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Abstract 

 

Thermal systems play a main role in many industrial sectors. This study is an elucidation of the utilization of artificial neural networks 

(ANNs) in the modelling of thermal systems. The focus is on various heat transfer applications like steady and dynamic thermal 

problems, heat exchangers, gas-solid fluidized beds, and others. Solving problems related to thermal systems using a traditional or 

classical approach often results to near feasible solutions. As a result of the stochastic nature of datasets, using the classical models to 

advance exclusive designs from the experimental dataset is often a function of trial and error. Conventional correlations or fundamental 

equations will not proffer satisfactory solutions as they are in most cases suitable and applicable to the problems from where they are 

generated. A preferable option is the application of computational intelligence techniques focused on the artificial neural network 

model with different structures and configurations for effective analysis of the experimental dataset.  The main aim of current study is 

to review research work related to artificial neural network techniques and the contemporary improvements in the use of these 

modelling techniques, its up-and-coming application in addressing variability of heat transfer problems. Published research works 

presented in this paper, show that problems solved using the ANN model with regression analysis produced good solutions. Limitations 

of the classical and computational intelligence models have been exposed and recommendations have been made which focused on 

creative algorithms and hybrid models for future modelling of thermal systems. 
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Nomenclature 

 

Wk1 This defines the neuron weigh or possible connection strength from first neuron 

Wk2 Weight This defines the neuron weigh or possible connection strength from second neuron 

Wk3 This defines the neuron weigh or possible connection strength from third neuron 

Wkn This defines the neuron weigh or possible connection strength from n neuron 

X1 This defines available Input from first neuron to the kth neuron 

X2 This defines available Input from second neuron to the kth neuron 

Xn This defines available Input from n neuron to the kth neuron 

j This represents the Index for input value 

n This presents the index for source of dumpsites 

k Index classifying the connecting route of neuron 

Uk Combiner output in linear form as a result of input signal 

Vk Combiner in a linear form with bias serving as support to the input signal 

Yk Over-all output 

 

 
1. Introduction 

 

 In many engineering applications, heat is exchanged between two fluids which are at different temperatures and separated by a 

solid wall. The device used for this purpose is called a heat exchanger. Heat exchangers are used either individually or as components 

of large thermal systems in a wide variety of commercial, industrial, and household applications such as space heating, air-conditioning, 

power production, refrigeration, manufacturing processes, waste heat recovery, chemical processing, electronic chip cooling, etc. The 
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use of heat exchangers in these applications provides an opportunity to provide the needed thermal energy required and thus improve 

the system or process efficiency, thus saving energy [1]. All heat exchangers operate under the same fundamental principles irrespective 

of their types and designs. These principles are the Zeroth law, and the First and Second Laws of thermodynamics. The Zeroth law 

concerns itself with temperature as a characteristic of thermodynamic systems in thermal equilibrium. It states that thermodynamic 

systems in thermal equilibrium have the same temperature, this means that, if two systems ‘A’ and ‘B’ are individually in thermal 

equilibrium with a third system ‘C’, then ‘A’ and ‘B’ are in equilibrium with each other; and all three systems are of the same 

temperature. The First Law of Thermodynamics concerns itself with internal energy (U) as another property of thermodynamic systems. 

It describes the influence of heat and work on the internal energy of a system and its surrounding’s energy. The first law, also referred 

to as the Law of Conversation of Energy states that energy cannot be created or destroyed, it is only transferred to another 

thermodynamic system or converted to another form (e.g., heat or work). The Second Law of Thermodynamics concerns itself with 

entropy (S) as an additional property of thermodynamic systems and describes the directional nature of heat flow in thermodynamic 

systems.  

 Analytical and experimental studies are used in the research area to investigate the performance of various systems, which consume 

more time and more expensive. The soft computing techniques are implemented in many studies in order to minimize the cost. ANN 

as a part of artificial intelligence technology is represented one of the most useful tool for optimization, prediction, and other tasks 

since it saves time and produces more accurate results than other methods [2]. Scientists in the fields of science and engineering employ 

this technique. In the last decade, the ANN approach has grown in popularity in mechanical engineering fields and the energy sector. 

In the past 2 decades, many researchers have implemented ANN in many research areas [3]. ANN was used in the field of forecasting 

the electrical energy consumption for a building [4], combustion processes [5], refrigeration and heat pumps systems [6], milling 

process [7] , heat exchangers [8, 9], solar systems design [10], solid desiccant systems [11] , hybrid energy systems [12], solar collector 

systems [13, 14], nuclear engineering [15], solar thermal systems [16], solar air heaters [17], PV applications [18, 19], chemical process 

control [20], atmospheric sciences [21], solar energy systems [22], renewable energy systems [23], solar radiations [24], thermal science 

and engineering [25] , wind-PV power systems [26] . 

 It has been observed that the challenge with any prediction process is the precision or accuracy of the technique. It has also been 

seen that there are various difficulties owing to the system's complexity. However, there are a variety of prediction and computational 

approaches that may be used to address estimation problems and obtain the optimum forecast accuracy. Many techniques, mostly in 

the disciplines of thermal systems, are utilised for performance prediction and estimate, including analytical methods, statistical 

methods, and artificial intelligence methods. ANN approach is most common for system performance predictions, because of its high 

accuracy and capacity to solve nonlinear issues, neural networks are the most extensively used. During data analysis, this approach can 

potentially learn from previous patterns. 

 Form the literature review of ANN technique in various applications, it is found that there is no separate review on using of ANN 

technique in thermal systems. In this paper, a short review of various heat transfer applications and the applicability of artificial neural 

networks in modelling of these systems is presented. The main objectives of present review article are to summarize the applications 

of the artificial neural networks (ANN) predictive models in various thermal systems and to find out research gaps and 

recommendations for future studies.  

