
REAL TIME RUT PROFILE MEASUREMENT IN VARYING TERRAIN TYPES 

USING DIGITAL IMAGE CORRELATION 

Abstract 

An important parameter in terramechanics is the rut depth produced when a vehicle traverses deformable 

soil. The rut depth provides a measure of vehicle tractability as well as the impact on the environment. Rut depth 

is not uniform on natural terrain and typically only a few manual points are measured. Synchronizing rut depth 

with other measurements is also problematic. 

This paper investigates the feasibility of using cameras to measure 3D terrain profiles from which a single 

rut depth measurement is obtained. Tests were performed on different vehicles, for various dynamic vehicle 

manoeuvres, over varying terrains including sand, mud, grassland, snow and ice. Results were validated using the 

traditional stick ruler method. 

Measurement frequencies of 58Hz were obtained using affordable commercially of the shelf computational 

hardware and dedicated software. Determining whether a vehicle can traverse a terrain can significantly improve 

the vehicle mobility.  Therefore, real time measurements of rut depth can be used to determine the mobility of 

vehicles in off-road conditions that can change rapidly due to environmental conditions e.g. rain or snow. The 

techniques described can assist in gathering terrain and vehicle mobility data that can be used directly to assist the 

driver in making safety related decisions.  

Keywords: Real time; Rut depth; Stereo; Terrain measurement

1. Introduction

The traversing of vehicles over deformable soils results in the compaction of the soil and the formation of 

ruts. The soil compaction and rut formations have a significant effect on the ability of vehicles to traverse the 

terrain and the impact of the vehicle on the terrain. The soil strength and rut depth can be used to determine 

whether a vehicle can safely traverse the terrain without the vehicle becoming immobilized. The formation of ruts 

also causes water to pool in these areas which in cold conditions results in the formation of ice on the surface 

which effects vehicle traction. Therefore, the rut profile is an important parameter which could be beneficial to 
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vehicle mobility if it can be measured in real time with ease and accuracy. Rut measurements of multiple passes 

over the same terrain can assist in determining eventual sinkage levels where multiple vehicles pass through the 

same ruts. 

Soil strength is often measured using a cone penetrometer or Bevameter, however the tests are conducted 

statically and cannot be used to measure the soil strength in real time. Herrick and Jones (2002) however conducted 

tests on clay loam soil and found a relationship between the soil sinkage and the penetration resistance, dynamic 

drop-cone resistance and pre-compaction stress.  While the relationship between soil sinkage and soil strength  are 

vehicle dependent, a relationship for a specific vehicle can be obtained. This allows soil strength to be measured 

based purely on soil sinkage which is easier to measure in realt-time on a vehicle. Hemmat et al (2014) also 

showed that a relationship between soil mechanical properties and rut depth can be determined for certain soil 

types.   

In rural conditions, where there are no permanent roads, any passage by vehicles could affect future 

trafficability. Constant assessment of the road is necessary especially if the road has a deformable surface such as 

snow, mud, or un-compacted sand. The effect that heavy vehicles have on these deformable terrains is so 

substantial that several studies have been conducted to reduce the effect of heavy vehicles trafficking over 

deformable terrains (Shoop et al., 2013), (Halvorson et al., 2001). Soil rut depth is also a useful measure, due to 

its simplicity, of the amount of soil compaction (Soane et al., 1980).  Soil compaction can lead to soil degradation 

by enhancing harmful physical, chemical and biological processes, which may affect the energy needed for crop 

production (Soane and van Owerkerk, 1995). Anderson et al. (2005) also uses the rutting of terrains to assess 

the level of vehicle impact on the environment. Therefore, the development of a sensor to automatically and 

accurately measure soil deformation would lead to better energy efficiency not only in the vehicles themselves 

but also the in the production of crops. 

In terramechanics soil deformation is not only used to evaluate the performance of wheels in deformable 

terrain (Shibly et al., 2005) but also used to improve soil models for simulation and prediction (Iagnemma et al., 

2003). Accurate measurement of the deformed soil can improve the development of off-road terrain wheels, which 

would lead not only to improved tractive performance, but would also mitigate the rutting of soils. The rutting of 

soils also increases the rolling resistance of tyres, which is known as motion resistance (Kurjenluoma et al., 2009), 

thus decreasing vehicle efficiency. 

