Biogeographical patterns of grasses (Poaceae) indigenous to South Africa, Lesotho and Eswatini

Marike Trytsman^{1*} (ib, Francuois L Muller¹ (ib, Craig D Morris² and Abraham E van Wyk^{3,4} (ib)

¹ Animal Production, South African National Forage Genebank, Agricultural Research Council, Pretoria, South Africa

² Animal Production, Agricultural Research Council & School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa

³ Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa

⁴ National Herbarium, South African National Biodiversity Institute, Pretoria, South Africa

*Correspondence: mtrytsman@arc.agric.za

The ecological and economical importance of African grasses in sustaining animal production prompted studies to quantify the wealth of grass genetic resources indigenous to southern Africa. Plant collection and occurrence data were extracted from two southern African datasets, BODATSA and PHYTOBAS, and analysed to establish biogeographical patterns in the grass flora indigenous to South Africa, Lesotho and Eswatini. A total of 1 648 quarter degree grid cells, representing 674 grass species, were used in an agglomerative hierarchical clustering to determine biogeographical units being referred to as grasschoria. Six distinct groups formed, mainly following existing biome vegetation units, termed the Grassland, Indian Ocean Coastal Belt, Fynbos, Savanna, Central Arid Region and Succulent Karoo grasschoria. The description focuses on associated phytochoria, floristic links, key species, climate and soil properties. The main gradient distinguishing grasschoria was a rainfall-temperature gradient. The collection, conservation and breeding of pasture grass species adapted to especially arid and semi-arid environments, could be managed more efficiently by using these results, but also calling on the need to describe and label infraspecific genetic variants, including ecotypes.

Keywords: biomes, distribution, floristics, pastures, phytochoria

Supplementary material: available at https://doi.org/10.2989/10220119.2021.1918247

Introduction

The grass family, Poaceae (Gramineae) is considered the most valuable plant family in food production worldwide. In addition to its importance as a grain crop (e.g. maize, wheat and rice), its tolerance to grazing, fire and drought, makes grasses a significant component of livestock feed, mainly sourced from rangeland and/or planted pastures. Soreng et al. (2017) recognised at least 11 506 grass species worldwide of which approximately 685 species are indigenous to southern Africa (Trytsman et al. 2020). Considering that in southern Africa only eight indigenous grass species were extensively researched in the past century (Truter et al. 2015), the wealth of grass genetic resources, indigenous to the subcontinent, still needs to be prioritised, conserved and developed for forage production.

The classification and distribution of southern African grasses that included Botswana, Namibia, South Africa, Lesotho and Swaziland were described by Gibbs Russell et al. (1990) and was updated by Fish et al. (2015). Studies on the biogeographical patterns of grasses in relation to southern African vegetation types are, however, limited. Then again, there are numerous phytogeographical studies on the southern African flora, which include those by Acocks (1953, 1988), Goldblatt (1978), Clayton (1983), White (1983), Rutherford and Westfall (1986), Low and Rebelo (1996), Jürgens (1997), Cowling et al. (1998), Van

Wyk and Smith (2001), Bredenkamp et al. (2002), Linder et al. (2005), Steenkamp et al. (2005), Mucina and Rutherford (2006), Daru et al. (2016) and Trytsman et al. (2016). These studies mainly used criteria, such as species distribution, floristic composition, physiognomy, growth form, endemism or phylogeny. The well recognised study of White (1983) delineated three Regional Centres of Endemism for southern Africa, as well as a Centre, a Transitional Zone and a Regional Mosaic. The Regional Centres of Endemism include the Zambezian, Cape and Karoo-Namib, the lower ranked Afromontane Archipelago-like Centre and lastly the Kalahari-Highveld Transitional Zone and the Tongaland-Pondoland Mosaic. Linder et al. (2005) distinguished six narrow phytochoria within a broad southern African phytochorion, namely the Cape, Natal, Namib-Karoo, eastern Karoo, Kalahari and Karoo transition (listed here as highest to lowest in species richness), using more than 5 000 sub-Saharan species and infra-specific taxa. The phytochoria defined by mainly these two aforementioned studies will be used to interpret the main clusters resulting from the current study.

The use of the biome and bioregion maps of Mucina and Rutherford (2006), to identify biogeographical areas of the leguminochoria of southern Africa, formed distinctive patterns, as described by Trytsman et al. (2016). Rutherford et al. (2006) also stated that the biomes of South Africa, Lesotho and Eswatini '... are partly derived from a bottom up approach that accounts for the perfect match between biome boundaries and floristically determined boundaries'. These authors presented evidence that the degree of correspondence between biomes and phytochoria delineated by White (1983) and Linder et al. (2005) were high for the Desert, Fynbos, Indian Ocean Coastal Belt, Nama-Karoo and Succulent Karoo biomes. In an earlier study Gibbs Russell (1987) found that, of the seven southern African plant families with more than 1% of taxa in all biomes. Poaceae has the highest number of taxa in the Savanna and Desert biomes, and second most in the Grassland and Nama-Karoo biomes. It was concluded that at family level, the winter and the summer rainfall biomes form two separate groups, the former include the Fynbos and Succulent Karoo and the latter the Savanna. Grassland, Nama-Karoo and Desert biomes. Gibbs Russell (1987) also confirmed that the Nama-Karoo Biome is floristically strongly linked (species, genus and family level) to the Savanna and Desert biomes.

Biodiversity loss in the Forest and Grassland biomes is predicted to be the most dramatic, compared with other biomes (Biggs et al. 2008). Grasslands contain a large grass genetic reservoir and, more important, many grasses contain ecotypes with a range of physiological and ecological adaptations for various conditions (Gibbs Russell 1983; Theunissen 1997; Mannetje et al. 2007). Eragrostis curvula, described by Dawson (1987) as a 'complex of different genotypes' resulting from the hybridisation between its ancestors and other species of *Eragrostis*, is such an example. Dawson (1987) presented evidence that rainfall is a major driver for the distribution patterns of E. curvula ecotypes, for example, the 'curvula' type is found mainly in the Savanna and Grassland and the 'conferta' group in the Karoo. Van Wyk (1995) pointed out that the widely employed biological species concept in plant taxonomy does not reflect the full extent of genetic diversity contained within such demarcated species. As had also been shown by others (Casetta et al. 2019, and references therein), reliance on the traditional species-based approach to assess genetic resources may result in failure to conserve and/or exploit the full spectrum of diversity present within organisms; this evidently also applies to the grasses. Although the bulk of grass diversity is to be found at the infraspecific level, taxonomists rarely name infraspecific variants, other than subspecies and varieties. This, however, has a financial implication for germplasm collection excursions by forage genebanks when addressing the gaps in existing collections (Parra-Quijano et al. 2012) in that a broader geographical scale should be adopted. However, these authors affirmed that tools, such as eco-geographical land characterization maps, distribution models and gap analysis could locate potential collecting sites and therefore reduce costs.

Evidence presented by Cang et al. (2016) suggested that habitat shifts of grasses as a result of climate change would most probably be too slow to save local populations and subsequently lead to local extinction, consequently placing an increased pressure on seed genebanks to ensure more comprehensive collections (Jarvis et al. 2010). Considering these findings, the principle aim of the current study was to analyse the biogeographical patterns displayed by Poaceae, indigenous to South Africa, Lesotho and Eswatini and to determine how the resultant broad scale floristic units compare with other such units, i.e. to distinguish ecologically interpretable phytochoria (referred to as grasschoria). Furthermore, the biogeographical significance of both the grasschoria (from this study) and leguminochoria (from Trytsman et al. 2016), in terms of their adaptation to environmental factors, will be used in formulating a collection, conservation, screening and characterization strategy for indigenous genetic resources with pasture and or soil conservation potential for the South African National Forage Genebank (SA-NFG). For the purpose of the current study, 'southern Africa' is defined as the Republic of South Africa, Lesotho and Eswatini (formerly Swaziland). The same definition was followed in an earlier study on the distribution of legumes in the subcontinent (Trytsman et al. 2016).

Materials and methods

Distribution data

The occurrence records for Poaceae, indigenous to southern Africa, were extracted from two South African databases. The first one is the Botanical Database of Southern Africa (BODATSA), maintained by the South African National Biodiversity Institute (SANBI) and stored in the BRAHMS platform (Le Roux et al. 2017) and the second is PHYTOBAS, a National Vegetation Data Archive database containing botanical survey records for the period between 2003 and 2009 and maintained by the SA-NFG. As previously reported (Trytsman et al. 2020), the merging of the two datasets for the study area resulted in 1 803 guarter degree grid cell (QDGC) records and 685 species. There were eight grass species listed in Fish et al. (2015) that have no occurrence records in any of the two databases, as discussed in Trytsman et al. (2020). For the current study, further editing was done on the original dataset described by Trytsman et al. (2020). QDGCs with only one species were removed from the dataset (i.e. 150 QDGCs) and three species of Pentaschistis moved to Pentameris, resulting in 1 648 QDGCs and 674 species present within the borders of southern Africa and used in further statistical analyses. The recent taxonomic revision of Helictotrichon resulted in the reassignment of all members to Trisetopsis (Mashau et al. 2020). The decision to remove one-species QDGCs was based on the results of a previous study where a large non-specific group, termed the Generalist group, was formed by QDGCs containing only one legume species (Trytsman et al. 2016) and therefore treated as noise.

The Agricultural Research Council – Soil, Climate and Water (ARC–SCW 2009), supplied the maps that were used to generate data on climate (mean annual rainfall, mean annual minimum and maximum temperatures) and soil (phosphorus and pH) within each QDGC. The exchangeable sodium percentage (ESP) assigned to each bioregion was sourced from Nell (2010). The biomes map of Rutherford et al. (2006) was used as a base layer for plotting the different grasschoria using the QDGCs assigned to each unique grasschorion. ArcView GIS 3.2, ESRI Inc. 2002 was used to create the layers. For the bioregions, 32.7% of the QDGCs were classed as ecotones and for biomes 23.5%, resulting in a considerable loss of descriptive data. The

abiotic values, on the other hand, were described in real and transitional terms with no loss of QDGCs from the dataset. However, because of the large number of categories defined, especially for the rainfall and soil phosphorus variables, classes were formed by grouping categories together, as presented in Supplementary material 1.

Additional climatology and agrohydrology data (Schulze 2007) were used to describe grasschoria, based on data published in Trytsman (2013). These include notes on, for example, extreme maximum temperatures, net primary production, elevation, days of heavy frost per year, monthly solar radiation and extreme cold spells per year. The USDA Plant Hardiness Zones (PHZs) (Daly et al. 2012) will be cited, because extreme minimum winter temperatures are major contributing factors that determines perennial plant species distribution patterns, as had been confirmed as being a major driver for distinguishing between legume assemblages, indigenous to southern Africa (Trytsman et al. 2016). Glen and Van Wyk (2016) also used this concept within a southern African context and this map was used as reference in the current study to assign PHZs.

Statistical analyses

A Multivariate Agglomerative Hierarchical Clustering (AHC) was applied to the presence or absence of grass species recorded in the dataset. The cluster analysis was performed using XLSTAT 01-Jun-2010 Software (Addinsoft to MS Excel) and PC-Ord (McCune and Mefford 2006) applying Euclidean distance for dissimilarity and the Ward's linkage method for agglomeration to establish and describe functional grass clusters. The use of both the Euclidean distance and Ward's method in geographical biodiversity studies were highlighted in Trytsman et al. (2016).

In a previous study, Trytsman (2013) concluded that the AHC results were similar, using either the XLStats or PC-Ord programs, but that XLStats groups formed sequentially whereas PC-Ord groups formed disjointedly. Table 1 shows the AHC results for the legume, as well as the grass studies, where the PC-Ord groups, even though similarly formed, were disjointed, more so for the grass than for the legume analyses. However, when comparing the percentage QDGC enclosed in the grasschoria because of using either these programs, it is clear from Table 1 that PC-Ord was more accurate in placing QDGC in defined grasschoria than XLStats. This resulted in less QDGC placed in the Generalist group using PC-Ord than XLStats (25% vs 34%, i.e. 157 QDGCs), therefore it was decided to use the PC-Ord outcome in terms of assigned QDGCs, but the dendrogram from XLStats for its simplicity.

A discriminant analysis (aka Canonical Variates Analysis) was performed on the grasschoria classes with records from the distribution data ($n = 40\ 234$) using Canoco 5 (Ter Braak and Šmilauer 2012). The mean annual rainfall, mean annual maximum and minimum temperature, soil phosphorus and soil pH (H₂O) (explanatory variables) expressed on an ordinal scale, with ranks based on classes were used to identify the possible drivers for discrimination between grasschoria (dependent variable). QDGCs assigned with a wide mean annual rainfall range, i.e. 200–1 000 mm (mainly recorded in the Fynbos) were removed from the dataset, given that they are an integral

Calculations

Where the distribution pattern of a grasschorion did not closely follow a biome border, i.e. where it either overlapped with a bordering biome or did not cover the biome in full, the percentage overlap of the bordering biomes was calculated, using designated degree squares (DS).

Species richness was calculated for each grasschorion by removing duplicate species and then dividing the resulting total number of species by the total number of QDGCs contained in the particular grasschorion. The total number of species occurrences (records) in a grasschorion was calculated and the first 20 species with the highest occurrence were selected as key species. These species are not indicator species, i.e. species whose abundance in a given area is believed to indicate certain environmental or ecological conditions or suitable conditions for a group of other species. Rather, from an agricultural viewpoint, a key species is one with potential as a pasture crop being more widely adapted than a rare species with most likely a narrow range of ecological tolerance. See Supplementary material 2 for a complete list of species recorded in each grasschorion. Species that are present as key species in one grasschorion only, are also noted.