 

2. Heat transfer applications  

 

 Heat can be transferred by different means, it could be by conduction, convection, radiation, and or a mix of the above mentioned. 

The heat flow can be through a free stream or flows over surfaces or through conduits. The passage through which the heat flows could 

be smooth or enhanced. Smooth heat exchanger tubes are the tubes with fluid flow without any obstruction or demarcation of the flow 

passage [27], while the enhanced heat exchanger tubes are those that incorporate inserts or swirl in the flow area for the sole purpose 

of improving heat transfer [28]. These kinds of flows have been seen in various applications of heat transfer and there is also heat 

transfer phenomenon by phase change. A great challenge facing the researchers and developers is to enhance the performance of the 

heat transfer systems. Considering the high cost of energy and the need towards more efficient heat transfer units with minimum energy 

and materials consumption, many researchers focused on the techniques of heat transfer enhancement to achieve that [29, 30]. The heat 

exchanger is represented as one of the most popular heat transfer systems, which is involved in many industrial sectors like heating, 

ventilation, and air conditioning (HVAC), power stations, automobiles, aviation, and other applications. For heat exchangers, heat 

transfer enhancement techniques can be active, passive, and combined techniques, as summarized in Figure 1. The active techniques 

consume some external power to achieve heat transfer augmentation, such as in fluids injection [31-35], fluids suction, vibrating tubes, 

and swirling fans [36, 37]. As for passive techniques, there is no need for an external power source to achieve the enhancement in heat 

transfer as in the case of corrugated tubes [29, 38-52], dimpled tubes [53-56], twisted-tape inserts [28, 57-79], wired-coiled inserts [80-

84] conical tubes [84-86], vortex generators inserts [87, 88], and nanoparticles additives [14, 15, 89-94]. To reemphasize, various 

geometries include transverse ribs with twisted tape, axial rib with screw tape, inclined limbs, helical tapes [58, 59]. These various 

shapes (techniques) depend on increasing the turbulence levels and disrupting the fluid flow's thermal boundary layer, leading to more 

mixing for the fluid flow and enhancing the heat transfer [95]. However, the penalty to pay is increase in pressure drop [57, 65], 

particularly in the turbulent flow regime. The pressure drop increased as a result of the demarcation of the flow passage. In an effort to 

achieve a compromise between laminar flow regime with characteristics of low heat transfer and pressure drop and turbulent flow 

regime with high heat transfer and pressure drop, Meyer and Abolarin [28] reported enhanced tube experiments conducted in the 

transitional flow regime, where the heat transfer was found higher than the laminar flow regime and the pressure drop lower than the 

turbulent flow regime. The geometric can be classified according to the flow types: the free stream, flows over surfaces or internal 

flows [42, 63, 96-99]. Kaood et al. studied numerically the effect of various corrugation shapes of tube surface on thermal-hydraulic 

characteristics of turbulent water flow inside tube subjected to constant heat flux within a range of Reynolds number from 5,000 to 

61,000 [95, 100]. Rectangular, triangular, curved, and trapezoidal corrugated tubes were involved in the study. Corrugated tubes 

provided a superior effect on heat transfer enhancement and performance evaluation criteria compared with the traditional smooth 

tubes. Followed by another study, Kaood and Hassan [50] reported the effect of a combination between the various corrugation shapes 

and various nanofluids as a two passive techniques of heat transfer enhancement on the thermal-hydraulic characteristics of turbulent 

nanofluids flow inside a tube subjected to constant heat flux within a range of Reynolds number from 5,000 to 40,000. Various fluids 

(water “DW”, SiO2/DW Al2O3/DW, and GNP-SDBS/DW) and tube geometries with (rectangular, triangular, curved, and trapezoidal 

ribs) are studied using a validated numerical model. 
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 In another form of geometry modification, Essam and Kaood [101] investigated the effect of converting the traditional straight 

tubes of the double pipe heat exchanger into conical tubes on thermal-hydraulic characteristics of various turbulent nanofluids flow 

inside tube subjected to constant heat flux within a range of Reynolds number from 7,000 to 35,000. Multiple studies used the Artificial 

Neural Network (ANN) predictive models with the computational fluid dynamics (CFD) models to make a comprehensive and 

optimized investigations on many thermal systems [6, 102-120]. Balcilar et al. [106] studied using ANN the boiling and condensation 

processes of R134a through smooth and corrugated tubes. Nasr and Khalaj [121] reported using ANN the effect of the combination 

between the corrugated tubes with the twisted tape insert on the friction factor and heat transfer coefficient. Zheng et al. [122] 

investigated using numerical CFD model and Artificial Neural Network (ANN) predictive model the sensitivity of discrete inclined 

ribs fitted a flat heat exchanger tube on the heat transfer enhancement. Multi-objective optimization, Artificial Neural Networks ANN, 

and genetic algorithms were used to study the characteristics of the nanofluid flow in flat tubes using CFD by Safikhan et al. [123]. 

Taymaz and Islamoglu [124] investigated the thermal characteristics of laminar airflow in a converging-diverging tube using a back-

propagation neural network. 

 

 
 

Figure 1 Techniques of heat transfer enhancement. 

