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Abstract

In this paper we analyze whether (anthropometric) CO2 can forecast global temperature
anomaly (GT) over an annual out-of-sample period of 1907-2012, which corresponds to an
initial in-sample of 1880-1906. For our purpose, we use 12 parametric and nonparametric
univariate (of GT only) and multivariate (including both GT and CO2) models. Our results
show that the Horizontal Multivariate Singular Spectral Analysis (HMSSA) techniques (both
Recurrent (-R) and Vector (-V)) consistently outperform the other competing models. More
importantly, from the performance of the HMSSA-V model we find conclusive evidence
that CO2 can forecast GT, and also predict its direction of change. Our results highlight
the superiority of the nonparametric approach of SSA, which in turn, allows us to handle
any statistical process: linear or nonlinear, stationary or non-stationary, Gaussian or non-
Gaussian.

JEL Codes: C22; C32; C53; Q53; Q54.
Keywords: CO2 emissions; Forecasting; Global temperature anomaly; Univariate and multivari-
ate models.

1 Introduction

The climate change debate consists of players who, in the absence of accessible evidence-based
and objective information, may resort to decisions based on perceptions and even possibly po-
litical agendas (Khandekar et al., 2005). The debate gets even more aggressive when global
warming is discussed in relation to anthropometric carbon dioxide (CO2) emissions (Solomon et
al., 2009; Fildes and Kourentzes, 2011; McMillan and Wohar, 2013; Beenstock et al., 2016).
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While global warming has been accepted as a reality (see for example, Green and Armstrong
(2007), and more recently, Dergiades et al., (2016) for a detailed discussion in this regard based
on time-series relationship between global temperatures and emissions), the purpose of this paper
is to undertake a rigorous investigation of well established datasets for global temperature (GT)
and CO2 using a suite of forecasting models in an attempt to identify, possibly, a single model
that can be prescribed for forecasting GT. Specifically, we consider 12 time-series models for
forecasting GT from both parametric and nonparametric paradigms. These 12 models include
7 univariate models and 5 multivariate models namely: Random Walk (RW), Autoregressive
(AR), Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS),
Neural Networks (NN), Fractionalized ARIMA (ARFIMA), Box-Cox transformation, ARMA
errors, Trend and Seasonal components (BATS), Bayesian Autoregression (BAR), Vector Au-
toregression (VAR), Bayesian Vector Autoregression (BVAR), Singular Spectrum Analysis (SSA)
and Multivariate Singular Spectrum Analysis (MSSA). Our sample covers the annual period of
1880-2012, with an out-of-sample period of 1907-2012 (based on an initial in-sample period of
1880 to 1906 - note that this initial in-sample period is incremented by one year and models
are re-estimated except in the case of RW and SSA models). The start and end points of the
analysis are purely driven by data availability at the time of writing this paper, but the choice
of the out-of-sample period is determined by the earliest possible break date detected (based on
the Bai and Perron (2003) tests of multiple structural breaks) in the relationship between GT
and CO2, which happened to be 1906. Since, we estimate our linear models recursively over the
out-of-sample period, we are able to accommodate the change in the parameter estimates of the
model while producing our forecasts. This approach makes the linear and nonlinear approaches
comparable, with both types of model being now able to correct misspecication due to breaks
either by structural design or through recursive estimation.

This paper makes several important contributions: (i) this paper makes the first attempt to 
provide a comprehensive comparison of models for forecasting GT available in the literature; (ii) 
it marks the introductory application of models such as BATS, SSA and MSSA for forecasting 
GT; and, (iii) finally, we use a new and automated MSSA forecasting algorithm for generating 
out-of-sample forecasts for GT. The SSA and MSSA models contribute to the literature on 
forecasting GT by decomposing GT for denoising and signal extraction prior to forecasting, in 
addition to the multivariate analysis of both GT and CO2 in the case of MSSA. To the best of our 
knowledge, barring the two studies of Fildes and Kourentzes (2011), and McMillan and Wohar 
(2013), all other papers in this area involving time series analysis have analyzed these two 
variables separately in univariate settings.1 Note, the relationship between CO2 and GT is 
primarily analyzed using Coupled Atmospheric-Ocean General circulation Models (AOGCMs) 
of the United Nations Intergovernmental Panel on Climate Change (IPCC). While the AOGCM 
is the primary framework, smaller models focusing on certain aspects of the world’s climate 
are also used. Besides the small-and large-scale AOGCMs, there is also a statistical approach, 
whereby models are estimated directly from observations. But the latter as indicated above, is 
limited.

The AOGCMs comprise of systems of partial differential equations based on the basic laws
of physics, fluid motion and chemistry, aimed at capturing the dynamics of the atmosphere
and oceans. Given a set of initial and boundary conditions (which include emissions of atmo-
spheric gases such as CO2 and volcanic eruptions), these models use a three-dimensional grid
to simulate the dynamics and to produce time-varying outputs such as global temperature (and

1The reader is referred to McMilan and Wohar (2013) for a detailed literature review in this regard, which
primarily involves analysis of unit root and persistence properties of these two variables.
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precipitation) (Fildes and Kourentzes, 2011).2 The advantage of these types of models is that,
if the model represents the physical laws accurately, it should be possible to simulate scenarios
which have not been seen in the past (McSharry, 2011). However, there are serious limitations
to this approach: (a) Attempting to describe the planet using a 200 km grid implies a limited
ability to simulate the subgrid-scale dynamics of clouds, aerosols and turbulence adequately; (b)
Climate modellers use parameterisation techniques in an attempt to make up for the problems
of resolution, but the varying approaches yield different results (Stainforth et al., 2005); (c)
Uncertainties also arise from an incomplete understanding of the interchange of CO2 between
the oceans, atmosphere and biosphere (McSharry, 2011), and; (d) Uncertainty results from the
judgemental approaches employed in constructing these models (Stainforth et al., 2007).

Given the above-mentioned issues, papers like that of Fildes and Kourentzes (2011), and
McMillan and Wohar (2013), have pursued a statistical approach using historical observations,
and provide a means of representing patterns in the data based on linear, nonlinear and non-
parametric methods. The forecasting performances of statistical models obviously depend on
the extent to which the future looks like the past. So, whereas AOGCMs are governed by laws
of physics, fluid motion and chemistry, the statistical models are dependent on the quality of the
data. Hence, there is an argument that statistical models have little value in forecasting global
temperatures, because the rising CO2 emissions mean that the future is unlikely to be similar
to the past (McSharry, 2011).

Instead of completely dismissing statistical approaches, Fildes and Kourentzes (2011), based
on established encompassing tests, show that there are advantages of combining a specific
AOGCM (namely United Kingdom Meteorological Office decadal climate prediction system,
known as DePreSys, as developed by Smith et al., (2007)) with linear and nonlinear time series
models (namely, the combined forecast obtained from random walk; single, Holt and damp-
ened trend exponential smoothings; autoregressive; univariate and multivariate (including CO2

emissions) neural networks). While DePreSys provides superior short-term forecasting (one- to
four-years-ahead), gains in forecast accuracy were achieved for up to 10-year forecasts using an
univariate Holt exponential smoothing model and a multivariate neural network model which
included CO2 as a predictor variable.3 McMillan and Wohar (2013), based on VAR and Gener-
alized Method of Moments (GMM) approaches conclude that CO2 has a weak relationship with
GT, both in terms of in-sample causality tests and an out-of-sample exercise of predicting the
last observation in their sample. This could, however, be a result of uncaptured nonlinearity in
the relationship between these two variables, which Fildes and Kourentzes (2011) emphasized
upon, and which we show to exist in the discussion that follows in the results segment of the
paper.4

2It must be pointed out that, AOGCMs actually use CO2 concentration as a forcing variable, which in turn,
depends on the pattern of emissions, with the representative concentration pathways (RCPs) used for forecasts
being based on different emission scenarios.

3Fildes and Kourentzes (2011), also compared local temperature forecasts at six locations to show that the
ten-year-ahead forecasts of the AOGCMs were worse than forecasts from a random walk benchmark, with the
exponential smoothing providing the best results. In addition, at a very long-run horizon of twenty years ahead, the
multivariate neural network with CO2 emissions as an explanatory variable produced superior forecasts compared
to other time series models. Finally, using the CO2 concentration in the atmosphere, which is believed to be
physically relevant for determining global temperatures, rather than CO2 emissions, did not improve the forecasts.

