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subgenus Avaritia
M . T . B A K H O U M 1,2, K . L A B U S C H A G N E 3,4, K . H U B E R 5, M . F A L L 1,
B . M A T H I E U 6, G . V E N T E R 3,7, L . G A R D È S 2, T . B A L D E T 2,
J . B O U Y E R 2, A . G . F A L L 1, G . G I M O N N E A U 8 and C . G A R R O S 2,9

1Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires, BP: 2057
Dakar-Hann Route du Front de Terre, Sénégal, 2Centre de coopération internationale en recherche agronomique pour le
développement, UMR117 ASTRE, Montpellier, France, 3Agricultural Research Council-Onderstepoort Veterinary Research,
Epidemiology, Parasites and Vectors, Onderstepoort, South Africa, 4Department of Zoology and Entomology, University of Pretoria,
Pretoria, South Africa, 5Centre de coopération internationale en recherche agronomique pour le développement, UMR ASTRE,
INRA, Montpellier, France, 6Faculté de Médecine, Institut de Parasitologie et de Pathologie tropicale de Strasbourg (IPPTS),
EA7292, Strasbourg, France, 7Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa, 8Centre de
coopération internationale en recherche agronomique pour le développement, UMR INTERTRYP, Montpellier, France and 9Centre
de coopération internationale en recherche agronomique pour le développement, UMR117 ASTRE, Sainte Clotilde, Réunion

Abstract. Phylogenetic relationships of Culicoides species of the Afrotropical region
are problematic as different authors disagree on the placement of species into spe-
cific subgenera or groups. In this study we sequenced two mitochondrial (COI and
16S rDNA) and two nuclear (CAD and 28S rDNA) gene fragments to reconstruct phy-
logenetic relationships within the Avaritia, Remmia and Synhelea subgenera and the
Milnei, Neavei and Similis groups of Culicoides using both Bayesian inference and
maximum-likelihood approaches. Based on phylogenetic trees, we used the bGMYC
(Bayesian General Mixed Yule Coalescent model) and the PTP (Bayesian Poisson Tree
Processes) to investigate species boundaries. All species relationships within the stud-
ied subgenera and groups were well-supported by using morphological characters and
molecular analyses. The subgenus Avaritia includes (i) all of the species of the Imicola
group, as well as the putative new species, C. sp. #22, and we confirmed the monophyly
of this group; (ii) the Dasyops group includes C. kanagai and C. sp. #54 Meiswinkel
(new species), shown to be monophyletic; (iii) the C. sp. #20 belongs to the Orientalis
group; (iv) C. grahamii, C. gulbenkiani and C. kibatiensis. Our results also show that
subgenus Remmia is monophyletic. Relationships of species of the Milnei group were
well-supported and demonstrate the monophyly of this group. Borkent’s classification
for Similis group is confirmed. In addition, C. neavei and C. ovalis (Neavei group) are
placed in the subgenus Synhelea.

Introduction

The biting midges in the genus Culicoides Latreille (Diptera:
Ceratopogonidae), transmit a number of viruses to domestic
and wild ruminants, and equids (Mellor et al., 2000; Mullen,
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2009). This genus is distributed worldwide and includes about
1358 described species (Borkent, 2016). Currently this genus
is classified into 32 subgenera containing a number of groups;
38 groups are unaffiliated with a subgenus (Borkent, 2016).
Moreover there is a long list of miscellaneous species, not placed
in any group, representing 13% of the world fauna.

The internal classification of the genus is based on the
morphological similarity between species that includes wing
pattern or the shape of male genital structures, which in no
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way reflects real phylogenetic relationships (Borkent, 2016).
There is no consensus on the definition of groups or species
complexes for the genus Culicoides, to the point that the
literature is full of identical names for different sets and different
names for identical sets (Harrup et al., 2015). Testing of the
monophyly of subgenera and species groups has been limited
and subgenera require a systematic revision at the global
level (Mathieu, 2011). The subgeneric classification is almost
phenetic and based mostly on regional assessments, with limited
or not updated descriptions of subgeneric definition. Indeed,
some subgenera show evidence of being polyphyletic – for
example, the subgenus Oecacta Poey (Szadziewski et al., 2016)
is commonly called the ‘dumping subgenus’.

With the advances made in molecular DNA sequencing,
several molecular markers have been assessed positively for
inferring phylogenetic relationships or molecular delineation
of Culicoides species (Harrup et al., 2015). These markers are
now used widely for species identification, especially for those
that are difficult to separate morphologically (Sebastiani et al.,
2001; Pagès et al., 2005, 2009; Nolan et al., 2007; Monaco
et al., 2010), but they have been used rarely to assess phylo-
genetic relationships. Recently, Bellis et al. (2013) published a
revision of the Culicoides Imicola group using a combination of
morphological and molecular analyses. However, the validity
of all species groups and subgenera within the systematic
classification need to be revised to assess their phylogenetic
validity. As an attempt to clarify and help subgeneric affiliation,
Harrup et al. (2015) published a wing atlas for the described
subgenera. Recently, the classification of the subgenus Avaritia
Fox was revised using molecular phylogeny (Mathieu, 2011;
Bellis et al., 2013; Gopurenko et al., 2015). The critical issue in
Culicoides systematics is that it requires phylogenetic validity
(Harrup et al., 2015; Labuschagne, 2016).

Culicoides-borne pathogens (Diptera: Ceratopogonidae) in
the Afrotropical region are of interest because of major recent
outbreaks affecting livestock (Mellor et al., 2000; Mullen,
2009; Purse et al., 2015; Carpenter et al., 2017) and human
populations (Agbolade et al., 2006;Simonsen et al., 2011 ;
Bassene et al., 2015 ; Debrah et al., 2017). For example, in
the last 20 years, African horse sickness outbreaks have been
recorded in South Africa (Venter et al., 2006), Senegal (Diouf
et al., 2012) and Namibia (Scacchia et al., 2009). Recently
in West and Central Africa, high prevalence rates of Man-
sonella perstans were recorded in Culicoides specimens and
human populations (Simonsen et al., 2011; Bassene et al., 2015;
Debrah et al., 2017). However, there have been few studies on
the Culicoides fauna of the Afrotropical region. Although the
first Culicoides in this region was described over a century ago
(Enderlein, 1908), despite the high and undoubtedly under-
estimated diversity of Culicoides. Today, Culicoides species
diversity in the Afrotropical region reaches 190 described
species (Cornet & Chateau, 1970; Cornet et al., 1974; Itoua
et al., 1987; Meiswinkel & Dyce, 1989; Glick, 1990; Bakhoum
et al., 2013; Labuschagne, 2016) with about 105 Culicoides
species recorded in South Africa (Labuschagne, 2016) and 53
species in Senegal (Fall et al., 2015). These Culicoides species
are placed in nine subgenera (Avaritia, Beltranmyia Vargas,