Terminology

In mapping the southern African flora, a distinction is made between biomes and bioregions. These two mapping units are frequently referred to in the current contribution and are not synonymous. The bioregions map is available in Rutherford et al. (2006), who defined these two concepts as follows:

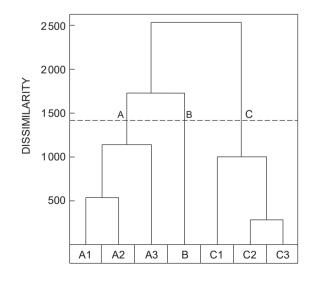
Biome 'is viewed as a high-level hierarchical (hence simplified) unit having a similar vegetation structure exposed to similar macroclimatic patterns, often linked to characteristic levels of disturbance such as grazing and fire'.

Bioregion 'is a composite spatial terrestrial unit defined on the basis of similar biotic and physical features and processes at the regional scale'. Bioregions are 'subordinate units to a biome'.

Results and discussion

Grasschoria of southern Africa

Figure 1 shows the dendrogram of the three main clusters (A–C) and the subdivisions within each main cluster formed by the AHC analysis. Because the resultant grasschoria were largely congruent with the biomes described by Rutherford et al. (2006), the names we have assigned to them largely follow those of the corresponding biomes. Cluster A was subdivided into three grasschoria namely the Grassland (A1), the Indian Ocean Coastal Belt (A2) and the Fynbos (A3), Cluster B with one grasschorion, the Savanna and Cluster C into three grasschoria, namely the Central Arid Region (C1), the Generalist group (C2) and the Succulent Karoo (C3).


Cluster A is an amalgamation of the Cape Regional Centre of Endemism, the Afromontane Archipelago-like

Leguminochorion (Trytsman 2013)	XLStats group	PC-Ord group
Southern Afromontane	1	7
Albany Centre	2	8
Northern Highveld Region	3	7
Drakensberg Alpine Centre	4	8
Drakensberg Foothill and Coastal Region	5	12
Arid Western Region	6	5
Lower Rainfall Cape Floristic Region	7	6
Central Arid Region	8	3, 4
Generalist Group	9	1
Summer Rainfall Region	10	2
Northern and North-eastern Savanna Region	11	7
Kalahari Bushveld Region	12	7
Higher Rainfall Cape Floristic Region	13	9
Central Bushveld Region	14	10
Subtropical Lowveld and Mopane Region	15	10
Northern Mistbelt Forest	16	11
Grasschorion (Current study)		
Grassland	1	3, 11, 17
Indian Ocean Coastal Belt	2	4, 16
Fynbos	3	7, 13
Savanna	4	1, 8, 15
Central Arid Region	5	2, 5, 10, 14
Generalist	6	9
Succulent Karoo	7	6, 12
% QDGCs		
Grassland	17	18
Indian Ocean Coastal Belt	2	2
Fynbos	5	7
Savanna	14	14
Central Arid Region	21	26
Generalist	34	25
Succulent Karoo	6	7
Total	100	100

Table 1: Groups formed by Multivariate Agglomerative Hierarchical Clustering using two different statistical programs, XLStats and PC-Ord, for grass and legume species indigenous to southern Africa (South Africa, Lesotho and Eswatini) and the percentage quarter degree grid cells (QDGCs) enclosed in each of the grasschoria

Centre of Endemism and the Kalahari-Highveld Transition Zone, as well as the Tongaland-Pondoland Regional Mosaic of White (1983) and the Natal, Eastern Karoo and Cape phytochoria of Linder et al. (2005). Cluster B mainly represents the Zambezian Regional Centre of Endemism of White (1983) and the Zambezian Central, Natal and Kalahari phytochoria of Linder et al. (2005). Lastly, Cluster C is mainly represented by the Karoo-Namib Regional Centre of Endemism and the Kalahari-Highveld Transition Zone of White (1983) and the Namib-Karoo and Eastern Karoo phytochoria of Linder et al. (2005).

Notwithstanding the removal of QDGCs containing one species, a Generalist group formed. This is a non-specific group, i.e. represented in all biomes and bioregions (Table 2) with 53% of assigned QDGCs containing less than five grass species and 81% with less than 10 species (data not presented). Because it was ecologically uninformative, this group will henceforth be excluded from discussions as a grasschorion, although it has been included in a table (see Table 7), because it contributes towards the dataset on grass species richness. The six remaining grasschoria are mapped (Figure 2) and broadly described in Table 2, delineated by the key biomes

Figure 1: Dendrogram of southern African (South Africa, Lesotho and Eswatini) grasschoria delimited by Multivariate Agglomerative Hierarchical Clustering. A1: Grassland; A2: Indian Ocean Coastal Belt; A3: Fynbos; B: Savanna; C1: Central Arid Region; C2: Generalist; C3: Succulent Karoo

Table 2: Summary of classification of grasschoria (A–C) of southern Africa (South Africa, Lesotho and Eswatini). Key biomes and bioregions from Rutherford et al. (2006) with additional descriptions accessed from published literature. Only key bioregions with representation values higher than 10% within a grasschorion are shown

Cluster	Grasschorion	Key biomes ¹ and bioregions ²	Additional description ³
A1	Grassland	¹ AT, GL, SAV ² DG, DHG, MHG, SEG	Bankenveld, N-E Sandy Highveld, <i>Themeda-Festuca</i> Alpine Veld (Ac); Alpine, Moist subtropical (Kr); Forest Biome; Rocky Highveld Grassland (Lo); Drakensberg Alpine Centre (Va)
A2	Indian Ocean Coastal Belt	¹ IOCB ² IOCB, SES	Moist and humid subtropical (Kr); Coastal Bushveld-Grassland (Lo); Maputaland-Pondoland Region (Va)
A3	Fynbos	¹ F, FB ² EFR, NWF, SWF, WFR	Coastal Fynbos, Coastal Renosterveld, False Sclerophyllous Bush types (Ac); Karoo Mountain-, Langebaan-, Agulhas Plain-, Southeastern-, Southwestern- and Northwestern Centre (Go); Maritime, Mediterranean (Kr)
В	Savanna	¹ SAV ² CBV, M, LV	Springbok Flats Turf Thornveld, Sour Bushveld (Ac); Dry and moist tropical, Moist subtropical (Kr); Mopane Bushveld, Mixed Lowveld Bushveld, Mixed Bushveld (Lo)
C1	Central Arid Region	¹ D, GL, NK, SAV ² BML, DHG, EKB, UK	Kalahari Thornveld (Ac); Cold and warm desert, Dry subtropical (Kr); Kimberley Thorn Bushveld, Kalahari Plateau Bushveld (Lo); Nama-Karoo and Western Savanna biomes (Ru); Griqualand West Centre (Va)
C2	Generalist	All bioregions and biomes; minimally in: ¹ FB, IOCB, SK ² NWF, SWF and NHV	Non-specific
C3	Succulent Karoo	¹ D, FB, SK ² NHV, NSV, RVK, T- ESK	Namaqualand Broken Veld, Succulent Karoo, Strandveld (Ac); Warm desert (Kr); Gariep Centre (Va)

¹AT: Albany Thicket; D: Desert; F: Forest; FB: Fynbos; GL: Grassland; IOCB: Indian Ocean Coastal Belt; NK: Nama-Karoo; SAV: Savanna; SK: Succulent Karoo

²BML: Bushmanland; CBV: Central Bushveld; DG: Drakensberg Grassland; DHG: Dry Highveld Grassland; EFR: Eastern Fynbos-Renosterveld; EKB: Eastern Kalahari Bushveld; IOCB: Indian Ocean Coastal Belt; LV: Lowveld; M: Mopane; MHG: Mesic Highveld Grassland; NHV: Namaqualand Hardeveld; NSV: Namaqualand Sandveld; NWF: Northwest Fynbos; RVK: Rainshadow Valley Karoo; SEG: Sub-Escarpment Grassland; SES: Sub-Escarpment Savanna; SWF: Southwest Fynbos; T-ESK: Trans-Escarpment Succulent Karoo; UK: Upper Karoo; WFR: West Coast Renosterveld

³Ac: Acocks (1988); Lo: Low and Rebelo (1996); Kr: Kruger (1999); Va: Van Wyk and Smith (2001); Go: Goldblatt and Manning (2002); Ru: Rutherford et al. (2006)

and bioregions defined by Rutherford et al. (2006) with additional vegetational descriptions from Acocks (1988), Low and Rebelo (1996), Kruger (1999), Van Wyk and Smith (2001) and Goldblatt and Manning (2002).

Grassland (A1)

The Grassland Grasschorion includes grass species mainly found in the Grassland Biome (82%) and more specifically the Mesic Highveld Grassland Bioregion (34%) (see definition in 'Material and methods'), evident from Figure 2 and Table 3. Rutherford et al. (2006) describes this biome with a summer rainfall, cooler elevated interior, and with several plant species to be found only in this region.

The western border of the Grassland Grasschorion does not fully match that of the Grassland Biome (Figure 2). In order to determine the overlap of the Savanna and Central Arid Region grasschoria into the western region of the Grassland Grasschorion, the percentage overlay in designated DS is presented in Table 4. The Central Arid Region Grasschorion represents 81% and the Savanna 8% of the DS bordering the Grassland Biome. The eastward dwarf shrubland expansion concept of the Karoo into grasslands is an accepted theory as a result of either overgrazing or inappropriate land management (Acocks 1953; Meadows 2003) or, perhaps more controversially, hotter, drier conditions with higher incidences in fire and CO₂ concentrations (Midgley et al. 2008; Masubelele et al. 2014, 2015; Du Toit et al. 2015). Hoffman and Cowling (1990) and Du Toit and O'Conner (2014) claim the reverse, namely that the Nama-Karoo has become grassier with a westward movement of grassland boundaries, because of an apparent increase in rainfall and a shift in seasonality of rainfall, namely from late to early season. Masubelele et al. (2014) also concluded that grass and not dwarf shrub cover increased over a 50-year period in the ecotone between the Grassland and Nama-Karoo biomes. They suggest that an increase in early summer rainfall in the Nama-Karoo Biome and a reduction in stocking rates are factors that could influence this trend. Our study shows that grass species adapted to arid conditions shifted their range into the grassland regions. Indigenous grass species adapted to arid and semi-arid conditions, such as Aristida congesta, Eragrostis lehmanniana, Enneapogon scoparius and Tragus koelerioides (Supplementary material 2) were recorded to a large extend in the DS referred to in Table 4. The eastern boundary of this grasschorion follows the Grassland Biome boundary closely, but overlap with the Savanna Biome (south-easterly) and in terms of bioregions more specifically with the Sub-Escarpment Savanna Bioregion. The southern boundary of the Grassland Grasschorion overlaps with the Albany Thicket Biome and will be discussed separately.

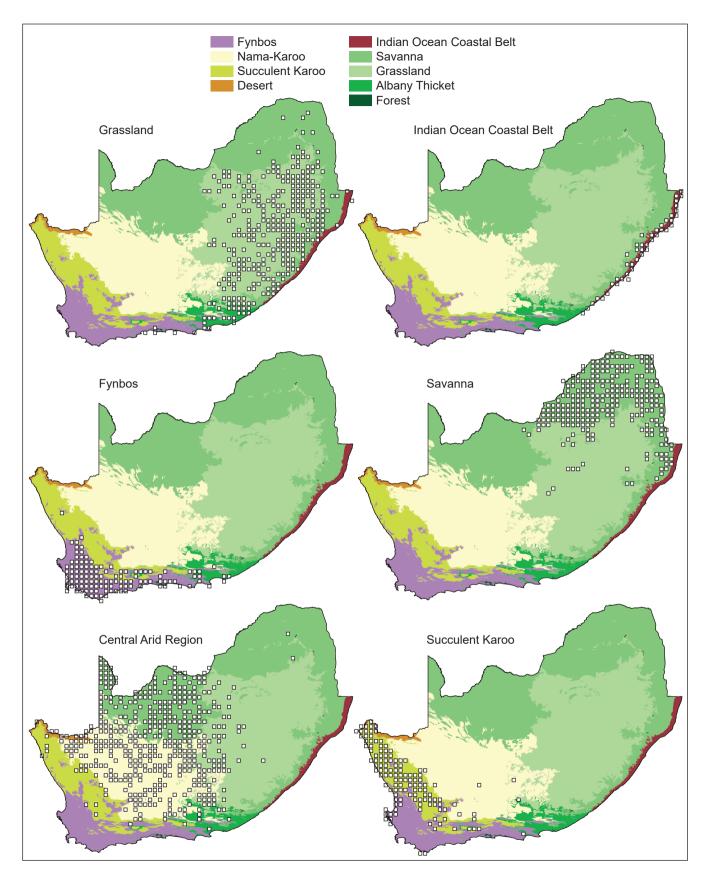


Figure 2: The grasschoria of southern Africa (South Africa, Lesotho and Eswatini) superimposed on the biomes of South Africa defined by Rutherford et al. (2006)

Table 3: Representation percentages of key biomes and bioregions (Rutherford et al. 2006) within grasschoria of southern

 Africa (South Africa, Lesotho and Eswatini)