4In a somewhat connected line of research, Kaufmann and Stern (2004), and Beenstock et al., (2016) tested
the historic tracking capabilities of climate models. Climate modellers use in-sample correlations to confirm the
ability of climate models to track the global temperature historically. But, a high correlation though necessary,
is not a sufficient condition for such confirmation, given that global temperature tends to be nonstationary. In
addition, the tracking errors must also be stationary. Using cointegration tests applied to hindcast data for global
temperatures generated by multiple climate change models, both Kaufmann and Stern (2004), and Beenstock et
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Against this backdrop, in this paper we basically aim to understand better the underlying
form of nonlinearity in the relationship between global temperatures and CO2 emissions by
conducting an out-of-sample forecasting exercise, using univariate and multivariate versions of
linear and nonlinear models. In the process, we look at a nonparametric approach using the
SSA technique, over and above the neural network model. We also follow the recommendations
of McSharry (2011), who suggests that while the neural network approach is a flexible one,
it is possible to improve the underlying nonlinearity by using alternative model specifications.
Note that our approach is purely based on a time series analysis, and excludes climate models.
Hence, as part of future research, as in Fildes and Kourentzes (2011), it would be interesting
to pursue forecast combinations of the SSA models that we develop and AOGCMs, if and when
forecast data from the latter set of models could be accessed. Note that the decision to rely
on an out-of-sample rather than an in-sample predictability exercise to gauge the relationship
between CO2 and global temperature is motivated out of the belief that: “The ultimate test of
any predictive model is its out-of-sample performance” (Campbell, 2008).

At this stage, it is important to emphasize the reasons to use the SSA technique in forecasting
GT. SSA has recently evolved as a powerful technique in the field of time series analysis (Sanei
and Hassani, 2015), besides the other standard forecasting approaches indicated above. SSA
is a nonparametric technique that works with arbitrary statistical processes, whether linear or
non-linear, stationary or non-stationary, Gaussian or non-Gaussian. Given that the dynamics
of real time series, in our case GT, has usually gone through structural changes during the time
period under consideration, one needs to make certain that the method of prediction is sensitive
to the dynamical variations. Moreover, even though some might argue that the nonparametric
nature of SSA/MSSA suggests little about the dynamic nature of the model, the exploitation
of Takens’ theorem (Takens, 1981) in the embedding approach helps overcome this issue. In
particular, MSSA succeeds in providing insights into the dynamics of the underlying system via
the decomposition of delay-coordinate phase space of given multivariate time series into a set
of data-adaptive orthonormal components such as trend, oscillatory patterns and noise (Ghil et
al., 2002; Vautard and Ghil, 1989; Ghil and Vautard, 1991).

In addition, contrary to the standard methods of time series forecasting that assume nor-
mality and stationarity of the series (though the latter is not an issue for BVAR models), as a 
nonparametric method, SSA makes no prior assumptions about the data, with forecasts being 
obtained through bootstrapping. Furthermore, SSA decomposes a series into its component 
parts, and reconstructs the series by leaving out the random (noise) component. Clearly then, 
SSA is a much more general approach that allows us to handle issues of non-stationarity, non-
normality, non-linearity, and even seasonality, though the latter is not an issue in our annual data 
set. In what follows, the predictive accuracy of all forecasts are evaluated via the Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE) loss functions, the direction of change 
criterion, and the Hassani-Silva (HS) test for predictive accuracy (Hassani and Silva, 2015) and 
the modified Diebold-Mariano test (Harvey et al., 1997), thus enabling a sound analysis and 
derivation of reliable conclusions.

The remainder of the paper is organised as follows: in Section 2 we present a detailed
description of the 12 forecasting models investigated with extra emphasis on the SSA and MSSA
techniques; in Section 3 we detail the datasets used and the metrics used for the evaluation of
the models, with estimations conducted in either R or RATS; in Section 4 we present an in-
depth analyses of the results in our quest to identify the best model for our purpose; in Section

al., (2016) found that global temperature and their hindcasts, generally fail to be cointegrated. This result meant
that the climate models fail to track global temperature historically in the longer run, because their tracking
errors are nonstationary.
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5 we present a discussion; and finally we present some concluding remarks on the investigation
undertaken in Section 6.

2 Forecasting Models

2.1 Random Walk (RW)

The random walk model is used as a benchmark. This is because it is widely accepted that
when introducing forecasting techniques for a particular purpose, it is vital that the introduced
techniques are able to outperform the RW5. In brief, the RW model states that today’s GT is
the best forecast for tomorrow’s GT.

2.2 Autoregressive Integrated Moving Average (ARIMA)

In this paper we use an optimized version of ARIMA (auto-ARIMA), and provided through the
forecast package6 in R. A more detailed description of the algorithm underlying auto-ARIMA
can be found in Hyndman and Khandakar (2008) whilst a summarized version is available in
Hassani et al. (2015b). The process for obtaining point forecasts using the R software is concisely
presented in Hyndman and Athanasopoulos (2013). The initial model structure and parameters
for forecasting GT with ARIMA before re-estimation was ARIMA(0, 0, 1) with non-zero mean.

2.3 Exponential Smoothing (ETS)

The ETS technique in the forecast package overcomes the limitations of the Makridakis et
al. (1998) algorithm pertaining to the calculation of prediction intervals. Whilst a detailed
description of the ETS technique can be found in Hyndman and Athanasopoulos (2013), in brief
this algorithm considers the error, trend and seasonal components along with over 30 possible
options for choosing the best exponential smoothing model via optimization of initial values and
parameters using Maximum Likelihood Estimator and selecting the best model based on the
AIC. In the case of GT, the model structure and parameters for forecasting GT with ETS before
re-estimation was an additive ETS(A,N,N) model which is equivalent to an ARIMA(0, 1, 1)
model as linear ETS models are special cases of ARIMA model (Hyndman and Athanasopoulos,
2013).

2.4 Neural Networks (NN)

The NN model used in this paper is popularly referred to as nnetar and is provided through
the forecast package in R. For a detailed explanation on how the nnetar model operates, see
Hyndman et al. (2013). It may be noted that in all cases the selected neural network model
has only k=1 hidden node, p=2 lags, with the specifications being based on annual differences
of the data. The neural network takes the form

ŷt = β̂0 +

k∑

j=1

β̂jψ(x
′

t.γ̂j), (1)

5http://robjhyndman.com/hyndsight/benchmarks/
6It should be noted that the automated algorithms in the forecast package generates a new and improved re-

estimated model each time a new observation is added to the data. As such the models reported for the forecast
package are the initial ones.
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where xt consist of p lags of yt and the function ψ has the logistic form

ψ(x
′

t.γ̂j) = [1 + exp(−γ̂j0 +
p∑

i=1

γ̂ji.yt−1)]
−1j = 1, . . . , k (2)

In the neural network literature, this form is often referred to as a one hidden layer feed forward
neural network model. As can be seen, the nonlinearity arises through the lagged yt entering in
a flexible way through the logistic functions of equation (1). The number of logistic functions
included, namely k, is known as the number of hidden nodes. When analysing the NN forecasting
results, it is important to bear in mind that the NN results reported here are not standard as
there exists no standard formulation of a NN model.

2.5 Fractionalized ARIMA Model (ARFIMA)

The ARFIMA algorithm used is also from the forecast package in R, and it automatically
estimates and selects the p and q for an ARFIMA(p,d,q) model based on the Hyndman and
Khandakar (2008) algorithm whilst d and parameters are selected based on the Haslett and
Raftery (1989) algorithm. The ARFIMA model may be written as

(1−
p∑

i=1

φiB
i)(1 −B)dyt = (1 +

q∑

i=1

φiBi)et, (3)

where B the backshift operator, p is the order of the autoregressive part, q is the number of 
lagged forecast errors, and d is allowed to take the form of non-integer values. The ARFIMA 
model structure and parameters for forecasting GT (before re-estimation) were p = 2, d = 0, 
and q = 0.