Culicoides Latreille, Meijerehelea Wirth and Hubert, Mono-
culicoides Khalaf, Pontoculicoides Remm, Remmia Glukhova,
Synhelea Kieffer, and Trithecoides Wirth and Hubert); nine
species groups, unplaced to subgenus (Accraensis, Alboveno-
sus, Bedfordi, Dekeyseri, Inornatipennis, Milnei, Neavei,
Nigripennis, and Similis); and miscellaneous species, not
placed in any group, representing 28% of the Afrotropical
fauna. Borkent placed species of the Accraensis, Bedfordi
and Similis groups within the subgenus Synhelea (Borkent,
2016); this was in contradiction with Meiswinkel and Dyce who
published a study of this subgenus containing only the Trop-
icalis group (Meiswinkel & Dyce, 1989). The Milnei group
contains species of medical and veterinary interest because
C. zuluensis de Meillon transmit Lesetele virus, bluetongue and
Akabane viruses have been isolated from C. milnei Austen, and
Onchocerca gutturosa has been isolated from C. krameri Clas-
trier (Meiswinkel et al., 2004). This species group was unplaced
in any subgenus by Borkent (2016), whereas Meiswinkel places
this group within the subgenus Hoffmania Fox (R. Meiswinkel,
unpublished data). The classification of Culicoides species is
problematic because different authors disagree on the place-
ment of species into specific subgenera or groups (Khamala
& Kettle, 1971; Boorman & Dipeolu, 1979; Itoua et al., 1987;
Glick, 1990).

In addition, monographs and catalogues used to identify Culi-
coides species for this region are old, at times inaccurate, with
low quality illustrations. Before 1970, only two taxonomic keys
were available for adults, limited mainly to the species present
in South Africa and East Africa (Kenya, Tanzania and Uganda)
(Colçao, 1946; Fiedler, 1951). The revision undertaken by Glick
in 1990, in collaboration with Cornet, a West African fauna
specialist, includes morphological keys for adult females and
males of 55 species identified in Kenya; this remains a vital
reference work. In West Africa, taxonomic studies are rare and
often limited to subregions. Cornet and their associates worked
on groups of interest such as the Schultzei, Milnei and Similis
groups (Cornet & Chateau, 1970; Cornet et al., 1974; Itoua et al.,
1987; Cornet & Brunhes, 1994). Some of their works include
taxonomic identification keys for adults. Meiswinkel described
or redescribed and compiled an identification key for adults
and immature stages for the species of the Culicoides imicola
group (Meiswinkel, 1995; Nevill et al., 2007). Therefore, until
all species have been compared molecularly as well as morpho-
logically, it remains up to individual authors to either use the
current published subgeneric classification by Borkent or the
species groups (Labuschagne, 2016).

Besides the problematic systematics, species delimitation is
also complicated by large morphological variations observed
within certain species. Species identification is made more
difficult when the name-bearing specimen type is lost, and
the description is old with limited drawings or pictures. To
overcome this problem, numerous studies have investigated
phylogenetic relationships using molecular data together with
species delimitation methods in other insect genera (Toussaint
et al., 2015). In our opinion, these methods can be used to
revise the limit and classification of Culicoides species in the
Afrotropical region.
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Fig. 1. Geographical map of the Culicoides sampling sites. [Colour figure can be viewed at wileyonlinelibrary.com].

In the present study, we aimed at (i) inferring phylogenetic
relationships of Culicoides species collected mainly in the
Afrotropical region using two mitochondrial genes (COI and
16S rDNA) and two nuclear genes (CAD and 28S rDNA) to
investigate the monophyly of Avaritia, Remmia and Synhelea
subgenera, and Milnei, Neavei and Similis species groups;
and (ii) delineating species boundaries using bPTP (Bayesian
Poisson Tree Processes) and bGMYC (Bayesian General
Mixed Yule Coalescent) methods. This work will revise the
current internal systematic classification of Culicoides and help
future work on the identification of Culicoides species in the
Afrotropical region.

Materials and methods

Culicoides collection and morphospecies identification

Culicoides specimens were collected in 23 sites located in
12 countries of the Afrotropical region (Fig. 1) and two sites in
Lebanon (Palearctic region). Culicoides were collected through
different field missions between 2009 and 2016 with OVI
and CDC light traps set at farms or near equids. Specimens
were preserved in 70% ethanol, identified and sexed under a
binocular microscope using the available identification keys for
the region (Boorman, 1989; Glick, 1990; Cornet & Brunhes,
1994; Labuschagne, 2016). Based on the world systematic cata-
logue of Culicoides species (Borkent, 2016) and Labuschagne’s
classification (Labuschagne, 2016), specimens belonging to
the Avaritia, Remmia and Synhelea subgenera, and Milnei,
Neavei and Similis groups were considered in this study. All
specimens morphologically identified (or closely related) as

species belonging to the above-mentioned subgenera or groups
were kept. For each specimen, the wings and genitalia were dis-
sected prior to DNA extraction processing and slide-mounted
to record morphological features. All samples are kept as a
reference at Cirad, UMR117 ASTRE, Montpellier, France, and
are available upon request to the corresponding author.

DNA extraction, amplification and sequencing

Thoraxes of the Culicoides were individually homogenized
in 50 μL of phosphate buffered saline 1×. After crushing using
a piston pellet, genomic DNA was extracted using the Nucle-
oSpin® Tissue DNA Kit (Macherey-Nagel, Bethlehem, PA,
USA) according to the manufacturer’s instructions and main-
tained at −20∘C until further use.

Four fragments from cytochrome oxidase subunit I (COI), 16S
ribosomal DNA (16S rDNA), 28S ribosomal DNA (28S rDNA)
and CAD (carbamoyl-phosphate synthetase 2, aspartate transcar-
bamylase, and dihydroorotase) genes were amplified through
PCR (Table 1). PCR amplification reactions were performed in a
25-μL total reaction volume containing 1× Qiagen buffer, 1 mm
MgCl2, 0.25 mm of each dNTP, 0.2 μm of each primer, 1.25 U
Qiagen Polymerase Taq and 0.4 or 0.7 ng/μL genomic DNA
depending the gene (COI, 16S rDNA and 28S rDNA genes or
CAD gene).

Step-up PCR programs for COI, 16S rDNA and 28S rDNA
included one step of 5 cycles before final step with 35 cycles. The
PCR cycling conditions were as follows: an initial denaturation
step at 94∘C for 5 min followed by: five cycles of 94∘C for
30 s; 45∘C for COI, 42∘C for 16S rDNA or 55∘C for 28S rDNA
for 40 s; 72∘C for 1 min; 35 cycles of 94∘C for 30 s; 51∘C for
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Table 1. Primers used for PCRs and sequencing in this study.

