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Abstract—The effect of path-length differences on multi-
loop retrodirective cross-eye jammers is evaluated. It is
shown that such jammers may act as beacons, and the
conditions under which this occurs are investigated for
two-loop jammers. The sensitivity of the two-loop cross-
eye gain to path-length differences is also studied and
is found to be small for small path-length differences,
but to increase rapidly. The effect of the two-loop cross-
eye jammer parameters on path-length effects is also
considered.
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I. INTRODUCTION

Cross-eye jamming is an electronic attack (EA) (also
known as electronic countermeasures (ECM)) technique
which seeks to induce an angular error in a threat radar
[1]–[10]. This goal is achieved by artificially recreating
the worst angular error which can be caused by glint
with the result that cross-eye jamming is occasionally re-
ferred to as artificial glint. Glint is a naturally-occurring
phenomenon which affects all radars and can lead to
extremely large angular errors [11], [12]. As a result of
being based on a naturally-occurring phenomenon, cross-
eye jamming has a number of benefits over other EA
techniques which seek to induce angular errors in radars
[13].

Unfortunately, there are a number of challenges as-
sociated with the implementation of cross-eye jammers.
The magnitude of these challenges is demonstrated by
the fact that the first cross-eye jammer systems suitable
for operational use on aircraft and ships were only
publicly disclosed in 2000 [3], while patents describing
cross-eye jamming were submitted in the late 1950s [1],
[2]. These challenges are mainly related to the extremely
high jammer-to-signal ratio (JSR) which results from the
signal cancellation inherent in cross-eye jamming [14],
[15] and the extremely fine tolerances required to achieve
large angular errors [16].

The simultaneous use of multiple cross-eye jamming
systems operating together (multi-loop cross-eye jam-
ming) has been proposed as a means to overcome
these challenges [17]–[22]. The JSR required from each
jammer system is reduced by the simultaneous use of
more than one jammer loop. Furthermore, the additional
degrees of freedom offered by multiple cross-eye jammer
loops means that tolerance requirements can be loosened,
and larger angular errors and/or increased angular cov-
erage can be achieved.

However, it has recently been demonstrated that the
performance of multi-loop cross-eye jammers can be
compromised by differences between the path lengths of
the signals through each jammer loop [23]. Worryingly,
it was shown that the angular error induced in the threat
radar may be negligible, thereby providing a powerful
radar return at the position of the jammer, and in this
way, actually assisting the radar in tracking the platform
on which the jammer is mounted (beacon operation). It
would be preferable not to use a cross-eye jammer if
beacon operation is possible because the jammer could
actually increase the threat posed by the radar.

This difficulty does not arise in single-loop cross-eye
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jammers as a result of the retrodirective implementation.
The retrodirective implementation ensures that the path
lengths of the two signals through the jammer are
identical by retransmitting the signal received by each
jammer antenna from the other antenna. So important is
the retrodirective implementation that at least one author
restricts the term cross-eye jamming to systems which
use the retrodirective implementation [7].

The results presented previously use Monte-Carlo sim-
ulations to demonstrate both the existence and magnitude
of the problems which can be caused by path-length dif-
ferences [23]. However, this approach does not provide
insight into the underlying causes of these problems or
how to address them.

To overcome this limitation, a rigorous analysis of
path-length effects in multi-loop cross-eye jamming is
provided in Section II. The large number of parameters
complicates the analysis to the point that obtaining
insight into the underlying effects becomes impossi-
ble, so only the two-loop case is studied in detail.
The conditions which can lead to beacon operation are
considered in Section III as a cross-eye jammer which
operates as a beacon is more dangerous than not having
a jammer. The sensitivity of the angular error to path-
length differences is then investigated in Section IV
to determine how the effect of path-length differences
can be minimised. System performance is considered in
Section V to illustrate how the presented analysis can
be applied to cross-eye jammer design, and significant
improvements over previous results are demonstrated.
Finally, the main results are summarised in Section VI.

II. ANALYSIS

The mathematical analysis underpinning the evalu-
ation of the effect of path-length differences in Sec-
tions III, IV and V is provided below. Section II-A briefly
summarises the relevant previously-published material,
and Section II-B extends this analysis to consider the
effect of path-length differences on a two-loop cross-eye
jammer in detail.

While the analysis below only explicitly considers
phase-comparison monopulse radar, it has been shown
that the results are applicable to any monopulse radar
[10], [24].

A. Multi-Loop Retrodirective Cross-Eye Jamming

A summary of the analysis of multi-loop cross-eye
jamming in [22] is provided below.

Fig. 1 shows the geometry of an engagement involving
a monopulse threat radar on the left and a two-loop cross-
eye jammer on the right. The conceptual operation of the
jammer loops is shown in Fig. 2.

 

Fig. 1. The geometry of a multi-loop cross-eye jamming scenario
[22], [23]. The phase centres of the antenna elements comprising the
phase-comparison monopulse radar, and the inner and outer jammer
loops are represented by circles, squares, and crosses respectively.

 

Fig. 2. The implementation of two retrodirective cross-eye jammer
loops showing the meanings of an, φn, An, and Φn.