2.6 Box-Cox transformation, ARMA errors, Trend and Seasonal components
(BATS)

Initially, a TBATS model which aims to provide accurate forecasts for time series with complex 
seasonality was pursued via the forecast package in R. However, during the modelling process we 
noticed that a BATS model was found to have a better fit for this data, which is non-seasonal. A 
detailed description of the model and the underlying formula can be found in De Livera et al. 
(2011) and is therefore not reproduced here. The model structure and parameters used by
the BATS model for forecasting GT before re-estimation was BATS(1, {0, 1}), where 1 is the
Box-Cox parameter and {0, 1} is the damping parameter. Note that we are permitting (additive)
trend and no seasonal component.

See Appendix A1 for a discussion on the Classical Autoregressive (AR), Bayesian Autore-
gressive (BAR), Vector Autoregressive (VAR), and Bayesian Vector Autoregressive (BVAR)
Models.

2.7 Singular Spectrum Analysis (SSA)

The SSA technique is a filtering and forecasting technique which is exploited in a variety of fields
(see for example, Lisi and Medio (1997), Thomakos et al. (2002), Beneki et al. (2012), Hassani
et al. (2015a), Silva and Hassani (2015)). In brief, SSA seeks to filter the noise in a time series
and reconstruct a less noisy signal which is then used for forecasting future data points (Hassani
et al. 2015a) using only the SSA choices of window-length (L) and the number of eigenvalues r
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(Hassani and Mahmoudvand, 2013). SSA also has its multivariate form which is referred to as
Multivariate SSA (MSSA) and can be used for modelling and forecasting using multiple series.
In comparison to SSA, MSSA is relatively new with few applications (see for example, Hassani
et al. (2010c), Patterson et al. (2011), Oropeza and Sachchi (2011), Groth and Gill (2012), and
Hassani et al. (2013a,b).

There are several benefits of using SSA and MSSA models. As these models are nonparamet-
ric they are not bound by the parametric assumptions of normality, stationarity and linearity
(Hassani et al. (2013a). As such, one is able to model the data without any transformations
which in turn ensures there is no loss of information (Hassani et al. 2013b). In addition, as SSA
is a filtering technique, it enables users to decompose a time series in order to obtain a richer
understanding of the underlying dynamics. Moreover, once the associated signal is extracted,
SSA enables users to forecast the signal alone. For example, if we are interested in the trend
component alone we have the option of extracting the trend from the data and then forecasting
the trend.

Those interested in a detailed account of the theory underlying SSA are referred to Sanei and
Hassani (2015). Given that many readers are likely to be unfamiliar with the SSA, via Figure 1
we show the basic SSA process in a visual form.

Figure 1: The basic SSA process.

In brief, the SSA technique is made up of two stages known as Decomposition and Recon-
struction. Below we present the decomposition(or filtering) and reconstruction stages of SSA,
and in doing so we mainly follow Sanei and Hassani (2015).

Stage 1: Decomposition

Consider the real-valued nonzero time series YN = (y1, . . . , yN ) of sufficient length N . The only
choice at this stage is of the Window Length L, an integer such that 2 ≤ L ≤ N .

Step 1: Embedding

Embedding is a mapping that transforms a one-dimensional time series YN = (y1, . . . , yN ) into
the multi-dimensional series X1, . . . ,XK with vectors Xi = (yi, . . . , yi+L−1)

′ ∈ RL, where K =
N − L +1. The embedding step results in the trajectory matrix X = [X1, . . . ,XK ] = (xij)

L,K
i,j=1,

which is a Hankel matrix. Accordingly, all the elements along the diagonal i + j = const are
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constant (i.e., a matrix in which the (i, j)th entry depends only on i + j, that is, each skew-
diagonal is constant.).

Step 2: Singular Value Decomposition (SVD)

In this step we obtain the singular value decomposition of the trajectory matrix X. Denote by
λ1, . . . , λL the eigenvalues of XX

′
in decreasing order of magnitude (λ1 ≥ . . . λL ≥ 0) and by

U1, . . . , UL the orthonormal system (that is, (Ui, Uj)=0 for i 6= j (the orthogonality property)
and ‖Ui‖=1 (the unit norm property)) of the eigenvectors of the matrix XX

′
corresponding to

these eigenvalues. If we denote Vi = X
′

Ui/
√
λi, then the SVD of the trajectory matrix can be

written as:
X = X1 + · · · +Xd, (4)

where Xi =
√
λiUiVi

′

(i = 1, . . . , d).

Stage 2: Reconstruction

The second and final choice in SSA, i.e. the number of eigenvalues, r is required at this stage.

Step 1: Grouping

In the grouping step, we split the elementary matrices Xi into several groups and sum the
matrices within each group. Let I = {i1, . . . , ip} be a group of indices i1, . . . , ip. Then the
matrix XI corresponding to the group I is defined as XI = Xi1 + · · ·+Xip . The split of the set
of indices J = 1, . . . , d into the disjoint subsets I1, . . . , Im corresponds to the representation

X = XI1 + · · ·+XIm . (5)

The procedure of choosing the sets I1, . . . , Im is called the eigentriple grouping.

Step 2: Diagonal Averaging

Diagonal averaging transfers each matrix I into a time series, which is an additive component
of the initial series YN . This procedure is called diagonal averaging, or Hankelization of the
matrix Z. The result of the Hankelization of a matrix Z is the Hankel matrix HZ, which is
the trajectory matrix corresponding to the series obtained as a result of the diagonal averaging.
By applying the Hankelization procedure to all matrix components of (5), we obtain another
expansion:

X = X̃I1 + . . .+ X̃Im (6)

where X̃I1 = HXI1 . This is equivalent to the decomposition of the initial series YN = (y1, . . . , yN )
into a sum of m series:

yn =
m∑

k=1

ỹ(k)n (7)

where Ỹ
(k)
N = (ỹ

(k)
1 , . . . , ỹ

(k)
N ) corresponds to the matrix XIk .
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2.8 Multivariate Singular Spectrum Analysis (MSSA)

Those interested in an in-depth explanation of the theory underlying MSSA are directed to
Hassani and Mahmoudvand (2013). We begin by presenting the Horizontal MSSA Recurrent
(HMSSA-R) optimal forecasting algorithm which is followed by the Horizontal MSSA Vector
(HMSSA-V) optimal forecasting algorithm. In presenting these two algorithms we mainly follow
and rely on the notations in Hassani and Mahmoudvand (2013).

2.8.1 HMSSA-R Optimal Forecasting Algorithm

1. Consider M time series with identical series lengths of Ni, such that Y
(i)
Ni

= (y
(i)
1 , . . . , y

(i)
Ni
)

(i = 1, . . . ,M).

2. In this case we use 25 observations of GT and CO2 data to train and test the HMSSA
models.

3. Beginning with a fixed value of L = 2 (2 ≤ L ≤ N
2 ) and in the process, evaluating

all possible values of L for YNi
, using the training data construct the trajectory matrix

X(i) = [X
(i)
1 , . . . ,X

(i)
K ] = (xmn)

L,Ki

m,n=1 for each single series Y
(i)
Ni

(i = 1, . . . ,M) separately.

4. Then, construct the block trajectory matrix XH as follows:

XH =
[
X(1) : X(2) : · · · : X(M)

]
.

5. Let vector UHj
= (u1j , . . . , uLj)

T , with length L, be the jth eigenvector of XHXT
H which

represents the SVD.

6. Evaluate all possible combinations of r (1 ≤ r ≤ L − 1) step by step for the selected
L and construct X̂H =

∑r
i=1 UHi

UT
Hi
XH as the reconstructed matrix obtained using r

eigentriples:

XH =
[
X̂(1) : X̂(2) : · · · : X̂(M)

]
.

7. Consider matrix X̃(i) = HX̂(i) (i = 1, . . . ,M) as the result of the Hankelization procedure
of the matrix X̂(i) obtained from the previous step for each possible combination of SSA
choices.

8. Let U▽

Hj
denote the vector of the first L− 1 coordinates of the eigenvectors UHj

, and πHj

indicate the last coordinate of the eigenvectors UHj
(j = 1, . . . , r).

9. Define υ2 =
r∑

j=1
π2Hj

.