Biome	GL	IOCB	Fynbos	SAV	CAR	SK
Albany Thicket	2	4	5		1	
Desert					2	7
Fynbos	2		94			17
Grassland	82	4		7	13	
Indian Ocean Coastal Belt	1	82				
Nama-Karoo					42	7
Savanna	13	10		93	40	
Succulent Karoo			1		2	69
Bioregion						
Albany Thicket	2	3	7		1	
Bushmanland					21	3
Central Bushveld	2			60		
Drakensberg Grassland	12					
Dry Highveld Grassland	13			4	11	
Eastern Fynbos-Renosterveld	2		24			
Eastern Kalahari Bushveld				1	32	
Gariep Desert					2	4
ndian Ocean Coastal Belt	2	85				
Kalahari Duneveld					9	
Knersvlakte						5
_ower Karoo					4	3
_owveld	6			20		
Vesic Highveld Grassland	34			3	1	
Vopane				11		
Namagualand Sandveld						3
Namaqualand Cape Shrubland			2			
Namaqualand Hardeveld						23
Namaqualand Sandveld						14
North West Fynbos						1
Northwest Fynbos			16			3
Rainshadow Valley Karoo			4		1	10
Richtersveld						6
South Coast Fynbos			5			
South Strandveld			2			
Southern Namib Desert						4
Southwest Fynbos			24			3
Sub-Escarpment Grassland	21					
Sub-Escarpment Savanna	6	12		1		
Frans-Escarpment Succulent Karoo						10
Jpper Karoo					18	3
West Coast Renosterveld			12			
Nest Strandveld			2			5
Western Fynbos-Renosterveld			2			

Note: Bold-formatted values indicate the biome and bioregion with the highest percentage representation in a particular grasschorion. GL: Grassland; IOCB: Indian Ocean Coastal Belt; SAV: Savanna; CAR: Central Arid Region; SK: Succulent Karoo

A summary of the predominant climate and soil characteristics for this grasschorion is given in Table 5. The mean annual rainfall is mainly >800 mm, but also covers regions with <400 mm. Moderate mean annual minimum (<8 °C) and mean annual maximum (25–29 °C) temperatures further denote this grasschorion as an agriculturally highly productive region. The extreme maximum summer temperatures of 36–42 °C recorded in low-lying, westerly parts are further noted for this grasschorion (Supplementary material 3). Species are adapted to soil with low pH (<6.4), low phosphorus content (<10 mg kg⁻¹) and to non-sodic soils. This grasschorion represents the USDA PHZs 8 and 9, the hardiness

zones with the lowest mean annual extreme minimum winter temperatures in the study area, namely -12 to -1 °C. Additional information regarding climatology and agrohydrology (Schulze 2007) for all the grasschoria described is shown in Supplementary material 3.

The Grassland Grasschorion has key species in common with all grasschoria, except for the Succulent Karoo, for example, *Eragrostis curvula* and *Themeda triandra* (Table 6). Two species, namely *Aristida junciformis* and *E. capensis*, are key species in the Grassland and Indian Ocean Coastal Belt grasschoria only, whereas *Koeleria capensis* is a key species in the Grassland and Fynbos grasschoria only. High occurrences of different species

Biome borders (designated DS)	Grasschorion	Percentage of DS
Grassland/Savanna/Nama-Karoo1	Grassland	11
(2525, 2625, 2725, 2726, 2825,	Savanna	8
2925, 3025, 3026)	Central Arid Region	81
Fynbos/Succulent Karoo ²	Fynbos	42
(3218)	Succulent Karoo	58
Albany Thicket ¹	Grassland	46
(3224, 3225, 3226, 3227, 3324,	Indian Ocean Coastal Belt	14
3325, 3326, 3327)	Fynbos	24
	Central Arid Region	16

Table 4: The percentage grasschoria of southern Africa (South Africa, Lesotho and Eswatini)

 assigned to biomes in designated degree squares (DS)

¹±86 400 km²; ²±10 800 km²

of *Eragrostis* are also noted, with *E. racemosa* and *E. plana* not present as key species in other grasschoria. The distribution patterns of key species *Eragrostis plana*, *Harpochloa falx* and *Tristachya leucothrix* are also known to be predominantly found in the Grassland Biome (Fish et al. 2015). There are 123 grass species recorded in this grasschorion that are endemic/near endemic to southern Africa (Fish et al. 2015) (Supplementary material 4) with *Pentameris basutorum*, *P. exserta*, *P. galpinii* and *P. oreodoxa* strictly confined to the Drakensberg region.

This grasschorion covers the Core Afromontane and Drakensberg Alpine phytochoria of Steenkamp et al. (2005) and the Natal phytochorion of Linder et al. (2005). In a study describing the Leguminosae of southern Africa (Trytsman et al. 2016), the Sourveld (for definition see Trollope et al. 1990) and Mixed Veld Group (that include leguminochoria Southern Afromontane, Albany Centre, Northern Highveld Region, Drakensberg and Alpine Centre) enclosed a similar region to this grasschorion.

Indian Ocean Coastal Belt (A2)

The Indian Ocean Coastal Belt Biome and Bioregion are almost completely congruent with this grasschorion (82 and 85%, respectively) (Figure 2 and Table 3). The relatively recently distinguished Indian Ocean Coastal Belt Biome (based mainly on floristic and climatic rather than conventional vegetation criteria) is, according to Rutherford et al. (2006), distinct, because it is the 'southernmost extent of the wet, tropical and subtropical seaboard of East Africa'. The Savanna Biome and especially the Sub-Escarpment Savanna Bioregion, minimally overlaps with this grasschorion (10–12%).

High mean annual rainfall (mainly regions with 600–1 000 mm), high mean annual minimum temperatures (>6 °C) and moderate to high mean annual maximum temperatures (25–35 °C) represent the climatic conditions of this grasschorion. The soils are predominantly acidic (pH<6.4) with low P content and non-sodic. This grasschorion represents USDA PHZs 11 and 12, the zones with the highest mean annual extreme minimum winter temperatures in the study area, namely 4–16 °C. Information from Schulze (2007) indicates that this is mainly a sourveld and frost-free region, enclosing tropical areas (Supplementary material 3). The fact that this grasschorion lies in a frost-free area with extreme maximum temperatures of >40 °C could be

important when selecting grass species for further agronomic evaluation.

Key species present in the Indian Ocean Coastal Belt and other grasschoria (not mentioned under Grassland), is Ehrharta erecta (Fynbos) and Panicum maximum (Savanna), with both Melinis repens and Setaria sphacelata having a high occurrence in the Indian Ocean Coastal Belt and Savanna grasschoria (Table 6). Dactyloctenium australe, Stenotaphrum secundatum and Sporobolus virginicus, are species noted for their presence in exclusively coastal areas, the former two species mainly in the eastern coastal regions and the latter along most of southern Africa's coastlines (Fish et al. 2015). Only 35 grass species in this grasschorion were recorded as being endemic/near-endemic to southern Africa (Fish et al. 2015) (Supplementary material 4) with Panicum sancta-luciense exclusively found in the Maputaland Centre (Trytsman et al. 2020). Hoveka et al. (2020) noted the Maputaland-Pondoland-Albany Hotspot, defined by Steenkamp et al. (2004), to have a high projected endemic richness and a call is made to correct previously biased sampling in order to capture South Africa's extraordinary diversity.

The Indian Ocean Coastal Belt Grasschorion forms part of the Tongaland-Pondoland Region of Goldblatt (1978), the Maputaland-Pondoland Region of Van Wyk and Smith (2001), the Natal phytochorion of Linder et al. (2005) and the Core Afromontane and Greater Maputaland of Steenkamp et al. (2005). This grasschorion is almost congruent with the Coastal Region Leguminochorion described by Trytsman et al. (2016).

Fynbos (A3)

The Fynbos Grasschorion is largely congruent with the Fynbos Biome, especially the Eastern Fynbos–Renosterveld and Southwest Fynbos bioregions (Figure 2 and Table 3).

The mean annual rainfall for the Fynbos Grasschorion lies predominantly between 200 and 600 mm (Table 5). A minimum mean annual temperature of 2–8 °C and maximum of 25–29 °C could be expected in this region with USDA PHZs 10 and 11 (mean annual extreme minimum winter temperature –1 to 10 °C). A wide range of soil pH is noted within this grasschorion, varying from the range <6.4 to 6.5–8.4. The soil P status is mainly grouped in the <10 range, but 29% lies in the 5–20 range. A relatively high percentage of soils are medium sodic, indicating poor

Table 5: The predominant climate and soil conditions associated with grasschoria of southern Africa (South Africa, Lesotho and Eswatini) shown as a percentage and USDA Plant Hardiness Zones (PHZs) (Daly et al. 2012; Glen and Van Wyk 2016). Climatic conditions include mean annual rainfall (MAR), mean minimum and maximum temperatures (Temp Min and Temp Max). The soil properties shown are pH level, phosphorus content and sodicity

MAR (mm)	<400	200–600	600–1 000	>800	
Grassland	25	23	13	39	
Indian Ocean Coastal Belt	3	32	51	14	
Fynbos	24	50	21	5	
Savanna	2	24	51	23	
Central Arid Region	58	36	4	2	
Succulent Karoo	42	26	15	17	
Temp Max (°C)	<27	25–29	27–35	>33	
Grassland	23	54	23	0	
Indian Ocean Coastal Belt	0	59	41	0	
Fynbos	9	68	23	0	
Savanna	2	32	65	2	
Central Arid Region	1	9	64	26	
Succulent Karoo	1	36	61	2	
Temp Min (°C)	<2	0–4	2–8	>6	PHZs
Grassland	31	26	29	14	8, 9
Indian Ocean Coastal Belt	0	0	10	90	11, 12
Fynbos	0	14	63	23	10, 11
Savanna	7	9	56	28	10, 11
Central Arid Region	49	27	20	3	8, 9
Succulent Karoo	8	11	40	40	10, 11
Soil pH (H ₂ O)	<6.4	5.5-7.4	6.5-8.4	>7.5	
Grassland	51	32	16	1	
Indian Ocean Coastal Belt	62	34	3	0	
Fynbos	31	31	30	7	
Savanna	38	30	29	3	
Central Arid Region	2	6	41	50	
Succulent Karoo	1	9	45	45	
Soil P (mg kg ⁻¹)	<10	5–20	10–35	20–35	>35
Grassland	86	8	6	0	0
Indian Ocean Coastal Belt	93	3	3	0	0
Fynbos	44	29	16	8	2
Savanna	87	5	8	0	0
Central Arid Region	39	7	18	29	7
Succulent Karoo	6	9	26	38	21
Sodicity (percentage exchangeable sodium)	Non-sodic	Medium	Highly		
	(1–6)	(6–15)	(>15)		
Grassland	96	4	0		
Indian Ocean Coastal Belt	100	0	0		
Fynbos	62	34	3		
Savanna	100	0	0		
Central Arid Region	85	12	2		
Succulent Karoo	12	51	37		

infiltration and drainage, with resultant loss of soil (Qadir and Oster 2004). This grasschorion lies in an all year to winter rainfall area, mostly frost-free (Supplementary material 3).

The Fynbos Grasschorion has many key species in common with the Succulent Karoo, namely *Bromus pectinatus, Ehrharta calycina, Pentameris airoides, Stipagrostis zeyheri* and *Tribolium hispidum* (Table 6). Two genera, namely *Ehrharta* and *Pentameris*, are well presented as key species. Key species unique to the Fynbos Grasschorion are *Cymbopogon marginatus, Ehrharta capensis, Ehrharta ramosa, Ehrharta villosa, Pentameris curvifolia* and *Pentameris eriostoma* (Fish et al. 2015). Similarly, as had been the case with the leguminochoria described by Trytsman et al. (2016), many Fynbos key species are not associated with any other grasschoria and hence reflects its unique floristic composition. This grasschorion contains the most grass species endemic/near endemic to southern Africa (164 species) (Fish et al. 2015) with 30 species of *Pentameris* exclusively recorded in the Fynbos (Supplementary material 4).

This grasschorion forms part of the Cape Region phytogeographical region (Goldblatt 1978), the Worcester-Robertson Karoo and Hantam-Roggeveld Centres (Van Wyk and Smith 2001), the Cape phytochorion (Linder et al. 2005) and the North-western and South-eastern Fynbos (Steenkamp et al. 2005). This grasschorion is almost congruent to the Lower and Higher-Rainfall Cape Floristic Region leguminochoria described in Trytsman et al. (2016).