The parameters listed below will be used throughout
this work [22].
• β is the free-space phase constant given by

β =
2π

λ
(1)

where λ is the wavelength.
• r is the range from the radar to the centre of the

jammer, as shown in Fig. 1.
• dr is the separation of the radar antenna-element

phase centres, as shown in Fig. 1.
• θr is the angle from the radar’s boresight direction

to the centre of the jammer, as shown in Fig. 1.
• dcn is the antenna spacing for jammer loop n (the

jammer baseline), as shown in Fig. 1.
• θcn is the rotation of the nth jammer loop’s broad-

side direction from the radar, as shown in Fig. 1.
• θen is half the angular separation of the nth jammer

loop’s antennas from the radar’s perspective, as
shown in Fig. 1, and is given by

θen ≈
dcn
2r

cos (θcn) , (2)

which is very accurate as long as r � dcn [10].
• an and φn are the jammer-channel parameters of

jammer loop n, as shown in Fig. 2.
• An and Φn are the jammer-loop parameters of

jammer loop n as a whole, as shown in Fig. 2.
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The antenna parameters can summarised by [22]

Pan (θr, θcn, θen)

= Pr (θr − θen)Pr (θr + θen)×
Pcn (θcn − θen)Pcn (θcn + θen) (3)

≈ [Pr (θr)Pcn (θcn)]2 (4)

where Pr (θ) is the pattern of the antenna elements
comprising the phase-comparison monopulse radar an-
tenna, and Pcn (θ) is the pattern of the antennas of the
nth jammer loop. The approximation in (4) is accurate
when the radar antenna parameters are predominantly
determined by the spacing of the antenna elements (dr)
giving Pr (θr − θen) ≈ Pr (θr) ≈ Pr (θr + θen), and
when the jammer antennas either have broad beamwidths
or are phased arrays which steer their beams towards
the threat radar giving Pcn (θcn − θen) ≈ Pcn (θcn) ≈
Pcn (θcn + θen). Equation 4 can be further simplified to

Pan (θr, θcn, θen) ≈ [Pr (θr)Pc (θc)]
2 (5)

by capturing remaining differences between the jammer
antenna parameters in the jammer-loop parameters (An
and Φn) to allow Pcn (θcn) = Pc (θc). The antenna factor
in (5) is identical for all jammer loops, so the effects of
the radar and jammer antenna element patterns cancel
out and do not affect the result.

The following parameters are used to simplify the
notation [9], [10]

k ≈ βdr
2

sin (θr) (6)

kcn ≈ β
dr
2

cos (θr) θen (7)

where the approximations are extremely accurate for
practical cross-eye jamming scenarios where the range
is far greater than the jammer baseline (r � dcn) [10].

The angular error of a monopulse radar is computed
from an intermediate parameter known as the monopulse
ratio, which is computed from the ratio of the difference-
channel return to the sum-channel return [12]. For a
retrodirective cross-eye jammer, the monopulse ratio is
given by [9], [22]

MM ≈
sin (2k) + sin (2kcN )GCN

cos (2k) + cos (2kcN )
(8)

≈ tan (k) +
kcN

cos2 (k)
GCN (9)

where kcN is the value of kcn for loop N in the multi-
loop case, GCN is the cross-eye gain of N loops, and
the accurate approximations [25]

cos (2kcn) ≈ 1 (10)

sin (2kcn) ≈ 2kcn (11)

were exploited to obtain (9).
The first term of the right-hand side (RHS) of (9) is

identical to the monopulse ratio which would result from
a single point target [12]. The second term of the RHS
of (9) causes an angular error by having a nonzero value
when the radar is pointed towards the jammer because
all kcn ∝ cos (θr). Retrodirective beacons eliminate the
angular error by having a zero cross-eye gain (GCN = 0)
to provide a strong return at the centre of the jammer
[10], [26]. Cross-eye jammers seek to maximise the an-
gular error by having a large angular separation between
the jammer antennas from the radar’s perspective (θen)
because kcn ∝ θen, and ensuring that the cross-eye gain
(GCN ) is as large as possible.

The total cross-eye gain is given by [22]

GCN = Re


N∑
n=1

(
1− anejφn

)
Ane

jΦnsrn

N∑
n=1

(1 + anejφn)AnejΦn

 (12)

where N is the number of jammer loops, and the jammer
baseline ratio is given by

srn =
sin (2kcn)

sin (2kcN )
. (13)

The forms of (8), (9) and (12) have slight notational
differences to the comparable results in [22] due to the
use of the baseline ratio srn instead of the parameter
dcrn = dcn/dcN . These changes serve only to simplify
the notation and do not otherwise affect the results.
Further motivation for the changes can be seen by using
(2), (7), and (11) to rewrite (13) as

srn ≈
kcn
kcN

=
θen
θeN

=
dcn
dcN

cos (θcn)

cos (θcN )
. (14)

The jammer baseline ratio is thus based on the values
of kcn, which directly affect the error induced in the
threat radar. By comparison, dcrn ignores the jammer-
loop rotations (θcn) and only considers the jammer-loop
baselines (dcn), thereby removing the direct link to the
induced angular error.

When there is only one jammer loop (N = 1), (12)
reduces to the well-known cross-eye gain for single-loop
cross-eye jamming [4]–[10]

GC = Re

{
1− aejφ

1 + aejφ

}
(15)

=
1− a2

1 + a2 + 2a cos (φ)
. (16)

The total cross-eye gain in (12) can be directly compared
to the conventional single-loop cross-eye gain in (16) as
long as jammer loop N has the largest antenna spacing
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from the perspective of the threat radar (θeN ≥ θen ∀ n
so srN = 1 and srn ≤ 1 ∀ n). While this constraint may
not be strictly necessary, it does ensure that the overall
baselines are the same for the two cases to allow fair
comparisons to be made.

