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Abstract: This work investigated the capability of multilayer perceptron artificial neural network
(MLP–ANN), stochastic gradient boosting (SGB) tree, radial basis function artificial neural network
(RBF–ANN), and adaptive neuro-fuzzy inference system (ANFIS) models to determine the heat
capacity (Cp) of ionanofluids in terms of the nanoparticle concentration (x) and the critical temperature
(Tc), operational temperature (T), acentric factor (ω), and molecular weight (Mw) of pure ionic liquids
(ILs). To this end, a comprehensive database of literature reviews was searched. The results of the
SGB model were more satisfactory than the other models. Furthermore, an analysis was done to
determine the outlying bad data points. It showed that most of the experimental data points were
located in a reliable zone for the development of the model. The mean squared error and R2 were
0.00249 and 0.987, 0.0132 and 0.9434, 0.0320 and 0.8754, and 0.0201 and 0.9204 for the SGB, MLP–ANN,
ANFIS, and RBF–ANN, respectively. According to this study, the ability of SGB for estimating the Cp

of ionanofluids was shown to be greater than other models. By eliminating the need for conducting
costly and time-consuming experiments, the SGB strategy showed its superiority compared with
experimental measurements. Furthermore, the SGB displayed great generalizability because of
the stochastic element. Therefore, it can be highly applicable to unseen conditions. Furthermore,
it can help chemical engineers and chemists by providing a model with low parameters that yields
satisfactory results for estimating the Cp of ionanofluids. Additionally, the sensitivity analysis showed
that Cp is directly related to T, Mw, and Tc, and has an inverse relation with ω and x. Mw and Tc had
the highest impact and ω had the lowest impact on Cp.
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1. Introduction

The efficiency of conventional heat-transfer fluids is augmented by using nanofluids as a novel
technique [1–5]. During the history of heat-transfer development, due to the interesting thermal
properties of nanofluids, they have been utilized in the production of heat-transfer fluids [6,7].

Ionic liquids (ILs) are a novel group of salt-like materials that are liquid under ambient conditions [8]
and have great potential for use in different industries. Although their transport properties have been
widely investigated in recent years, investigations of the thermal properties are very limited in the
literature [9–12]. Because of their excellent thermal properties, such as high thermal conductivity
(TC) and high heat capacity (Cp), they are recognized as an appealing candidate for heat transfer
applications [13,14].

In light of previous evidence, it is important to investigate the benefit of utilizing ILs augmented
with nanoparticles. By adding only a small amount of nanoparticles into pure ILs, the thermophysical
properties of ILs will be enhanced [9,15–18]. A similar idea has been observed in the chemical-enhanced
oil recovery methods, which increase the amount of recovered oil by adding a very small amount of
nanoparticles to the injected water [19]. This group of nanofluids with ILs as the base fluids that show
higher thermophysical properties is called ionanofluids or nanoparticle-enhanced ILs (NEILs) [16].

Paul et al. [20,21] carried out an experimental study and observed an increase in Cp of up
to 49% compared with the base ILs when Al2O3 nanoparticles were added to pyrrolidinium- and
imidazolium-based NEILs. Furthermore, silver nanofluid heat transfer through a tube with twisted
tape inserts was tested by Waghole et al. [22]. They concluded that the heat transfer rate was enhanced
by dispersing nanoparticles through water. By adding multi-walled carbon nanotubes (MWCNTs) to
different ionanofluids and measuring their thermophysical properties, Nieto de Castro et al. concluded
that the TC and Cp of ionanofluids were enhanced by ≈8% and ≈9%, respectively [16,23].

What we know about the thermophysical properties of NEILs is largely based upon empirical
studies, and these data are controversial regarding their accuracy; furthermore, there is little empirical
data available in the literature. Therefore, the determination of the thermophysical properties of NEILs
by utilizing theoretical methods is a necessary endeavor.