Table 6: List of key species recorded in grasschoria of southern Africa (South Africa, Lesotho and Eswatini) with the total number of occurrences (# Occ) of the individual species within each grasschorion. Key species followed by a bullet (•) are present as key species in the designated grasschorion only

Alloteropsis semialate* 122 Bromus pectinulus 53 Aristida adscensionis 147 Andropogon appendiculatus* 13 Ehrharta calycina 92 Choins virgata 114 Aristida junciformis 146 Ehrharta calycina 92 Choins virgata 114 Aristida junciformis 146 Ehrharta erecta 50 Enneepogon desvauxii+ 157 Elonurus muticus* 149 Ehrharta erecta 50 Enneepogon desvauxii+ 157 Eragrostis capensis 190 Erhharta erecta 50 Enneepogon desvauxii+ 157 Eragrostis plana* 136 Festucas scabra* 68 Eragrostis boltusa* 126 Eragrostis plana* 121 Pentameris avioles 61 Heleropogon contorus 137 Heteropogon contortus 142 Pentameris avioles 64 Melinis repens 104 Hyparhenia hirta* 147 Pentameris palida* 150 Stipagrostis outus 158 Microchioa caffra* 118 Tenavis at stricta* 84 Stipagrostis	Grassland	# Occ	Fynbos	# Occ	Central Arid Region	# Occ
Aristida congesta 123 Éhrharta calycina 92 Chloris virgita 114 Aristida junclórmis 146 Ehrharta capensis 49 Digitaria eriantha 165 Brachiaria serrata 116 Ehrharta arecta 50 Enneapogon desveuziin 157 Elionruus muticus 149 Ehrharta arecta 50 Enneapogon desveuziin 176 Eragrostis capeniss 190 Ehrharta villosa- 43 Eragrostis curvula 176 Eragrostis acemosa- 150 Koeleria capensis 55 Fingerhuthia africana 142 Harpochloa falx 121 Pentameris airoides 61 Heteropogon contortus 137 Heteropogon contortus 142 Pentameris airoides 64 Melinis repens 104 Hyparthenia hirta- 147 Pentameris eriostoma- 74 Sporobolus finbriatus- 141 Koeleria capensis 134 Stipagrostis curvula 158 Microchioa caffra- 118 Themeda triandra 156 Staria incrassata 118 Themeda triandra 57 Theemda triandra 116 Statria incrass	Alloteropsis semialata•	122	Bromus pectinatus	53	Aristida adscensionis	147
Aristida junčíformis 146 Enhratra exercia 49 Digitaria errantha 165 Brachiaria serrata* 116 Enhratra erecta 50 Enneapogon desvauzii* 157 Einorus muticus* 149 Einhratra armosa* 57 Enneapogon desvauzii* 157 Eragrostis curvula 256 Eragrostis curvula 84 Eragrostis curvula 176 Eragrostis curvula 84 Eragrostis curvula 176 176 Eragrostis racemosa* 150 Koeleria capensis 55 Fringerhuthia africana 142 Harpochloa falx* 121 Pentameris curvifolia* 64 Melinis repens 104 Hyparthenia hird* 147 Pentameris curvifolia* 64 Melinis repens 104 Koeleria capensis 114 Pentameris palida* 150 Stipagrostis curvis 138 Melinis nerviguimis* 133 Stipagrostis curvis 148 Stipagrostis curvis 148 Koeleria capensis 114 Pentameris palida* 150 Stipagrostis curvis 158 Microchioa caffra* 118 Tenexia stricta* 84	Andropogon appendiculatus•	136	Cymbopogon marginatus•	57	Aristida congesta	229
Brachlaria serrata• 116 Ehrharta erecta 50 Enneapogon desvauxii* 157 Elionrus mulicus 149 Ehrharta ramosa• 57 Enneapogon scaber 116 Eragrostis courvula 256 Eragrostis curvula 84 Eragrostis clehrmanniana• 215 Eragrostis plana• 136 Festuca scabra+ 68 Eragrostis blehrmanniana• 126 Eragrostis racemosa• 150 Koeleria capensis 55 Fingerhuthia africana 142 Heteropogon contortus 137 Pentameris airoides 61 Heteropogon contortus 137 Heteropogon contortus 142 Pentameris eriostoma• 74 Sporobolus fimbriatus• 141 Koeleria capensis 114 Pentameris eriostoma• 74 Sporobolus fimbriatus• 141 Koeleria capensis 134 Stipagrostis zeyheri 59 Stipagrostis obtusa 188 Microchioa caffra- 118 Themeda triandra 7 Themeda triandra 116 Stearia incrassata 158 Tribolium hispidum 79	Aristida congesta	123	Ehrharta calycina	92	Chloris virgata	114
Elionurus mulicus: 149 Enhratar armosa- 57 Enneapogon scaber 116 Eragrostis curvula 256 Eragrostis curvula 84 Eragrostis obtusa- 126 Eragrostis curvula 36 Festuca scabra- 68 Eragrostis obtusa- 126 Eragrostis racmosa- 150 Koleria capensis 55 Fingerhuthia africana 142 Harpochloa falx- 121 Pentameris airoides 61 Heteropogon contortus 137 Heteropogon contortus 142 Pentameris curvifolia- 64 Melinis repens 104 Hyparthenia hirta- 147 Pentameris palida- 150 Stipagrostis cilitata 138 Melinis nerviglumis- 134 Stipagrostis zeyheri 59 Stipagrostis cultusa 168 Stearia sphacelata 118 Theneada triandra 57 Themeda triandra 119 Therague of total number of records 27 31 Trague stearosinous 121 Percentage of total number of records 31 Aristida acongesta 120 Chadoraphis s	Aristida junciformis	146	Ehrharta capensis•	49	Digitaria eriantha	165
Eragrostis capensis 190 Ehrharta villosa 48 Eragrostis curvula 176 Eragrostis plana 136 Festuca scabra 68 Eragrostis obtusa 125 Eragrostis plana 136 Festuca scabra 68 Eragrostis obtusa 126 Eragrostis plana 121 Pentameris aciolas 55 Fingerhuthia africana 142 Harpochloa falx 121 Pentameris aciolas 61 Heteropogon contortus 137 Heteropogon contortus 142 Pentameris aciolas 64 Melinis repens 104 Koeleria capensis 114 Pentameris aciostoma 74 Sporobolus fimbriatus 111 Koeleria capensis 114 Pentameris palida 150 Stipagrostis culturis 153 Stetraia incrasata 118 Thenda triandra 176 Stipagrostis culturis 153 Stetrai incrasata 158 Tibolium echinatum 77 Tragus scelerioides 109 Tristachya leucotrix 134 Tribolium unicidae 77 Tragus raceonsus	Brachiaria serrata•	116	Ehrharta erecta	50	Enneapogon desvauxii•	157
Eragrostis curvula256Eragrostis curvula84Eragrostis chamaniana-215Eragrostis racemosa-136Festuca scabra-68Eragrostis oblusa-126Eragrostis racemosa-150Koeleria capensis55Fingerhuthia africana142Harpochloa falx-121Pentameris airoides61Heteropogon contortus137Heteropogon contortus142Pentameris curvifolia-64Melinis repens104Hyparrhenia hirta-147Pentameris curvifolia-50Stipagrostis colluat138Melinis nervigumis-134Stipagrostis cyheri59Stipagrostis oblusa158Melinis nervigumis-134Stipagrostis cyheri59Stipagrostis oblusa168Setaria incrassata118Teneneda triandra57Themeda triandra116Setaria sphacelata158Tribolium echinatum-47Tragus betrenianus119Thristachya leucothrix-134Tibolium echinatum-47Tragus sectenoianus119Thristachya leucothrix-134Tribolium uniclae-77Tragus betrenianus119Thereada triandra194Tribolium uniclae-77Tragus betrenianus60Dactyloctenium australe-27Brachiaria nigropedata124Cladoraphis spinosa-34Optidaria eriatia nigropedata-124Cladoraphis spinosa-34116Difatra eriatia nigropedata-124Cladoraphis spinosa-34124Diptarie eriat	Elionurus muticus•	149	Ehrharta ramosa•	57	Enneapogon scaber	116
Eragrostis plana 136 Festuca scabra- 68 Eragrostis obtusa- 126 Eragrostis racemosa- 150 Koeleria capensis 55 Fingerhuthia africana 142 Harpochloa falx 121 Pentameris airoides 61 Heteropogon contortus 137 Heteropogon contortus 142 Pentameris airoides 64 Melinis repens 104 Hyparrhenia hirta- 147 Pentameris airoides 59 Stipagrostis ciliata 138 Melinis nerviglumis- 134 Stipagrostis zeyheri 59 Stipagrostis obtusa 158 Stetaria incrassata 118 Tenaxia stricta- 84 Stipagrostis obtusa 116 Setaria incrassata 158 Tribolium bispidum 79 Tragus beelroides- 109 Tristachya leucothrix- 134 Tribolium bispidum 70 Tragus celerioides- 121 Percentage of total number of records 27 31 Succulent Karoo 32 Aristida ajunciformis 26 Aristida adscensionis 124 Bromus pectinatus	Eragrostis capensis	190	Ehrharta villosa•	48	Eragrostis curvula	176
Eragrostis racemosa• 150 Koeleria capensis 55 Fingerhuthia africana 142 Harpochloa falx• 121 Pentameris airoides 61 Heteropogon contortus 137 Heteropogon contortus 142 Pentameris curvifolia• 64 Melinis repens 104 Hyparrhenia hirta• 147 Pentameris eriostoma• 74 Sporobolus fimbriatus• 141 Koeleria capensis 114 Pentameris zeyheri 59 Stipagrostis coltusa 158 Microchloa caffra• 118 Tenaxia stricta• 84 Stipagrostis obtusa 153 Setaria sphacelata 158 Tribolium echinatum• 47 Tragus reteronianus 119 Tristachya leucothrix• 134 Tribolium chinatum• 79 Tragus racemosus• 121 Percentage of total number of records 27 31 36 36 36 Indian Ocean Coastal Belt Savanna Succulent Karoo 47 31 Aristida congesta 210 Chaetorpoin contoraus• 60 Dactyloctenium australe•	Eragrostis curvula	256	Eragrostis curvula	84	Eragrostis lehmanniana•	215
Harpochloa falx*121Pentameris airoides61Heteropogon contortus137Heteropogon contortus142Pentameris curvifolia*64Melinis repens104Hyparrhenia hita*147Pentameris eriostoma*74Sporobolus fimbriatus*141Koeleria capensis114Pentameris palida*150Stipagrostis ciliata188Melinis nervigiumis*134Stipagrostis zeyheri59Stipagrostis obtusa158Microchloa caffra*118Tenaxia stricta*84Stipagrostis obtusa119Setaria incrassata118Themeda triandra57Themeda triandra116Setaria sphacelata158Tribolium chinatum*47Tragus beteronianus119Themeda triandra194Tribolium uniolae*77Tragus recemosus*121Percentage of total number of records2731Succulent KarooIndian Ocean Coastal BeltSavanna124Bromus pectinatus64Cymbopogon andrus*31Chloris virgata132Cladoraphis spinosa*34Dieteropogon amelue*s25Digitaria eriantha209Ehrharta delicatula*49Eragrostis curvula158Eragrostis curvula158Eriandra*33Hyberthenia filopendula*27Heteropogon amplectas*3447Dieteropogon amplectas*25Digitaria eriantha209Ehrharta delicatula*49Eragrostis curvula158Eragrostis curvula158E	Eragrostis plana•	136	Festuca scabra•	68	Eragrostis obtusa•	126
Heleropogon contortus142Pentameris curvifolia-64Melinis repens104Hyparrhenia hirta-147Pentameris eriostoma-74Sporobolus fimbriatus-141Koeleria capensis114Pentameris pallida-150Stipagrostis ciliata138Melinis nervigiumis-134Stipagrostis zeyheri59Stipagrostis ciliata138Melinis nervigiumis-118Tenaxia stricta-84Stipagrostis ciliata116Setaria sphacelata158Tribolium echinatum-47Tragus berteronianus119Tristachye leucothrix-134Tribolium hispidum79Tragus koelerioides-109Percentage of total number of records273136Indian Ocean Coastal BeltSavannaSucculent Karoo64Cymbopogon nardus-31Aristida adscensionis124Bromus pectinatus64Cymbopogon amplectens-25Cynodon dactylon-131Ehrharta brevifolia-31Digitaria natalensis-31Aristida congesta210Chaetobromus involucratus-60Dactyloctenium australe-27Brachiaria nigropedata-124Cladoraphis spinosa-34Digitaria natalensis-31Aristida congesta210Chaetobromus involucratus-60Dactyloctenium australe-27Brachiaria nigropedata-132Cladoraphis spinosa-34Digitaria natalensis-31Aristida congesta210Chaetabromus and31Ehrharta dericatula-<	Eragrostis racemosa•	150	Koeleria capensis	55	Fingerhuthia africana	142
Hypartheria hirta147Pentameris eriostoma74Sporobolus fimbriatus141Koeleria capensis114Pentameris pallida150Stipagrostis ciliata138Melinis nerviglumis134Stipagrostis zeyheri59Stipagrostis obtusa158Microchloa caffra118Tenaxia stricta84Stipagrostis obtusa158Setaria incrassata118Themeda triandra57Themeda triandra116Setaria sphacelata158Tribolium echinatum47Tragus koelerioides109Tristolum chinatum134Tribolium inspidum79Tragus koelerioides109Tristola pale contrix134Tribolium niolae77Tragus koelerioides109Precentage of total number of records27313636Indian Ocean Coastal BeltSavannaSucculent Karoo64Cymbopogon nardus31Aristida congesta124Bromus pectinatus64Cymbopogon anglectens25Cyndon dactylon131Ehrharta cercia34Diheteropogon amplectens25Cyndon dactylon131Ehrharta delicatula49Eragrostis capensis33Eragrostis superba162Ehrharta delicatula49Eragrostis capensis33Eragrostis superba162Ehrharta delicatula49Elusine coracana28Eragrostis superba162Ehrharta triandra33Hypartheria filipendula27Heleropogon contortus196E	Harpochloa falx•	121	Pentameris airoides	61	Heteropogon contortus	137
Koeleria capensis114Pentameris pallida-150Stipagrostis ciliata138Melinis nerviglumis-134Stipagrostis zeyheri59Stipagrostis obtusa158Microchloa caffra-118Tenaxia stricta-84Stipagrostis uniplumis-153Setaria incrassata118Themeda triandra57Themeda triandra116Setaria sphacelata158Tribolium chinatum-47Tragus betteronianus119Themeda triandra194Tribolium lispidum79Tragus koelerioides-109Tristachya leucothrix-134Tribolium uniolae-77Tragus racenosus-121Percentage of total number of records273136Indian Ocean Coastal BeltSavannaSucculent Karoo60Aristida junciformis26Aristida adscensionis124Bromus pectinatus64Optotenium australe-27Brachiaria nigropedata-124Cladoraphis spinosa-34Digitaria natalensis-31Chloris virgata132Cladoraphis spinosa-34Digitaria eriantha209Ehrharta derevifolia-312128Pargostis capensis33Eragrostis superba-162Ehrharta longiflora-28Eragrostis curvula158Chharta delicatula-4949Eragrostis curvula158Ehrharta denicatula-4944Hypartheni filipendula-27Melinis repens162Ehrharta longiflora-28Eragrostis	Heteropogon contortus	142	Pentameris curvifolia•	64	Melinis repens	104
Melinis nervigiumis•134Stipagrostis zeyheri59Stipagrostis obtusa158Microchloa caffra•118Tenaxia stricta•84Stipagrostis uniplumis•153Setaria incrassata118Themeda triandra57Themeda triandra116Setaria incrassata158Tribolium echinatum•47Tragus koelerioides•109Tristachya leucothrix•134Tribolium nispidum79Tragus koelerioides•109Tristachya leucothrix•134Tribolium uniolae•77Tragus coensus•121Indian Ocean Coastal BeltSavannaSucculent Karoo36Aristida junciformis26Aristida congesta210Chaetobromus involucratus•60Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Aristida congesta210Chaetobromus involucratus•60Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis cyperoides•28Digitaria eriantha209Ehrharta delicatula•4949Eragrostis capensis33Eragrostis curvula158Ehrharta delicatula•49Eragrostis curvula31Eustenkys paspaloides•124Ehrharta indirfora•28Viparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Hyparrhe	Hyparrhenia hirta•	147	Pentameris eriostoma•	74	Sporobolus fimbriatus•	141
Melinis nervigiumis134Stipagrostis zeyheri59Stipagrostis obtusa158Microchloa caffra118Tenaxia stricta84Stipagrostis uniplumis153Setaria incrassata118Themeda triandra57Themeda triandra116Setaria incrassata158Tribolium echinatum47Tragus beteronianus119Themeda triandra194Tribolium nispidum79Tragus koelerioides109Tristachya leucothrix134Tribolium uniolae77Tragus coensus121Percentage of total number of records273136Indian Ocean Coastal BeltSavannaSucculent KarooAristida junciformis26Aristida congesta210Chaetobromus involucratus60Dactyloctenium australe27Brachiaria nigropedata132Cladoraphis cyperoides28Digitaria natalensis31Chloris virgata132Cladoraphis spinosa34Diheteropogon amplectens25Cynodon dactylon131Ehrharta delicatula49Eragrostis capensis33Eragrostis curvula158Ehrharta delicatula49Eragrostis capensis27Heteropogon contortus196Enneapogon scaber33Hyparrhenia filipendula31Eustchys pasaloides124Ehrharta delicatula49Eragrostis curvula31Eustchys pasaloides124Ehrharta delicatula49Eragrostis curvula31Eustchys pasaloides124	Koeleria capensis	114	Pentameris pallida•	150	Stipagrostis ciliata	138