It can be shown that the single-loop cross-eye gain
(GC) always increases as the jammer-channel phase dif-
ference (φ) approaches 180◦ because this simultaneously
reduces the denominators and increases the numerators
of (15) and (16), leading to a higher cross-eye gain [16].
Similar reasoning shows that improving the amplitude
matching between the two paths through a jammer loop
(a → 1) also increases the cross-eye gain. In the limit
as the jammer channels approach the ideal match, the
cross-eye gain tends to an infinite value (GC → ∞ as
a→ 1 and φ→ 180◦) [4]–[10], [16].

Comparing (12) and (15) shows that increasing the
number of jammer loops from 1 to N increases the
degrees of freedom available to control the cross-eye
gain (GC) from 2 to 5N − 3 (an, φn, An, Φn and srn
per loop with srN = 1 and one value of each of An and
Φn being a reference for the others as in (20)). These
additional degrees of freedom allow a reduction of the
sensitivity to parameter variations and a reduction of the
JSR required from each jammer loop [17]–[22].

The cross-eye gain depends on the phases of each
jammer loop (Φn) as shown in (12). These phases are
determined by the range from the radar to each of the
jammer antennas given by [23]

rjn (θcn) =

√[
r +

dcn
2

sin (θcn)

]2

+

[
dcn
2

cos (θcn)

]2

(17)

with positive and negative values of θcn corresponding
to the further and nearer jammer antennas respectively.
The total path length for each jammer loop is

rtn (θcn) = rjn (θcn) + rjn (−θcn) , (18)

so the loop phase is given by

Φn = βrtn (19)

for jammer loop n. The different values of dcn and θcn
for each jammer loop mean that the loop phases will
differ, and (12) shows that these phase differences will
affect the cross-eye gain (GCN ).

B. Cross-Eye Gain as a Function of Path-Length Phase

The effect of path-length differences on the perfor-
mance of a multi-loop retrodirective cross-eye jammer
will now be considered. The case with two jammer loops
will be considered because additional jammer loops

dramatically complicate the analysis without providing
significant additional insight. For example, while (12)
shows that beacon operation is possible as the values of
the path-length phases (Φn) change, the large number of
parameters which need to be considered tend to obscure
the underlying principles.

The two-loop cross-eye gain is given by

GC2 = Re

{(
1− a2e

jφ2
)

+
(
1− a1e

jφ1
)
AejΦsr1

(1 + a2ejφ2) + (1 + a1ejφ1)AejΦ

}
(20)

where A = A1/A2 and Φ = Φ1 − Φ2 were introduced
without loss of generality. As outlined above, jammer
loop 2 (the outer loop) has a baseline ratio of one, while
jammer loop 1 (the inner loop) has a baseline ratio of
less than one.

The effect of the phase difference between the two
jammer loops (Φ) on the cross-eye gain (GC2) can be
highlighted by rewriting (20) as

GC2 =
c1 + c2 cos (Φ) + c3 sin (Φ)

c4 + c5 cos (Φ) + c6 sin (Φ)
(21)

with the values of the cn being given by

c1 =
(
1− a2

1

)
A2sr1 +

(
1− a2

2

)
(22)

c2 =
(
1 + a1 cos (φ1)− a2 cos (φ2)−
a1a2 cos (φ1 − φ2) +

[1− a1 cos (φ1) + a2 cos (φ2)−
a1a2 cos (φ1 − φ2)] sr1

)
A (23)

c3 = −
(
a1 sin (φ1) + a2 sin (φ2)−
a1a2 sin (φ1 − φ2)−
[a1 sin (φ1) + a2 sin (φ2) +

a1a2 sin (φ1 − φ2)] sr1
)
A (24)

c4 =
[
1 + a2

1 + 2a1 cos (φ1)
]
A2+

1 + a2
2 + 2a2 cos (φ2) (25)

c5 = 2 [1 + a1 cos (φ1) + a2 cos (φ2) +

a1a2 cos (φ1 − φ2)]A (26)

c6 = −2 [a1 sin (φ1)− a2 sin (φ2) +

a1a2 sin (φ1 − φ2)]A. (27)

The form of (21) is anticipated in light of the fact that the
complex exponential e−jΦ appears in both the numerator
and denominator of GC2 in (20).

Using identical jammer loops (a1 = a2 = a and φ1 =
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φ2 = φ) simplifies the above results to

c1 =
(
1− a2

) (
1 +A2sr1

)
(28)

c2 =
(
1− a2

)
A (1 + sr1) (29)

c3 = −2a sin (φ)A (1− sr1) (30)

c4 =
[
1 + a2 + 2a cos (φ)

] (
1 +A2

)
(31)

c5 = 2
[
1 + a2 + 2a cos (φ)

]
A (32)

c6 = 0. (33)

While assuming identical parameters for the two jammer
loops does make the results less general, the consid-
erable simplifications achieved by doing so make this
assumption justifiable. Comparing (22) to (27) and (28)
to (33) shows that the greatest differences are in the
parameters c3 and c6. These parameters are the coef-
ficients of sin (Φ) in (21), so the effect of assuming
identical jammer loops will be small for similar path
lengths (Φ ≈ 0), but will increase as the path-length
difference increases.