Computational investigations in particular have become vitally important [24–33], where many
researchers have widely implemented intelligent methods based on neuro-fuzzy neural networks to
model many engineering processes [6,34–39] and predict the thermophysical properties of different
nanofluids [40–42]. In 2013, Salehi et al. [43] used an interesting adaptive neuro-fuzzy inference system
(ANFIS) modeling technique in a study that set out to predict the heat transfer coefficient of a nanofluid
containing Al2O3 under a uniform heat flux condition. Other authors have questioned the usefulness of
such an approach. Mehrabi et al. [44] established a genetic algorithm–polynomial neural network and
a fuzzy C-means (FCM) based neuro-fuzzy inference system to determine the TC ratio of Al2O3-based
nanofluids based on the concentration and size of the nanoparticles, as well as the temperature. Golzar
et al. [45] used artificial neural network (ANN) methods and the approximation of general function for
the calculation of the thermophysical properties of quaternary ammonium-based ILs in terms of the
critical temperature of the ILs and the water content. Soriano et al. determined the refractive index
of binary solutions of IL systems based on ANN algorithms [46]. Lashkarblooki et al. calculated the
viscosity of ILs by employing boiling temperatures based on ANN algorithms [47]. After that, Hezave
et al. employed an ANN to determine the electrical conductivity of a ternary mixture of ILs [48].

Friedman suggested a robust decision tree algorithm named stochastic gradient boosting (SGB),
which can be applied in estimation and classification problems. This strategy has shown wide
applications as one of the more powerful schemes for different purposes [49–55].

The advantages of boosting (which combines several models) and regression trees are used
simultaneously in an SGB tree. A regression tree is created using small incremental changes in
the loss function from the previous tree. One of the improvements in the model is the ability to
assemble a tree based on a randomly selected data subset. Furthermore, the accuracy of the estimation
is maximized and overfitting is minimized via the utilization of a small number of training data
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points. Moreover, this algorithm reduces the demands regarding the transformation of the input
or the selection of features, which is an advantage when performing in a high dimensional space.
Furthermore, this approach has several other beneficial features, such as [49–51,56]:

• SGB-based methods display better prediction performance than competing composite-tree models,
including boosting or bagging by applying other approaches, such as AdaBoost.

• SGB-based methods are easy to create.
• SGB-based methods can use a large number of predictor parameters.
• SGB-based methods are developed quickly (100 times faster than neural networks for

some problems).
• SGB-based methods are immune to outliers.
• SGB-based methods perform acceptably when solving regression and classification problems.
• SGB-based methods display an equivalent or better predictive ability than neural networks
• Unrelated predictor parameters can be detected automatically such that they do not affect the

estimating model.
• Randomization of the elements guards against overfitting in this method.

This current study aimed to investigate these debates through an examination and prediction
of the Cp of ionanofluids as a function of the nanoparticle concentration (x) and the operational
temperature (T), molecular weight (Mw), acentric factor (ω), and critical temperature (Tc) of pure ILs
using a group method of data handling techniques. We evaluated our forecasting model by comparing
it with experimental data using three accuracy measurements: R2, mean relative error (MRE%), and the
mean squared error (MSE).

2. Theory

2.1. Data Preparation

In this work, the predictive capability of four groups of intelligence models was evaluated
regarding their ability to estimate the Cp of some NEILs. For this aim, MATLAB 2014 (version 2014,
MathWorks, Natick, MA, USA) was used. The characterization of the input and output parameters of
the models was the next step after the data preparation. Concerning this, the Cp of the ionanofluids
was taken to be the output, while the nanoparticle concentration (x) and the T, Mw, ω, and Tc of pure
ILs and were chosen as the five input parameters. The first category, namely, the training set, contained
429 data points. The remaining 142 data points (i.e., 25% of the whole dataset) were employed to test
the proficiency of the algorithms. At first, all of the data were normalized in the [−1, 1] interval:

DN = 2
D−Dmin

Dmax −Dmin
, (1)

where, D, DN, Dmax, and Dmin are the actual, normalized, maximum, and minimum data
points, respectively.

2.2. Theory of an ANN

An ANN, which is a kind of intelligence model, is proficient at adapting to changes in the
environment, learning from experience, and improving its performance [57–59]. An ANN is composed
of neurons. Multi-layer perceptron (MLP) and radial basis function (RBF) networks are two common
types of ANNs.

A common MLP structure has the following steps: (1) an input layer, (2) one or more hidden layers,
and (3) an output layer. There are some elements (or neurons) in each layer. By using optimization
algorithms, the number of neurons used in the hidden layer should be determined [60].