Therefore, the real time measurement of the rut profile can be used to aid in vehicle performance. Vehicle 

performance can be increased by first assessing the soil strength and determining whether the vehicle can negotiate 
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the terrain, thus reducing the chance of immobilization. Road conditions can also be assessed by vehicles in a 

platoon. When the road conditions have deteriorated to such an extent than an alternative road should be used, 

information can be relayed from vehicle to vehicle. The effect of vehicle control systems such as tyre pressure 

inflation control or traction control can be assessed in real time to improve vehicle performance. Continual 

assessment of the road conditions and the impact of a vehicle on the terrain can also be used to evaluate the need 

of road maintenance. 

Rut profile measurements are typically conducted using a ruler. In Shoop et al. (2013) a single point at the 

maximum rut depth is taken as a measurement. The rut profile is often measured using multiple rulers and takes 

an image of the result for post processing (Halvorson et al., 2001), (Shoop et al., 2008). These techniques are used 

due to their low cost. A LiDAR based rut measurement system by Salmivaara et al (2018) showed that the 

technique can be used to determine rut depth and found a RMSE accuracy of less than 35mm. Photogrammetry is 

another photographic method whereby multiple overlapping images are used to determine depth (Pierzchała et al. 

2014, 2016 . In particular Kenarsari et al (2017) used a system where three cameras were placed after a tractor 

tyre to determine the rut created by a tyre. The system can also be placed on an Unmanned Ariel Vehicle (UAV) 

to record larger areas (Siebert and Teizer, 2014). Photogrammetry can provide very accurate results but often 

require photos from multiple angles to obtain good results which adds complexity. The major drawback however 

is that the method is rather computationally expensive and has a scale ambiguity therefore the method can’t be 

used in real time. 

The major problem with most current techniques are that they are either very expensive to implement, using 

LiDAR, or the method is too slow to be used for real time measurements such as photogrammetry. The need for 

accurate real time results which can possibly used to determine the mobility of a vehicle of deformable soil 

required. 

 In this study, rut profile measurements were conducted using inexpensive off the shelf cameras to create a 

calibrated stereo measurement system which has no scale ambiguity. As the need for the system is to accurately 

measure the rut in real time, the focus of the study is on stereovision based algorithms which can offer real-time 

results. The computational speed and accuracy of each algorithm is determined as there is generally a trade-off 

between computational speed and accuracy.The system is evaluated on unprepared, undisturbed as well as 

trafficked snow, ice, mud, sand and grass terrains. The stereo based system has been used in previous studies to 

successfully conduct vehicle measurements such as slip-angle (Botha and Els, 2015a), longitudinal slip (Botha 

and Els, 2015b) and road profiling (Botha and Els, 2015c) in post processing. 
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2. Determining Rut Profile Through Measuring Road Texture

The method used to obtain depth from multiple cameras is very similar to one of the ways a human captures 

depth through the use of two eyes. Stereovison works by determining the coordinate difference (𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑟𝑟) of an 

object or region in two images (see Figure 1). This measurement is commonly referred to as disparity. Thus, the 

main problem to solve in order to obtain 3D coordinates from 2 cameras is the problem of matching regions 

(disparity mapping) between two images. The disparity map between two images from a calibrated rig can then 

be used to determine 3D location of regions in the image relative to the cameras. The cameras are calibrated to 

remove lens distortion and to obtain the relative translation and rotation between the cameras. The calibration 

process also removes any scale ambiguity and therefore unlike photogrammetry this process does not require 

scaling. The disparity mapping is usually achieved by using a correlation metric and performing a searching across 

the two images. Performing an exhaustive global searching can be very computationally expensive. Therefore, 

epipolar geometry, which maps a feature projected onto one image as a line on the other image, is used to reduce 

the global search to line searches thereby vastly improving computational efficiency. The epipolar geometry is 

obtained from the calibration process and the result of a rectified image pair is shown in Figure 1. The figure 

shows that a feature on the left image lies on the same horizontal line in the right image.  