 

 Heating, ventilation, and air conditioning (HVAC) systems consist of complicated structures that combine heat and mass transfer 

devices, such as boilers, chillers, heating/cooling coils, and supply air ducts. Many researchers used the Artificial Neural Network 

(ANN) predictive models to study many characteristics and simulate the different supervisory and local loop control strategies to 

improve the energy consumption efficiency of many thermal systems as in the case of Heating, ventilation, and air conditioning 

(HVAC) systems [125, 126].  There are three major classes of modeling methods defined, and they include data-driven, physics-based, 

and so-called "grey box" techniques. Using data-driven approaches, a system's behavior can be closely approximated with the aid of 

linear and nonlinear functions based on measurements of the input and output variables. Among these models are well-known 

techniques such as frequency-domain models with dead time and data mining algorithms (e.g., ANN and SVM), statistical models 

(e.g., ARX, ARMAX, and ARIMA), and FL models (e.g., FAN and ANFIS) [36]. However, physics-based models depend on the full 

understanding of the mechanism and the laws that control it. Building models with physics-based approaches more closely mimics the 

framework and offers a greater capacity for generalization. If the conditions vary from the training data, data-driven models begin to 

degrade. Grey box models are a relatively new methodology that combines physics-based and data-driven modeling approaches. A 

grey box model describes the overall structure of the model using physical laws and then uses calculated data to find the model's 

parameters. Many optimization techniques, such as least squares, gradient descent, and GA, are also used for parameter recognition 

[36].  

 Various studies used Artificial Neural Network (ANN) predictive models in nuclear energy systems as one of the most critical and 

sensitive types of thermal systems as in nuclear power plants [38-44]. In this way, this technique is used for pattern recognition, for 

optimization of artificial control, and fault diagnosis. Although there are some difficulties face the researchers due to ANN is still a 

fresh technology without sufficient validation [38]. Geometry plays a very important role in effective transfer of heat. Geometry 

modification is represented as one of the most popular passive technique of heat transfer enhancement.  

 

2.1 Flows through channels  

 

 Researchers have studied horizontal, inclined, and vertical plane conduits for the effects of mixed convection [27, 127-131]. Mixed 

convection is the phenomenon that combines the free convection and forced convection systems for  the transfer of heat [132, 133]. 

These channels maybe straight walled, micro scaled or irregular geometries. Micro scale heat transfer has been studied by many. They 

used micro-channel of different shaped heat sinks and then optimised the thermal performance. This found particular applications in 
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electronics cooling [134-137]. de Vega, García-Hernando and Venegas [138] reported a cooling study conducted with a membrane 

absorber fabricated from a stainless-steel microchannel. The study focused on the comparison of water-cooled absorber and adiabatic 

absorber. The results indicate that the absorption rates of these two scenarios are different. For the water-cooled scenario, the absorption 

rate was reported to be 0.005 kg/m2s, while for the adiabatic type it was 0.003 kg/m2s. 

 

2.2 Energy storage applications 

 

 Energy storage channels may contain phase change materials (PCMs) developed to improve energy storage [139-143]. Gholaminia, 

Rahimi and Ghaebi [144] numerically investigated energy storage improvement by placing a PCM in a tube-in-tube heat exchanger. 

The variables considered include types of PCMs, working fluid temperature, tube geometry and fins on the heat exchanger surface. 

The relevant heat transfer equations were solved using the Crank-Nicolson solution in MATLAB software. It was found that PCMs 

with capability of higher latent heat are capable of stored heat at lower temperature. As the temperature of the working fluid increased, 

the difference in temperature between the PCM and the fluid increased, so was the stored energy and storage speed. When the influence 

of fins was investigated, it was reported that the energy stored increased with number of fins on the heat exchanger. In a numerical 

study, Deng, Li, Zhang, Yao and Shen [145], reported the influence of heat transfer fluid temperature on charging performance of pure 

and composite PCMs. The study found that heat transfer was enhanced, and uniform latent heat storage was accomplished with the 

PCMs. In an experimental study reported in the work of Mehta, Vaghela, Rathod and Banerjee [146], a shell and tube channel type of 

heat exchanger equipped with spiral fins was investigated with possible latent heat storage unit. Study investigated the influence of the 

spiral fins on the rate of charging and discharging of the unit. The PCM used was stearic acid, while the working fluid was water. To 

successfully measure the PCM temperatures, a total of 45 thermocouples were installed on the shell annulus. It was found that the 

spiral fins led to melting and solidification enhancement thus improved the energy storage of the PCM in the channel. Furthermore, 

the spiral fins resulted in the reduction of time of charging by 41.48% and discharging by 22.16%. In a channel heat exchanger 

fabricated from a double-spiral coil, Lin, Ling, Zhang and Fang [147]  investigated storage technology suitable for solar thermal with 

sebacic acid as the PCM and oil as working fluid. The study found out that the sebacic acid is a promising PCM for enhancing heat 

transfer in the double-spiral coil heat exchanger channel.  

 During the process of hydrogen charging into metal hydrides, heat is released. This heat is usually needed to be quickly removed 

so as to ensure the rate of charging is rapid as expected. In an effort to store hydrogen, Wang, Prasad and Advani [148] inserted an 

helical coil heat exchanger in order to remove the heat generated during the hydrogen charging process. Using Ansys Fluent 12.1, a 

three-dimensional mathematical model was formulated to determine the transient heat as well as mass transfer in a cylindrical reservoir 

where the heat exchanger was inserted. The results show that the rate of absorption increased with convective heat transfer. Similarly, 

Keshari and Maiya [149] inserted an heat exchanger tube with fins fabricated from copper in to an hydrogen absorption process with 

metal hydride with the sole aim of using the heat exchanger to remove the heat generated during the absorption process. 

 

2.3 Single phase flow 

 

 Richter do Nascimento, Mariani and Coelho [150] using a plate-fin heat exchanger and fins with offset strip demonstrated numerical 

approach optimisation at different mass flow rates. The focus of the study was to optimise effectiveness, volume and pressure drop 

while hot and cold working fluids flowed through the counter-flow heat exchanger. Using the Non-Dominated Sorting Genetic 

Algorithm-III of neural networks, the effectiveness as well as the volume led to pressure drop reduction over a range of 55.4-72.3% in 

the counter-flow heat exchanger.  