A kind of feed-forward net is sketched using iterative localized basis functions, and the function
approximation algorithms are RBF–ANNs. RBF–ANNs and MLP–ANNs differ not only in design
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but also in their responses to patterns; with more details, simple design, and very precise response to
patterns that are not used for training, RBF–ANNs have an advantage over MLP–ANNs [61]. Because
the RBF–ANN training process is much faster than for an MLP–ANN and the structure of an RBF–ANN
is simpler, it is an acclaimed alternative to an MLP–ANN [62]. The RBF–ANN structure contains three
layers: (1) an input layer, (2) a hidden layer with a non-linear active RBF function, and (3) an output
layer. The following equation shows the RBF–ANN output:

yi(x) =
h∑

k=1

wkiϕ( ||x− ck ||), (2)

where x represents an input pattern, yi(x) denotes the ith output, wki refers to the connection weight
between the kth hidden unit and the ith output, || || represents the Euclidean norm, and ck represents
the center of the kth hidden unit. The Gaussian function was chosen as the RBF (ϕ), where the Gaussian
function is presented below:

h(x) = exp

− (x− c)2

r2

. (3)

The center (c) and radius (r) are known as Gaussian parameters. The offered MLP–ANN approach
utilizes the log-sigmoid transfer function (logsig) and linear transfer function (purelin) in its hidden
and output layers, respectively.

2.3. Theory of an ANFIS

An ANFIS usually contains five layers. Jang introduced the method in 1997 [63]. A common
ANFIS strategy is training using optimization methods. ANFIS employs the capabilities of fuzzy logic
and neural network methods. Algorithms such as particle swarm optimization (PSO) and genetic
algorithm (GA) can be employed in the ANFIS to determine the optimal model [64–67].

The structure of an ANFIS is shown in Figure 1, where two inputs (x,y) and one output ( fout) are
shown. Accordingly, the first layer can be defined for node i as [63]:

Ol
i = µAi(x) for i = 1, 2 or Ol

i = µBi−1(y) for i = 3, 4. (4)

By using a membership function (with a range covering the interval (0,1)), all nodes will be
parameterized. We used the Gaussian function (given below) as a membership function in the ANFIS
approach [63,68]:

µA(X) = e
−

(x−Ci)
2

2σ2
i , (5)

where σ and C are the parameters of the Gaussian function.
Some weighted terms and constant nodes are in the second layer [69]:

O2
i = ωi = Ol

i = µAi(x)µBi(y) for i = 1, 2. (6)

The average values of the weights are calculated using the following formula in the third layer:

σ3
i = ωi =

ωi
ω1 +ω2

for i = 1, 2. (7)

Each average value of the weight is multiplied by its associated function in the fourth layer:

σ4
i = ωi fi = ωi(pix + qiy + ri) for i = 1, 2, (8)

where pi, ri, and qi are the resulting parameters.
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Eventually, by summing the previous outputs in the last layer, the output is calculated as follows:

σ5
i =

∑
i

ωi fi =
∑

i ωi fi∑
i ωi

. (9)

According to the ten clusters proposed in the ANFIS, 120 membership function (MF) parameters
should be optimally determined, where the number 120 reached by multiplying the number of clusters
(in this work, 10), the number of parameters of the membership function (in this work, 2), and the sum
of the input and output parameters (in this work, 6). The PSO was used to optimize the ANFIS model.

Figure 1. The adaptive neuro-fuzzy inference system (ANFIS) structure.

2.4. Theory of the PSO

PSO is a population-based algorithm that begins with random solutions that are named
particles [70]. Eberhart and Kennedy first introduced the concept, which was based on the group
behavior of birds and used it for the optimization of continuous non-linear functions [71]. PSO shares
many similarities with other evolutionary, population-based algorithms. In an optimization problem,
each particle can be considered as a solution. The first stage of the optimization process is the random
distribution of particles during the search. The personal best (pbest) and global best (gbest) values are
the optimal solution that has a particle and the optimal solution calculated by the swarm, along with
its particle index, respectively. Therefore, the particle velocity (in the next step) can be calculated using
pbest (cognitive component), gbest (social component), and the current particle velocity. The cognitive
and social components are both randomly selected [72]. The pth particle is introduced by:

Xiter+1
pd = Xiter

pd + viter+1
pd , (10)

where Xpi stands for the ith data point in the D-dimensional space. G = {g1, g2, . . . , gD} and pp = {pp1,
pp2, . . . , ppD}ss represent the best position among all particles and the acceptable performance for the
pth particle, respectively. The particle velocity is represented by Vp = {Vp1, Vp2, . . . , VpD}.
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The particle position changes due to its speed, and it is updated in each iteration. The particle
moves based on its speed, which is calculated as follows:

viter+1
pd = ωviter

pd + C1rand(0, 1)
(
ppd − xpd

)
+ C2rand(0, 1)

(
gd −Xpd

)
. (11)

The new position is computed as follows:

Xiter+1
pd = Xiter

pd + viter+1
pd . (12)

The factor ω represents the inertia weight. The positive constants C1 and C2 are denoted as
learning factors and help particles to move toward a more appropriate space to reach a better solution.
PSO updates the inertia weight for each iteration using [73]:

ωiter = ωmax −
ωmax −ωmin

itermax
× iter, (13)

where ωiter denotes the inertia weight and itermax represents the maximum number of iterations.
According to experimental reports, the values of ωmax = 0.4 and ωmax = 0.9 are apt [72].

2.5. Stochastic Gradient Boosting

Boosting is known as an approach for enhancing the degree of precision in an estimating tool,
which is carried out by repeatedly implementing the function as a series to provide a combination of
outputs and weights to control the overall error of estimation. This approach has become one of the
newest and most powerful learning algorithms, which are applicable in regression and classification
problems [74].

A new form of function approximation and statistical learning is Friedman’s SGB approach,
which comes from implementing boosting in regression trees [49]. In this method, a series of relatively
simple trees is determined, where each successive tree is created based on estimation residuals from
the previous tree. The main source of complexity in these trees comes from two child nodes and a
root node. In the SGB approach, the optimal data partitioning is calculated based on a step-by-step
process; after that, the residuals of each partition are determined. Fitting a three-node tree on those
residuals is the next stage for finding a new partition that will reduce the variance of the residual of
the data from the aforementioned sequence of trees. According to the typical form of classification
for the tree, the classification of observation data is completed, and each tree constructed is summed
using this process. The combined result is used to reduce the sensitivity of this algorithm for the
suspected datasets. Ensemble learning methods come from machine learning and data mining methods,
which combine estimations from some algorithms through bagging, boosting, and related methods.
These approaches can be formulated as follows [75]:

F(x) = a0 +
K∑

k=1

ak fk(x), (14)

where K and fk(x) are the ensemble size and base learner, respectively, for inputs x in the training
dataset. In this equation, F(x) gives the ensemble estimation, which is determined via the linear
combinations of estimations. Boosting approximates can be determined using an additive expansion
form of the previous equation:

F(x) =
K∑

k=0

βkg(x; ak), (15)



Appl. Sci. 2020, 10, 6432 7 of 20

where g(x; ak) is chosen as a simple function in terms of x and a. A forward-stage approach is employed
to forecast the parameters ak and the expansion coefficient of βk for the training dataset. The first stage
in this process is the initial prediction F0(x), with the other k values to follow:

(βk, ak) = argminβ,a

N∑
i=1

L(yi, Fk−1(xi) + βkg(xi; ak)). (16)

L is Huber’s function: L(y, F(x)) =
{
[y− F(x)]2 for |y − F(x)| ≤ δ and 2δ|y − F(x)| − δ2 for |y − F(x)|

> δ. Furthermore:
Fk(Xi) = Fk−1(xi) + βkg(xi; ak). (17)

Gradient boosting is used to solve Equation (16). First, a least-squares criterion is used to fit the
base learning function to the pseudo-residuals:

ak = argmina,ρ

N∑
i=1

(yik − ρg(xi; a))2, (18)

yik = −

[
∂L(yi, F(xi))

∂F(xi)

]
F(x)=Fk−1(x)

. (19)

The best coefficient is determined as follows:

βk = argminβ
N∑

i=1

L(yi, Fk−1(xi) + βkg(xi; ak)). (20)

According to this result, a hard optimization problem is changed into an easier problem by using
one least-square, single-parameter optimization and the general form of a loss criterion. In the SGB
algorithm, there is a focus on solving the problem using an observation that is located around the
decision boundaries, which is expressed by performing the boosting operation of the model [49].
During the boosting process, it is possible to correct for the observation using an individual tree that is
near to another class [76].