Setaria incrassata118Themeda triandra57Themeda triandra116Setaria sphacelata158Tribolium echinatum47Tragus berteronianus119Themeda triandra194Tribolium hispidum79Tragus koelerioides109Tristachya leucothrix134Tribolium uniolae77Tragus racemosus121Percentage of total number of records273136Indian Ocean Coastal BeltSavannaSucculent KarooAristida junciformis26Aristida adscensionis124Bromus pectinatus64Cymbopogon nardus31Aristida congesta210Chaetobromus involucratus60Dactyloctenium australe27Brachiaria nigropedata124Cladoraphis spinosa34Diheteropogon amplectens25Cynodon dactylon131Ehrharta brevifolia31Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana28Eragrostis curvula158Ehrharta delicatula49Eragrostis curvula31Eustachys paspaloides124Ehrharta friandra33Hyparrhenia filipendula27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum26Perotis patens125Pentameris airoides44Melinis repens26Perotis patens125Pentameris airoi	•	134	Stipagrostis zeyheri	59	Stipagrostis obtusa	158
Setaria incrassata118Themeda triandra57Themeda triandra116Setaria sphacelata158Tribolium echinatum•47Tragus berteronianus119Themeda triandra194Tribolium echinatum•47Tragus koelerioides•109Tristachya leucothrix•134Tribolium uniolae•77Tragus racemosus•121Percentage of total number of records273136Indian Ocean Coastal BeltSavannaSucculent KarooAristida junciformis26Aristida adscensionis124Bromus pectinatus64Cymbopogon nardus•31Aristida congesta210Chaetobrormus involucratus•60Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis psinosa•34Diheteropogon amplectens•25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis curvula31Eustachys paspaloides•124Ehrharta delicatula•49Juerstachys paspaloides•124Ehrharta triandra•3333Ischaemum fasciculatum•27Melinis repens162Ehrharta triandra•33Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Paroticum maximum195Pentameris	Microchloa caffra•	118		84	Stipagrostis uniplumis•	153
Setaria sphacelata158Tribolium echinatum•47Tragus berteronianus119Themeda triandra194Tribolium hispidum79Tragus koelerioides•109Tristachya leucothrix•134Tribolium uniolae•77Tragus racemosus•121Percentage of total number of records273136Indian Ocean Coastal BeltSavannaSucculent Karoo64Cymbopogon nardus•26Aristida adscensionis124Bromus pectinatus64Cymbopogon nardus•31Aristida congesta210Chaetobromus involucratus•60Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis cyperoides•28Digitaria natalensis•25Cynodon dactylon•131Ehrharta beriofilai•31Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis superba•162Ehrharta talongiflora•28Eragrostis curvula31Eustachys paspaloides•124Ehrharta triandra•33Hyparthenia filipendula•27Melinis repens162Ehrharta triandra•33Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125	Setaria incrassata	118	Themeda triandra	57		116
Themeda triandra194Tribolium hispidum79Tragus koelerioides•109Tristachya leucothrix•134Tribolium uniolae•77Tragus racemosus•121Percentage of total number of records273136Indian Ocean Coastal BeltSavannaSucculent KarooAristida junciformis26Aristida adscensionis124Bromus pectinatus64Cymbopogon nardus•31Aristida congesta210Chaetobromus involucratus•60Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis spinosa•34Diheteropogon amplectens•25Cynodon dactylon•131Ehrharta brevifolia•31Ehrharta erecta25Digitaria eriantha209Ehrharta dolicatula•49Eragrostis capensis33Eragrostis superba•162Ehrharta longiflora•28Eragrostis capensis33Eustachys paspaloides•124Ehrharta longiflora•28Jypartheina filipendula•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Paricum maximum195Pentameris patula•27Panicum maximum32Schimidi apapophoroides•127Schismus barbatus•80Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•30Sporobolus africanus•35Setaria incrassata	Setaria sphacelata	158	Tribolium echinatum•	47	Tragus berteronianus	119
Tristachya leucothrix134Tribolium uniolae77Tragus racemosus121Percentage of total number of records273136Indian Ocean Coastal BeltSavannaSucculent KarooAristida junciformis26Aristida adscensionis124Bromus pectinatus64Cymbopogon nardus31Aristida congesta210Chaetobromus involucratus60Dactyloctenium australe27Brachiaria nigropedata124Cladoraphis cyperoides28Digitaria natalensis31Chloris virgata132Cladoraphis spinosa34Diheteropogon amplectens25Cynodon dactylon131Ehrharta brevifolia31Ehrharta erecta25Digitaria eriantha209Ehrharta celicatula49Eragrostis capensis33Eragrostis superba162Ehrharta delicatula49Eragrostis capensis33Eragrostis superba162Ehrharta iongiflora28Eragrostis capensis33Eragrostis superba162Ehrharta iongiflora28Eragrostis curvula31Eustachys paspaloides124Ehrharta indra39Leersia hexandra26Panicum maximum195Pentameris airoides44Melinis repens26Pencium maximum195Pentameris airoides44Melinis repens125Schimuta squarrosa161Schismus barbatus80Panicum dustum31Pogonarthria squarrosa161Schismus barbatus80<		194	Tribolium hispidum	79	5	109
Percentage of total number of records273136Indian Ocean Coastal BeltSavannaSucculent KarooAristida junciformis26Aristida adscensionis124Bromus pectinatus64Cymbopogon nardus•31Aristida congesta210Chaetobromus involucratus•60Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis spinosa•34Diheteropogon amplectens•25Cynodon dactylon•131Ehrharta brevifolia•31Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis curvula31Eustachys paspaloides•124Ehrharta longiflora•28Isrgorstis curvula31Eustachys paspaloides•124Ehrharta indra•33Hyparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris patula•27Panicum dustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum dustum•31Pogonarthria squarrosa•161	Tristachva leucothrix•	134	Tribolium uniolae•	77		121
Indian Ocean Coastal BeltSavannaSucculent KarooAristida junciformis26Aristida adscensionis124Bromus pectinatus64Cymbopogon nardus•31Aristida congesta210Chaetobromus involucratus•60Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis spinosa•34Diheteropogon amplectens•25Cynodon dactylon•131Ehrharta brevifolia•31Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis curvula31Eustachys paspaloides•124Ehrharta friandra•33Hyparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Hyparrhenia filipendula•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris airoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Leersia hexandra•26Pentis patens•125Pentameris airoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•34S		27		31		
Cymbopogon nardus•31Aristida congesta210Chaetobromus involucratus•60Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis spinosa•34Diheteropogon amplectens•25Cynodon dactylon•131Ehrharta brevifolia•31Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis capensis33Eragrostis superba•162Ehrharta triandra•28Eragrostis curvula31Eustachys paspaloides•124Ehrharta triandra•33Hyparthenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•127Schismus barbatus•80Panicum dustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria nicrassata143Stipagrostis ciliata39 <td>Indian Ocean Coastal Belt</td> <td></td> <td>Savanna</td> <td></td> <td>Succulent Karoo</td> <td></td>	Indian Ocean Coastal Belt		Savanna		Succulent Karoo	
Cymbopogon nardus•31Aristida congesta210Chaetobromus involucratus•60Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis spinosa•34Diheteropogon amplectens•25Cynodon dactylon•131Ehrharta brevifolia•31Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis capensis33Eragrostis superba•162Ehrharta triandra•28Eragrostis curvula31Eustachys paspaloides•124Ehrharta triandra•33Hyparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•127Schismus barbatus•80Panicum dustum•31Pogonarthria squarrosa•161Schismus barbatus•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•34Setaria sphacelata136Stipagrostis ciliata39Sporobolus africanus•34Setaria sphacelata136Stipagrostis colusas31<	Aristida junciformis	26	Aristida adscensionis	124	Bromus pectinatus	64
Dactyloctenium australe•27Brachiaria nigropedata•124Cladoraphis cyperoides•28Digitaria natalensis•31Chloris virgata132Cladoraphis spinosa•34Diheteropogon amplectens•25Cynodon dactylon•131Ehrharta brevifolia•31Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis capensis33Eragrostis superba•162Ehrharta longiflora•28Hyparthenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris airoides44Melinis repens31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia papophoriodes•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis obtusa31Sporobolus africanus•26Themeda triandra151Stipagrostis obtusa31Sporobolus virginicus•26Themeda triandra151Stipagrostis obtusa31Sporobolus virginicus•26Themeda triandra151Stipagrostis obtusa31 <td< td=""><td>Cymbopogon nardus•</td><td>31</td><td>Aristida congesta</td><td>210</td><td></td><td>60</td></td<>	Cymbopogon nardus•	31	Aristida congesta	210		60
Digitaria natalensis•31Chloris virgata132Cladoraphis spinosa•34Diheteropogon amplectens•25Cynodon dactylon•131Ehrharta brevifolia•31Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis capensis33Eragrostis superba•162Ehrharta delicatula•49Eragrostis curvula31Eustachys paspaloides•124Ehrharta triandra•33Hyparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•161Schismus barbatus•80Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•26Themeda triandra151Stipagrostis schismoides•31Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28				124	Cladoraphis cyperoides•	
Diheteropogon amplectens•25Cynodon dactylon•131Ehrharta brevifolia•31Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis capensis33Eragrostis superba•162Ehrharta longiflora•28Eragrostis curvula31Eustachys paspaloides•124Ehrharta triandra•33Hyparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris patula•27Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•26Themeda triandra136Stipagrostis ciliata39Sporobolus virginicus•26Themeda triandra143Stipagrostis ciliata39Sporobolus africanus•34Setaria sphacelata136Stipagrostis ciliata39Sporobolus virginicus•26Themeda triandra151Stipagrostis cytis obtusa31<		31		132		34
Ehrharta erecta25Digitaria eriantha209Ehrharta calycina90Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis capensis33Eragrostis superba•162Ehrharta longiflora•28Eragrostis curvula31Eustachys paspaloides•124Ehrharta triandra•33Hyparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris patula•27Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	0	25	5	131		31
Eleusine coracana•28Eragrostis curvula158Ehrharta delicatula•49Eragrostis capensis33Eragrostis superba•162Ehrharta longiflora•28Eragrostis curvula31Eustachys paspaloides•124Ehrharta triandra•33Hyparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris patula•27Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•26Themeda triandra151Stipagrostis ciliata39Sporobolus virginicus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28		25		209	Ehrharta calvcina	90
Eragrostis capensis33Eragrostis superbation162Ehrharta longifloration28Eragrostis curvula31Eustachys paspaloidestic124Ehrharta triandration33Hyparrhenia filipendulation27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatumtic27Melinis repens185Fingerhuthia africana39Leersia hexandration26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patenstic125Pentameris patulation27Panicum deustumtion31Pogonarthria squarrosation161Schismus barbatustic80Panicum maximum32Schmidtia pappophoroidestic127Schismus schismoidestic37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanustic26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatumi28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensistion131Tribolium tenellumitic28	Eleusine coracana•	28	Eragrostis curvula	158	Ehrharta delicatula•	49
Eragrostis curvula31Eustachys paspaloides•124Ehrharta triandra•33Hyparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris patula•27Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	Eragrostis capensis	33	5	162	Ehrharta longiflora•	28
Hyparrhenia filipendula•27Heteropogon contortus196Enneapogon scaber33Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris patula•27Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28		31		124	-	33
Ischaemum fasciculatum•27Melinis repens185Fingerhuthia africana39Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris patula•27Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•34Setaria sphacelata136Stipagrostis obtusa31Sporobolus virginicus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	•	27		196	Enneapogon scaber	33
Leersia hexandra•26Panicum maximum195Pentameris airoides44Melinis repens26Perotis patens•125Pentameris patula•27Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•34Setaria sphacelata136Stipagrostis obtusa31Sporobolus virginicus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	,	27		185	1 3	39
Melinis repens26Perotis patens•125Pentameris patula•27Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•34Setaria sphacelata136Stipagrostis obtusa31Sporobolus virginicus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	Leersia hexandra•	26	'	195	0	44
Panicum deustum•31Pogonarthria squarrosa•161Schismus barbatus•80Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•34Setaria sphacelata136Stipagrostis obtusa31Sporobolus virginicus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	Melinis repens	26	Perotis patens•	125	Pentameris patula•	27
Panicum maximum32Schmidtia pappophoroides•127Schismus schismoides•37Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•34Setaria sphacelata136Stipagrostis obtusa31Sporobolus virginicus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	1	31		161	,	80
Setaria sphacelata35Setaria incrassata143Stipagrostis ciliata39Sporobolus africanus•34Setaria sphacelata136Stipagrostis obtusa31Sporobolus virginicus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	Panicum maximum	32		127	Schismus schismoides•	37
Sporobolus africanus•34Setaria sphacelata136Stipagrostis obtusa31Sporobolus virginicus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28						
Sporobolus virginicus•26Themeda triandra151Stipagrostis zeyheri30Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	1				1 0	
Stenotaphrum secundatum•28Tragus berteronianus124Tribolium hispidum29Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28	•		,			
Themeda triandra26Urochloa mosambicensis•131Tribolium tenellum•28						
			-			
	Percentage of total number of records	24		22		52