 As helical or spiral coiled heat exchangers have found numerous applications in nuclear industries because of the coil arrangement 

in heat transfer improvement, using an helical coil shell and tube heat exchanger, Delgado, Porter, Hassan and Anand [151] conducted 

a pressure drop experimental investigation over a range of Reynolds number in the fully turbulent flow regime. The Reynolds number 

was over the range of 8500 and 11700.  

 Aasi and Mishra [152] reported an empirical study combined with an artificial neural network of a three-fluid heat exchanger 

subjected to a cross-flow. To enhance this heat exchanger, plain rectangular fins were placed on the inside. Influence of the fins on the 

friction factors, Colburn j-factors as well as effectiveness ratio as a function of Reynolds numbers and flow arrangements were 

investigated and reported. The study used the ANN model to predict the experimental data was found that employing the ANN provided 

better prediction as compared with conventional regression analysis. 

 In the determination of exergy efficiency and performance, Abu-Hamdeh, Almitani and Alimoradi [153]  conducted a numerical 

fluid flow in a sector-by-sector and tube-in-tube heat exchanger with helical coils. The efficiency and performance were reported as a 

function of Reynolds number, dimensionless coil diameter and pitch. It was found that the exergy efficiency was reduced by 21-26% 

when the dimensionless coil diameter was doubled. Furthermore, the exergy coefficient of performance was reduced by 8-15% when 

a heat exchanger with semi-circle cross-section was investigated. As a result, the study recommended the use of the heat exchanger 

with semi-circle and quadrant-circle cross-sections in the place of the regular tube-in-tube. The study developed new correlations for 

the efficiency and performance of this heat exchange setup.  

 Heat exchanger also allow for the flow of different working fluids for the purpose of achieving the desired heat transfer. some of 

the working fluids in use include nanofluid of different nano particles, concentration and physical properties [154], water [155]. 

 

2.4 Two-phase flow 

 

 Two phase flows cover the areas of condensation, boiling, and nanofluid flow and is a very important heat transfer application in 

the industry. Many papers [90, 103, 156-162] have been published in this area. For example, Qiu and Zhang [162]  reported an 

investigation of pressure drops in a two-phase flow experiment as R600a/3GS oil flowed in a circular heat exchanger tube with inner 

diameter of 8 mm. The study investigated the influence of the oil concentration ranging from 0-4%, mass flux ranging from 150-

300 kg.m-2.s-1 on the pressure drop. The use of the oil in this two-phase channel flow experiment resulted in the improvement of 

pressure drop by a maximum of 60%. As such it was concluded that the correlation generated from the study could be used for when 

there is a need to predict the pressure drop of R600a/oil mixture in the design of a refrigeration system. This in particular relates to the 

design and operation of the various components that make up the refrigeration system (condenser, evaporator, etc). 
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 It is very important to note that in two-phase flow ANN has been used to develop and predict dimensionless heat transfer coefficient 

correlations in the form of Nusselt number. In an helical evaporator with double pipe,  Parrales, Hernández-Pérez, Flores, Hernandez, 

Gómez-Aguilar, Escobar-Jiménez and Huicochea [163] presented an investigation that developed two Nusselt number correlations 

using ANN from an experimental data of 1109 values. One Nusselt number correlation was developed or the annulus while the other 

Nusselt number was developed for the inner section of the pipe. The correlations were developed to enable the determination of 

coefficients of heat transfer in the each of the sections of the double-pipe vertical and helical evaporator. The working fluid whose 

properties was used to develop the mathematical correlation was water. The modified Wilson plot method was used to determine the 

Nusselt in the annular section of the pipe. This method was thereafter solved using ANN. The input variables considered in the 

correlations are Reynolds number, Prandtl number as well as three neurons in the hidden layer. The inner Nusselt number was 

developed using Rohsenow equation and thereafter solved by ANN. The input variables to the ANN solution were Jackob liquids and 

Prandtl number as well as one neuron in the hidden layer. The two correlations were found to meet the dimensionless characteristics 

of Nusselt number. The weights and biases of the correlations were determined using Levenberg-Marquart algorithm. In the inner and 

outer layers, the study used the hyperbolic and linear transfer functions respectfully. The accuracy of the of the Nusselt number 

correlation for the flow in the inner section was reported to be 4%, while that of the annulus was determined to be 0.2%. 

 In another study using ANN in a two-phase flow, Parrales, Colorado, Díaz-Gómez, Huicochea, Álvarez and Hernández [164], 

developed two correlations for void fraction with water as working fluid in a helical vertical coils. The input variables to the first 

correlation are viscosity ratio, density ratio, curvature ratio and vapour fraction with two neurons in the hidden layer. In the second 

model and for the purpose of simplification, the curvature ratio was not included, however the developed was accompanied with two 

neurons in the hidden layer. These models were validated on variations heat exchangers. An application was on steady state data 

obtained from two evaporators with double pipes with heat transformer with absorption capability, while another application was on 

the design and prototype of steam generator with full-scale helical coil. 

 

2.5 Thermosyphon  

 

 This system is a passive method of heat exchange and it functions by natural convection and by principle does not require a 

mechanical pump, it often occurs across a temperature gradient such as solar chimney [165, 166], biomass heat engine [167], residential 

and commercial heating and cooling systems [168-172] etc.  