Various disparity mapping algorithms exist, however, in the aim for real time measurements only 

computationally efficient algorithms are investigated. Two algorithms of note are the Block Matching (BM) 

(Konolige, 1997) and Semi Global Block Matching Algorithm (SGBM) (Hirschmuller, 2005). The BM algorithm 

is one of the most simplistic algorithms and uses a simple search window and correlation metric to find the 

corresponding pixel in the right camera for each pixel in the left camera. Each pixel search is treated independently 

of one another, which often results in more discontinuous surface profiles. SGBM is an efficient strategy for 

minimizing a global energy that comprises of a small window matching cost and pair-wise smoothness terms. It 

forces a similarity between neighbouring searches enforcing a semi-global search strategy. The algorithm also 

uses a small matching window to calculate correspondence between the same region occurring in different images. 

The correspondence match is used in an optimization algorithm that minimizes the energy of a smoothness 

function. The solution is therefore a point which correlates well between the two images based on the pixel 

illumination but also reduces the smoothness of the disparity in the region. The smoothness is ideally optimized 

over the 2D problem, however, to reduce computational complexity the 2D smoothness function is estimated 

using the aggregate of multiple 1D smoothness functions.  
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For the correspondence matching to work requires that the surface captured using the cameras have visual 

surface texture which shows up as illumination variation on the images. It is reasonable to assume that a tarred or 

gravel surface will have texture, however this study will evaluate surfaces that do not show obvious surface texture 

such as snow, ice and mud.  

x xl r

Fig. 1: Rectification of left and right images of rut showing feature in both images 

3. Algorithm Comparison

The accuracy and computational speed of several implementations of SGBM and BM algorithms are 

compared to determine the suitability for real time measurements. The following algorithms are compared. 

• BM CPU: algorithm from the open source OpenCV library is used. This algorithm provides sub-

pixel matching accuracy up to 1/16th of a pixel

BM GPU: algorithm from the open source OpenCV library is used. This algorithm provides sub-

pixel matching accuracy up to 1/16th of a pixel

• SGBM CPU: algorithm from open source OpenCV library is used. This algorithm provides sub-

pixel matching accuracy up to 1/16th of a pixel

• SGBM GPU CUDA: GPU implementation of the SGBM algorithm from (Hernandez-Juarez et al.,

2016) boast high computationally efficiency but does not provide sub-pixel accuracy. The number
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of optimization directions can also be changed between 2, 4 and 8 directions which affect the 

accuracy and computational efficiency. The algorithm is developed on graphics card developers, 

NVidia, own parallel computing interface (CUDA) which enables easy use of Nvidia graphics card 

for general computing. 

3.1 Computational Speed 

The algorithms were implemented on a mid-range i5-570 (2.7GHz) CPU or an entry level GTX840M GPU. 

The frequency of computation was determined performing the depth computation of images of size 640x480 

pixels. The computational efficiency results are shown in Table 1. The results show that the SGBM CUDA 2 pass 

directions is by far the most computationally efficient algorithm and as the number of optimization directions 

increase the computational frequency decreases. While the BM GPU algorithm and the SGBM CUDA 8 pass 

algorithm provided similar results the SGBM CUDA algorithm was found to scale much better with increase in 

GPU performance.  The SGBM CUDA algorithm has been shown that on high end GPU (NVidia Titan X) to 

achieve speeds of 886Hz, 475Hz and 237Hz for the 2, 4 and 8 pass directions respectively (Hernandez-Juarez et 

al., 2016), while the BM GPU does not scale as well with increase in GPU performance. 