3. Data Preparation

To apply the above methods and construct an accurate model, in the first stage, a set of experimental
data points for the network training is introduced. A review of empirical studies has been performed,
and the Cp values of some NEILs with wide ranges of nanoparticle concentrations and temperatures
were found [20,21,77–79]. The total collected experimental dataset (571) was randomly split into two
parts: training (75%) and testing (25%) subsets. The first part was required to calculate the model
parameters for creating the best network and the testing section was used to validate the predictive
power and performance of each model. The characteristics of the studied ILs with added nanoparticles
under different temperatures are summarized in Table 1. Furthermore, the Mw, ω, and Tc of pure ILs,
which are the model parameters, are given in Table S1 [80,81].
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Table 1. The list of ionic liquids (ILs) studied in the literature for the prediction of Cp.

Name Abbreviation Temperature
(◦C)

Nanoparticle Type
and Concentration

(vol%)

No. of Data
Points Ref.

1-butyl-3-methylimidazolium
bis(trifluromethylsulfonyl)imide [C4mim][NTf2] 25–345 Al2O3, 0–0.9 154 [20,

21]
1-butyl-2,3-dimethylimidazolium
bis(trifluoromethylsulfonyl)imide [C4mmim][NTf2] 25–345 Al2O3, 0–0.9 132 [77]

N-butyl-N-methylpyrrolidinium
bis(trifluromethylsulfonyl)imide [C4mpyrr][NTf2] 25–345 Al2O3, 0–0.9 132 [20,

79]
N-butyl-N,N,N-trimethylammonium

bis(trifluoromethylsulfonyl)imide [N4111][NTf2] 25–345 Al2O3, 0–0.9 154 [78]

4. Model Evaluation Parameters

The efficiency of the aforesaid tools was evaluated using statistical variables, namely, the MSE,
MRE, R2, the standard deviation (STD), and the root of MSE (RMSE) between the empirical and
predicted values. These analyses are presented in Equations (22)–(26), respectively:

MSE =
1
N

N∑
i=1

(
Xactual

i −Xpredicted
i

)2
, (21)

MRE =
100
N

N∑
i=1

Xactual
i −Xpredicted

i

Xactual
i

, (22)

R2 = 1−

∑N
i=1

(
Xactual

i −Xpredicted
i

)2

∑N
i=1

(
Xactual

i −Xactual
)2 , (23)

STD =

 1
N − 1

N∑
i=1

(error− error)


0.5

, (24)

RMSE =

√√√
1
N

N∑
i=1

(
(
Xactual

i −Xpredicted
i

)2
). (25)

In these relationships, Xactual
i , N, and Xactual

i show the actual variable, the number of data points,

and the output of the network, respectively. Furthermore, Xactual is the average of the actual points.

5. Results and Discussion

The offered MLP–ANN approach utilized the log-sigmoid transfer function (logsig) and linear
transfer function (purelin) in its hidden and output layers, respectively. The aim was to optimize
the hidden layer neurons. This was done using trial and error. Twelve neurons were optimally
available in the hidden layer of the MLP–ANN tool. Figure 2 illustrates the MLP–ANN model’s
performance when using the training data over several iterations. The MLP–ANN was trained using
the Levenberg–Marquardt (LM) algorithm. Table S2 shows the optimal values of the MLP–ANN
structure. Moreover, in the hidden layers of the RBF–ANN model, the RBF was used. Based on
previous results, for the ANN, the number of hidden layer neurons is chosen to be less than one-tenth
of the total number of training data points [82]. Ergo, it was assumed that the number of hidden layers
of this algorithm was one-tenth of the total number of data points used for training. Figure 3 shows
the LM algorithm based on the MSE of various iterations for the RBF–ANN. In Figure S1, the obtained
membership functions are shown for the ANFIS model. This figure emphasizes that all of the data
(output and input) were normalized in the range [−1, 1]. Figure 4 demonstrates the RMSE of the actual
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and estimated Cp values for the training data. The highest number of iterations was 1000, and the best
RMSE was 0.17416.

Figure 2. The performance of the Levenberg–Marquardt (LM) algorithm according to the mean squared
error (MSE) of different iterations for the multilayer perceptron–artificial neural network (MLP–ANN).

