distribution (GPD) has shown significant positive impact on the returns
of the portfolio across all multi-period optimization periods and also in the control of risk.
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