 Goswami and Das [167] developed a thermoelectric generator using a biomass engine waste heat. The waste heat was recovered 

and used to recharge an uninterrupted power source with 12 V, more experiments conducted on this system was the parametric 

investigation on an octagonal-shaped thermosyphon in a two-phase mode. The maximum temperature gradient of the system was 

40.12 °C at the optimum thermosyphon filling ratio of 0.496. The system generated a total power of approximately 1 W at a conversion 

efficiency of 2.218%. 

 In an investigation to compare the complex mechanism of heat transfer of conventional with check valve closed loop thermosyphon, 

Thongdaeng, Pipatpaiboon and Donmuang [173] reported a flow visualization study conducted. The check valve close loop 

thermosyphon was fabricated from a pyrex tube of 11.6 mm inner diameter, the length of the evaporator and condenser was 300 mm 

each. The purpose of the study was to improve the efficiency of a liquid-vapour flow separation by installing a check valve to alter the 

flow behaviour. It was found that the check valve type had a maximum heat transfer of 195.73 W, while that of the conventional type 

was 126.18 W. 

 Bahiraei, Gharagozloo, Alighardashi and Mazaheri [168] presented a thermosyphon made from a finned cooper tube for possible 

application in a residential and commercial refrigeration system. The working fluid circulated was methanol. The authors located an 

environmental chamber capable of reproducing atmospheric temperature of -5 °C on the refrigerator. For different temperatures the 

study compared the speed of the fan and filling ratio of the thermosyphon. It was found that the number of fans used was influenced 

by the inner temperature of the refrigerating system.  

 Vasiliev, Grakovich, Rabetsky, Vassiliev and Zhuravlyov [170] conducted experiments with long thermosyphon technologies that 

could be coupled to the ground for all year-round heating or cooling of ground surfaces and as well reduce thermal resistance. These 

thermosyphons could find applications in the heat exchangers found in heating of residential buildings, runways, roadsides, railways, 

air conditioning etc. Different working fluids such as water, propane, ammonia, and isobutene were circulated in the thermosyphons. 

Two types were discussed; the first was the polymeric loop two-phase, while the second was the vapour-dynamic thermosyphons. 

When compared, the vapour-dynamic was found to have lower thermal resistance. 

 

2.6 Solar radiation 

 

 Solar radiation is found to reach the surface of the earth by diffuse solar radiation, reflected radiation, direct (beam) solar. Its 

availability can be studied by measurements from a radiation monitoring network or based on physical formulae and constants. Solar 

energy has been applied in engineering problems some of the applications include solar water heater, solar air heaters, solar generators 

and refrigerators [174, 175]. In an application for concentrated solar power, Yao, Zhu, Guo, Yang, Zhang, Ren and Wu [176], 

considered a multi-phase heat exchanger in a two-dimensional study of metal hydride reactor. The focus of the study was to determine 

the performance as well as the feasibility to the solar application. It was found that to sustain constant heat flux, the fluid velocity must 

be in accordance with the metal hydride’s thermal conductivity. When compared with a single-phase heat exchanger, the heat flux of 

the multi-phase was reported to be 3 times more.  

 Abu-Hamdeh, Bantan, Khoshvaght-Aliabadi and Alimoradi [177], installed rectangular ribs on the inside of a curved absorber tube 

to overcome the problems of non-uniform wall temperature boundary condition and thermal stress from solar radiation. The study 

numerically investigated the influence of the ribs height while varying the mass flow rate in the laminar flow regime. The result of the 

study indicated that the insertion of the ribs led to enhancement of heat absorption by 48% as compared with a smooth curved absorber 

tube without the rectangular rib. Unfortunately, the insertion of the rib increased the pressure drop by 89%.  

 

2.7 Solar air heater 

 

 Of recent, investigations around the application of ANN in solar air heater has dominated the heat transfer field [16, 178-184]. 

Ghritlahre [178], considered three different techniques which are multi-linear regression, group method data handling and ANN for 
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the prediction of solar air heaters’ exergy efficiency. Each model was used to analyse about 210 sets of experimental data on two solar 

collectors, one with an enhanced surface and the other with a smooth surface. These models and surfaces were tested with working 

fluid flowing over the range of 0.007 kg/s to 0.0222 kg/s. The independent variables considered were temperatures (room, inlet, bulk 

and plate), wind direction and speed, mass flow rate, solar intensity and elevation and relative humidity. The output variable was the 

exergy efficiency. The results of the study showed that out of the three models investigated, the ANN model showed the best 

performance. For the ANN room mean square value was 0.0085 with a correlation coefficient of 0.99981. The correlation coefficient 

of the remaining two models were 0.98977 and 0.97693 respectively. 

 In the prediction of heat performance solar air heater, Ghritlahre, Chandrakar and Ahmad [16] reported an ANN investigation for 

an enhanced heat exchanger with arc shaped wire rib and for a smooth tube. The study identified that previous studies had relied on 

parameters from system, operating and metrology for the prediction of thermal performance but not with relevant input parameters. 

Therefore, the study developed an ANN model with relevant input variables with 10 to 20 neurons in order to find optimal model. The 

result of the study shows that ANN-II with 8-14-1 demonstrated the best model. From all the relevant input variables considered, mass 

flow rate was the only one found to be the most effective. 

 In the thermal performance prediction of a solar air heat with porous wire screen bed, Ghritlahre and Prasad [179] performed an 

ANN analysis using empirical data collected from the porous bed solar air heaters. In the study, two porous bed solar air heaters were 

considered. The first was the bed with unidirectional flow, while the second was the cross directional flow bed. The ANN model was 

developed using the thermal efficiency of the solar air heater and the Levenberg-Marquardt learning algorithm. To obtain an optimum 

topology, thirteen neuron hidden layer were used. The thermal efficiency of the unidirectional flow heater was compared with that that 

of the cross flow.  