10. Denote the linear coefficients vector R as follows:

R =
1

1− υ2

r∑

j=1

πHjU
▽

Hj . (8)
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11. If υ2 < 1, then the h-step ahead HMSSA forecasts exist and is calculated by the following
formula:

[
ŷ
(1)
j1
, . . . , ŷ

(M)
jM

]T
=





[
ỹ
(1)
j1
, . . . , ỹ

(M)
jM

]
, ji = 1, . . . , Ni,

RTZh, ji = Ni + 1, . . . , Ni + h,

(9)

where, Zh =
[
Z

(1)
h , . . . , Z

(M)
h

]T
and Z

(i)
h =

[
ŷ
(i)
Ni−L+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i = 1, . . . ,M).

12. Seek the combination of L and r which minimises a loss function, L and thus repre-
sents the optimal HMSSA-R choices for decomposing and reconstructing in a multivariate
framework.

13. Finally use the selected optimal L to decompose the series comprising of the validation
set, and then select r singular values for reconstructing the less noisy time series, and use

this newly reconstructed series for forecasting the remaining 1
3

rd
observations.

2.8.2 HMSSA-V Optimal Forecasting Algorithm

1. Begin by following the steps in 1-9 of the HMSSA-R optimal forecasting algorithm above.

2. Consider the following matrix

Π = U▽U▽T + (1− v2)RRT , (10)

where U▽ = [U▽

1 , ..., U
▽

r ]. Now consider the linear operator

P(v) : Lr 7→ R
L, (11)

where

P(v)Y =

(
ΠY△
RTY△

)
, Y ∈ Lr, (12)

and Y△ is vector of last L− 1 elements of Y .

3. Define vector Z
(i)
j (i = 1, . . . ,M) as follows:

Z
(i)
j =

{
X̃

(i)
j for j = 1, . . . , ki

P(v)Z
(i)
j−1 for j = ki + 1, . . . , ki + h+ L− 1

(13)

where, X̃
(i)
j ’s are the reconstructed columns of trajectory matrix of the ith series after

grouping and leaving noise components.

4. Now, by constructing matrix Z(i) = [Z
(i)
1 , ..., Z

(i)
ki+h+L−1] and performing diagonal averag-

ing we obtain a new series ŷ
(i)
1 , ..., ŷ

(i)
Ni+h+L−1, where ŷ

(i)
Ni+1, ..., ŷ

(i)
Ni+h provides the h step

ahead HMSSA-V forecast for the selected combination of L and r.

5. Finally, follow steps 12-13 in the HMSSA-R optimal forecasting algorithm to find the
optimal L and r for obtaining HMSSA-V forecasts.
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Finally, in Table 1 we present the MSSA models for obtaining the forecasts for GT at each
horizon.

Table 1: MSSA models for forecasting Global Temperature.
h HMSSA-R HMSSA-V
1 MSSA(3, 1) MSSA(4, 1)
2 MSSA(3, 1) MSSA(3, 1)
3 MSSA(3, 1) MSSA(5, 1)
4 MSSA(4, 1) MSSA(4, 1)
5 MSSA(3, 1) MSSA(4, 1)
6 MSSA(3, 1) MSSA(3, 1)
7 MSSA(3, 1) MSSA(2, 1)
8 MSSA(3, 1) MSSA(3, 1)
9 MSSA(2, 1) MSSA(2, 1)
10 MSSA(2, 1) MSSA(5, 3)

Note: Shown here in brackets are the combinations of L and r as MSSA(L, r).

3 Data and Metrics

3.1 Data

The data we investigate here consists of two variables, namely the global temperature anomaly
(GT) and global carbon dioxide (CO2) emissions, and spans the annual period of 1880-2012,
with the start and end of the period being purely driven by the availability of data. GT measures
the difference between a reference long-term average value (which happens to be 1951-1980) and
the actual value. The calculation of GT is in itself a complex process adjusting for aspects
such as, though not limited to, unequal distance between measuring stations, difference due to
the richly observed northern hemisphere versus the poorly observed southern hemisphere, ocean
versus terrestrial measurements, polar regions, into one representative number for the whole
earth (Hansen et al., 2010). Similarly global CO2 is estimated from energy statistics published
by the United Nations (2014) involving a complex system comprising of, again not limited to,
questionnaires, official statistics and other supplementary information (Boden et al., 1995). The
GT were obtained from the National Aeronautics and Space Administrations (NASA) and the
Goddard Institute for Studies (GISS).7 The data on CO2 was obtained from the Carbon Dioxide
Information Analysis Centre 8 and is measured in thousand metric tons of carbon. While GT
remains untransformed in our analysis, we use the natural logarithm of CO2 emissions. The
log transformation allows us to make the highly skewed distribution of CO2 less skewed, which
in turn, is valuable both for making patterns in the data more interpretable and for helping to
meet the assumptions of inferential statistics.

3.2 Forecasting Exercise

We separate the entire data period into an initial in-sample period spanning 1880-1906, and an
out-of-sample period of 1907-2012. Note that, since we use a recursive estimation for the models
(barring RW and SSA), we have an expanding in-sample period, while producing the out-of-
sample forecasts for the various horizons. This separation of the period was determined by the
Bai and Perron (2003) tests of multiple structural breaks applied to the global temperatures
equation of the VAR model, which, in turn, detected the following break dates: 1907, 1945,
1974, 1992, and 2004. Since our linear models are estimated recursively over the out-of-sample

7The data is available for download from: http://data.giss.nasa.gov/gistemp/.
8The data is available for download from: http : //cdiac.ornl.gov/trends/emis/treglob2013.html.

11



period in which all the break dates fall, this separation of the period is ideal as it helps us to
accommodate changes in the parameter estimates of the model in the out-of-sample period. In
other words, if we would have a split in the initial in-sample and out-of-sample periods different
from the one based on the structural break tests, with some of the breaks in the initial in-sample
period, the linear models would be misspecified. This is because, the linear models would not
be capturing the change in the response of GT to CO2 emissions that took place due to breaks
in the initial in-sample. This way, we aim to make the comparison between linear and nonlinear
models fair, by ensuring that the superior predictability of the nonlinear models, if and when it
exists, is not because of misspecification due to regime changes but due to the inherent nonlinear
relationship of GT with CO2.

9 Finally, we produce one- to ten-year-ahead forecasts based on
this recursive estimation scheme to forecast in the short- and long-term horizon. Except for the
MSSA models where the initial model remains constant and the data is updated, all other models
update the data and re-estimate model parameters each time a new observation is introduced.
Accordingly, we generate forecasts at each horizon such that we have n − h + 1 observations
where n = 106 and h refers to the horizon of interest.

3.3 Descriptive Statistics

Table 2 summarises the descriptive statistics for the entire GT data set, and the in-sample and 
out-of-sample periods separately. This analysis uncovers some interesting insights relating to 
the series. Firstly, the structure of the series overall and out-of-sample appears to be closely 
associated as expected (given the large out-of-sample forecasting period). Both these series are 
skewed and report an almost identical interquartile range (IQR), and the out-of-sample data 
captures the overall minimum and maximum GT values. In comparison, the initial in-sample 
series captures a period where the GT values are negative and normally distributed.

Table 2: Descriptive statistics for GT.
Min Max Mean Med. SD IQR SW(p)

Overall (1880-2012) -47 66 -1.47 -7 28.96 35 <0.01
In-Sample (1880-1906) -44 -10 -25.44 -25 8.09 12.5 0.95*
Out-of-Sample (1907-2012) -47 66 4.63 2.50 29.20 36.75 <0.01

Note:∗ indicates data is normally distributed based on the Shapiro-Wilk (SW) test at p=0.01.

3.4 Metrics

To evaluate the 12 competing models, we use the popular Root Mean Squared Error (RMSE)
loss function and the direction of change (DC) criteria for comparing their forecasting perfor-
mances. All outcomes relating to forecast accuracy are tested for statistical significance using
the Kolmogorov-Smirnov Predictive Accuracy (KSPA) test (Hassani and Silva, 2015), whilst the
DC results are tested for statistical significance using a Student’s t-test.