Gene Primer name Sequence (5′ –3′)

Length of
amplified
fragment (bp) References

COI LCO1490 GGTCAACAAATCATAAAGATATTGG 710 Folmer et al. (1994)
HCO2198 TAAACTTCAGGGTGACCAAAAAATCA

16S rDNA 16SF1 CACGTAAGAACTAAATAGTCGAAC 450 Ekrem et al. (2010)
16SR1 GACCGTGCAAAGGTAGCATAATC

28S rDNA 28S_S3660 GAG AGT TMA ASA GTA CGT GAA AC 657 Dowton & Austin (1998)
28S_A335 TCG GAA GGA ACC AGC TAC TA Whiting et al. (1997)

CAD TB1.F TB1.R TTGGCCGTAAGTTCGAGGAAG AGTTCACGCAAACATCCAACG 674 –
787F GGD GTN ACN ACN GCN TGY TTY GAR CC 905 Moulton & Wiegmann (2004)
1098R TTN GGN AGY TGN CCN CCC AT

COI, 55∘C for 16S rDNA or 50∘C for 28S rDNA for 30 s; 72∘C
for 1 min; and a final extension step at 72∘C for 10 min. The
touch-down amplification PCR conditions for CAD involved
two steps: four cycles of 94∘C for 30 s, 51∘C for 40 s and 72∘C
for 1 min, and six cycles of 94∘C for 30 s, 47∘C for 40 s and 72∘C
for 1 min. These first two steps were followed by 30 cycles of
94∘C for 30 s, 42∘C for 40 s, 72∘C for 1 min, and a final extension
step at 72∘C for 10 min. The PCR products were visualized on
1.5% agarose gels with a Gel Red staining after migration of
90 min at 100 volts by electrophoresis for quality control, and
the remaining 20 μL were sequenced using the same primers as
used in PCR amplifications (https://www.genewiz.com).

Sequence analysis

Amplified sequences were used as query in a BLAST search in
the NCBI database to confirm that the amplified sequences were
the target genes. The DNA sequences were edited in Geneious
R6 (Biomatters, http://www.geneious.com/). Sequences of each
gene were independently aligned using MACSE (Multiple
Alignment of Coding SEquences accounting for frame shifts
and stop codons) (Ranwez et al., 2011) for COI and CAD
genes. For 16S and 28S rDNA sequences, alignments were
generated using Muscle (Edgar, 2004). For each alignment,
segments that had too many variable positions or gaps were
removed using Gblocks 0.91b (Castresana, 2000) to make
alignments more appropriate for phylogenetic reconstruction.
The reading frames and sequence statistics were checked under
MEGA v6.0 (Tamura et al., 2013). A test of substitution sat-
uration (Xia et al., 2003) was performed in DAMBE (Xia &
Xie, 2001). Rapid detection of selective pressure on individual
sites of codon alignments for the CAD gene was performed
using Datamonkey (Pond & Frost, 2005). Sites under pos-
itive or negative selection in this gene were inferred using
the single-likelihood ancestor counting (SLAC), fixed-effects
likelihood (FEL), mixed effects model of evolution (MEME)
and Fast Unconstrained Bayesian AppRoximation (FUBAR)
methods as implemented in the Datamonkey server (http://
www.datamonkey.org) (Pond & Frost, 2005; Murrell et al.,
2012). Positive selection for a site was considered to be statis-
tically significant when P< 0.1 for the SLAC, FEL and MEME

methods, or the posterior probability was <0.9 for the FUBAR
method. Selected sites with P< 0.05 were reported.

The following sequences were used in this study: COI
sequences from a C. bolitinos Meiswinkel population from
Reunion Island (A. Desvars, J.C. Delecolle, F. Biteau, G.
Gerbier, F. Roger and T. Baldet, unpublished data) [accession
numbers: HQ447061.1 and HQ447062.1], a C. fulvus Sen and
Das Gupta population from Australasia (Gopurenko et al., 2015)
[accession numbers: KT352267.1, KT352340.1, KT352547.1,
KT352629.1 and KT352696.1], a C. miombo Meiswinkel pop-
ulation from Benin (B. Mathieu, C. Garros, T. Balenghien, E.
Candolfi, J.C. Delecolle, and C. Cetre-Sossah, unpublished
data) [accession numbers: KF417704.1 and KF417705.1]
and a C. similis Carter population from India (Harrup et al.,
2016) [accession numbers: KT307841.1-KT307842.1]; and
CAD sequences from C. kwagga, C. loxodontis Meiswinkel,
C. gulbenkiani Caeiro, C. tuttifrutti Meiswinkel and
C. bolitinos populations from South Africa [accession num-
bers: KJ163032.1, KJ163034.1, KJ163025.1, KJ163044.1,
KJ163009.1], and C. imicola Kieffer from France [accession
number: KJ163028.1] (Bellis et al., 2013).

Phylogenetic inferences

Phylogenetic trees were reconstructed for the four markers
using Bayesian inference (BI) and maximum-likelihood (ML)
under a substitution model found using jModelTest (Darriba
et al., 2012). The Bayesian information criterion (BIC) imple-
mented within jModelTest was used to determine the most
suitable evolutionary model(s). We used BI and ML to recon-
struct phylogenetic relationships of all sequenced specimens
using COI, 16S rDNA, 28S rDNA and CAD genes separately.
For the concatenated alignment including COI, 16S rDNA and
28S rDNA, the best-fit partitioning scheme and partition-specific
substitution model were tested in PartitionFinder v1.1 (Lan-
fear et al., 2012) using the greedy algorithm, and the mrbayes
or raxml set of models. The BI analyses were performed using
MrBayes 3.2.3 (Ronquist et al., 2012). Two simultaneous and
independent runs consisting of 16 Metropolis-coupled Markov
chain Monte Carlo (MCMC) running 50 million generations
were used, with a tree sampling every 1000 generations to
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calculate posterior probabilities (PP). In order to investigate
the convergence of the runs, we investigated the split frequen-
cies and Effective Sample Size (ESS) of all the parameters,
and plotted the log-likelihood of the samples against the num-
ber of generations in Tracer 1.5 (http://BEAST.bio.ed.ac.uk/
Tracer). A value of ESS> 2710 was found as a good indicator
of convergence. The ML analyses were conducted with the best
model selected using PhyML 3.0 (Guindon et al., 2010) for each
dataset and RAxML for the concatenated dataset (Stamatakis,
2014). We performed 1000 bootstrap replicates to investigate the
level of support at each node.

Molecular species delimitation

We used the Bayesian Poisson Tree Processes (bPTP) on a
molecular phylogenetic tree constructed from COI, 16S rDNA
and 28S rDNA genes concatenated and the Bayesian General
Mixed Yule Coalescent (bGMYC) on 100 ultrametric trees
from each gene in order to delimit Culicoides species. The
PTP method (Zhang et al., 2013) inferred molecular clades
based on our inferred molecular phylogeny. The analyses were
conducted on the web server for PTP (available at http://
species.h-its.org/ptp/) using the Bayesian topology as advocated
for this method (Zhang et al., 2013). The bGMYC (Reid &
Carstens, 2012) is a Bayesian implementation of the GMYC
method. This method searches in an ultrametric gene tree
the threshold at which branching patterns represent coalescent
events or speciation events (Pons et al., 2006). We conducted
the bGMYC model using ultrametric gene trees inferred in
the BEAST 1.8.0 (Drummond et al., 2012) without outgroups
under a strict clock model and a Speciation: Yule Process Tree
Model. The runs consisted of 10 million generations sampled
every 1000 cycles. Convergence was assessed by ESS values.
A conservative burn-in of 10% was performed after checking
the log-likelihood curves in Tracer 1.5. As recommended by
Reid & Carstens (2012), 100 trees sampled at intervals from
the posterior distribution of trees using LogCombiner 1.8.0
(Drummond et al., 2012) were used to perform the bGMYC
analyses. Species delimitation analyses were conducted in R
using the package ‘bGMYC’. For each of the 100 trees selected,
the analyses consisted of 250 000 generations with a burnin
of 25 000 and a thinning parameter of 100, as performed in
Toussaint et al. (2015).