It is worth noting that the value of the phase difference
between the jammer loops (Φ) depends on a number of
factors other than path length. So while Φ is used to
investigate the effects of path-length differences in this
work, the results apply to any case where Φ is varied.

III. POTENTIAL FOR BEACON OPERATION

Path-length differences can cause a cross-eye jammer
to act as a beacon when the cross-eye gain becomes zero
(GCN = 0) [23]. This outcome is undesirable as the goal
of any jammer is to compromise the operation of a threat
rather than to assist it.

The two-loop cross-eye gain is zero when

0 = GC2 (34)

= c1 + c2 cos (Φ) + c3 sin (Φ) (35)

= c1 +
√
c2

2 + c2
3×

[cos (θo) cos (Φ) + sin (θo) sin (Φ)] (36)

= c1 +
√
c2

2 + c2
3 cos (Φ− θo) (37)

Φ = ± arccos

(
− c1√

c2
2 + c2

3

)
+ θo (38)

= ±θb + θo (39)

where

cos (θo) =
c2√
c2

2 + c2
3

(40)

sin (θo) =
c3√
c2

2 + c2
3

. (41)

The base angle (θb) determines the range of path-length
phase differences (Φ) which avoid beacon operation,

while the offset angle (θo) determines where this range
of path-length differences is situated.

A. Base Angle

The base angle (θb) determines the magnitude of the
range of path-length phase differences (Φ) over which
beacon operation is impossible, so a value of zero would
mean that beacon operation is impossible.

From (38) and (39) the base angle is given by

θb = arccos

(
− c1√

c2
2 + c2

3

)
, (42)

and nature of the arccosine function in (38) means
beacon operation is avoided when∣∣∣∣∣ c1√

c2
2 + c2

3

∣∣∣∣∣ > 1 (43)(
c2

c1

)2

+

(
c3

c1

)2

< 1 (44)

where |c1| = c1 because 0 ≤ a ≤ 1 and A > 0 by
definition. Substituting (28) to (30) into (44) results in[

A (1 + sr1)

1 +A2sr1

]2

+

[
2a sin (φ)

1− a2
· A (1− sr1)

1 +A2sr1

]2

< 1

(45)

which expresses the result in terms of the jammer
parameters a, φ, A and sr1.

Setting A = 0 or A → ∞ makes the left-hand side
(LHS) of (45) zero, thereby satisfying the inequality.
These two conditions correspond to disabling one of the
jammer loops, so this result is anticipated as a single
jammer loop is not affected by path-length differences.
While obvious, this outcome provides a measure of
validation of the results.

Having equal jammer-loop magnitudes (A = 1) is
reasonable because similar hardware is likely to be used
for all jammer loops. However, this makes the first term
of the LHS of (45) equal to one, thereby ensuring that
the inequality is always violated. Path-length differences
can thus always cause a multi-loop retrodirective cross-
eye jammer to act as a beacon when the jammer loops
have identical magnitudes.

The first term of the LHS of (45) is also equal to one
when A = 1/sr1. The numerator of (20) shows that this
magnitude selection means that all jammer loops have
the same contribution to the difference-channel signal
received by the threat radar. So adjusting the loop gain
to compensate for loop baseline differences also means
that path-length differences will always be capable of
turning a multi-loop retrodirective cross-eye jammer into
a beacon.
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The largest value of the first term of the LHS of (45)
is obtained when

0 =
d

dA

A (1 + sr1)

1 +A2sr1
(46)

A =
1
√
sr1

(47)

where the possible negative solution was ignored because
A > 0 by definition. The largest value of the first term
of the LHS of (45) is thus given by

A (1 + sr1)

1 +A2sr1

∣∣∣∣
A= 1√

Sr1

=
1 + sr1
2
√
sr1

(48)

which is greater than one unless the baseline ratios are
equal (sr1 = 1) when its value is one. The jammer
baseline differences can thus not be used to guarantee
that beacon operation is impossible.

Taken together, the above observations mean that
1 < A < 1/sr1 (sr1 ≤ 1 by definition) makes the
first term of the LHS of (45) greater than one, thereby
ensuring that the inequality cannot be satisfied. Mag-
nitude matches outside this range are thus required to
avoid beacon operation if the second term of the LHS
of (45) is zero. Unfortunately, this range of values is
potentially important because the sum-channel returns
from the two jammer loops are equal when A = 1,
while the difference-channel returns are equal when
A = 1/sr1. Values outside this range will thus lead to
one jammer loop having an increasingly dominant effect
on the jammer, eventually defeating the point of having
multiple jammer loops.

The second term of the LHS of (45) consists of two
factors, one of which depends on the jammer-channel
parameters (a and φ), while the other depends on the
match between the jammer loops (A and sr1).

The factor 2a sin (φ) /
(
1− a2

)
will be small because

φ ≈ 180◦ in cross-eye jamming. However, the amplitude
match required for cross-eye jamming (a ≈ 1) makes
a/
(
1− a2

)
extremely large, potentially counteracting

the effect of the small sin (φ). Reducing this factor
thus requires a substantial mismatch between the two
directions through the jammer (a � 1) to satisfy the
inequality in (45). While such mismatches are desirable
to reduce the effect of tolerances [10], [16] and platform
skin return [14], [15], [25], excessive mismatches will
render a cross-eye jammer ineffective by reducing the
cross-eye gain (GCN ).