Root Mean Squared Error (RMSE)

The RMSE is now a standard quantitative technique for evaluating forecasting accuracy of
alternate models. It is also popular as one of the most frequently cited measures in forecasting

9Given that, the structural break test is performed on the full-sample of the data, which in turn, is not available
to a forecaster while making a forecast, we reconducted our analysis using an initial in-sample period of 1880-1946
i.e., essentially a 50 percent split of the data. Our revised analyses, which are available upon request, produced
qualitatively similar results.
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literature (see, for example, Zhang et al. (1998) and Hassani et al. (2015b)). In this paper we
consider both the RMSE and Ratio of the RMSE (RRMSE). Here, in order to save space we
present only the RRMSE.

RRMSE =

(∑N
i=1(ŶT+h,i − YT+h,i)

2

∑N
i=1(ỸT+h,i − YT+h,i)2

)1/2

,

where ŶT+h represents the h-step ahead forecast obtained by the benchmark model, ỸT+h rep-
resents the h-step ahead forecast obtained by a competing model, and N is the number of
forecasts. If RRMSE < 1 then the benchmark model outperforms the competing model by
1-RRMSE percent.

Direction of Change (DC)

The DC metric is an equally important measure as the RMSE because it is able to show whether
the forecast is correctly predicting the actual direction of change. A model is said to have a
better DC prediction than a random walk if it records a DC greater than 50% (Altavilla and de
Grauwe, 2010). The DC calculation is presented below and in doing so we mainly follow Hassani
et al., (2013a).

Consider a univariate time series YT . Let ZY i take the value 1 if the forecast correctly
predicts the direction of change and 0 otherwise. Then Z̄X =

∑N
i=1 ZY i/N shows the proportion

of forecasts that correctly predict the direction of the series.

4 Empirical Results

Forecasting results covering all horizons from 1-10 can be found in the appendix via Tables 5
and 6. The presentation of the results which considers both short and long term forecasts of
GT enables stakeholders to select the best model at each forecast horizon of interest. Here in
Tables 2 and 4, we present a summarised version of the out-of-sample forecasting results for GT
which considers horizons 1, 5, and 10, and thereby represents the short, medium and long term
forecasts. We initially discuss the overall results. The first observation is that the HMSSA-V
model can provide the best forecast for GT across all horizons. Also, it is important to note
that the two MSSA techniques with their various fitted models succeed in reporting the lowest
RMSE and MAE in comparison to all models evaluated here, across all horizons. As such,
in relation to all models considered in this study, we are able to identify clearly that MSSA
has the potential to provide the most accurate forecasts for GT when CO2 is used as auxiliary
information. Secondly, given that these superior MSSA results have been attained by using CO2

as an indicator variable, we are able to conclude that CO2 can indeed help in predicting GT. If
one is interested in a single model for obtaining the best possible forecasts for GT, then based on
the average lowest RMSE and MAE we can propose that specifically the HMSSA-V technique,
as used in this study, is best for this purpose.

The results also enable a more detailed analysis and differentiation between univariate and
multivariate models. In terms of the univariate models we see that across all horizons, ETS
forecasts are best for GT (Table 5). Interestingly as well, on most occasions the RW forecasts are
seen outperforming the univariate models (except ETS), and also outperforming the multivariate
BVAR5 and VAR forecasts with the exception of h = 1 step ahead results from VAR and
BVAR5 models. Another point to note is that forecasts for GT from the univariate BAR1
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model is almost as bad as the worst performing NN model according to the average RMSE and
MAE criteria. Furthermore, as both univariate and multivariate models are considered in this
study, practitioners also have the option of selecting the best univariate or multivariate model
for forecasting GT at a particular horizon of interest.

The RMSE and MAE results reported in Table 5 clearly indicates how the forecasting accu-
racy of all models deteriorates as the forecasting horizon expands from 1-step ahead to 10-steps
ahead. A closer look at these results show that ETS and HMSSA models incur a deterioration
in accuracy levels at a comparatively slower rate than rest of the models. This in turn indicates
that the univariate ETS model is performing considerably well in relation to other univariate
models considered here, and also that the MSSA models are performing better than all other
models in terms of the RMSE criteria.

In Table 3 we consider HMSSA-V as a benchmark model and present the RRMSE results
for GT forecasts for horizons 1, 5, and 10 steps-ahead with Table 6 reporting all results. The
choice of HMSSA-V as a benchmark model was influenced by the fact that the HMSSA-V model
reports the lowest RMSE and lowest average MAE across all ten forecasting horizons. Here we
exploit the two-sided HS test (Hassani and Silva, 2015) and the modified Diebold-Mariano test
to find statistically significant differences between forecasts across all 10 forecasting horizons.
Evidence from the two-sided KSPA test (results indicated on the ‘Avg.’ row in Table 3) suggests
that on average, across all 10 horizons, the only instance in which HMSSA-V fails to produce
a forecast that is not statistically significant than another model’s forecast is in comparison to
HMSSA-R and ETS forecasts at a 90% confidence level. This provides added justification for
selecting the HMSSA-V model proposed in this study as a benchmark for forecasting GT. At the
same time, it also shows the power of the ETS model for those wishing to rely on a univariate
forecasting approach when modelling GT.

The RRMSE results in Table 3 are further tested for statistical significance via the two-
sided KSPA test which seeks to ascertain the existence of a statistically significant difference
between the distributions of two forecast errors. Leaving aside the HMMSA-R and HMSSA-V
models which do not report any statistically significant differences between forecast errors at the
90% confidence level, we can conclude that beyond h = 1, the HMSSA-V forecasts are indeed
significantly better than all other competing forecasts on most instances (with the exception of
ETS). Interestingly, HMSSA-V forecasts only outperformed ETS at h = 2 and h = 10 steps
ahead. Also, we failed to find evidence of statistically significant differences between forecasts
of HMSSA-V and RW models at h = 1, 4, and 8 steps ahead. The beauty of the RRMSE
criterion is that it enables us to further quantify the performance of a given forecasting model
and show by what percentage it outperforms forecasts from another model. Accordingly, based
on the RRMSE we are able to conclude that on average, across all ten horizons, the HMSSA-V
forecasts are better in the range of 1% (relative to the HMSSA-R) and 29% (relative to the NN).

Presented in Tables 4 (summarized output) and Table 7 (all output) are the DC prediction
results from the GT forecasts. It is important to evaluate the accuracy of a model in its ability to
correctly predict the actual direction of change in the time series.10 The DC results indicate that
on average the univariate BAR1 model is worst in predicting the actual direction of change in
GT. If we consider only the univariate models, then the AR model has the worst DC prediction
whilst the ETS model reports the best. In terms of multivariate models, the MSSA models
report the best DC predictions on average and are almost identical. However, if one was to
suggest a single model with the best average DC prediction then it would be the HMSSA-V
model with an average accuracy of 66%. The inclusion of the DC results at each horizon enables

10Note that it is not possible to calculate the DC metric for RW forecasts as it results in the DC statistic going
to infinity.
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practitioners to select the best model for a particular forecasting horizon not only based on
the RMSE criterion but also based on its ability at providing a good DC prediction for GT. In
line with good statistical practice we test all DC predictions for statistical significance using the
Student’s t-test as in Hassani et al. (2009). Accordingly, we see that the DC predictions reported
for AR, ARIMA, ARFIMA, NN, BATS, BAR1, VAR, and BVAR5 models at all horizons are
likely to be a result of chance occurrences. However, the DC prediction for ETS at h = 5
steps ahead is found to be statistically significant whilst half of the DC predictions from the
HMSSA-V model report statistically significant outcomes. As such, we are able to conclude
with 90% confidence that the HMSSA-V DC predictions are significantly greater than 50%
across forecasting horizons 2-6.
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Table 3: RMSE for out-of-sample forecasts for Global Temperature.
h RW AR ARIMA ETS NN ARFIMA BATS BAR1 VAR BVAR5 HMSSA-R HMSSA-V

1 RMSE 10.66 10.68 10.21 10.00 12.25 10.76 10.28 10.70 10.65 10.34 10.25 9.99
MAE 8.62 8.33 8.31 8.31 10.00 8.96 8.60 8.38 7.62 7.91 8.46 8.22

5 RMSE 14.61 17.55 14.88 13.28 17.51 17.14 15.34 18.14 16.12 15.54 12.80 12.68
MAE 11.68 13.60 12.28 10.93 13.52 13.62 12.69 14.06 12.62 12.01 10.39 10.38

10 RMSE 16.92 23.89 19.43 16.87 27.29 23.21 18.76 25.45 20.26 19.31 16.22 15.39
MAE 14.21 19.90 16.04 14.31 18.64 18.99 16.13 21.27 16.40 15.57 13.38 12.61

Note: Shown in bold font is the model reporting the lowest RMSE. The model reporting the lowest MAE is italicised. The multivariate models use CO2 at lag 2.