Results

Morphological identification

Based on morphological characteristics 47 101 specimens
were identified belonging to 58 Culicoides species. Of these, 153
specimens of 33 morphological units (morphospecies) belong-
ing to the Avaritia, Remmia and Synhelea subgenera, Milnei,
Neavei and Similis groups were selected. These 33 morphologi-
cal units were distributed as follow: 16 belonging to Avaritia, six
to Remmia (Schultzei group: C. enderleini Cornet and Brunhes,

C. kingi Austen, C. nevilli Cornet and Brunhes, C. oxystoma
Kieffer, C. subschultzei Cornet and Brunhes, and C. schultzei
Enderlein), one to C. tropicalis Kieffer, type species of sub-
genus Synhelea, five to the Milnei group (C. austeni Carter,
C. isioloensis Cornet, Nevill and Walker, C. milnei, C. moreli
Clastrier and C. zuluensis), two to the Neavei group (C. neavei
Austen and C. ovalis Khamala and Kettle) and three to the
Similis group (C. exspectator Clastrier, C. ravus de Meillon
and C. similis). The 16 species of Avaritia were placed in
the Dasyops group (C. kanagai Khamala and Kettle, C. sp.
#54 dark and pale forms), Grahamii group (C. grahamii Goet-
ghebuer), Gulbenkiani group (C. gulbenkiani), Imicola group
(C. bolitinos, C. imicola, C. kwagga, C. loxodontis, C. miombo,
C. pseudopallidipennis Clastrier, C. sp. #22 and C. tuttifrutti,
Cornet and Dyce) and Orientalis group (C. trifasciellus Goet-
ghebuer and C. sp. #20). Culicoides kibatiensis of the subgenus
Avaritia was not grouped. The female wing pattern of these Culi-
coides species was described (Fig. 2).

DNA sequences

Of 153 samples considered in this study, we obtained
139 sequences for the COI gene, 147 for 16S rDNA and
146 for 28S rDNA. Many samples failed sequencing to the
CAD gene (66 of 153 samples amplified). DNA sequences
of COI, 16S rDNA and 28S rDNA genes generated in
this study are deposited in GenBank (see Table S1 for
additional details): COI (MF399674–MF399811); 16S
rDNA (MF422796–MF422942); 28S rDNA (MF422943–
MF423087).

The final concatenated alignment of COI, 16S rDNA and 28S
rDNA yielded 132 sequences of 1493 bp for 31 morphological
units corresponding to all studied Culicoides species excluding
C. trifasciellus and C. sp. #54 pale form. Information relative
to sequence statistics and best-fit partitioning scheme and
partition-specific substitution model are provided in Tables 2
and 3. Rapid detection of selective pressure on individual sites
of 176 codons for the CAD gene found 11 positively selected
sites. These 11 sites were removed in order to make a better
phylogenetic tree using the CAD gene. One hundred and sixty
five negatively selected sites were also observed for this gene.
Saturation tests as a function of the genetic distance estimated
under substitution model JC69 showed low saturation of DNA
sequence alignments.

Phylogenetic relationships

Phylogenetic analyses conducted with COI, 16S rDNA and
28S rDNA genes concatenated, and the CAD gene are repre-
sented in Figs 3 and 4, respectively.

A concatenated COI, 16S rDNA and 28S rDNA alignment of
132 specimens which included all studied Culicoides species
excluding C. trifasciellus and C. sp. #54 pale form, contained
six clades: C1–C6 (Fig. 3). CAD alignment of 72 sequences,
including six sequences from GenBank: KJ163009.1,
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Subgenus Avaritia
Diagnostics: Eyes contiguous. Sensilla coeloconica on each of flagellomeres: 1, 9-13 or 1, 10-13. The 3rd palpal

segment is usually slender with a single sensory pit. Spermathecae: two ovoid well-developed with short necks, third 
rudimentary spermathecae and presence of a sclerotized ring. Short parameres and usually separate. 

Imicola group

C. imicola ( ):

Proximal margin of pale spot in r3 cell is diamond shaped; 
Vein M2 is dark at wing margin; 
Pale spot above M2 vein is long and narrow. 

C. bolitinos ( ): 

Proximal margin of 3rd post stigmatic pale spot in r3 cell is 
curved; 
Spot over M2 vein at margin is narrowly dark. 

C. kwagga ( ): 

Proximal margin of pale spot in r3 cell is diamond shaped; 
Dark spot at angle of anal cell is long. 

C. loxodontis ( ): 

Wing pale with dark spots; 
Proximal margin of pale spot in r3 cell is diamond shaped; 
Area across M2 vein to wing margin is pale. 

C. miombo ( ): 

Wing dark with pale smudge; 
Dark spot at angle of anal cell is long. 

C. sp. # 22 (undescribed) ( ): 

Similar to C. bolitinos; 
Dark spot between 2nd costal spot and pale spot in r3 cell is 
trapezoid-shaped. 

C. pseudopallidipennis ( ):

Very similar to C. imicola; 
Spot over M2 vein at margin is narrowly dark. 

C. tuttifrutti ( ) 

Wing pattern very similar to that of C. pseudopallidipennis
but spot over M2 vein is narrowly pale. 

Fig. 2. Female wing pattern of Culicoides species of Avaritia subgenus Fox, 1955; Remmia subgenus Glukhova, 1972; Synhelea subgenus Kieffer,
1925; and Milnei, Neavei and Similis groups included in our study. The wings were photographed using a ×4 lens. Bars = 200 𝜇m.

KJ163025.1, KJ163028.1, KJ163032.1, KJ163034.1 and
KJ163044.1 (Bellis et al., 2013), corresponding to 22
species [C. bolitinos, C. gulbenkiani, C. imicola, C. kanagai,
C. kibatiensis Goetghebuer, C. kwagga, C. loxodontis,
C. miombo, C. pseudopallidipennis and C. tuttifrutti (Avaritia),
C. austeni, C. milnei, C. moreli and C. zuluensis (Milnei group),

C. enderleini, C. kingi, C. nevilli, C. oxystoma, C. schultzei
and C. subchultzei (Remmia), C. tropicalis (Synhelea), and
C. similis, Ingram and Macfie (Similis group)], contained four
clades: C′1 to C′4 (Fig. 4). The clades C1 (Fig. 3) and C′1
(Fig. 4) contained all of the specimens affiliated to the subgenus
Avaritia. Regarding Fig. 3, Culicoides grahamii appeared at
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Subgenus Avaritia

Grahamii group

C. grahamii ( ):

Dark wing with of pale spots; 
1st costal spot across the r-m crossvein is round; 
2nd costal spot is wider than the first costal spot; 
Small pale spot in r3. 

Dasyops group

C. kanagai ( ): 

Very pale wing; 
Dark area is on costal above and between r-m crossvein and 2nd 

radial cell. 

C. sp. #54 pale form (undescribed) ( ): 

Pale wing with faint pattern of dark spots; 
Dark spot between pale spot in r3 cell and 2nd costal spot is thin. 