All of these options are feasible for real time rut depth measurement. Even the slowest (4Hz) is expected to 

provide very useful data for all intended applications 

Table 1: Computational frequency of algorithms 

Algorithm CPU mid Range (i5-

570) 

GPU entry level (Nvidia 

GTX840M)  

GPU High End 

(NVidia Titan X) 

BM 8Hz 15Hz Not tested 

SGBM 4Hz Not tested Not tested 

SGBM CUDA 

2pass 

Not tested 58Hz 886Hz 

SGBM CUDA 

4pass 

Not tested 30Hz 475Hz 
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SGBM CUDA 

8pass 

Not tested 16Hz 237Hz 

3.2 Relative Accuracy of Matching algorithms 

The accuracy of the measurement algorithms is determined by using a reference rut, from a SUV tyre, cast in 

concrete. A point cloud of the concrete rut was obtained by measuring the surface in a Computer Numerical 

Control (CNC) lathe using a road profiling laser (Acuity AR700-8) with an accuracy of 50µm as specified by the 

manufacturer. The X-Y resolution of the CNC was set at 0.1mm, with the height measured using the road profiling 

laser. The rut shown in Figure 2 has a rut depth of 40mm and the size of the point cloud is 280x450mm. A point 

cloud is also generated from photos taken by a calibrated stereo rig comprising of 2 PointGrey Flea3 cameras 

which have a maximum resolution of 1240x1024 pixels. The PointGrey Flea3 cameras are small (30x30mm) 

machine vision cameras with a USB3 interface. The cameras are mounted on an aluminum plate 80mm apart and 

300mm from the surface. The error of the obtained camera surface to the laser measured reference surface is 

determined by initially aligning the point clouds manually and then using a fine registration technique of Iterative 

Closest Point (ICP) (Besl and McKay, 1992). The error between the laser based reference and camera measured 

surface can be obtained as the distance between closest points of the two point clouds. However, since the 

reference surface has a horizontal accuracy of 0.1mm this could negatively affect the measurement. Therefore, a 

mesh of the reference surface is created. The mesh creates a surface which can effectively be used for interpolation 

and provide a better estimate of the actual error. The distance between a point on the measured point cloud and 

the reference mesh is computed. This distance between a measured point and the reference mesh is the error as a 

point on the mesh will have a distance of zero.  The whole process is performed in CloudCompare. A histogram 

of the error of all the points is created for each measurement algorithm and is shown in Figure 3. A normal 

distribution is applied to each error histogram and the mean and standard deviation of the error is shown in Table 

2. 

  For the BM and SGBM algorithms the process is conducted on the full pixel resolution of 1MP, as well as, 

640x480 pixels (0.3MP). Figure 3shows that the BM and SGBM algorithms provide similar results at both 

resolutions and, as expected, the accuracy reduces when the resolution is decreased. At 640x480 pixels, the block 

matching algorithm provides the best accuracy which is slightly less than SGBM. The fast SGBM CUDA 
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algorithm shows similar mean to the BM algorithm however the standard deviation is significantly larger and 

increases as fewer optimization directions are used. The reason for the SGBM CUDA algorithms having larger 

standard deviation is due to the lack of sub-pixel accuracy. This results in the resolution of the algorithm being 

limited which increases the average error.  

Thus, the rut profile can be measured with most points within a 1.5mm of the reference at 15Hz using the 

GPU BM algorithm at a resolution of 640x480 pixels. The speed would be increased by using more powerful 

GPU. If the accuracy is to be determined within 5mm then the CUDA SGBM algorithm can be used at 60Hz on 

a low cost GPU and scales very well as the GPU performance is increased. Added speed can be obtained by 

performing the depth estimation on a smaller longitudinal section i.e. 20x480 pixels. The smaller images would 

still capture the whole rut laterally but not fully in the longitudinal direction. In order to determine the depth the 

complete rut in the longitudinal direction need not be determined as the profile will still be reduced to a single 

measured value. The speed of measurement is sufficient for most terramechanics conditions which typically occur 

at very low vehicle speeds. 