Table 4: RRMSE for out-of-sample forecasts for Global Temperature.
h HMSSA−R

RW
HMSSA−R

AR
HMSSA−R
ARIMA

HMSSA−R
ETS

HMSSA−R
NN

HMSSA−R
ARFIMA

HMSSA−R
BATS

HMSSA−R
BAR1

HMSSA−R
V AR

HMSSA−R
BVAR5

HMSSA−R
HMSSA−V

1 0.94 0.94 0.98 0.99 0.82∗,† 0.93 0.97 0.93 0.94 0.97 0.97
5 0.87∗,† 0.72∗,† 0.85∗,† 0.95 0.72∗,† 0.74∗,† 0.83∗,† 0.70∗,† 0.79∗,† 0.82∗,† 0.99
10 0.91∗ 0.64∗,† 0.79∗,† 0.91∗ 0.56∗,† 0.66∗,† 0.82∗,† 0.60∗,† 0.76∗∗,† 0.80 0.95

Avg. 0.91∗ 0.75∗ 0.87∗ 0.96 0.71∗ 0.76∗ 0.86∗ 0.72∗ 0.81∗ 0.84∗ 0.99
Note: ∗ indicates a statistically significant difference between the distribution of forecasts based on the two-sided KSPA test in Hassani and Silva (2015) at

p = 0.10. † indicates the existence of a statistically significant difference between the forecasts based on the modified Diebold-Mariano test in Harvey et al. (1997).
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Table 5: DC predictions from out-of-sample forecasts for Global Temperature.
h AR ARIMA ETS NN ARFIMA BATS BAR1 VAR BVAR5 HMSSA-R HMSSA-V
1 0.42 0.54 0.60 0.57 0.56 0.58 0.42 0.38 0.41 0.60 0.61
5 0.49 0.51 0.66∗ 0.55 0.53 0.50 0.47 0.56 0.55 0.70∗ 0.67∗

10 0.38 0.42 0.55 0.49 0.39 0.41 0.35 0.54 0.51 0.60 0.64
Avg. 0.45 0.49 0.60 0.58 0.51 0.48 0.43 0.52 0.50 0.65 0.66

Note: ∗ indicates the DC prediction is statistically significant based on a Student’s t test at p = 0.05.
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4.1 Robustness Analysis

Though we followed the works of Fildes and Kourentzes (2011), and McMillan and Wohar (2013)
in using CO2 emissions as a predictor variable for GT, based on the suggestion of the Editor, we
also evaluated the performance of our SSA models using radiative forcing instead of CO2. Note,
radiative forcing is defined as the difference of insolation (sunlight) absorbed by the Earth and
energy radiated back to space. We observed that just like the MSSA models with CO2, the same
models with radiative forcing outperformed the univariate and multivariate linear models and
the neural network model. However, the HMSSA-V model based on total radiative forcing, could
only outperform the HMSSA-R and HMSSA-V based on CO2 emissions at horizons of three- and
four-year-ahead. Also, on average, the HMSSA-R and HMSSA-V using CO2 emissions continued
to perform the best. A selection of these results are reported via Table 5 for the benefit of the
reader.

Table 6: RMSE results from out-of-sample forecasts for Global Temperature using Radiative
Forcing.

h RW AR BAR1 VAR BVAR5 HMSSA-R HMSSA-V RF:HMSSA-R RF:HMSSA-V
1 10.66 10.68 10.7 10.65 10.34 10.25 9.99 11.53 10.58
2 12.61 13.1 13.2 12.61 12.32 10.99 10.98 12.12 11.04
3 13.22 14.51 14.75 13.75 13.43 11.71 11.68 12.77 11.18
4 12.89 15.64 16.03 14.57 13.97 12.22 12.08 13.48 11.95
5 14.61 17.55 18.14 16.12 15.54 12.80 12.68 13.73 12.83
6 14.82 18.77 19.54 17.07 16.37 13.11 13.06 14.6 13.40
7 14.89 19.69 20.59 17.86 17.23 13.62 13.61 15.58 14.09
8 15.44 21.11 22.22 18.82 18.03 14.68 14.56 16.65 15.35
9 17.05 22.72 24.08 19.69 18.83 15.51 15.50 16.51 17.22
10 16.92 23.89 25.45 20.26 19.31 16.22 15.39 17.04 18.13

Avg. 14.31 17.77 18.47 16.14 15.54 13.11 12.95 14.40 13.577

5 Discussion

The discussion begins with a graphical illustration of the the best out-of-sample forecasts for GT
in the very short run (h = 1) and the very long run (h = 10) as shown via Figure 2. All forecasts
shown are from the HMSSA-V model. Interestingly, the forecasts from the other models showed
clear signs of difficulties in modelling and providing an accurate forecast for GT amidst the
variation visible in the series, and in most cases the competing models were seen picking up the
variations too late in time and reflecting on the comparatively poor DC predictions reported in
Table 4. The use of MSSA models enabled to overcome the issues pertaining to modelling the
volatility in GT and provide forecasts which are comparatively more accurate and reliable for
decision making.
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Figure 2: Out-of-sample MSSA forecasts for GT.

However, as evident via Figure 2, even the best forecasts appear to have difficulty in capturing
the levelling which occurs post 2000 until recently. As such, it is pertinent to briefly comment on
this. For this purpose, shown via Figure 3 are the best performing one, five, and ten-steps ahead
forecasts from 2000 onwards based on the lowest RMSE criteria. All forecasts appearing here
are from the HMSSA-V model. Notice how some of the forecasts appear to fluctuate whilst the
others are represented as comparatively smoother lines. There are two possible explanations for
this. Firstly, MSSA is sensitive to the choice of window length L and the number of eigenvalues
r, and the automated MSSA algorithm introduced in this paper is programmed to find the best
possible forecast by minimising a loss function. Therefore, instead of seeking out components
which will capture most of the fluctuations, more weighting is given to the forecast line which
can reduce the error. Secondly, the MSSA algorithm does not update and fit a new model to
the data each time a new observation is introduced. Whilst this approach does provide more
stability to the forecasting model, it does however make it difficult for the model to ensure the
levelling which occurs towards the end of the out-of-sample period is accurately captured. Yet,
it is noteworthy that in comparison to the other models which are all recursive, these MSSA
forecasts with a fixed model fitted at the training stage is able to outperform the rest. Given
the non-recursive nature of the MSSA forecasts, as the horizon increases beyond 1-step ahead,
we notice a deterioration in the forecast accuracy (it still deteriorates at a lower rate than the
recursive models). It would be interesting to see whether programming recursive MSSA models
can enable MSSA to capture the levelling post 2000 more accurately.
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Figure 3: The best out-of-sample forecasts (HMSSA-V model) post 2000 at selected horizons.

Below, we also show the ex ante forecasts from the best MSSA models using CO2 and total 
radiative forcing (TRF) as auxiliary information. As expected, based on the forecasting exercise 
carried in this study, we see that the HMSSA-V model using CO2 as auxiliary information 
outperforms the competing models.
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Figure 4: The best MSSA forecasts for GT 2013-2017.