The value of the jammer-channel phase difference
(φ) which serves as the boundary beyond which beacon
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Fig. 3. The base angle as a function of the jammer-channel
parameters (a and φ) when (a) A = 0 dB and sr1 = 0.5, and (b)
A = −0.5 dB and sr1 = 0.5.

operation is avoided is obtained by rewriting (45) as

|sin (φ)| <

(
1− a2

)√
(1−A2)

(
1−A2s2

r1

)
2aA (1− sr1)

(49)

which is always positive because 0 ≤ a ≤ 1 and sr1 < 1
by definition. In agreement with above observations, the
RHS of (49) is imaginary when 1 < A < 1/sr1, showing
that beacon operation cannot be avoided under these
conditions. While similar equations for the remaining
parameters would be valuable, the results are too com-
plex to be useful, and as outlined above, no value of sr1
can guarantee that beacon operation is impossible.

Fig. 3 shows the relationship between the base angle
(θb) and the jammer-channel parameters (a and φ) for
two values of the match between the jammer loops (A
and sr1). The white region in Fig. 3 indicates where
the base angle does not exist making beacon operation
impossible.

The most significant observation from Fig. 3 is that
the minimum value of the base angle is 90◦ in all
cases. There is thus a wide range of path-length phase
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Fig. 4. The base angle as a function of the jammer-loop parameters
(A and sr1) when (a) a = −1 dB and φ = 180◦, and (b) a = −1 dB
and φ = 175◦. The dashed lines in (b) show the boundaries of the
coloured region in (a).

differences (Φ) over which the jammer will not act as a
beacon.

Fig. 3 also shows that that the base angle (θb) increases
rapidly as jammer-channel amplitudes become increas-
ingly mismatched (a → 0). This means that even small
channel-amplitude mismatches can significantly decrease
the likelihood of beacon operation.

Comparing Figs 3(a) and 3(b) shows that even a
small amplitude mismatch between the jammer loops
(A = −0.5 dB in this case) can lead to large increases in
the range of jammer-channel parameters (a and φ) over
which beacon operation is impossible.

While not shown in Fig. 3, increasing the jammer
baseline ratio (sr1) further reduces the likelihood of
beacon operation. Usefully, (12) shows that a larger
baseline ratio also leads to increased cross-eye gain
(GCN ) [22]. The small baseline ratio used in Fig. 3 is
thus likely to be conservative, with larger base angles
(θb) being encountered in practice.

Fig. 4 investigates the effect of the jammer-loop am-
plitude match (A) and the jammer baseline ratio (sr1)
on the base angle.

Fig. 4(a) only considers the first term of the LHS of
(45) as the second term is zero because φ = 180◦. As

predicted, values of A which are less than 1 or greater
than 1/sr1 avoid beacon operation. Fig. 4 confirms that
large amplitude mismatches are required to avoid beacon
operation when the inner loop has the greater amplitude
(A > 1), though the required mismatch decreases as
the baseline ratio increases (A → 1 as sr1 → 1). By
comparison, only a small mismatch is required when the
outer loop has the greater amplitude (A < 1).

The effect of adding the second term of the LHS of
(45) is shown in Fig. 4(b). It can be seen that greater
mismatches are required than in Fig. 4(a) because the
second term contributes to causing beacon operation.
The additional mismatch increases as the baseline ratio
decreases (sr1 → 0).

The additional mismatch required in Fig. 4(b) is
surprisingly small because the jammer-channel ampli-
tude mismatch is large (a � 1) while the jammer-
channel phase mismatch is small (φ ≈ 180◦). A greater
jammer amplitude mismatch (a → 0) would decrease
the additional amplitude mismatch required between the
jammer loops and cause the results to tend towards those
in Fig. 4(a), while the opposite would happen for a better
amplitude match (a→ 1). Conversely, a better jammer-
channel phase match (φ→ 180◦) is required to decrease
the additional mismatch required.

Again, the base angle obtained when beacon oper-
ation is possible is extremely large with the axes of
both graphs in Fig. 4 starting at 155◦. As before, this
observation indicates that a broad range of path-length
phase differences can be tolerated without the jammer
acting as a beacon.

By way of validation, it is noted that the results in [23]
support the observation that large path-length differences
are required to cause beacon operation.

B. Offset Angle

The centre of the range of path-length phase differ-
ences (Φ) over which beacon operation is impossible is
determined by the offset angle (θo).

From (40) and (41), the offset angle is given by

θo = arctan

(
c3

c2

)
(50)

= arctan

(
2a sin (φ)

1− a2
· 1− sr1

1 + sr1

)
. (51)

An important observation from (51) is that the off-
set angle is not affected by the jammer-loop am-
plitude match (A). As highlighted in Section III-A,
2a sin (φ) /

(
1− a2

)
will be small as long as the jammer-

channel phases are well matched (φ ≈ 180◦), and there is
a mismatch between the amplitudes of the two channels
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parameters (a and φ) for sr1 = 0.5.

(a� 1). Furthermore, 0 ≤ sr1 ≤ 1, so the second factor
above will always be less than 1. It is thus reasonable
to anticipate that the offset angle (θo) will be small for
practical cross-eye jammer systems.