Figure 3. The performance of the LM algorithm according to the MSE of different iterations for the
radial basis function (RBF)–ANN.
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Figure 4. ANFIS performance during the training stage using the particle swarm optimization (PSO)
approach (with ten clusters).

To create the structure of the SGB, the different parameters of this algorithm needed to be
determined. These parameters were the number of additive terms, learning rates, minimum n in
the child node, and the proportion of the sub-dataset. Table 2 gives details of the trained models.
Figure S2 shows the predicted and actual (experimental) values of the Cps, which were obtained with
different models. Figure 5 illustrates the regression diagrams of four models for the computed and
actual values. According to these figures, both the training and testing results showed a surprisingly
good fit to a straight line for the SGB model; however, the obtained fits for the other models did not
give benchmarking results compared to the SGB. The MLP–ANN algorithm seems to have produced
estimations than the ANFIS and RBF–ANN algorithms. The R2 coefficient of the SGB method was
0.994 for both the training and testing datasets. The R2 values were 0.933 and 0.943, 0.8499 and 0.8754,
and 0.9327 and 0.9204 for the training and testing datasets of the MLP–ANN, ANFIS, and RBF–ANN
algorithms, respectively. According to the statistical analysis, the linear regression equations of the
testing datasets of the ANFIS, MLP–ANN, RBF–ANN, and SGB models were respectively expressed
as follows:

y = 1.0003x− 0.0071; R2 = 0.8754, (26)

y = 0.988x + 0.0223; R2 = 0.943, (27)

y = 0.993x + 0.0232; R2 = 0.9204, (28)

y = 1.0044x− 0.0167; R2 = 0.9868. (29)

The regression equations express the accuracy or the deviation of the calculated Cp of the
ionanofluids from actual values. As these equations are more similar to the bisector line equation,
they gave more accurate predictions. The relative deviations (%) between the predicted and actual Cp

of the ionanofluids for these approaches are depicted in Figure S3. The MREs (%) of the testing and
training data of the SGB model were 0.93789% and 0.81109%, respectively. Furthermore, these values
were 1.9799% and 1.8353%, 3.5439% and 3.5403%, and 1.768% and 1.6416% for the MLP–ANN, ANFIS,
and RBF–ANN, respectively. It is clear that the SGB predicted the Cp better than the other models.
The RBF–ANN and MLP–ANN showed similar results, but the RBF–ANN was slightly better than
the MLP–ANN. Table 3 summarizes the statistical techniques, including the R2, MSE, MRE, RMSE,
and STD for training, testing, and total datasets for each model. The determined indexes in the training
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phase show that the proposed models were trained to acceptable degrees of accuracy. After the
evaluation of the training phase, it was important to identify the performance of models regarding the
determination of the Cp of ionanofluids for unseen conditions. Therefore, the statistical indexes in
the testing phase were investigated to ensure the generalization of the model. The generalization of
models was confirmed by the determination of the error values. The low error values show that the
SGB model had an interesting accuracy for unseen points.

Table 2. More details of trained models for the prediction of the Cps of the ILs.

SGB Tree ANFIS

Type Value/Comment Type Value/Comment

Learning rate 0.1 Membership function Gaussian
Number of additive terms 300 No. of membership function (MF) parameters 120

Number of data points used for training 429 No. of clusters 10
Number of data points used for testing 142 Number of data points used for training 429

Minimum n in the child node 1 Number of data points used for testing 142
Optimization method PSO

Population size 85
Iteration 1000

C1 1
C2 2

MLP–ANN RBF–ANN

No. input neuron layer 5 No. input neuron layer 5
No. hidden neuron layer 12 No. hidden neuron layer 100
No. output neuron layer 1 No. output neuron layer 1

Hidden layer activation function Logsig Hidden layer activation function RBF
Output layer activation function Purelin Output layer activation function Purelin

Number of data points used for training 429 Number of data points used for training 429
Number of data points used for testing 142 Number of data points used for testing 142

Maximum iterations 1000 Maximum iterations 100

Table 3. Evaluating the performance of the proposed models using statistical analyses.