At this stage, it is important to compare our results with the existing evidence of predictabil-
ity of GT emanating from CO2 emissions. As discussed in the introduction, available studies
based on time series analysis that do aim to forecast GT based on CO2 emissions are limited to
two, with bulk of the papers using climate models. Just as in McMillan and Wohar (2013), we
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find no evidence of the ability of CO2 emissions in predicting GT based on linear models. This
weak evidence is not surprising given that the Brock et al., (BDS, 1996) test indicated strong
evidence of nonlinearity in the relationship between the two variables.11 However, unlike in
Fildes and Kourentzes (2011) to certain extent, we found that, even though nonlinearity exists,
a NN model cannot seem to capture this underlying nonlinearity well enough, as is indicated
in its poor forecasting performance. The superiority of the SSA models in forecasting however,
tend to suggest that these models are able to better capture this unknown nonlinear relationship
via a nonparametric formulation.12

6 Conclusions

The two popular and passionate debates about climate change are (i) Is it possible to predict
global temperature anomaly (GT) reliably?; and (ii) Is there definitive causal evidence of (an-
thropometric) CO2 being the driver of GT? This paper is an exercise to contribute to this debate
by providing objective analyses of relevant data using an ensemble comprising of 12 parametric
and nonparametric out-of-sample forecasting techniques using only GT data (univariate), as well
as using both GT and CO2 data (multivariate). The significance of this paper lies in that, using
the well established datasets we have identified the ‘best’ model, from 12 candidate models, for
forecasting GT both in the short- and long-term horizons. Specifically, our results have identified
that the Horizontal Multivariate Singular Spectral Analysis (HMSSA) models (both Recurrent
(-R) and Vector (-V)) consistently outperform the other competing models in a statistically
significant fashion. Further, from the performance of the HMSSA-R model, we have conclusive
evidence that CO2 can predict GT. We also evaluated the models in their ability to predict the
direction of change (DC) for the GT forecasts. Although in the univariate setup the exponential
smoothing (ETS) model performs best in forecasting DC followed by the HMSSA models, in the
multivariate setup, the HMSSA models once again score best when evaluated using the metrics
considered. Thus, from our investigation and from the analyses of the findings, if we have to
recommend a model for forecasting GT, HMSSA-R is a clear winner. Our results also highlight
the superiority of the nonparametric approach of the SSA, which in turn, allows us to handle any
statistical process: linear or nonlinear, stationary or non-stationary, Gaussian or non-Gaussian.
Hence, from the perspective of a climate modeller relying on AOGCMs, it would make sense
to compare the ex ante forecasts (i.e., future path) of GT generated from the SSA model with
that from the AOGCMs. In this regard, as part of future analysis, it would be interesting to go
back and compare the future paths generated in historical reports of IPCC on GT, with that
generated from our SSA model. Using historical comparison will allow us to determine how far
or close the paths generated by the climate models and that by time series models match up
with what actually materialized in terms of global temperature levels. Also note, using the SSA
model, given that it is based on bootsrapping, we will be able to generate interval and density
forecasts for global temperatures, thus allowing us to determine the uncertainty associated with
such forecasts.

Though the objective of this paper was to pursue a forecasting exercise to determine whether
CO2 emissions can predict the future movements in GT, using a large number of linear and
nonlinear models, our results can be utilized to draw important policy conclusions as well. We
show that it is important to model nonlinearity into the relationship between GT and CO2,
otherwise, the latter does not seem to contain any predictive information about the future paths

11Complete details of these results are available upon request from the authors.
12This line of thinking is vindicated by the superior fit of the SSA approach relative to the NN method.

Complete details of the goodness-of-fit results are available upon request from the authors.
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of GT. Once this is done, we find strong evidence of the role of CO2 in increasing GT, i.e., we show 
that continued CO2 emissions will cause further warming. As discussed in the Fifth Climate 
Change Synthesis Report of the IPCC (2014), continuous global warming will have long-lasting 
changes in all components of the climate system, increasing the likelihood of severe, pervasive and 
irreversible impacts for both people and ecosystems. In addition, climate change will amplify 
existing risks and create new risks for natural and human systems; with risks being higher for 
vulnerable communities around the world, resulting in an unequal society, and hamper socio-
economic development. Understandably, limiting climate change would require not only 
substantial and sustained reductions in CO2 emissions (mitigation), but also adaptation, to limit 
negative climate change impacts.

Our findings also open up several avenues for future research. It would be interesting to 
analyze the emissions from various countries including the top emitters, to determine which 
countries can predict global temperatures the best and also to find out whether the top emitters 
can predict global temperatures better than world emissions. The findings from such analysis can 
help design better policies.
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Appendix

A1: Classical Autoregressive (AR), Bayesian Autoregressive (BAR), Vector
Autoregressive (VAR), and Bayesian Vector Autoregressive (BVAR) Models

The Vector Autoregressive (VAR) model, though “atheoretical” is particularly useful for fore-
casting purposes. Note an unrestricted VAR model, as suggested by Sims (1980), can be written
as follows:

yt = C +A(L)yt−1 + ǫt (14)

where: y: a vector of variables (global temperatures and global CO2 emissions) being forecasted;
A(L) : a polynomial matrix in the backshift operator L with lag length p, i.e., A(L) = A1L +
A2L

2 + ... +ApL
p; C : a vector of constant terms, and ε : vector of white-noise error terms. In

our case p = 2 based on the Akaike Information Criterion (AIC).
The VAR model uses equal lag length for all the variables of the model, and leads to the

problem of overparameterization. This, in turn, results in multicollinearity and loss of degrees
of freedom leads to inefficient estimates and large out-of-sample forecasting errors.

An approach to overcome this overparameterization, as described in Littermann (1981, 1986),
is to use a Bayesian VAR (BVAR) model. Instead of eliminating longer lags, the Bayesian method
imposes restrictions on these coefficients by assuming that these are more likely to be near zero
than the coefficient on shorter lags. However, if there are strong effects from less important
variables, the data can override this assumption. The restrictions are imposed by specifying
normal prior distributions with zero means and small standard deviations for all coefficients
with the standard deviation decreasing as the lags increases. The exception to this is, however,
the coefficient on the first own lag of a variable, which has a mean of unity. Note Litterman
(1981) used a diffuse prior for the constant. This is popularly referred to as the “Minnesota
prior” due to its development at the University of Minnesota and the Federal Reserve Bank at
Minneapolis.

The standard deviation of the distribution of the prior for lag m of variable j in equation i
for all i, j and m, defined as S(i, j,m), can be specified as follows:

S(i, j,m) = [w × g(m)× f(i, j)]
σi
σj

(15)

with f(i, j) = 1, if i = j and kij otherwise, with (0 ≤ kij ≤ 1), g(m) = m−d, d > 0. Note σi is the
standard error of the univariate autoregression for variable i. The ratio σi

σj
scales the variables so

as to account for differences in the units of measurement and, hence, causes specification of the
prior without consideration of the magnitudes of the variables. The term w indicates the overall
tightness and is also the standard deviation on the first own lag, with the prior getting tighter as
we reduce the value. The parameter g(m) measures the tightness on lag m with respect to lag 1,
and is assumed to have a harmonic shape with a decay factor of d, increasing which tightens the
prior on increasing lags. The parameter f(i, j) represents the tightness of variable j in equation
i relative to variable i, and by increasing the interaction, i.e., the value of kij , we can loosen the
prior. Following the literature on BVAR models, we look at the following combinations of w and
d: (0.3, 0.5), (0.2, 1.0), (0.1, 1.0), (0.2, 2.0) and (0.1, 2.0), with kij set at 0.5. Univariate versions
of the BVAR models, which we call Bayesian autoregressive (BAR) models, are estimated for
the same values of w and d as above, but with kij set at 0.001, since a small interaction value
basically reduces the multivariate model to its corresponding univariate version. In the results
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section however, we only report the BAR and BVAR models which produces the most accurate
forecasts on average, which in our case, happened to be the BAR1 (w=0.3, d=0.5, kij=0.001)
and BVAR5 (w=0.1, d=2.0, kij=0.5).13 In this regard, we follow Gupta and Kabundi (2010,
2011), and Gupta et al., (2014), as it allows us to provide an objective way of choosing the
hyperparametrs of the (subjective) prior.

The BVAR model is estimated using Theil’s (1971) mixed estimation technique, which in-
volves supplementing the data with prior information on the distribution of the coefficients. In
an artificial way, the number of observations and degrees of freedom are increased by one, for
each restriction imposed on the parameter estimates. The loss of degrees of freedom due to
over parameterization associated with a VAR model is, therefore, not a concern in the BVAR
model. Further note that, one major advantage of the BVAR and BAR models is that we can
use non-stationary data for its estimation. Sims et al. (1990) indicate that with the Bayesian ap-
proach entirely based on the likelihood function, the associated inferences do not require special
treatment for non-stationarity, since the likelihood function exhibits the same Gaussian shape
regardless of the presence of non-stationarity. Given this, we mimic AR and VAR models by
setting w=2.0, d=2.0, kij=0.001, and w=2.0, d=0, kij=1.0, respectively. In other words, we
are able to estimate classical versions of AR and VAR models without worrying about ensuring
stationarity of the variables under consideration.