Equation 51 can be rewritten as

sin (φ) =
1− a2

2a
· 1 + sr1

1− sr1
tan (θo) (52)

and

sr1 =
2a sin (φ) +

(
1− a2

)
tan (θo)

2a sin (φ)− (1− a2) tan (θo)
(53)

which allow the values of jammer-channel phase (φ) and
baseline ratio (sr1) to achieve a specified offset angle θo
to be determined.

Fig. 5 shows the effect of jammer-channel parameters
(a and φ) on the offset angle. The most important
observation from Fig. 5 is that the offset angle is small
for the realistic range of jammer-channel parameters
shown. The offset angles shown in Fig. 5 are larger than
would be encountered in practice as the baseline ratio
used is small (sr1 = 0.5) and the offset angle decreases
as the jammer baselines converge (sr1 → 1).

There is thus a large range of path-length phase differ-
ences (Φ) around zero where a multi-loop retrodirective
cross-eye jammer will not act as a beacon.

IV. CROSS-EYE GAIN SENSITIVITY

The sensitivity of the cross-eye gain (GCN ) to the
path-length phase (Φ) can be quantified by the gradient
of the total cross-eye gain to path-length phase. Small
gradients are desirable as they indicate that the cross-eye
gain will not vary significantly as the path-length phase
varies (GCN has a low sensitivity to Φ). The angular
error induced in the threat radar is determined by the

cross-eye gain (see Section II-A), so a stable cross-eye
gain implies a stable angular error.

The gradient of the two-loop cross-eye gain (GC2)
with respect to the loop phase difference (Φ) is given by
dGC2

dΦ
=
−c2 sin (Φ) + c3 cos (Φ)

c4 + c5 cos (Φ) + c6 sin (Φ)
+

c5 sin (Φ)− c6 cos (Φ)

[c4 + c5 cos (Φ) + c6 sin (Φ)]2
×

[c1 + c2 cos (Φ) + c3 sin (Φ)] (54)

= −A (1− sr1)×
2a sin (φ)

[
2A+

(
1 +A2

)
cos (Φ)

]
− · · ·

[1 + a2 + 2a cos (φ)]× · · ·
· · ·
(
1− a2

) (
1−A2

)
sin (Φ)

· · · [1 +A2 + 2A cos (Φ)]2
. (55)

The first line of (55) shows that the magnitude of
the cross-eye gain gradient decreases as the jammer
baselines converge (sr1 → 1). This result is anticipated
as equal baselines inherently mean that there is no path-
length difference. Equation (14) demonstrates that the
baseline ratio (sr1) depends on both the jammer baselines
(dcn) and the jammer rotations (θcn), so it is possible
for jammer loops with different baselines to have equal
baseline ratios (srn = 1) for certain jammer rotations.

The numerator of the second line of (55) can be
expected to be small when the jammer-channel phases
are well matched (φ ≈ 180◦). Conversely, improving
the jammer-channel amplitude matches (a → 1) will
increase the magnitude of this term. The numerator of the
last line of (55) will be small when the jammer channel
amplitudes are well matched (a ≈ 1).

The first term in the denominator of (55) is the squared
magnitude of the sum-channel return for each of the
jammer channels. A cross-eye jammer achieves a large
angular error in part by reducing the magnitude of the
sum-channel return, so this factor will be small for well-
matched jammer channels (a ≈ 1 and φ ≈ 180◦). This
factor will thus lead to large gradients unless the jammer-
channel amplitudes are mismatched (a� 1).

The last term in the denominator of (55) assumes
its largest value of (1 +A)4 when there is no path-
length difference (Φ = 0) and its smallest value of
(1−A)4 when the path-length phase difference is 180◦

(Φ = π). The large value of this term for small path-
length differences means that the cross-eye gain (GC2)
will change slowly in response to path-length differ-
ences. Similar reasoning suggests that the cross-eye gain
will be sensitive to path-length difference changes when
the path-length difference is near 180◦. Furthermore,
decreasing the amplitude of the inner loop (A → 0)
will reduce the magnitude of the variation of this factor,
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Fig. 6. The gradient of the cross-eye gain (GC2) when (a) A = 0 dB,
Φ = 0 and sr1 = 0.5, and (b) a = −1 dB, φ = 175◦ and sr1 = 0.5.

thereby leading to more consistent cross-eye gain values
across the full range of path-length differences.

The first and second lines of (55) and the variation
in the denominator of the last line of (55) all decrease
as the amplitude of the inner loop decreases (A → 0),
while the numerator of the last line of (55) will be zero
when the loop amplitudes are matched (A = 1). The
smallest cross-eye gain gradient is thus expected when
the amplitude of the inner loop is slightly smaller than
that of the outer loop (A < 1 and A ≈ 1). Significantly,
Section III shows that this condition will also ensure that
beacon operation is impossible.

Fig. 6 considers the cross-eye gain gradient as a
function of jammer-channel parameters (a and φ) in
Fig. 6(a) and the jammer-loop parameters (A and Φ)
in Fig. 6(b).

The primary conclusion of Fig. 6(a) is that the rate of
change of the cross-eye gain is small unless the jammer-
channel amplitude match is good (a ≈ 1). Additionally,
the gradient is lower when the jammer-channel phase
matching is good (φ ≈ 180◦).