Savanna (B)

The Savanna Grasschorion lies largely in the Savanna Biome, especially in the Central Bushveld Bioregion with the Lowveld Bioregion listed as a minor component (Figure 2 and Table 3). The Savanna Biome is the summer rainfall part of the largest African biome, as described by Rutherford et al. (2006).

The mean annual rainfall in this grasschorion is mainly within the 600–1 000 mm range and the mean annual minimum and maximum temperatures are 2–8 °C and 27–35 °C, respectively, with USDA PHZs 10 and 11 (mean annual extreme minimum winter temperature –1 to 10 °C) (Table 5). Soils are generally acidic, low in phosphorus and non-sodic. This grasschorion has had 16 occurrences of heat waves of >30 °C on three or more consecutive days per year in some areas (Supplementary 3).

The Savanna has several key species in common with the Central Arid Region Grasschorion namely *Aristida adscensionis*, *Chloris virgata*, *Digitaria eriantha* and *Tragus berteronianus* (Table 6). The only key species with a distribution range almost exclusively in the Savanna is *Urochloa mosambicensis* (Fish et al. 2015), whereas many key species are present in both the Savanna and Central Arid Region grasschoria. At least 82 grass species in the Savanna Grasschorion are endemic/near-endemic to southern Africa (Fish et al. 2015) (Supplementary material 4), with *Enneapogon spathaceus*, *Melinis drakensbergensis* and *Sorghastrum nudipes* exclusively recorded here.

This grasschorion is included in the Zambezian and the Tongaland-Pondoland Regions (Goldblatt 1978), the Zambezian-central (Linder et al. 2005). The Greater Maputaland phytochorion of Steenkamp et al. (2005) covers the eastern part of this grasschorion. The Northern and North-eastern Savanna Region Leguminochorion described by Trytsman et al. (2016) is almost congruent to this grasschorion.

Central Arid Region (C1)

This grasschorion forms in the Nama-Karoo Biome, as well as the eastern part of the Savanna Biome (Figure 2 and Table 3). It is, however, also clear from this table that the more arid bioregions defined by Rutherford et al. (2006), namely the Eastern Kalahari Bushveld, Bushmanland and Kalahari Duneveld together with the Upper and Lower Karoo connects this grasschorion. The Nama-Karoo Biome is described as mainly a summer rainfall region with a low species richness (Rutherford et al. 2006), although in our view species richness and endemism is quite high for this biome. The low occurrence of C_3 grass species in the western compared with the eastern parts of the Savanna Biome (Trytsman et al. 2020) could contribute to the inclusion of this western region in the Central Arid Region Grasschorion rather than with the Savanna Biome.

The low mean annual rainfall of <400 mm recorded in this grasschorion (Table 5) is reflected in the climatology description as a semi-arid to arid region, with USDA PHZs 8 and 9 (mean annual extreme minimum winter temperature -1 to -12 °C). A low mean annual minimum (<2 °C) and relatively high mean annual maximum temperature (27–35 °C) is also noted in Table 5. The largely high soil pH (>7.5), low soil phosphorus (<10 mg kg⁻¹) and non-sodic soil described here are expected, considering the low mean annual rainfall.

The Central Arid Region has four key species in common with the Succulent Karoo, namely *Enneapogon scaber, Fingerhuthia africana, Stipagrostis ciliata* and *Stipagrostis obtusa. Enneapogon desvauxii* and *Tragus koelerioides* are key species mainly found in the Central Arid Region Grasschorion (Table 6). A total of 107 grass species in the Central Arid Region Grasschorion are endemic/near endemic to southern Africa (Fish et al. 2015) (Supplementary material 4), with four *Eragrostis* spp. exclusively documented here, namely *Eragrostis brizantha, E. macrochlamys, E. pilgeriana* and *E. truncata* (Fish et al. 2015).

The Central Karoo phytochorion of Steenkamp et al. (2005) covers this grasschorion well, with the eastern border, similar to the current study, also extending into the Grassland Biome. Only seed plant genera, endemic to the southern African region, were included in this study and Poaceae was represented by 60 species. According to Gibbs Russell (1987) the Nama-Karoo Biome has stronger floristic links with the Savanna and Desert biomes at species, genus and family level than with the Succulent Karoo (species, family level) and fynbos (genus level). The Karoo-Namib Region and the Kalahari-Highveld Transition Zone phytogeographical regions of Goldblatt (1978), Griqualand West Centre (Van Wyk and Smith 2001), the Namib-Karoo and Eastern Karoo phytochoria (Linder et al. 2005) and the Central Arid Region Leguminochorion of Trytsman et al. (2016) are represented in this grasschorion.

Succulent Karoo (C3)

The Succulent Karoo Biome is well represented within this grasschorion; whereas the Fynbos Biome is also represented to a lesser extend (Figure 2 and Table 3). Rutherford et al. (2006) describes this biome as the most species rich semi-desert and with the highest diversity of succulents in the world. The Namaqualand Hardeveld and Namaqualand Sandveld bioregions are the two main bioregions represented in this grasschorion.

A low mean annual rainfall (<400 mm) with relatively high mean annual minimum (2–8 °C to >6 °C) and maximum (27–35 °C) temperatures denotes the Succulent Karoo Grasschorion (Table 5). This grasschorion includes USDA PHZs 10 and 11 (mean annual extreme minimum winter temperature of -1 °C to 10 °C), similar to the Fynbos and Savanna grasschoria. Schulze (2007) described this region as mainly a winter rainfall area with extremely high maximum temperatures, exceeding 44 °C (Supplementary material 3). The high soil pH (>6.5) and phosphorus content (mainly 20–35 mg kg⁻¹) is to be expected in the light of the region's low mean rainfall (Smet and Ward 2006). This grasschorion is also noteworthy for its medium to highly sodic soils.

The Succulent Karoo Grasschorion has key species in common with the bordering Fynbos and Central Arid Region grasschoria, as listed earlier (Table 6). Most of the key species in this grasschorion have distribution patterns exclusively in the Succulent Karoo, for example, species of *Cladoraphis* and *Ehrharta* (Fish et al. 2015). At least 104 grass species in this grasschorion are endemic/ near endemic to southern Africa (Fish et al. 2015) (Supplementary material 4), with *Stipagrostis dregeana*, *S. lutescens* and *S. schaeferi* exclusively found in the coastal border with Namibia.

The Northern and Southern Succulent phytochoria of Steenkamp et al. (2005) are more or less congruent with this grasschorion. The northern border of the Fynbos Biome included in this grasschorion, instead of the Fynbos Grasschorion, are similarly defined by Steenkamp et al. (2005) as part of the Southern Succulent Karoo phytochorion. Table 4 indicates that 58% of the 3218 DS that fall mainly within the Fynbos biome, linked with the Succulent Karoo Grasschorion. The Karoo-Namib phytogeographical region (Goldblatt 1978), the Namaqualand-Namib Domain (Cowling et al. 1998), the Gariep, Kamiesberg and Knersvlakte Centres (Van Wyk and Smith 2001), the Namib-Karoo phytochorion (Linder et al. 2005) and the Arid Western Region (Trytsman et al. 2016) largely represent this grasschorion.

Desert, Forest, Nama-Karoo and Albany biomes

The minor Desert and Forest biomes were not resolved as grasschoria. The scale of the current study (1 648 QDGCs included), compared with the low number of QDGCs enclosed by the Desert (represented by <1.1% QDGCs) and Forest (represented by <0.2% QDGCs) biomes most likely resulted in their exclusion in a study based on a single plant family, as in the case of the current one. The Desert Biome, which contains at least 62 grass species with numerous species of *Ehrharta, Eragrostis* and *Stipagrostis* present (Fish et al. 2015), were included in the Succulent Karoo Grasschorion. The Forest Biome are represented in the Grassland, Indian Ocean Coastal Belt, Savanna and Fynbos grasschoria and accordingly depends on the location of the relict forest patches and the matrix vegetation (e.g. fynbos or grassland) of the particular QDGC in which it is located. Typical grass species found in the Forest Biome are Stipa dregeana, Oplismenus hirtellus, Brachypodium flexum and Setaria megaphylla (Fish et al. 2015), with the former the widest and the latter the narrowest distribution pattern of those mentioned. The highest collection intensities of forest species, as shown in Figure 3, are recorded along the coastal areas (Indian Ocean Coastal Grasschorion), along the transitional zone between the Grassland and Savanna grasschoria and the in Northern Mistbelt Forest (Mucina and Geldenhuys 2006). Some of these forest grasses are occasionally found in other biomes but then microclimatic pockets, reminiscent of a forest habitat, often exist and therefore the possibility that such outlier distributions may include distinct ecotypes is most likely. The Nama-Karoo Biome forms part of the Central Arid Region, as is also the case with the leguminochoria (Trytsman et al. 2016), with species, for example, Sporobolus nebulosus and Stipagrostis fastigiata found in the Nama-Karoo Biome (Fish et al. 2015).

The Albany Thicket Biome, also not resolved as a distinct grasschorion, is part of a region described as a complex transition zone with major vegetation formations (Lubke et al. 1986) where floristic elements of many other regions converge (Van Wyk and Smith 2001). According to Rutherford et al. (2006), the Albany Thicket Biome has an unusual floristic and evolutionary ancient nature in the southern region. As indicated in Table 4, four grasschoria converge in this biome, largely the Grassland Grasschorion (46%), followed by the Fynbos Grasschorion (24%). At least 239 grass species were recorded in the Albany Thicket Biome with Diheteropogon filifolius, Eragrostis obtusa, Leptochloa eleusine, Panicum deustum, Sporobolus nitens, Stipa dregeana var. dregeana and Tribolium curvum more or less confined to this region (Fish et al. 2015). According to Potts et al. (2015), the Albany Subtropical Thicket-Nama-Karoo boundary is one of the least researched boundaries in South Africa. The earlier indigenous legume study, in contrast to this study, distinguished an Albany Centre Leguminochorion with a high legume species richness (Trytsman et al. 2016).

Species richness, species range, growth form and species association

Table 7 presents relevant information on grass species richness and the highest number of grasses collected in the QDGCs within each grasschorion. Even though the Generalist cluster (C2 in Figure 1) is affirmed a residual group, it does largely contribute to the dataset presented in Table 7. The smallest grasschorion, namely the Indian Ocean Coastal Belt (2.4% of QDGCs) has the highest grass species richness (56.2), followed by the Savanna Grasschorion (52.7), whereas the Central Arid Region and the Succulent Karoo grasschoria have the lowest, 17.4 and 12.4, respectively. The Indian Ocean Coastal Belt and Savanna grasschoria were recorded as having predominantly medium to high mean annual rainfall

(Table 5) and the Central Arid Region and Succulent Karoo grasschoria both a low rainfall range. Species richness has been positively correlated with water availability (Pausas and Austin 2001; Whittaker et al. 2007; Li et al. 2013) and Visser et al. (2012) confirmed that apart from precipitation, temperature, fire frequency and grazing pressure, it strongly influence the species richness of some C₄ grass lineages.