C. sp. #54 dark form (undescribed) ( ): 

Similar to that of C. sp. # 54 pale form. Dark spot between spot 
r3 cell and 2nd costal spot is larger than in C. sp. #54 pale form. 

Orientalis group

C. trifasciellus ( ):

1st  costal spot is square and 2nd costal spot is round; 
Dark spot between 2nd costal spot and small pale spot in r3 is 
large. 

C. sp. # 20 ( ): 

Very similar to C. trifasciellus; 
Pale spot in r3 cell is wider than that of C. trifasciellus. 

Gulbenkiani group

C. gulbenkiani ( ): 

Hourglass-shaped pale spot between 2nd costal spot and 3rd post 
stigmatic pale spot in r3 cell; 
Tip of costal vein pale and intrudes into the 2nd costal spot. 

Other Avaritia (No group) 

C. kibatiensis ( ):

Tip of 2nd radial cell pale and intrudes into the 2nd costal spot. 
3rd post stigmatic pale spot in r3 cell does not touch the wing 
margin. 

Fig. 2. Continued.

the basal position within clade C1. The internal subdivision
of clade C1 (Avaritia) is recovered as monophyletic with a
strong support for the C2 and C3 clades (PP= 1/ BS= 75 for
C2, PP= 1/BS= 83 for C3). The clade C2 contained all the
studied species of the Imicola group (erected by Khamala and
Kettle in 1971, and completed by Meiswinkel in 1995) as
well as putative new species, C. sp. #22. Species relationships

within the Imicola Group (C. bolitinos, C. imicola, C. kwagga,
C. loxodontis, C. miombo, C. pseudopallidipennis, C. sp. #22,
and C. tuttifrutti) were well-supported and resolved at the
concatenated phylogenies constructed, but less so at the CAD
gene. Culicoides gulbenkiani sequence from GenBank and
C. kibatiensis were nested among the Imicola group in the CAD
phylogeny (Fig. 4). The clade C3 cluster includes two groups
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Subgenus Remmia

Diagnostics: Eyes narrowly to moderately separate. Sensilla coeloconica are normally on each of flagellomeres 1, 6-8 or 1, 
3, 5-8 or 1, 5-8 and occasionally on 3 and 4. The 3rd palpal segment is moderately inflated with a single sensory pit. Distinct
wing pattern with 3 to 4 pale spots in r3 cell, first two spots often connected to form an hourglass-shaped spot. Radial cells 
greatly reduced. 

Schultzei group is the only one of this subgenus. 

C. enderleini ( ): 

Pale spot in cua1 cell away from wing margin towards cubital 
fork; 

C. kingi ( ):

Two pale spots in cell cua1; m2 cell with a basal spot which 
runs over M2 vein and joins the basal spot in cell m1; 
Tips of CuA1 and CuA2 veins are dark-bordered at wing 
margin. 

C. nevilli ( ): 

Pale spot in cua1 cell on wing margin; 
Tips of CuA1 and CuA2 veins are dark-bordered at wing 
margin. 

C. subschultzei ( ): 

Pale spot in cua1cell long and narrow touch wing margin but 
not CuA1 vein. 

C. oxystoma ( ):

Wing pattern very similar to that of C. subschultzei; 
Small pale spot under 2nd radial cell; 
Tips of CuA1 and CuA2 veins are pale-bordered at wing 
margin. 

C. schultzei ( ): 

Two pale spots in cua1cell: one is round and touches the wing 
margin and the other is long next to CuA1 vein. 

Fig. 2. Continued.

with strong support: C. sp. #20, affiliated to the Orientalis
group, and specimens of the Dasyops group, C. sp. #54 dark
form and C. kanagai. In the phylogenetic tree constructed
from COI, relationship between C. fulvus population from
Australasia and C. sp. #20 was strongly supported in Orien-
talis group (see Figure S1 for additional details). In addition,
C. sp. #20 was close to C. trifasciellus (Orientalis group) in the
phylogenetic tree constructed from the 16S rDNA gene (see
Figure S2 for additional details). Phylogenetic relationships
between C. kanagai, C. sp. #54 dark form and C. sp. #54 pale

form were confirmed in phylogenetic trees using 16S rDNA and
28S rDNA genes (see Figures S2 and S3 for additional details).

All of the studied species of the Milnei group (C. austeni,
C. isioloensis, C. milnei, C. moreli and C. zuluensis) constituted
a monophyletic clade with strong support at the concatenated
and CAD phylogenies constructed (PP= 1/ BS= 87 for clade C4
in Fig. 3, PP= 1/BS= 100 for clade C′2 in Fig. 4).

All phylogenies (concatenated and CAD phylogenies con-
structed) strongly supported the close relationship between
C. tropicalis, type species of subgenus Synhelea, and species
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Tropicalis group (subgenus Synhelea): 

Diagnostics: Eyes separated. The 3rd palpal
segment is usually slender with a single deep sensory 
pit. Sensilla coeloconica on each of flagellomeres varies
within the group. Spermathecae: two ovoid well
developed spermathecae with short necks, 3rd 

rudimentary spermathecae and presence of sclerotized 
ring. 

Similis group

Diagnostics: Eyes very narrowly separated. 
The 3rd segment of the maxillary palpus inflated with 
single large, deep sensory pit. Sensilla coeloconica on 
each of flagellomeres: 1, 3, 5-8 or 1, 5-8 or 1, 8-12 or 1- 
8. Spermathecae: 2 ovoid spermathecae with 3rd 

rudimentary spermathecae and sclerotized ring present. 

C. tropicalis ( ): 

Pale spot below 2nd costal spot crosses vein M1. 
1st costal spot does not cross r-m crossvein 
. 

Neavei group

Diagnostics: Eyes separated moderately. No 
pale spot between 1st and 2nd costal spots. Spermathecae:
2 ovoid spermathecae with 3rd  rudimentary 
spermathecae and sclerotized ring present. Sensilla
coeloconica on each of flagellomeres: 1, 8-12 or 1, 9-12. 

C. neavei ( ): 

Pale spots in r3, m1, m2, cua1 and anal cells touch wing 
margin. 

C. ovalis ( ):

Similar to C. neavei but the 2nd costal spot is smaller and round; 
Pale spots in basal half of m1 and m2 cells are more square- 
shaped. 

C. similis ( ): 

Small pale spots in r2, m1 and m2 cells; 
Pale spot slightly below 2nd costal spot does not cross vein M1. 

C. exspectator ( ):

Wing with pale streaks situated just above and below middle of 
vein M2; 
Pale spot below the 2nd costal spot touches and merges with 
vein M1 to form a pale streak. 

C. ravus ( ):

No pale markings on the wing; 

Fig. 2. Continued.

of the Similis group. Clade C5 in Fig. 3 shows strong sup-
port (PP= 1/BS= 94) and contains C. (Synhelea) tropicalis,
three species of the Similis group (C. exspectator, C. ravus and
C. similis) and two species of the Neavei Group (C. neavei
and C. ovalis). Regarding the constructed CAD phylogeny
(Fig. 4), clade C′3 (PP= 1/BS= 68) contains C. tropicalis and
C. similis.