Fig. 6(b) shows that the sensitivity to both the jammer-
loop parameters (A and Φ) is extremely low when the
path-length difference is small (Φ ≈ 0). Perhaps more
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Fig. 7. The total cross-eye gain for a number of two-loop jammer pa-
rameters. The default parameters for each figure are (a) a = −0.5 dB,
φ = 180◦, A = 0 dB and sr1 = 0.5, and (b) a = −1 dB, φ = 170◦,
A = −0.5 dB and sr1 = 0.5.

importantly, the gradient is extremely small over the vast
majority of the range of parameters shown. However, the
gradient does increase rapidly as the path-length phase
difference approaches ±180◦. Again, these conclusions
are supported by the results in [23].

V. TOTAL CROSS-EYE GAIN

The total cross-eye gain for a number of two-loop
jammers is evaluated below to demonstrate the value of
the preceding analyses.

Fig. 7 shows the total cross-eye gain (GC2) for a num-
ber of different jammer parameters. In each graph, the
specified default parameters are modified to investigate
specific aspects of the total cross-eye gain.

The default parameters in Fig. 7(a) represent well
matched jammer channels (a ≈ 1 and φ = 180◦) and
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jammer-loop amplitudes (A = 1). The cross-eye gain
(GC2) is thus expected to be large, though the small
baseline of the inner loop (sr1 = 0.5), will reduce the
gain somewhat.1

The overriding conclusion from Fig. 7 is that path-
length phase differences (Φ) have a significant effect on
the operation of a multi-loop cross-eye jammer. While
it is possible to remove variations due to path-length
differences for specific parameter values, the required
parameters are not always conducive to achieving high
cross-eye gain (GCN ), and even small deviations from
the required values will again introduce sensitivity to
path-length differences.

Many of the curves in Fig. 7 are not symmetrical,
while all the curves in the comparable figure in [23] are
symmetrical. This difference arises as each of the curves
in Fig. 7 is for a specific combination of jammer param-
eters, while the curves in [23] are statistical distributions.
For each curve in Fig. 7 there is a identical curve which
is flipped around Φ = 0 when the jammer-channel phase
φ = π − φo is replaced by φ = π + φo.

The gradient of the cross-eye gain in Fig. 7 is small
when the path-length phase difference is small (Φ ≈ 0),
but increases as the phase difference approaches 180◦

(Φ → ± 180◦). This behaviour was predicted in Sec-
tion IV.

The default parameters in Fig. 7(a) will result in a zero
cross-eye gradient for all values of path-length phase
difference (Φ) because the jammer-channel phase and
jammer-loop amplitudes are well matched (φ = 180◦

and A = 1). This parameter combination ensures that
(55) is always zero.

Varying the jammer-loop amplitude (A) in Fig. 7(a)
means that the gradient is no longer zero at all angles.
Increasing the amplitude of the inner loop (A > 1) will
lead to the possibility of beacon operation (GCN = 0)
for certain values of the path-length phase difference
(Φ), while decreasing the inner-loop amplitude (A < 1)
prevents beacon operation (GCN 6= 0). Even small
amplitude variations (−0.5 dB ≤ A ≤ 0.5 dB) can thus
lead to rather different results for large path-length phase
differences (Φ ≈ ±180◦). This result agrees with the
analysis in Section III-A.

Adjusting the jammer-channel phase away from the
ideal condition (φ 6= 180◦) will both reduce the cross-
eye gain (GC2) and lead to a non-zero gradient as seen
from the case where φ = 175◦ in Fig. 7(a). Again, this
result is predicted by the analysis in Section IV. This is
the only case in Fig. 7(a) where the cross-eye gain is not

1For example, the total cross-eye gain of the default multi-loop
case is 26.1, while a single-loop cross-eye jammer with the same
jammer-channel parameters (a and φ) would have a gain of 34.8.

symmetrical around Φ = 0 because it is the only case for
which the offset angle (θo) is not zero (see Section III-B).

A poorer jammer-channel amplitude match (a � 1)
is seen to reduce the cross-eye gain (GC2) in Fig. 7(a),
but not to further affect the results. This is because the
other parameter values mean that the jammer-channel
amplitude (a) does not affect either the possibility of
beacon operation or the gradient, as shown in Sections III
and IV.

The final parameter change in Fig. 7(a) is to increase
the inner-loop baseline (dc1) to increase the baseline ratio
(sr1). Sections III and IV again show that the values of
the other parameters mean that the baseline ratio does
not affect the possibility of beacon operation or the
gradient. However, (20) shows that the cross-eye gain
(GC2) increases as the baseline ratio increases [23], and
this is borne out by the relevant curve in Fig. 7(a).

Fig. 7(b) shows a case where the default jammer-
channel match (a = −1.0 dB and φ = 170◦) is
significantly poorer than that in Fig. 7(a). The main
consequence of the poorer jammer-channel match is a
lower cross-eye gain (GC2). As expected, improving the
jammer-channel phase match (φ→ 180◦) is shown to in-
crease the gain. Perhaps more importantly, the improved
phase match also has the benefit of increasing the base
angle or even making beacon operation impossible in
Fig. 7(b).

Surprisingly, a worse jammer-channel amplitude
match (a→ 0) actually leads to a higher cross-eye gain
(GC2) for the majority of path-length phase differences
(Φ) in two of the three cases shown in Fig. 7(b). This
result is counterintuitive because better jammer-channel
amplitude matches (a→ 1) usually produce higher cross-
eye gain. The fact that this is a two-loop cross-eye
jammer makes the effect of parameter variations more
complex. Importantly, increasing the jammer-channel
amplitude mismatch (a → 0) increases the base angle
(θb) for φ = 170◦ and makes beacon operation impossi-
ble when φ = 175◦, thereby supporting the observations
in Section III-A.