The highest number of grass species per QDGC is recorded in the Savanna Grasschorion (Table 7) followed by the Indian Ocean Coastal Belt, Grassland and Fynbos grasschoria with relatively similar figures. These grasschoria encloses major cities, namely Mbombela and Pretoria (Savanna), Durban (Indian Ocean Coastal Belt), Bloemfontein (Grassland) and Cape Town (Fynbos). Grasses in QDGCs near these urban areas were usually well represented as herbarium specimens. Such excessive sampling owing to geographical bias limits the use of herbarium collection data, as was also highlighted by Fish and Steyn (2002), Robertson and Barker (2006) and De la Estrella et al. (2012). Considering the richness of the southern African flora and the fact that many QDGCs are not optimally sampled, geographical bias in collecting not only leads to an increase in the number of specimens per species, but also an increase in the number of species. The Succulent Karoo Grasschorion does not enclose any densely populated urban areas.

Most of the growth forms (as described by Gibbs Russell et al. 1990) listed in Table 8 is represented in all the grasschoria, with tufted, rhizomatous/tufted and rhizomatous the most commonly found forms. Genera mostly represented by these growth forms are *Eragrostis*, Hyparrhenia and Sporobolus, respectively. The more unusual grass growth forms, for example, tufted/trailing, rhizomatous/woody, cushion/tufted, geophyte growth form is present in especially the Fynbos Grasschorion. Genera with members representing these growth forms are Ehrharta, (rhizomatous/woody), Pentameris (all mentioned forms) and Tribolium (tufted/trailing). The tufted growth form was shown to be an attribute of the majority of grass pasture species (Trytsman et al. 2020) and therefore, together with rhizomatous grasses, an important consideration in prioritising future collection and conservation efforts.

The percentage annuals found in the more mesic grasschoria (e.g. Grassland and Indian Ocean Coastal Belt) are lower than in the more arid grasschoria (e.g. Central Arid Region and Succulent Karoo) (Table 8). Gibbs Russell et al. (1990) stated that not only are perennial grasses more abundant in mesic regions and annuals in the dry western region, but that some species behave as perennials in more mesic regions and as annuals in arid regions, giving the example of *Fingerhuthia africana* (perennial/occasional annual) and *Centropodia glauca* (annual/weak perennial).

The environmental variables significantly discriminate between grasschoria (pseudo-F = 3 627, p = 0.001) with the first four axes individually accounting for 59.9%, 19.5%, 15.3%, and 5.1%, respectively, and cumulatively, 99.8% of the total variability (Table 9). The predictors, mean annual rainfall and soil pH, followed by mean annual minimum and maximum temperature, then soil P, had the strongest

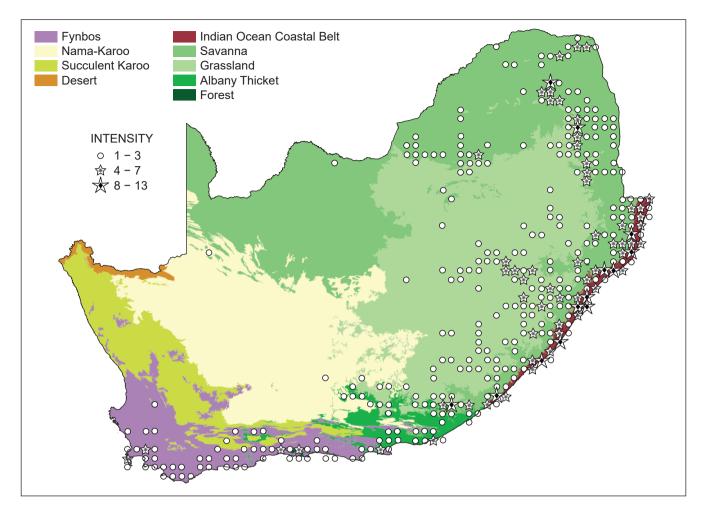


Figure 3: The collection intensity of grass forest species, indigenous to southern Africa (South Africa, Lesotho and Eswatini), superimposed on the biomes of South Africa as defined by Rutherford et al. (2006)

Grasschorion	% QDGC	Species	Highest #spp. in
		richness	given QDGC
Grassland	18.4	32.8 ± 23.9	131 (2929BB)
Indian Ocean Coastal Belt	2.4	56.2 ± 26.9	139 (2930DD)
Fynbos	6.6	36.2 ± 21.9	127 (3318CD)
Savanna	14.4	52.7 ± 34.7	234 (2528CA)
Central Arid Region	25.6	17.4 ± 15.5	85 (2926AA)
Generalist	25.4	6.4 ± 4.2	26 (2929AA)
Succulent Karoo	7.2	12.4 ± 7.8	42 (3119AC)
Total/Mean	100.0	34.6	126

Table 7: Quarter degree grid cell (QDGC) ratios, species richness and the highest number of species recorded in a QDGC of grasschoria of southern Africa (South Africa, Lesotho and Eswatini). Species richness = #Species/#QDGC within a grasschorion

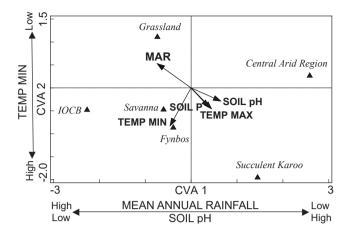
correlations (p = 0.001) with the first canonical variate axis in the discriminant analysis whereas mean annual minimum temperature was the most influential variable on the second axis (Table 9). The main gradient distinguishing grasschoria was a rainfall-temperature gradient, with the Grassland and Indian Ocean Coastal Belt grasschoria occurring at the wettest, cool end of the gradient, Succulent Karoo and Central Arid Region in the driest, hottest regions, and Fynbos and Savanna grasschoria at intermediate rainfall and temperatures (Figure 4). The latter two grasschoria were further distinguished by occurring in areas with higher than mean annual minimum temperatures. Soils tended to be basic, with higher P content towards the dry, hot end of the environmental gradients.

The Indian Ocean Coastal Belt Grasschorion contain species adapted to high mean annual rainfall and low

Table 8: The different growth forms present in the grasschoria of southern Africa (South Africa, Lesotho and Eswatini) as described by Gibbs Russell et al. (1990) with the number of annual and perennial grass species recorded in each grasschorion

Growth form	GL	IOCB	FB	SAV	CAR	SK
Tufted	244	141	183	261	191	121
Rhizomatous/tufted	86	50	42	76	48	23
Rhizomatous	38	23	22	39	31	17
Trailing	10	10	8	11	4	2
Rhizomatous/stoloniferous	10	6	6	13	6	5
Stoloniferous	10	8	6	8	8	3
Stoloniferous/tufted	9	4	6	9	7	3
Hydrophyte/rhizomatous/stoloniferous	8	4	4	6	3	3
Hydrophyte/rhizomatous/stoloniferous/tufted	3	3	3	3	2	2
Hydrophyte/stoloniferous/tufted	4	3	3	5	1	
Hydrophyte/tufted	4	1	4	2	4	1
Rhizomatous/stoloniferous/tufted	2	3	1	5	4	1
Hydrophyte/rhizomatous/tufted	2	3	1	3	3	1
Cushion	2		6	1	1	1
Hydrophyte/trailing	3	3		3		
Hydrophyte/rhizomatous	2	1	1	3	1	
Tufted/trailing			4			2
Hydrophyte	2			2		
Rhizomatous/woody	1		1			1
Cushion/tufted			2			
Geophyte			1		1	
Life cycle						
Annuals	55	41	44	80	63	39
Perennials	349	201	238	335	228	130
% Annuals	14	17	16	19	22	23

GL: Grassland; IOCB: Indian Ocean Coastal Belt; FB: Fynbos; SAV: Savanna; CAR: Central Arid Region; SK: Succulent Karoo


Table 9: Correlations between predictor environmental variables and canonical variate axes in a discriminant analysis of southern African (South Africa, Lesotho and Eswatini) grasschoria

Variable		Canonical	variate axis	
Vallable	1	2	3	4
Mean annual rainfall (mm)	-0.684	0.280	-0.083	0.100
Mean annual maximum temperature (°C)	0.464	-0.271	-0.393	0.029
Mean annual minimum temperature (°C)	-0.470	-0.484	-0.030	0.085
Soil phosphorus (mg kg ⁻¹)	0.427	-0.265	0.298	0.174
Soil pH (H ₂ O)	0.655	-0.165	0.009	0.130

soil pH, the Central Arid Region Grasschorion species to low mean annual rainfall and high soil pH and the other grasschoria species with an intermediate adaptation (Figure 4). The Grassland and the Succulent Karoo grasschoria contains grass species adapted to extremes in terms of mean annual minimum temperatures, the former to low and the latter to high mean annual minimum temperatures, and the other grasschoria with intermediate adaptations. The importance of moisture and temperature as abiotic factors influencing the distribution of African vegetation were reported by Skarpe (1986), Ruiz-Vega (1994), Bond et al. (2003), Greve (2011) and Bocksberger et al. (2016). The growth responses of grasses to climate, soil and management factors to improve their adaptive traits through selection have also been a major target for pasture researchers worldwide (Chapman et al. 2011; Truter et al. 2015).

Conclusion

The boundaries of grasschoria in southern Africa distinguished by agglomerative hierarchical clustering are mainly congruent with existing biome vegetation units, with the exception of the Albany Thicket, Desert and Forest biomes that were not resolved. This lack of resolution is, at least to some extent, ascribed to the scale of the relatively large Operational Taxonomic Units (in this case QDGC) used in the current study. The Grassland, Indian Ocean Coastal Belt and Fynbos grasschoria formed a main cluster, found in relatively high rainfall regions. The Savanna Grasschorion formed as a separate main cluster in the eastern part of the Savanna Biome and the third main cluster, namely the Central Arid Region and Succulent Karoo grasschoria in the arid to semi-arid regions of southern Africa. The high number of grass species in

Figure 4: The position of six southern African (South Africa, Lesotho and Eswatini) grasschoria along the first two canonical variate axes in a discriminant analysis. Arrows indicate the direction of influence of the environmental variables: MAR: mean annual rainfall; Temp Max: mean annual maximum temperature; Temp Min: mean annual minimum temperature; soil pH and soil phosphorus (P). IOCB: Indian Ocean Coastal Belt

the Savanna Grasschorion, i.e. within the QDGC 2528CA, is proposed as a starting point for collecting seed of grass species identified as important pasture crops by the SA-NFG. In the light of anticipated environmental change, an effort to collect and evaluate the 107 endemic/near endemic species to southern Africa associated with the Central Arid Region is proposed.

The western boundary of the Grassland Grasschorion does not follow that of the Grassland Biome and the probability of arid-adapted grass species, being in the process of shifting their range eastwards into the grassland regions is inferred. Analysing herbarium specimens and rangeland monitoring data of indigenous grass species recorded in southern African over time might corroborate the eastward shift of arid grass species.

The recording of infraspecific taxa in ecological vegetation datasets, such as PHYTOBAS, could assist in phenotypic groupings of grasses into smaller ecographical regions. Despite the biased collection of the BODATSA database, data presented here confirm that resulting geographical ranges can successfully be interpreted ecologically. Williams and Crouch (2017) supported the inclusion of herbaria data, captured by private institutions, with those of the National Herbarium (included in BODATSA) and will accordingly be an important service in terms of monitoring biodiversity at a finer scale, especially if all collections are digitised.

The advantage of identifying and formally labelling infraspecific genetic variants (both physiological and morphological) within especially species of potential economic significance, such as *Eragrostis curvula* and *Digitaria eriantha*, is evident. In this regard, the distribution patterns of grass species in relation to the grasschoria recognised for southern Africa in the current study may be used as a reflection of potential genetically based variation in environmental tolerance, accordingly assisting in identifying ecotypes of grasses for specific applications. Despite the in-depth research in southern Africa to identify suitable ecotypes for soil reclamation and restoration during the latter part of the last century (e.g. Dawson 1987), unfortunately none of the genetic material thus assembled has survived and consequently no progress has been made to use it to the advantage of systematics or breeding grasses for agricultural purposes. Results from this study should enable the SA-NFG to develop a strategy for the acquisition, conservation and evaluation of valuable grass genetic resources and therefore assist in directing future pasture research in South Africa.

Acknowledgements — We thank the South African National Biodiversity Institute (SANBI) for making available the distribution and descriptive data contained in the BODATSA database, the late Dr Bobby Westfall for administrating the data contained in the PHYTOBAS National Vegetation Data Archive, Elsa van Niekerk (ARC-PPH) for the graphics and two anonymous reviewers for useful comments and suggestions to improve the manuscript.