 The unidirectional flow model resulted in coefficient of determination of 0.9994, while that cross directional flow was obtained as 

0.9964. The low root mean square values obtained from the comparison of the ANN models on the unidirectional and cross flow 

indicated that ANN is capable of being used to determine the thermal performance of solar air heaters with porous wire beds. Other 

models used for the prediction of thermal performance in unidirectional flow in solar air heater with porous beds are multi-layer 

perception, multiple linear regression model, generalised regression neural network and radial basis function. These models were 

demonstrated in the work of Ghritlahre and Prasad [180] where 96 data obtained from experiments conducted were used to test these 

models with six input variables. The input parameters used are temperatures (input, fluid mean, and ambient), mass flow rate, wind 

speed and solar intensity for the generalised regression neural network, radial basis function, multi-layer perception and the multiple 

linear regression models. The only output variable considered was the thermal efficiency. Out of these four models the generalised 

regression neural network performed the best because it produced the least error and highest adjusted R2 value of 0.99758 and root 

mean square vale of 0.00000593. 

 

3. General application of an in thermal systems  

 

 Longo et al [108] predicted the heat transfer coefficient of refrigerant condensation in a herring bone type plate heat exchanger 

(BHPE). In their model they took consideration for the following: geometry of the plate, properties of the refrigerant in the saturated 

and superheated state, operating conditions. The resulting artificial neural network (ANN) model had a mean absolute percentage error 

(MAPE) of 3.6%. The MAPE represents a measure of the prediction accuracy of a predictive method in statistics. It is usually given in 

percentage. However, it is worthy of note that using MAPE alone as a criterion is meaningless because we need to account for how 

predictable a series is. For example, 9% MAPE is good for some series and bad for others. So care should be taken when evaluating 

ANN models [185]. From their study, they found that ANN models was better at forecasting than the compared BPHE analytical 

models [108].  Naphon et al. [186] presented a study to analyse nanofluid jet impingement pressure drop and heat transfer using ANN 

and computational fluid dynamics (CFD). Their study was in a micro-channel heat sink. The back propagation training algorithm of 

the Levenberg-Marquardt was used to get an optimal ANN model. The observed error was low. Liu et al [187] carried out an 

experimental study and applied ANN to heat transfer of pulsed spray cooling on a vertical surface. They observed that the heat flux 

increased with duty cycle and the accuracy of predictions was better than conventional correlations. Thanikodi et al [188] applied a 

hybrid neural network to model a shell and tube heat exchanger and they were able to predict the heat transfer rate. Mandavgane and 

Pandharipande [189] used ANN to estimate the exit temperature of both fluids taking inlet temperature conditions and flow rates as 

inputs. They found that an ANN model with three hidden layers of 4-15-15-15-2 had the best accuracy of 98-99.5% for training and 

test data.  Karimi and Yousefi [190] presented a hybrid model of back propagation network (BPN) genetic algorithm (GA) for the 

purpose of predicting nanofluids density. The GA was used to optimize the parameters of the BPN and its accuracy. They studied four 

nanofluid for a range of temperature of 273-323 K and a volume fraction up to 10%. They obtained an absolute deviation of 0.13% and 

an R-squared value of greater than 0.98. They also observed that BPN-GA does better than radial base functions and the Pak and Cho’s 

correlation with 64% and 95% enhancement. Souayeh et al [191] presented an ANN model for heat transfer and fluid flow. They 

developed a five-layer neural network to forecast thermohydraulic friction factor and Nusselt number, they used 4 hidden layers having 

40 neurons was the best in terms of accuracy. Zhu et al. [192] generated data for flow boiling and condensation heat transfer in mini 

channels for refrigerant R134a. They used ANN models to forecast the heat transfer performance of both condensation and flow boiling. 

Islamoglu [107] predicted the heat transfer rate of wire-on-tube type heat exchanger by ANN. He suggested using it as a first stage for 

engineering design of the heat exchanger. 

 Xie et al [119] presented an ANN model for predicting overall heat transfer rate and outlet temperature differences in each side. 

The model was for a shell-and-tube heat exchanger with segmented baffles. They used the back propagation (BP) algorithm. They 

observed a less than 2% maximum deviation between predictions and results from experiment. Athani et al. [193] used back 

propagation ANN for predicting the heat transfer in porous medium. They observed that ANN was an accurate method. Rahman and 

Zhang [194] used ANN to predict oscillatory heat transfer coefficient. Their model had a 2-10-1 configuration. Their model was 3.2% 

average error percentage better than existing correlations. They stated that the subtle relationships between variables could be well 

modelled by ANN. They applied the model to thermoacoustic refrigerators. Ghritlahre and Prasad [184] used ANN to model heat 

transfer of roughened solar air heater. Their model was made from the Levenberg-Marquardt (LM) algorithm with feed-forward back 

propagation model. They found that an optimal result was obtained at hidden layer with 10 neurons. Diaz et al [195] simulated heat 

exchanger performance with ANN. They found their method to be better than the power-law correlation for heat transfer coefficient. 

Azizi and Ahmadloo [196] developed an ANN model to predict heat transfer coefficient of refrigerant (R134a). They used 440 data 
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points for developing the model, the inputs to the model were the inclination angle, mean vapor quality, mass flux, saturation 

temperature. They confirmed the ability of ANN to make accurate predictions of heat transfer coefficient. Esfe [197] used ANN to 

model heat transfer and pressure drop of Ag/water nanofluid. In the ANN model the radial basis transfer function was adopted. The 

correlation coefficient for both Nusselt number and pressure drop was greater than 99%. Sablani et al [111] applied ANN to evaluate 

the heat transfer coefficient from having the temperature for a solid-fluid system. They studied the direct heat conduction problem 

(DHCP) of unsteady heat conduction in a semi-infinite plate having convection boundary condition and in a cube. In the first case, 

ANN was to predict the dimensionless heat transfer coefficient by having dimensionless temperature and in the second case it was to 

predict Biot number from non-dimensional temperature ratio and Fourier number. They then tested with unsteady experiments. 