Increasing the baseline ratio (sr1) in Fig. 7(b) in-
creases the cross-eye gain (GC2) across the majority of
path-length phase mismatches (Φ). This is a result of a
number of factors including the increase in the cross-eye
gain, the increase in the base angle (θb), and a decrease
in the offset angle (θo) which combine to make beacon
operation less likely as outlined in Section III, and to
reduce the gradient as described in Section IV.

Fig. 8 shows the result of 106 evaluations of the cross-
eye gain (GC2) for the parameters uniformly distributed
over the ranges listed below
• a1 and a2: −1.5 dB ± 0.5 dB,
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in the text.

• φ1 and φ2: 180◦ ± 5◦,
• A: −1.5 dB ± 0.5 dB, and
• Φ: value on graph ± 5◦, and
• sr1: 0.75.

These parameters were selected as they guarantee that
beacon operation is impossible when the jammer-channel
parameters are identical (a1 = a2 and φ1 = φ2).
A uniform distribution was used as it increases the
likelihood of obtaining extreme parameter values.

The curves labelled “Equal” in Fig. 8 show the largest
and smallest equal-parameter cross-eye gains (GC2 with
a1 = a2 and φ1 = φ2). The remaining curves allow
different jammer-channel parameters for the loops (a1 6=
a2 and φ1 6= φ2) to reflect how tolerances will affect
the parameters in practice. The labels of these curves
indicate the proportion of the results which are below
that curve. For example, a quarter of the results have a
cross-eye gain below the curve labelled “25%.”

Fig. 8 shows that beacon operation is possible when
the jammer-channel parameters differ (a1 6= a2 and
φ1 6= φ2) even though this is not possible for equal
jammer-channel parameters (a1 = a2 and φ1 = φ2).
However, the equal-parameter results are still useful.
While significant variations are seen at large path-length
phase differences (Φ ≈ ±180◦), the results are similar
for smaller path-length phase differences (Φ ≈ 0), which
are more common in realistic cross-eye jamming sce-
narios [23]. And while beacon operation is not avoided
when the jammer-channel parameters differ, the range of
path-length differences over which beacon operation is
avoided is still large. Furthermore, while beacon oper-
ation is impossible when |Φ| < 74◦ for the parameters
used in [23], this range is extended to |Φ| < 112◦ by the
above parameters, an improvement of over 50%.

VI. CONCLUSION

The effect of path-length differences on the opera-
tion of multi-loop retrodirective cross-eye jammers is
explored. The analysis is complicated by the fact that
each additional cross-eye jammer loop increases the
number of degrees of freedom of the system, so only
two-loop cross-eye jammers with equal jammer-channel
parameters (a1 = a2 and φ1 = φ2) are considered in
detail.

The most important conclusion is that path-length
differences can have a major effect on the operation
of a multi-loop cross-eye jammer. While it is possible
to identify combinations of parameters which eliminate
path-length dependency, even small variations from these
required parameter values reintroduce significant sensi-
tivity to path-length differences.

In certain circumstances, path-length differences can
even lead to the undesirable situation where a cross-eye
jammer acts as a beacon. Fortunately, it is shown that
beacon operation can be avoided by a careful selection
of the jammer parameters. The likelihood of beacon
operation is reduced when
• the baselines are similar (all dcn → dcN , so
srn → 1),

• the jammer-channel amplitudes are mismatched
(an → 0),

• the jammer-channel phase difference is close to
180◦ (φn → 180◦),

• the jammer effect is dominated by the one of the
jammer loops (outer loop of a two-loop jammer
when A < 1 and the inner loop A > 1/sr1), and

• the path-length phase difference is small (Φn → 0).
Unfortunately, some of these parameter values reduce
the cross-eye gain, thereby reducing the angular error
which is induced in the threat radar. There is thus a
compromise between achieving high cross-eye gain and
avoiding beacon operation.

The gradient of the cross-eye gain with respect to
path-length variations was considered as a figure of merit
to quantify how sensitive a two-loop cross-eye jammer
is to path-length differences. Fortunately, the magnitude
of this gradient is low for a broad range of jammer
parameters, demonstrating that sensitivity to path-length
differences can be reduced through careful system de-
sign. Usefully, the parameter values which reduce this
gradient are the same as those listed above to minimise
the likelihood of beacon operation. The one change is
that the gradient magnitude is a highly nonlinear function
of path-length phase difference and increases rapidly as
the phase difference approaches ±180◦ (Φ→ ±180◦).

Finally, Monte-Carlo simulations were used to eval-
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uate the cross-eye gain (GC2) of a two-loop cross-eye
jammer whose parameter values were selected according
to the guidelines listed above. Beacon operation is still
possible despite the parameter values being chosen to
avoid beacon operation. This is a result of the fact
that the analysis was performed under the assumption
of equal jammer-channel parameters (a1 = a2 and
φ1 = φ2), while the simulations considered the practical
case where tolerances cause the parameter values to
differ (a1 6= a2 and φ1 6= φ2). However, use of the
guidelines listed above allowed the range of path-length
differences (Φ) for which beacon operation is avoided
to be increased by more than 50% over previously-
published results. This dramatic improvement clearly
demonstrates the value of the analysis as the guidelines
used were based on the insight provided by the analysis.
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