All species of the subgenus Remmia studied were
well-supported and congruently resolved in the concate-
nated and CAD phylogenies (PP= 1/BS= 100 for clade C6
in Fig. 3, PP= 1/BS= 100 for clade C′4 in Fig. 4). The
subgenus Remmia was recovered as monophyletic with
strong support (1/100) and contained the six studied species
(C. enderleini, C. kingi, C. nevilli, C. oxystoma, C. subschultzei
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Milnei group: 

Diagnostics: Wing with prominent pattern of distinct pale spots; distal portion of 2nd radial cell is pale. 
Spermathecae: two ovoid well-developed with 3rd rudimentary spermathecae and sclerotized ring present at junction of 
ducts. Sensilla coeloconica on each of flagellomeres: 1, 9-13 or 3, 11-15. The 3rd segment of maxillary palpus is with 
more than 1 sensory pit. 

C. milnei ( ): 

1st costal spot triangular and merges with pale spot above costal 
vein; 
Pale spots in r3, m1 and m2 cells do not touch wing margin; 
Single pale spot in cua1 cell on the wing margin. 

C. austeni ( ):

Very similar to that of C. milnei; 
Pale spots on either side of the middle of the M2 vein are 
reduced. 

C. moreli ( ):

Two pale spots in cua1 cell: one near wing margin and the other 
at junction of veins CuA2 and CuA1 (cubital fork); 
Tips of veins M1, M2, CuA1 are pale. 

C. isioloensis ( ):

Double spot straddling vein M2, midway between base and tip 
of vein and these are connected with streaks to spot in cell m; 
Apex of wing pale between M1 and M2 veins; 
Two equal pale spots in anal cell, one at wing margin other near 
vein; 
Single pale spot in cua1 cell on the wing margin. 

C. zuluensis ( ):

Tips of CuA1, CuA2, M1 and M2 veins are dark; 
1st costal spot large and square; 
Single pale spot in cua1 cell on the wing margin. 

Fig. 2. Continued.

and C. schultzei). The phylogenetic relationships between the
different clades are not well-supported and do not allow strong
conclusions.

Molecular species delimitation

Using COI, 16S rDNA and 28S rDNA, we found that
the number of putative species varied depending on the
method and molecular markers used (Fig. 3). Based on the

bGMYC method with 16S rDNA and the COI gene, results
were similar unlike 28S rDNA that had a lower resolution.
Analysis based on the bPTP method using a concatenated
phylogenetic tree yielded very similar results to the clus-
ters formed by morphological identification, unlike analysis
based bGMYC method using the genes separately. Putative
MOTUs (Molecular operation taxonomic units) were observed
in C. bolitinos, C. pseudopallidipennis, and C. oxystoma
(Fig. 3). The Cluster of C. bolitinos from Madagascar, Mozam-
bique and Reunion (with posterior probability= 0.85) was
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Table 2. Sequence statistics of the four gene fragments.

COI
16S
rDNA

28S
rDNA CAD

Length (pb) 567 259 667 495
Percentage C+G (%) 30.53 21.3 39.67 50
Number of variable sites 313 107 606 233
Number of parsimony

informative sites
270 90 477 192

Table 3. Partition models and implemented parameters of the BI
analysis.

Partitioned
dataset

Nucleotide model
under BIC

Implemented model
and related parameters

1©COI 1st GTR+ I+G nst= 6, rates= invgamma
2©COI 2nd GTR+ I+G nst= 6, rates= invgamma
3©COI 3rd GTR+ I+G nst= 6, rates= invgamma
4©16SrDNA GTR+ I+G nst= 6, rates= invgamma
5©28SrDNA HKY+ I+G nst= 2, rates= invgamma

separated from that C. bolitinos from South Africa and
Kenya (PP= 0.65) (Fig. 3). We also observed a high level of
divergence within C. pseudopallidipennis and C. oxystoma
(Fig. 3). The bPTP analysis conducted on the concate-
nated phylogenetic tree showed two distinct clusters for
C. pseudopallidipennis and also C. oxystoma. Some specimens
of C. pseudopallidipennis from Senegal (PP= 0.98) were sepa-
rated from C. pseudopallidipennis from Benin and some other
specimens from Senegal (PP= 0.80). Molecular delineation of
C. oxystoma based on the bPTP analysis using the concate-
nated phylogenetic tree was very strong (Fig. 3). The cluster of
C. oxystoma from Lebanon was separated from those of Senegal
and Mali with PPs of 1.0 and 0.98, respectively. However, all
of these putative MOTUs were not well-supported by bGMYC
conducted on individual genes.

Discussion

The aim of this study was to demonstrate the monophyly of sub-
genera and groups of the genus Culicoides, previously described
in the literature, with special focus on the Afrotropical region.
We used an integrative taxonomic approach incorporating four
genes (COI, 16S rDNA, 28S rDNA and CAD) and morphologi-
cal data to examine species boundaries as well as phylogenetic
relationships of the Avaritia, Remmia and Synhelea subgenera,
and Milnei, Neavei and Similis groups.

Because of missing sequences for the CAD gene, we per-
formed separate phylogenetic analysis for the CAD gene and
concatenated COI, 16S rDNA and 28S rDNA genes. Missing
data were observed for the CAD gene as a consequence of ampli-
fication and sequencing difficulties despite several attempts with
previous published primer sets (Moulton & Wiegmann, 2004;
Bellis et al., 2013; Gopurenko et al., 2015).

Relationships between Culicoides species from the first phy-
logenetic tree using the CAD gene did not fit that generated by
other genes or delimited by morphology. Moreover, rapid detec-
tion of selective pressure on individual sites of 176 codons for
the CAD gene found 11 positively selected and 165 negatively
selected sites. Selective pressures may have the ability to gener-
ate phylogenetic signal that is different from ancestry (Massey
et al., 2008). Because of the amplification issue and the positive
signal for selective pressure, unlike the other molecular markers
studied, we do not consider the CAD gene to be a good maker
for phylogeny studies of Afrotropical Culicoides species. Other
primers sets from other arthropod groups could be used in future
works (Sikes & Venables, 2013). The phylogenetic tree using
the CAD gene without positively selected sites showed relation-
ships between Culicoides subgenera or groups in line with the
morphology. Indeed, an increase in the positive selection rate
has two possible modes of action on phylogenies: (i) it causes
long branch attraction, and (ii) it generates convergence or par-
allel evolution (homoplasy) through similar selective pressures
(Philippe et al., 2000; Massey et al., 2008). Negative selection
also has potential modes of action on phylogenies (Townsend,
2007; Massey et al., 2008).

All species relationships within the studied subgenera and
groups were well-supported and congruently resolved in the
concatenated phylogenetic tree (COI, 16S rDNA and 28S
rDNA), but less so for each gene individual. In concatenated
and CAD phylogenetic trees, relationships between the different
clades were not well-supported and do not allow strong con-
clusions. In our study, phylogenetic relationships and molecular
delimitation of species using bPTP on the concatenated phyloge-
netic tree were in accord with that delimited by morphology, but
less so with bGMYC based on COI, 16S rDNA and 28S rDNA
genes, and showed potential cryptic species within the clus-
ters of C. bolitinos, C. pseudopallidipennis and C. oxystoma.
In fact, Cornet and Brunhes suggested that C. oxystoma is a
species complex (Cornet & Brunhes, 1994); this is corroborated
by the highest level of intraspecific divergence being observed
in C. oxystoma based on COI sequences in previous studies
(Bakhoum et al., 2013; Harrup et al., 2016). In our opinion, fur-
ther investigation of C. oxystoma specimens from the distribu-
tion area of this species (West Africa, Saharo-Arabian, Oriental
and Australian regions) is necessary in order to delineate species
within the Oxystoma group.