A2: All Results

13Complete details of the results from the other BAR and BVAR models are available upon request from the
authors.

28



Table 7: RMSE for out-of-sample forecasts for Global Temperature.
h RW AR ARIMA ETS NN ARFIMA BATS BAR1 VAR BVAR5 HMSSA-R HMSSA-V

1 RMSE 10.66 10.68 10.21 10.00 12.25 10.76 10.28 10.70 10.65 10.34 10.25 9.99
MAE 8.62 8.33 8.31 8.31 10.00 8.96 8.60 8.38 7.62 7.91 8.46 8.22

2 RMSE 12.61 13.10 12.14 11.44 13.78 12.98 12.86 13.20 12.61 12.32 10.99 10.98
MAE 10.21 10.57 10.07 9.45 11.04 10.86 10.35 10.65 9.97 9.50 8.95 8.94

3 RMSE 13.22 14.51 13.10 12.01 16.25 14.51 13.92 14.75 13.75 13.43 11.71 11.68
MAE 10.73 11.55 10.64 9.95 12.56 12.06 11.59 11.74 11.15 10.77 9.46 9.60

4 RMSE 12.89 15.64 13.62 12.27 17.20 15.51 13.77 16.03 14.57 13.97 12.22 12.08
MAE 10.49 12.45 11.10 10.03 13.12 12.76 11.72 12.71 11.57 10.99 9.89 9.77

5 RMSE 14.61 17.55 14.88 13.28 17.51 17.14 15.34 18.14 16.12 15.54 12.80 12.68
MAE 11.68 13.60 12.28 10.93 13.52 13.62 12.69 14.06 12.62 12.01 10.39 10.38

6 RMSE 14.82 18.77 15.53 13.64 19.13 18.17 15.73 19.54 17.07 16.37 13.11 13.06
MAE 11.86 14.93 12.68 11.10 13.93 14.56 13.00 15.66 13.62 12.96 10.81 10.73

7 RMSE 14.89 19.69 16.31 14.29 21.76 19.11 15.80 20.59 17.86 17.23 13.62 13.61
MAE 12.52 16.22 13.78 12.33 15.71 15.63 13.48 17.04 14.47 13.78 11.53 11.54

8 RMSE 15.44 21.11 17.06 15.20 21.08 20.52 16.50 22.22 18.82 18.03 14.68 14.56
MAE 12.90 17.33 14.41 12.69 15.67 16.55 14.05 18.34 15.49 14.77 12.06 11.98

9 RMSE 17.05 22.72 18.72 16.29 20.53 22.27 18.40 24.08 19.69 18.83 15.51 15.50
MAE 13.77 18.68 15.28 13.42 15.32 17.98 15.38 19.88 15.95 15.15 12.53 12.52

10 RMSE 16.92 23.89 19.43 16.87 27.29 23.21 18.76 25.45 20.26 19.31 16.22 15.39
MAE 14.21 19.90 16.04 14.31 18.64 18.99 16.13 21.27 16.40 15.57 13.38 12.61

Avg. RMSE 14.31 17.77 15.10 13.53 18.68 17.42 15.14 18.47 16.14 15.54 13.11 12.95
Avg. MAE 11.70 14.36 12.46 11.25 13.95 14.20 12.70 14.97 12.89 12.34 10.75 10.63

Note: Shown in bold font is the model reporting the lowest RMSE. The model reporting the lowest MAE is italicised. The multivariate models use CO2 at lag 2.
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Table 8: RRMSE for out-of-sample forecasts for Global Temperature.
h HMSSA−V

RW
HMSSA−V

AR
HMSSA−V

ARIMA
HMSSA−V

ETS
HMSSA−V

NN
HMSSA−V
ARFIMA

HMSSA−V
BATS

HMSSA−V
BAR1

HMSSA−V
V AR

HMSSA−V
BV AR5

HMSSA−V
HMSSA−R

1 0.94 0.94 0.98 0.99 0.82∗,† 0.93 0.97 0.93 0.94 0.97 0.97
2 0.87∗,† 0.84∗,† 0.90∗,† 0.96† 0.80∗,† 0.85∗,† 0.85∗,† 0.83∗,† 0.87∗,† 0.89∗,† 0.99
3 0.88∗ 0.80∗,† 0.89∗,† 0.97 0.72∗,† 0.80∗,† 0.84∗,† 0.79∗,† 0.85∗ 0.87∗ 0.99
4 0.94 0.77∗,† 0.89∗ 0.98 0.70∗,† 0.78∗,† 0.88∗,† 0.75∗,† 0.83∗,† 0.86∗ 0.99
5 0.87∗,† 0.72∗,† 0.85∗,† 0.95 0.72∗,† 0.74∗,† 0.83∗,† 0.70∗,† 0.79∗,† 0.82∗,† 0.99
6 0.88∗,† 0.70∗,† 0.84∗,† 0.96 0.68∗,† 0.72∗,† 0.83∗,† 0.67∗,† 0.77∗,† 0.80∗,† 0.99
7 0.91∗,† 0.69∗,† 0.83∗,† 0.95 0.63∗,† 0.71∗,† 0.86∗ 0.66∗,† 0.76∗,† 0.79∗,† 0.99
8 0.94 0.69∗,† 0.85∗ 0.96 0.69∗,† 0.71∗,† 0.88∗ 0.66∗,† 0.77∗,† 0.81∗,† 0.99
9 0.91∗ 0.68∗,† 0.83∗ 0.95 0.75∗,† 0.70∗,† 0.84∗ 0.64∗,† 0.79∗,† 0.82∗ 0.99
10 0.91∗ 0.64∗,† 0.79∗,† 0.91∗ 0.56∗,† 0.66∗,† 0.82∗,† 0.60∗,† 0.76∗∗,† 0.80 0.95

Avg. 0.91∗ 0.75∗ 0.87∗ 0.96 0.71∗ 0.76∗ 0.86∗ 0.72∗ 0.81∗ 0.84∗ 0.99
Note: ∗ indicates a statistically significant difference between the distribution of forecasts based on the two-sided KSPA test in Hassani and Silva (2015) at

p = 0.10. † indicates the existence of a statistically significant difference between the forecasts based on the modified Diebold-Mariano test in Harvey et al. (1997).
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Table 9: DC predictions from out-of-sample forecasts for Global Temperature.
h AR ARIMA ETS NN ARFIMA BATS BAR1 VAR BVAR5 HMSSA-R HMSSA-V
1 0.42 0.54 0.60 0.57 0.56 0.58 0.42 0.38 0.41 0.60 0.61
2 0.43 0.50 0.65 0.61 0.58 0.53 0.42 0.42 0.40 0.70∗ 0.70∗

3 0.52 0.52 0.61 0.58 0.57 0.45 0.50 0.54 0.54 0.66∗ 0.69∗

4 0.49 0.49 0.62 0.61 0.52 0.46 0.47 0.55 0.55 0.64 0.67∗

5 0.49 0.51 0.66∗ 0.55 0.53 0.50 0.47 0.56 0.55 0.70∗ 0.67∗

6 0.50 0.51 0.61 0.58 0.54 0.51 0.48 0.56 0.53 0.67∗ 0.67∗

7 0.41 0.47 0.56 0.56 0.45 0.43 0.38 0.54 0.50 0.62 0.62
8 0.43 0.42 0.57 0.57 0.47 0.45 0.42 0.53 0.47 0.63 0.63
9 0.46 0.50 0.60 0.64 0.50 0.45 0.43 0.56 0.53 0.65 0.65
10 0.38 0.42 0.55 0.49 0.39 0.41 0.35 0.54 0.51 0.60 0.64

Avg. 0.45 0.49 0.60 0.58 0.51 0.48 0.43 0.52 0.50 0.65 0.66

Note: ∗ indicates the DC prediction is statistically significant based on a Student’s t test at p = 0.10.
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