Model Dataset R2 MRE (%) MSE RMSE STD

ANFIS
Training 0.8499 3.5403 0.0298 0.1726 0.1520
Testing 0.8754 3.5439 0.0320 0.1788 0.1587
Total 0.8575 3.5412 0.0303 0.1788 0.1536

MLP–ANN
Training 0.9332 1.8353 0.0138 0.1173 0.1098
Testing 0.9434 1.9799 0.0132 0.1147 0.1067
Total 0.9360 1.8714 0.0136 0.1147 0.1089

RBF–ANN
Training 0.9327 1.6416 0.0134 0.1160 0.1100
Testing 0.9204 1.7680 0.0201 0.1418 0.1360
Total 0.9290 1.6732 0.0151 0.1418 0.1170

SGB tree
Training 0.996 0.81109 0.00089 0.02977 0.02289
Testing 0.987 0.97389 0.00249 0.04994 0.04461
Total 0.994 0.85179 0.00129 0.03589 0.02983

MRE: Mean relative error, MSE: mean squared error, RMSE: root mean squared error, STD: standard deviation.
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Figure 5. Cont.
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Figure 5. Regression diagram for predict Cp using different models in the training and testing steps:
(a) ANFIS, (b) MLP–ANN, (c) RBF–ANN, and (d) SGB.

6. Outlier Detection

The correctness of the algorithms is strongly influenced by the precision of the laboratory
values [83]. This study used a large amount of literature data, and it should be noted that some of these
data may have a significant laboratory error. The trend of outliers is distinct from the general trend.
It is necessary to find the exact procedure for detecting outliers to remove the imprecise experimental
data [84]. In this work, the Leverage method was used to find the outliers. Based on the following
equation, after obtaining the residual values, a hat matrix (H) was created for the input values [85]:

H = X
(
XTX

)−1
XT. (30)

X is an m × n, where m and n are the number of model parameters and the number of samples,
respectively. From the main diagonal of H, the hat values are obtained. Accordingly, a Williams plot



Appl. Sci. 2020, 10, 6432 14 of 20

can graphically detect outliers that show the standard residual values versus the hat values. Because
the predictive power of the SGB was better than the ANFIS, the SGB was used to analyze the outlier
detection. Figure 6 illustrates Williams plots for the various models investigated. The critical leverage
value (H*) was calculated according to this equation:

H∗ =
3(n + 1)

m
, (31)

where the blue lines in the figures indicate the leverage limit and the data points that have lower critical
leverage value (H*) than the hat values (H) are known as outliers. Moreover, the red lines y = ±3 are
borders, where data points with standardized residuals outside these two lines are regarded as outliers.

Figure 6. Cont.
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Figure 6. The detection of outlying data for the different models: (a) ANFIS, (b) MLP–ANN,
(c) RBF–ANN, and (d) SGB.

Importance of the Input Parameters

To determine which inputs had the greatest impact on Cp, we used the relevancy factor (r), where r
is in the range of [−1, 1]. The r values are calculated using Equation (32) [84]:

r =

∑n
i=1

(
Xk,i −Xk

)(
Yi −Y

)
√∑n

i=1

(
Xk,i −Xk

)2 ∑n
i=1

(
Yi −Y

)2
, (32)

where Xk,i and Yi are the ith input and output, respectively; Y and Xk are the average value of output
and kth input, respectively; n denotes the total number of data points. As shown in Figure 7, Cp was
directly related to T, Mw, and Tc, and had an inverse relation with ω and x. Mw and Tc had the highest
and ω had the lowest impact on Cp (with r equal to 0.451).
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Figure 7. Sensitivity analysis to determine the effect of the inputs on the Cp values of ILs.

7. Conclusions

In this work, the predictive capability of four groups of intelligence models was evaluated
to determine the Cp of ionanofluids in extensive conditions based on a wide database containing
571 data points gathered from literature reviews. Cp was estimated by considering the properties
of ILs, the nanoparticle concentration, and operational temperature as input parameters. Moreover,
the dependent parameters of the ANFIS were optimized using PSO. The LM algorithm was used to
determine the tuning parameters of the ANN. The PSO displayed an excellent ability to determine
the best values of the ANFIS parameters. The outstanding aspects of this study are its easy and quick
calculation and the low number of adjustable parameters for the calculation methods. The statistical
analyses of the SGB method showed highly satisfactory predictions compared with the other models.
Fortunately, the SGB model presented here has simple calculations. Using it in commercial software or
as an alternative tool when there is no empirical data is another of its applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/18/6432/s1,
Figures S1–S3, and Tables S1 and S2.
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