Krzywanski and Nowak [198] was interested in the fluidized bed boiler’s combustion chamber heat transfer coefficient by using ANN. 

They agreed that ANN give quick and accurate results. 

 Wang et al [199] presented a study on pulsating heat pipes where they used ANN with 5 input parameter and 10 hidden layers. The 

filling ratio, number of turns, inner diameter, evaporation section length ratio, heat flux were the inputs. They obtained a correlation 

coefficient greater than 99%. Giannetti et al. [200] predicted the two-phase refrigerant distribution using ANN. They suggested that a 

reverse ANN may be helpful in achieving a design of a target take-off-ratio. 

Ewim et al. [103] used ANN to predict the heat transfer coefficient under condensation in an enhanced inclined tube. They observed 

that ANN was able to make good predictions. The inputs to the ANN were the inclination angle, vapour quality, and the mass velocity. 

 

4. Classical models 

 

 One of the fields in which thermal systems can be studied is device recognition. Creating a good model helps the designer to create 

controllers with better response times, precision, and energy consumption. The model may also be used to evaluate the system's internal 

behaviour and possibly suggest mechanical changes or innovative designs, depending on its structure. To create models of thermal 

systems, classical and computational intelligence models have been employed Tian et al. [201]. Classical models through the use of 

grey-box continuous-time model based on heat equation by Tillman et al., [202], and intelligence models that use black-box structures 

based on linear regressions, such as ARX or ARMAX [201, 202]. Despite these challenges, every one of the previously presented 

structures is not sufficient for overhauling the internal behaviour of these systems. While some of the models have a physical basis, 

they are unable to model those variables of interest, such as heat fluxes or stored thermal energy for a deeper understanding of system 

performance variables. These variables are extremely helpful in recognizing vital components and studying mechanical improvements 

that could reduce system energy consumption and improved thermal system management. However, design and research 

improvement based on the classical model applications are less effective in meeting the required system performance. The limitation 

of the technique is the fact that it only gives a physical analogy of process operations that affects the assessment for design improvement. 

Models in general are mainly used to improve comprehension of an operation in a system. They can also assist with device overhaul 

[203, 204]. 

 Classical and or Creative analysis are two methods for modelling systems. These modelling techniques have their collection of 

analytics and advantages. Modelling has been very effective in providing design and organisational ingenuity when properly 

implemented. A method or a device can be visualized using physical or cold flow models. They have been used in the past to analyse 

systems like steady and dynamic thermal problems, heat exchangers, gas-solid fluidized beds, and others such as fuel tubing, burner 

design, boiler simulations, gas flow evaluations via air pollution equipment, and other processes. Classical and CAD model 

applications in the design process has been and it continues to be prevalent. For instance, boiler system is modelled after the design of 

a device, such as a steam boiler, has reached a certain stage in order to validate the design and layout. Many designed applications, 

such as the ones just mentioned, still depend on classical models. Physical scaling down of processes and components has proven to 

be very efficient, but physical or classical modelling is costly, less accurate and time-consuming. These factors drove the growth and 

progress of computerized intelligence and numerical modelling [202]. 

 Furthermore, the classical model of heat conduction is well-established and based on the Fourier law of heat conduction and the 

first law of thermodynamics to predict and regulate the rate at which heat is conducted [203]. The Fourier law is known to be 

constitutive nature on heat flux that relates temperature gradient, the driving force and cause of heat-conduction, to the heat transfer 

rate [201, 203, 204]. The classical and standard framework for understanding heat-conduction processes consists primarily of two 

steps: Temperature fields acquisition of heat-conduction or measure data; acquiring heat and mass transfer rate and control methods 

through the Fourier law of heat conduction [205]. By applying the second law of thermodynamics to heat conduction, a traditional 

irreversible mechanism that satisfies both the first and second laws of thermodynamics, we go one step further than the classical theory 

of heat conduction. The essence of the second law of thermodynamics can be shown using a variety of expressions [206]. Each is 

usually more convenient to use for specific processes which are known as the increase in entropy principle [206].  

 

5. Computational intelligence techniques in thermal systems 

 

 Besides, classical model analysis is the application of computer intelligence computational models such as Artificial Neural 

Networks, ANNs has been used in diverse area of applications [207]. An artificial neural network (ANN) is a part of a computational 

system that mimics how the human brain analyses and processes data. Artificial intelligence (AI) is built on this basis, and it solves 

problems that would be impossible or difficult to solve by the classical or statistical standard model. ANN models have personality 

features, potentially improving their performance as an increased dataset becomes available [208]. Thermal system and components 

parts, in general, suffer a gradual process of performance inefficiency over the process of operations having been exposed to various 

degradation agents and mechanisms. This deterioration phenomenon reduces the standard of achievement of thermal components until 

they are no longer able to completely meet their intended performance requirements. In this sense, service life and possible 

performance predictions are important because it allows for more logical use of the system which also gives way to appropriate 

planning for system maintenance actions. One way to ensure an adequate level of performance for a longer time and eventual costs of 

urgent repairs are reduced is the application of computational intelligence such as ANN. Thermal system performance prediction is 

neither a forthright nor simplistic task. This mechanism is comprehensive and required robust analysis for the beauty of the study to be 
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satisfied since it involves a variety of variables that interact synergistically. There are various methodologies for ANN predictions since 

their application have emerged in recent decades, and they can be very useful in the decision-making process. They simply consist of 

the input variable, controlled and uncontrolled parametric variables using antecedence of available data variables. The network is 

usually consisting of input, hidden and output layers with input neurons connected through adapted weights. 