Molecular analyses using the CAD gene and concatenated
COI, 16S rDNA and 28S rDNA genes provided strong evi-
dence that subgenus Avaritia includes species of Imicola group,
C. kibatiensis (not grouped), C. sp. #20 (Orientalis group),
species of Dasyops group (C. kanagai and C. sp. #54 dark form),
C. gulbenkiani (Gulbenkiani group) and C. grahamii (Grahamii
group). The Imicola group including C. bolitinos, C. imicola,
C. kwagga, C. loxodontis, C. miombo, C. pseudopallidipennis,
C. tuttifrutti and C. sp. #22 (a putative new species) is mono-
phyletic. This monophyletic group is regarded as a natural
species complex within the subgenus Avaritia (Meiswinkel,
1995; Bellis et al., 2013). Based on adult characters, Meiswinkel
(2004) separated the Imicola and Orientalis groups. Using mor-
phological characters, C. sp. #20 from Senegal was closely
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*/*

G5HBEN _ C. miombo
E9HMKKEN _ C. miombo

D3HSALSEN _ C. miombo

BF.BB.01 _ C. miombo

D4CSALSEN _ C. miombo

D4BSALSEN _ C. miombo

G5DBEN _ C. miombo

E5CMKKEN _ C. miombo

B3BMAMG _ C. bolitinos

B5EMAMZ _ C. bolitinos

RE.BG.01 _ C.bolitinos
0.7/* RE.BG.02 _ C. bolitinos

B2HMAMG _ C. bolitinos

ZA.KW.01 _ C.bolitinos

0.7/-

*/*

E5EMKKEN _ C. bolitinos

KEN.55 _ C. bolitinos

KEN.54 _C. bolitinos

E5AMKKEN _ C. bolitinos

E4GMKKEN _ C. bolitinos

E5GMKKEN _ C. bolitinos

A7HMAZW _ C. tuttifrutti

A7GMAZW _ C. tuttifrutti

A7EMAZW _ C. tuttifrutti
ZA.PR.06 _ C.tuttifrutti

*/75
C2

*/86 */*
ZA.KR.02 _ C. loxodontis

ZA.KR.01 _ C. loxodontis

C5HTHSEN _ C. pseudopallidipennis

C3CTHSEN _ C. pseudopallidipennis

C2FTHSEN _ C. pseudopallidipennis

C2BTHSEN _ C. pseudopallidipennis

B8CPOSEN _ C. pseudopallidipennis

C2DTHSEN _ C. pseudopallidipennis

*/84 C2ATHSEN _ C. pseudopallidipennis
BJ.TR.13 _ C. pseudopallidipennis

BJ.TR.14 _ C. pseudopallidipennis

C3GTHSEN _ C. pseudopallidipennis

C3BTHSEN _ C. pseudopallidipennis

B2DMAMG _ C. imicola

A11HPHSEN _ C. imicola

A12GPHSEN _ C. imicola

A12BPHSEN _ C. imicola

A12DPHSEN _ C. imicola

B5CMAMZ _ C. imicola

0.95/-

*/* D4GSALSEN _ C. imicola

B5DMAMZ _ C. imicola

B9APOSEN _ C. imicola

G6GBEN _ C. imicola

D5BBOGCAM _ C. imicola

D7BPLGML _ C. imicola

*/*

*/* E4FMKKEN _ C. sp. #22

E4EMKKEN _ C. sp. #22

ZA.41 _ C. kwagga

ZA.42 _ C. kwagga

RE.BG.06 _ C. kibatiensis

D3ASARSEN _ C. sp. # 20

D2DSARSEN _ C. sp. # 20
D2HSARSEN _ C. sp. # 20

*/56
C1

*/83

C3 */*

*/* D2ESARSEN _ C. sp. # 20

D2GSARSEN _ C. sp. #20

D2FSARSEN _ C. sp. #20

ZA.15 _ C. sp. # 54df

A4FSWZW _ C. sp. # 54df

ZA.KR.07 _ C. kanagai

*/*

E4AMKKEN _ C. gulbenkiani

REU.50 _ C. grahamii

REU.49 _ C. grahamii

REU.51 _ C. grahamii

F1DMKKEN _ C. zuluensis

B2CMAMG _ C. zuluensis

B3CMAMG _ C. zuluensis

*/79

*/87
C4

*/94

*/60

*/*

*/*

*/* B2AMAMG _ C. zuluensis

ZA.7 _ C. zuluensis

ZA.6 _ C. zuluensis

D8FPLGML _ C. milnei

A12HPHSEN _ C. austeni

ZA.23 _ C. isioloensis

ZA.22 _ C. isioloensis

C1DMBSEN _ C. moreli

C1EMBSEN _ C. moreli

C1BMBSEN _ C. moreli

C1AMBSEN _ C. moreli

G8FPLGML _ C. moreli

F6EMKKEN _ C. moreli

E2GSWZW _ C. exspectator

E2FSWZW _ C. exspectator

Milnei group

Similis group

*/94
C5

0.94/-

*/*

*/58

*/*

*/* ZA.19 _ C.tropicalis

ZA.20 _ C.tropicalis

ZA.27 _ C. similis

ZA.29 _ C. similis

C4DMBSEN _ C. similis

C4EMBSEN _ C. similis

C4CMBSEN _ C. similis

A8GSWZW _ C. ravus

A8FSWZW _ C. ravus

ZA.52 _ C. neavei

ZA.53 _ C. ovalis

Tropicalis group

Similis group

Neavei group
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Fig. 3. Culicoides molecular phylogenetic relationships and species boundaries using COI, 16S rDNA and 28S rDNA. Posterior probabilities and
bootstrap values from the RAxML analysis are presented for the most important nodes (asterisks indicate PPP 0.95 or BSP 95; – indicate that the node
was not recovered in the RAxML topology). [Colour figure can be viewed at wileyonlinelibrary.com].
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*/*

G4HBOSBEN _C. enderleini
D8BPLGML _ C. enderleini
B6FMAMZ _ C. enderleini
B6HMAMZ _ C. enderleini
B6GMAMZ _ C. enderleini
F1HMKKEN _ C.enderleini
B1GMAMG _ C. enderleini
B1HMAMG _ C. enderleini
G4GBOSBEN _ C.enderleini
D8APLGML _ C. enderleini
C5EMBSEN _ C. enderleini
D8CPLGML _ C. enderleini
D7HPLGML _ C. enderleini
B1CMAMG _ C. nevilli

C6*/*

0.9/80 B3FMAMG _ C. nevilli
C6GSARSEN _ C. nevilli
B5AMAMZ _ C. subchultzei
B6AMAMZ _ C. subschultzei SubgenusREMMIA