Fig. 2: Photo of reference rut formed in concrete(left) and point cloud of reference surface obtained from laser 

measurements(right) 
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Fig. 3: Histogram error of the different algorithms 

Table 2: Mean and standard deviation of algorithms 

Algorithm and Resolution Mean [mm] Standard Deviation [mm] 

BM 1MP -0.022 0.544 

BM 0.3MP 0.117 1.254 

SGBM 1MP -0.019 0.730 

SGBM 0.3MP 0.183 1.387 

SGBM CUDA 2 pass 0.3MP -0.347 4.890 

SGBM CUDA 4 pass 0.3MP -0.324 4.733 

SGBM CUDA 8 pass 0.3MP -0.019 4.528 

-5 -4 -3 -2 -1 0 1 2 3 4 5

Error [mm]

0

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y

Block Matching 1MP

Block Matching 0.3MP

Semi-Global Block Matching 1MP

Semi-Global Block Matching 0.3MP

SGBM GPU 2pass 0.3MP

SGBM GPU 4pass 0.3MP

SGBM GPU 8pass 0.3MP

9



4. Experimental Testing on Various surfaces

Tests were conducted to determine whether the system can be used to determine the depth of a scene on various 

types of surfaces which a vehicle may traffic. The tests were conducted by capturing synchronized images from 

the cameras mounted on different vehicles while simply driving over various types of deformable terrain. The 

images are post processed to determine the 3D surface profile of the terrain.  

4.1 Terrain Surface Profiles 

The terrain surface profiles of various types of terrains were determined to evaluate the system’s ability to 

determine the profile on snow, ice, grass and mud. In the tests the same two PointGrey Flea3 cameras as in Section 

3 were used but placed closer at 40mm between cameras. The camera system was mounted on various vehicles in 

front and behind the lead tyres to measure the undeformed and deformed profile of different terrain. The cameras 

recorded at a resolution of 1280x1024 pixels, and the horizontal and lateral spatial resolution of the profiles 

obtained is dependent on the camera height but range between 0.3 to 1.0mm.  The camera mounting locations on 

two vehicles are shown in Figure 4. The cameras were pointed directly towards the terrain approximately 400mm 

from the surface. The setups provided an overlap in the images of about 2/3 of the image. A set of cameras were 

placed in front and behind the vehicles front tyres to measure undeformed as well as deformed tyres. 

Fig. 4: Camera mounting position on vehicles. Cameras mounted in front of the tyre (left) and cameras mounted 

behind front tyres (right) 

Figure 5 shows the camera image and surface profile of fresh undisturbed snow. The camera photo shows the 

lack of contrast in the image which can be considered one of the most challenging terrains to use stereo graphic 

profiling on. The surface profile however shows that the 3D profile of the surface can be determined and shows a 
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fairly flat surface as expected. This shows that the techniques are capable of profiling even flat fresh snow. Figure 

6 shows the camera image and surface profile of snow compacted by a single tyre pass. From the surface profile, 

the rut as well as tread indents are shown clearly. The rut depth was measured, using a ruler, to be 60mm which 

corresponds to the rut depth in the surface profile. Figure 7 shows the profile of a mixture of cracked ice and water 

by two tyres passes of a large military vehicle using the stereo measurement system. The measured profile shows 

the larger indents in the surface caused by the larger lugs of the tyre from this vehicle. From this test it is evident 

that the surface of the water is profiled and not the actual terrain under the water. Thus, one limitation of this 

system is that water effectively interferes with the measurement of the soil surface.   

Figure 8 shows the results from a grass-covered terrain after two tyre passes of a large military vehicle. The 

images again show the larger lug pattern. It is also evident that the grass is profiled as well showing some vertical 

elements sticking out from the profile. Therefore, if the grass-covered terrain does not conform to the ground 

profile then the grass will obscure the surface profile. Figure 9 shows a single tyre pass of a SUV vehicle on mud. 

This test clearly shows the rut formed by the tyre.  

These tests demonstrate the ability to measure the profile of various terrains from fresh snow, which shows 

very little contrast, to terrains that show much more contrast such as grass, mud and deformed snow. The spatial 

resolution is also very high ( < 1mm) over large surfaces of 400mm by 400mm from just one set of images. Both 

the spatial resolution and surface dimensions can be varied based on camera lenses, camera height and camera 

resolution. 