 

6. Structure and methodology 

 

 Models for thermal analysis can be based on either steady-state or dynamic conditions. For example, to simulate thermal 

behaviour, steady-state and dynamic models can be based on experimental data or its intricate instinctive description [114]. As a 

modelling and prediction technique, an artificial neural network (ANNs) is considered very useful. Without using preconceptions, 

neural networks can map linear and non-linear dependencies in data [109, 209]. They are useful for forecasting thermal behaviour 

in in systems over short and long periods, with an emphasis on hourly energy consumption [210] and cost optimization [211, 212]. 

ANN has been used intensively as a CI technique based on its ability to perfectly harmonize input dataset based on decision 

variables to provide favorable output response. Model demonstration of the neuron and synaptic weight is presented (Figure 2), 

accurate prediction of the model is promising using MATLAB. According to [213, 214], Levenberg Marquardt Neural Network 

algorithm significantly outperforms other training algorithms like Resilient Back Propagation (RBP) and Scaled Conjugate 

Gradient (SCG) under Multi-Layer Perceptron Neural Networks (MLPN). 

 

 
 
Figure 2 Strength of the connection of neurons  with bias and activation junction [212] 
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7. Limitations of classical and CI models 

 

 Classical and or CI models are models improving the understanding of various aspects of thermal systems be it ovens, refrigerators, 

and other devices with heavy heating systems, blend combustion, but they all have their demerits. These demerits are based on many 

factors, including the complexity of model formulation, complexity of variables, the quality of operation data, the terrain of operation, 

analysis is slow. Modelling is critical for the design and understanding of different processes and parametric studies. They serve as a 

foundation for studying and visualizing a specific procedure. For several years, numerical and physical models have been used. 

However, some of the modelling limitations warrant further study, which is particularly relevant when considering thermal system 

[215, 216]. Hybrid models are strongly recommended due to their high computational power and faster response to optimal results. 

Activation  

Function 

Summing  

Junction 

Fixed Input 

Output 

𝑋1 

𝑋2 

𝑋3 

𝑋4 

𝑿𝟎 = +𝟏 

𝑾𝒌𝟏 

𝑾𝒌𝟐 

𝑾𝒌𝟑 

𝑾𝒌𝟒 

𝑾𝒌𝟎 

𝒚𝒌 

𝑽𝒌 

𝑾𝒌𝟎 = 𝒃𝒌 (𝐛𝐢𝐚𝐬) 

𝝋 (. ) ∑ 



452                                                                                                                                                  Engineering and Applied Science Research 2022;49(3)  

8. Hybrid algorithms for thermal systems analysis 

 

 From the study, it is evident that modelling of thermal systems requires higher creative algorithms and hybrid methods, it is not 

enough to optimize and model systems using ANN, new algorithms and metaheuristic techniques are springing up. Much importantly 

is having the ability to hybridize models for problem solving. It has been shown in literature studies that hybrid algorithms is far 

superior to single models [212]. Therefore, from the investigation so far, the best solutions can be obtained by using comparative 

analytics of ANN with other hybrid models. Some useful hybrid metaheuristics for a more perfect representation of all facets of 

hybridization methodology for thermal systems and recommended for further studies include the evolutionary algorithm combined 

with bio-inspired algorithms, metaheuristics and constraint programming or metaheuristics with other creative algorithms like- 

Artificial Neural Network trained with Particle Swarm Optimization (PSO); PSO and Ant colony optimization (ACO) combined; 

Iterated local search (ILS) algorithm and PSO; guided local search (GLS) and Tabu Search (TS); Combined Fuzzy Logic and Artificial 

Neural Network-Adaptive Neuro Fuzzy Inference System (ANFIS); ANFIs and Genetic Algorithm (ANFIS-GA) and others. 

 

9. Recommendations for future work 

 

 No doubt, the use of ANN has shown massive success in its applications in thermal systems. However, the following future work 

is recommended 

 1. The integration of ANN modelling into computational fluid dynamics (CFD) packages for more robust modelling applications 

 2. The use of ANN on identifying the prevailing flow pattern during two phase flow processes should be explored. 

 3. The application of ANN in the modelling of the flow of hybrid and magnetic nanofluids is an area that should be explored further. 

 4. The use of creative models, hybrid algorithms and metaheuristics have been identified as preferable modelling techniques for 

effective analysis of thermal systems and should be extensively explored. 

 

10. Conclusion 
 

 This study is focused on the exposition of the applications of ANN in the modelling of thermal systems. Thermal devices, such as 

heat exchangers, ovens, refrigerators, and other devices with heavy heating systems, account for a significant portion of energy usage 

in both industrial and domestic settings. One of the greatest issues humans are currently faced with is the reducing global energy use, 

as a result of economic, environmental, and sustainability. Utilization of ANN in modelling of thermal systems has become necessary. 

Various heat transfer applications and analysis focused on the use of ANN for solving problems related to thermal systems have been 

investigated in this study. It was observed that solutions obtained using these methods require high level of improvement due to the 

complexity of dataset obtained from thermal devices. It was observed that MLPN with Levenberg-Marquardt Algorithm is much more 

suitable for analysis and outperforms other algorithms of MLPN like RBP and SCG. This study further identified improvements in the 

use of artificial neural network techniques and its up-and-coming applications for addressing variability of heat transfer problems. 

Limitations of the classical and CI models were further revealed, and recommendations have been made. For future studies, the use of 

creative models, hybrid algorithms and Metaheuristics have been identified as preferable modelling techniques for effective analysis 

of thermal systems. 
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