0.75/90

*/*

A9AMAZW _ C. subschultzei
B6CMAMZ _ C.subschultzei
B4DMAMZ _ C.subchultzei

B4FMAMZ _ C. schultzei
B3HMAMZ _ C. schultzei
C7BSARSEN _ C. kingi
LB.39 _ C. oxystoma

*/*

LB.40 _ C. oxystoma
C4HMBSEN _ C. oxystoma
D7GPLGML _ C. oxystoma
D8DPLGML _ C. oxystoma
C12HMBSEN _ C. oxystoma
C5DMBSEN _ C. oxystoma

C4GMBSEN _ C. oxystoma
C5BMBSEN _ C. oxystoma
C5FMBSEN _ C. oxystoma
C5AMBSEN _ C. oxystoma

0.04

PP≥0.95

0.70<PP>0.95

0.50<PP>0.70

PP≤0.50

Presence of potential species

*   PP≥0.95 orBS≥95

- Node not recovered in RAxML topology
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Fig. 3. Continued.

related to species within the Orientalis group. In the Afrotropical
region, the Orientalis group includes C. brosseti, C. dubitatus
and C. trifasciellus (Kremer et al., 1975; Meiswinkel, 2004).
Relationships between C. trifasciellus and C. sp. #20 in phylo-
genetic trees constructed from 16S rDNA and 28S rDNA were
strongly supported. The status of C. sp. #20 still needs to be
clarified in future studies. The Dasyops group, as suggested by
Meiswinkel (1987) with a redescription of C. kanagai Khamala
and Kettle in 1971, is monophyletic and C. kanagai and C. sp.
#54 dark form were well-supported. Species within the Dasy-
ops group are typically Afrotropical. This group includes
C. alticola; C. kanagai; C. dasyops and recently C. sp. #54
Meiswinkel (new species, not described) (Nevill et al., 2009;
Labuschagne, 2016). The subgenus Avaritia was erected by Fox
in 1955. Definition of Avaritia was completed later, based on
adult morphology (Blanton & Wirth, 1979; Wirth & Hubert,
1989). Several species belonging to Avaritia are of consider-
able veterinary importance as vectors of important arboviruses
such as African horse sickness virus (AHSV), Bluetongue virus
(BTV) and Epizootic hemorrhagic disease virus (EHDV) (Ven-
ter et al., 1998, ; Meiswinkel et al., 2004).

Relationships between C. austeni, C. isioloensis, C. milnei,
C. moreli and C. zuluensis were well-supported. These species
belong to the Milnei group, as defined by Cornet et al. (1974).
Our molecular analyses using the CAD gene and concatenated
COI, 16S rDNA and 28S rDNA genes indicated that the Mil-
nei group is monophyletic as reported previously in another
study based on COI and 28S rDNA sequences (Augot et al.,

2017). Some species of the Milnei group are of medical and
veterinary interest (Labuschagne, 2016), such as C. austeni
which is suspected in the transmission of Mansonella perstans
to humans, and C. milnei of BTV to livestock (Labuschagne,
2016). According to Borkent’s classification (Borkent, 2016),
species of the Milnei group are not in any subgenus, whereas
their morphological characters are similar to the subgenus
Hoffmania. Meiswinkel placed this group in the subgenus
Hoffmania (Meiswinkel, ). Future investigations will take into
account the morphological characteristics and molecular anal-
yses of the Milnei group and C. insignis Lutz, type species of
the subgenus Hoffmania, in order to place this group within
Hoffmania or to create a new subgenus for this monophyletic
group.

Species relationships within the subgenus Synhelea, with
C. tropicalis as type species, were revised by Meiswinkel and
Dyce in 1989 based on morphological characters. They limited
this subgenus to the Tropicalis group that includes C. camicasi
Cornet and Chateau, C. congolensis Clastrier, C. dispar Clas-
trier, C. dutoiti de Meillon, C. moucheti Cornet and Kremer,
C. pellucidus Khamala and Kettle, C. perettii Cornet and
Chateau, C. tauffliebi Clastrier, C. tropicalis and C. vicinus
Clastrier (Meiswinkel & Dyce, 1989). Regarding molecular
analyses using the CAD gene, C. tropicalis is recovered as
sister taxon to C. similis. Borkent’s classification placed species
from the Similis group in subgenus Synhelea (Borkent, 2016).
Concatenated COI, 16S rDNA and 28S rDNA genes provide
strong relationships between C. tropicalis and the Similis group
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Fig. 4. Culicoides molecular phylogenetic relationships using CAD gene. Posterior probabilities and bootstrap values are presented for the most
important nodes (asterisks indicate PPP 0.95 or BSP 95). [Colour figure can be viewed at wileyonlinelibrary.com].

(C. exspectator, C. similis and C. ravus). Culicoides ravus
of the Similis group is more closely related to C. neavei and
C. ovalis of the Neavei group. These two species are recovered
as sister taxon with C. ravus. Thereby C. tropicalis, the Similis
group (C. exspectator, C. ravus and C. similis) and the Neavei
group (C. neavei and C. ovalis) are recovered as monophyletic
with strong support (1.0/94). Based on our molecular analyses,
Borkent’s classification for the Similis group is maintained.
And it is probable that the Neavei group, unplaced to subgenus
(Borkent, 2016), belongs to subgenus Synhelea.

The subgenus Remmia is monophyletic with strong support
(1.0/100) based on our molecular analyses using the CAD
gene and concatenated COI, 16S rDNA and 28S rDNA genes.
This subgenus, with C. schultzei as type species, includes the
Schultzei group with species of veterinary interest, such as
C. kingi involved in the transmission of Onchocerca gutturosa,
a widespread parasite of Sudanese cattle (El Sinnary & Hussein,
1980) or C. oxystoma, potential vector of Akabane virus in
Japan (Kurogi et al., 1987) and AHSV in Senegal (Fall et al.,
2015; Bakhoum et al., 2016). Molecular delineation using bPTP
and bGMYC methods for C. oxystoma from Lebanon and
Senegal showed that C. oxystoma is a complex of sibling

species, as previously noted by several authors (Cornet &
Brunhes, 1994; Bakhoum et al., 2013; Harrup et al., 2016).
In order to examine potential species within C. oxystoma, we
suggest the use of Bayesian species delimitation implemented
in Bayesian Phylogenetics and Phylogeography (BPP) (Rannala
& Yang, 2003; Yang & Rannala, 2010) in future investigations.
This approach generates the posterior probabilities of species
assignments taking account of uncertainties due to unknown
gene trees and the ancestral coalescent process (Toussaint et al.,
2015).

We conclude that all species relationships within studied sub-
genera and groups were well-supported. However, we recorded
a new species C. sp. #22 within the Imicola group which was
revealed as monophyletic within the subgenus Avaritia. The
Milnei group was regarded as monophyletic with strong sup-
port. Considered as monophyletic (Bakhoum et al., 2013; Augot
et al., 2017), monophyly of the Schultzei group (subgenus Rem-
mia) was confirmed with C. oxystoma as a potential complex of
sibling species. In our study, all studied species of the Similis
group were placed in the subgenus Synhelea in accordance with
Borkent’s classification. In addition, C. neavei and C. ovalis
(Neavei group) were placed in the subgenus Synhelea.
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