Fig. 5: Undisturbed fresh snow camera image (left) and corresponding surface profile (right) 
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Fig. 6: Camera image of snow after single pass of a tyre (left) and corresponding surface profile (right) 

Fig. 7: Camera image of cracked ice/water (left) and corresponding surface profile (right) 

Fig. 8: Camera image of grass land after single pass of a tyre (left) and corresponding surface profile (right) 
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Fig. 9: Camera image of mud after single pass of a tyre (left) and corresponding surface profile (right) 

4.2 Automatic Rut Depth Measurement 

As the vehicle tyre rolls through deformable soil it displaces soil to the side of the tyre forming the rut 

which is a large indentation in the soil, as well as forming heaps or piles on the side. A cross section of a typical 

rut is shown in Figure 10 indicating the piles on either side of the rut, as well as, the rut depth measurement 

which is of interest. 

Rut

Pile Pile
Undeformed

Terrain

Rut
depth

Fig. 10: Typical rut depth, showing rut and piles 

The stereovision system will create a 3D representation of the rut in Figure 10. A 3D representation, from the BM 

CPU algorithm, is shown in Figure 11 and shows the same characteristics with piles on either side of the rut. In 

Figure 11 the vertical plot axis and colourbar denote the vertical distance from the camera principal point. 

Therefore, the distance to the rut is further away from the camera than the undeformed surface. In order to 

determine the rut depth, the distance to the deepest point of the rut from the reference undeformed surface needs 

to be determined. This requires that the location of the rut and the reference undeformed surface need to be 

determined. The location of the rut and undefromed surface can easily be determined once the location of the piles 

are known. Since the vehicle can negotiate turns or slide, and camera mounting locations may change, the pile 
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locations will not be constant in the image. Therefore, an algorithm to automatically detect where the piles, 

undeformed terrain and rut are is required. The developed algorithm detects where in the 3D surface profile the 

piles are, and then can determine where the undeformed surface and the rut are in relation to the piles. 

The first step of the algorithm reduces the surface profile to a 2D lateral cross-section of the surface profile. The 

2D reduction is performed by averaging the height values by applying a box filter which slides laterally across 

the rut. The height at the centre of the box is taken as the average height across the box. This filter smooths the 

surface and removes noise. 

Fig. 11: Three dimensional cross-section of rut profile 

The algorithm uses a gradient detection method to identify where the piles are since the pile locations 

will have a turning point in the middle of the pile where the piles is the highest. The gradient algorithm applies a 

parabola fit over a region of 50 pixels. If the parabola contains a turning point within the region the fit is applied 

to and the shape of the parabola indicates a minimum (since the piles will be convex as viewed from the camera 

perspective) then the point is saved in a vector. The region of which the parabolic fit is performed is moved across 

the 2D cross section of the rut until the process has been applied across the whole 2D profile. The turning points 

which represent the piles can be identified from the  the saved vector of turning points. The piles are identified as 

the first two turning points which are within a specified distance from one another (as denoted by the tyre with). 

The points are also required to be closer to the camera than the average height of the profile. The piles also denote 

the start and end of the rut. 

Once the start and end of the rut has been determined, points on either side of these locations, away from the rut, 

are used to determine the ground plane. Points with low gradients are used to fit a first order polynomial to. A 

first order polynomial, 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐, is used to compensate for the surface which may not be perfectly level due 
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to camera misalignment, vehicle roll or the surface which is not level. The rut is defined as the perpendicular 

distance from the reference line to the furthest point in the rut (𝑋𝑋𝑝𝑝,𝑌𝑌𝑝𝑝) : 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ =  
�𝑋𝑋𝑝𝑝𝑚𝑚 − 𝑌𝑌𝑝𝑝 + 𝑐𝑐�

√1 + 𝑚𝑚2

Figure 12 shows the output of the detection algorithm on a rut profile, note the vertical axis denotes the 

distance from the camera. The figure shows the ground reference plane which accurately detects the average 

height of the ground plane. The left pile is also well detected, the right pile is slightly inaccurate. This is due to 

the lack of points to the right hands side of the rut. The deepest point in the rut is also accurately detected. The 

automatic detection algorithm therefore works very well on a single 3D profile of a rut obtained from a single left 

and right image from the calibrated stereovision system 

Fig. 12: Rut depth measurement algorithm showing rut,  ground plane, furthest point and gradient of rut 

The accuracy of the algorithm is tested by using different rut depths which were cast in concrete. Four 

different depths were created of roughly 30, 40, 50 and 60mm. The same camera setup as used in Section 3.2 is 

used to measure the depth in the centre of the rut. The rut depth was also manually measured using a Vernier, the 

results of the measurements are shown in Table 3. The results show that the measurements are within 2mm of the 
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manual measurements. It should be noted that manually identifying the deepest point in the rut is not necessarily 

the most accurate method either. The algorithm is also very efficient and capable of running at 100Hz on a 

640x480 pixel image running on a mid-range CPU (i5-570, 2.7GHz). Therefore, the overall sampling frequency 

of the systems is mainly dominated by the time to perform the disparity mapping.  The time to derermine the depth 

of the rut is not as computationally expensive 

Table 3: Manual and automatic measurement of rut depth comparison 

Manufactured Depth [mm] Measurement from Algorithm [mm] Manual Measurement [mm] 

30 26.76 27 

40 44.66 43 

50 48.87 47 

60 59.13 59 

The above analysis was only conducted on single images of ruts. The system is however intended to 

continually operate on a sequence of images. In order to test the algorithm in continually detecting the rut depth 

a video recording of an SUV driving through mud is used. During the test only a few points were measured by 

means of a vernier. Therefore, in order to validate the rut detection algorithm, the rut depth of the automatic 

detection algorithm is compared to the depth where the location of the rut and the underformed terrain on the 3D 

profile was manually selected on the image. The same reference line was fitted to the manually selected regions 

which contained undeformed terrain. The furthest point from the reference line in the manually selected rut region 

is also identified using the same process to obtain the rut depth. The result of the automatically detected algorithm 

are compared to the manually selected region are shown in Figure 13.The figure also shows the error between the 

two measurements. The results show that overall the two depth measurements are very close to one another with 

a few points of the automatic detection algorithm deviating from the manual measurements. The average error 

over the whole test is 1.6mm. This indicates that the system can automatically detect the rut and accurately 
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measure the rut depth in real time. The real time performance can be altered by changing the disparity mapping 

algorithm, this will however also affect the accuracy of the system. 

Fig. 13: Continual rut depth detection validation of algorithm. 

The main disadvantage of the system is that it is optically based. This means that obstruction of the lenses 

can result in the system being incapable of making any measurements. This can be prevented by mounting the 

system strategically to prevent soil being kicked up into the system. The system also requires suitable lighting to 

be able to capture images which are not blurred. This can be a problem at low light conditions such as from late 

afternoon. However, this can easily be corrected for by using artificial lighting by means of a lighting source.  
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5. Conclusion

This paper evaluated the feasibility of using cameras in a calibrated stereo rig to determine the rut depth of 

surface profiles of various terrains in real time using off the shelf cameras and hardware. Various disparity 

mapping algorithms are evaluated to determine the accuracy and real time capability of the algorithms. The various 

algorithms can provide good accuracy (within 1.5mm) at lower sampling speeds (15Hz) and reduced accuracy 

(5mm) at very high speed (58Hz). 

The camera system was mounted on various vehicles in front and behind the lead tyres to measure the 

undeformed and deformed profile of different terrain. The system has shown measurement capability on fresh 

snow, deformed snow, ice, grassland as well as mud. An efficient algorithm was developed which can determine 

the rut depth automatically from a sequence of images.  

The main disadvantage of the system is that it is optically based requiring a good lighting and unobstructed 

view of the terrain. This can be solved by using artificial lighting and mounting the cameras in strategic places. 

The real time measurements of rut depth can be used for mobility under off-road conditions that can change 

rapidly due to environmental conditions e.g. rain or snow, complicating the driver’s task. The techniques described 

can assist in gathering terrain and vehicle mobility data during driving that can be used directly to assist the driver 

in making safety related decisions.  
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