ORCIDs

Marike Trytsman: https://orcid.org/0000-0001-9072-0666 Francuois Müller: https://orcid.org/0000-0002-7211-6163 Abraham van Wyk: https://orcid.org/0000-0002-0437-3272

References

- Acocks JPH. 1953. Veld types of South Africa. *Memoirs of the Botanical Survey of South Africa* 28: 1–192.
- Acocks JPH. 1988. Veld types of South Africa. *Memoirs of the Botanical Survey of South Africa*, 3rd edition 57: 1–146.
- Agricultural Research Council Soil, Climate and Water 2009. Soil Maps. Pretoria, South Africa.
- Biggs R, Simons H, Bakkenes M, Scholes RJ, Eickhout B, Van Vuuren D, Alkemade R. 2008. Scenarios of biodiversity loss in southern Africa in the 21st century. *Global Environmental Change* 18: 296–309. https://doi.10.1016/j. gloenvcha.2008.02.001.
- Bocksberger G, Schnitzler J, Chatelain C, Daget P, Janssen T, Schmidt M, Thiombiano A, Zizka, G. 2016. Climate and the distribution of grasses in West Africa. *Journal of Vegetation Science* 27: 306–317. https://doi.org/10.1111/jvs.12360.
- Bond WJ, Midgley GF, Woodward FI. 2003. What controls South African vegetation – climate or fire? South African Journal of Botany 69: 79–91. https://doi.10.1016/S0254-6299(15)30362-8.
- Bredenkamp GJ, Spada F, Kazmierczak E. 2002. On the origin of northern and southern hemisphere grasslands. *Plant Ecology* 163: 209–229. https://doi.10.1023/A:1020957807971.
- Cang FA, Wilson AA, Wiens JJ. 2016. Climate change is projected to outpace rates of niche change in grasses. *Biology Letters* 12: 20160368. https://doi.org/10.1098/rsbl.2016.0368.
- Casetta E, Marques da Silva J, Vecchi D (Eds). 2019. From assessing to conserving biodiversity: conceptual and practical challenges. *History, Philosophy and Theory of the Life Sciences* 24. Cham: Springer Nature. https://doi. org/10.1007/978-3-030-10991-2.
- Chapman DF, Edwards GR, Nie ZN. 2011. Plant responses to climate and relationships with pasture persistence. *Grassland Research and Practice Series* 15: 99–108.
- Clayton WD. 1983. Geographical distribution of present day Poaceae as evidence for the origin of African floras. *Bothalia* 14: 421–425. https://doi.10.4102/abc.v14i3/4.1188.
- Cowling RM, Rundel PW, Desmet PG, Esler KJ. 1998.

Extraordinary high regional-scale plant diversity in southern African arid lands: subcontinental and global comparisons. *Diversity & Distributions* 4: 27–36.

- Daly C, Widrlechner MP, Halbleib MD, Smith JI, Gibson WP. 2012. Development of a New USDA Plant Hardiness Zone Map for the United States. *Journal of Applied Meteorology and Climatology* 51: 242–264.
- Daru BH, Van der Bank M, Maurin O, Yessoufou K, Schaefer H, Slingsby JA, Davies TJ. 2016. A novel phylogenetic regionalization of phytogeographic zones of southern Africa reveals their hidden evolutionary affinities. *Journal of Biogeography* 43: 155–166. https://doi.org/10.1111/jbi.12619.
- Dawson BL. 1987. An ecological assessment of *Eragrostis curvula* for reclamation purposes in national road reserves in South Africa. MSc thesis, Potchefstroom University for Christian Higher Education, South Africa.
- De la Estrella M, Mateo RG, Wieringa JJ, Mackinder B, Muñoz J. 2012. Legume diversity patterns in West Central Africa: Influence of species biology on distribution models. *PLoS ONE* 7: e41526. https://doi.10.1371/journal.pone.0041526.
- Du Toit JCO, O'Connor TG. 2014. Changes in rainfall pattern in the eastern Karoo, South Africa, over the past 123 years. *Water SA* 40: 453–460. https://doi.10.4314/wsa.v40i3.8.
- Du Toit JCO, O'Connor TG, Van den Berg L. 2015. Photographic evidence of fire-induced shifts from dwarf-shrub-to grassdominated vegetation in Nama-Karoo. South African Journal of Botany 101: 148–152. https://doi.org/10.1016/j.sajb.2015.06.002.
- Fish L, Steyn H. 2002. A single map–much information and many uses. *SABONET News* 7: 186–188.
- Fish L, Mashau AC, Moeaha MJ, Nembudani MT. 2015. Identification guide to the southern African grasses. An identification manual with keys, descriptions and distributions. *Strelizia* 36. Pretoria: South African National Biodiversity Institute.
- Glen H, Van Wyk B. 2016. *Guide to trees introduced into southern Africa*. Cape Town: Struik Nature.
- Gibbs Russell GE. 1983. Correlation between evolutionary history, flowering phenology, growth form and seral status for important veld grasses. *South African Journal of Botany* 2: 175–180. https://doi.org/10.1016/S0022-4618(16)30104-8.
- Gibbs Russell GE. 1987. Preliminary floristic analysis of the major biomes in southern Africa. *Bothalia* 17: 213–227. https:// doi.10.4102/abc.v17i2.1038.
- Gibbs Russell GE, Watson L, Koekemoer M, Smook L, Barker NP, Anderson HM, Dallwitz MJ. 1990. Grasses of southern Africa. *Memoirs of the Botanical Survey of South Africa* No. 58. Pretoria: Botanical Research Institute.
- Goldblatt P. 1978. An analysis of the flora of southern Africa: its characteristics, relationships and origins. *Annals of the Missouri Botanical Garden* 65: 369–436. https://doi.10.2307/2398858.
- Goldblatt P, Manning JC. 2002. Plant diversity of the Cape region of southern Africa. Annals of the Missouri Botanical Garden 89: 281–302. https://doi.10.2307/3298566.
- Greve M, Lykke AM, Blach-Overgaard A, Svenning J-C. 2011. Environmental and anthropogenic determinants of vegetation distribution across Africa. *Global Ecology and Biogeography* 20: 661–674. https://doi.10.1111/j.1466-8238.2011.00666.x.
- Hoffman MT, Cowling RM. 1990. Vegetation change in the semi-arid eastern Karoo over the last 200 years: an expanding Karoo — fact or fiction? *South African Journal of Science* 86: 286–294.
- Hoveka LN, Van der Bank M, Bezeng BS, Davies TJ. 2020. Identifying biodiversity knowledge gaps for conserving South Africa's endemic flora. *Biodiversity and Conservation* 29: 2803–2819. https://doi.10.1007/s10531-020-01998-4.
- Jarvis A, Upadhyaya HD, Gowda CLL, Aggarwal PK, Fujisaka S, Anderson B. 2010. Climate change and its effect on conservation

and use of plant genetic resources for food and agriculture and associated biodiversity for food security. *FAO Thematic Background Study*. Rome: Food and Agriculture Organisation of the United Nations.

- Jürgens N. 1997. Floristic biodiversity and history of African arid regions. *Biodiversity and Conservation* 6: 495–514. https:// doi.10.1023/A:1018325026863.
- Kruger AJ. 1999. Role of plant genetic resources in sustainable land use systems. PhD thesis, University of Pretoria, South Africa.
- Le Roux MM, Wilkin P, Balkwill K, Boatwright JS, Bytebier B, Filer D, Klak C, Klopper RR, Koekemoer M, Livermore L, et al. 2017. Producing a plant diversity portal for South Africa. *Taxon* 66: 421–431. https://doi.10.12705/662.9.
- Li L, Wang Z, Zerbe S, Abdusalih N, Tang Z, Ma M, Yin L, Mohammat A, Han W, Fang J. 2013. Species richness patterns and water-energy dynamics in the drylands of northwest China. *PLoS ONE* 8: e66450. https://doi.org/10.1371/journal. pone.0066450.
- Linder HP, Lovett J, Mutke JM, Barthlott W, Jürgens N, Rebelo T, Küper W. 2005. A numerical re-evaluation of the sub-Saharan phytochoria of mainland Africa. *Biologiske Skrifter* 55: 229–252.
- Low AB, Rebelo AG. 1996. Vegetation of South Africa, Lesotho and Swaziland. Pretoria: Department of Environmental Affairs and Tourism.
- Lubke A, Everard DA, Jackson S. 1986. The biomes of the eastern Cape with emphasis on their conservation. *Bothalia* 16: 251–261. https://doi.10.4102/abc.v16i2.1099.
- Mannetje LT, Batello C, Suttie J, Brinkman R. 2007. Plant genetic resources of grassland and forage species. Background study paper No. 40. Rome: Food and Agriculture Organisation of the United Nations.
- Mashau AC, Fish L, Van Wyk AE. 2020. A taxonomic treatment of *Trisetopsis* (Poeae, Poaceae) in southern Africa. *Phytotaxa* 458: 15–68. https://doi.org/10.11646/phytotaxa. 458.1.2.
- Masubelele ML, Hoffman MT, Bond WJ. 2015. Biome stability and long-term vegetation change in the semi-arid, south-eastern interior of South Africa: a synthesis of repeat photo-monitoring studies. *South African Journal of Botany* 101: 139–147. https://doi.org/10.1016/j.sajb.2015.06.001.
- Masubelele ML, Hoffman MT, Bond WJ, Gambiza J. 2014. A 50 year study shows grasslands expanding into shrublands in semi-arid South Africa. *Journal of Arid Environments* 104: 43–51. https://doi.org/10.1016/j.jaridenv.2014.01.011.
- McCune B, Mefford MJ. 2006. PC-ORD. Multivariate Analysis of Ecological Data. Portland: MjM Software Version 5.
- Meadows ME. 2003. John Acocks and the expanding Karoo hypothesis. South African Journal of Botany 69: 62–67. https:// doi.org/10.1016/S0254-6299(15)30360-4.
- Midgley GF, Rutherford MC, Bond WJ, Barnard P. 2008. *The heat is on. Impacts of climate change on plant diversity in South Africa*. Cape Town: South African National Biodiversity Institute.
- Mucina L, Geldenhuys CJ. 2006. Afrotemperate, subtropical and azonal forests. In: Mucina L, Rutherford MC (Eds), *The Vegetation of South Africa, Lesotho and Swaziland*. Pretoria: Strelitzia 19, South African National Biodiversity Institute. pp 585–614.
- Mucina L, Rutherford MC (Eds). 2006. The Vegetation of South Africa, Lesotho and Swaziland. Pretoria: Strelitizia 19, South African National Biodiversity Institute. http://www.sanbi.org/documents/ vegetation-south-africa-lesotho-and-swaziland-strelitzia-19.
- Nell P. 2010. The primary salinity, sodicity and alkalinity status of South African soils. PhD thesis, University of the Free State, South Africa.
- Parra-Quijano M, Iriondo JM, Torres E. 2012. Improving representativeness of genebank collections through species distribution models, gap analysis and ecogeographical maps.

Biodiversity and Conservation 21: 79–96. https://doi.10.1007/s10531-011-0167-0.

- Pausas JG, Austin MP. 2001. Patterns of plant species richness in relation to different environments: An appraisal. *Journal of Vegetation Science* 12: 153–166. https://doi. org/10.2307/3236601.
- Potts AJ, Moncrieff GR, Bond WJ, Cowling RM. 2015. An operational framework for biome boundary research with examples from South Africa. *South African Journal of Botany* 101: 5–15. https://doi.org/10.1016/j.sajb.2015.07.002.
- Qadir M, Oster JD. 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. *The Science of the Total Environment* 323: 1–19. https://doi.10.1016/j. scitotenv.2003.10.012.
- Robertson MP, Barker NP. 2006. A technique for evaluating species richness maps generated from collection data. *South African Journal of Science* 102: 77–84.
- Ruiz-Vega J. 1994. Agrometeorology of grass and grasslands in tropical and sub-tropical regions. Commission for Agricultural Meteorology Report No. 57. Geneva, Switzerland.
- Rutherford MC, Westfall RH. 1986. Biomes of southern Africa an objective categorization. *Memoirs of the Botanical Survey of South Africa* 54: 1–98.
- Rutherford MC, Mucina L, Powrie LW. 2006. Biomes and bioregions of southern Africa. In: Mucina L, Rutherford MC (Eds), *The Vegetation of South Africa, Lesotho and Swaziland*. Pretoria: Strelitzia 19, South African National Biodiversity Institute. pp 30–51.
- Schulze RE. 2007. South African atlas of climatology and agrohydrology. Water Research Commission Report 1489/1/06. Pretoria, South Africa.
- Skarpe C. 1986. Plant community structure in relation to grazing and environmental changes along a north-south transect in the western Kalahari. *Vegetatio* 68: 3–18. https://doi.10.1007/ BF00031575.
- Smet M, Ward D. 2006. Soil quality gradients around water-points under different management systems in a semi-arid savanna. *Journal of Arid Environments* 64: 251–269. https://doi. org/10.1016/j.jaridenv.2005.04.014.
- Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillespie LJ, Zuloaga FO. 2017. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. *Journal of Systematics and Evolution* 55: 259–290. https://doi.org/10.1111/jse.12262.
- Steenkamp Y, Van Wyk AE, Smith GF, Steyn H. 2005. Floristic endemism in southern Africa: a numerical classification at generic level. *Biologiske Skrifter* 55: 253–271.
- Steenkamp Y, Van Wyk B [AE], Victor J, Hoare D, Smith G, Dold T, Cowling R. 2004 [2005]. Maputaland-Pondoland-Albany. In: Mittermeier RA, Robles-Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (Eds), Hotspots revisited: Earth's biologically richest and most threatened terrestrial ecoregions. Washington: Cemex and Conservation International. pp 219–228.

- Ter Braak CJF, Šmilauer P. 2012. *Canoco reference manual and user's guide: software for ordination*. Ithaca: Microcomputer Power.
- Theunissen JD. 1997. Selection of suitable ecotypes within *Digitaria eriantha* for reclamation and restoration of disturbed areas in southern Africa. *Journal of Arid Environments* 35: 429–439. https://doi.org/10.1006/jare.1995.0146.
- Trollope WSW, Trollope LA, Bosch OJH. 1990. Veld and pasture management terminology in southern Africa. *Journal of the Grassland Society of Southern Africa* 7: 52–61. http://doi.10.1080 /02566702.1990.9648205.
- Truter WF, Botha PR, Dannhauser CS, Maasdorp BV, Miles N, Smith A, Snyman HA, Tainton NM. 2015. Southern African pasture and forage science entering the 21st century: past to present. *African Journal of Range & Forage Science* 32: 73–89. https://doi.org/10.2989/10220119.2015.1054429.
- Trytsman M. 2013. Diversity and forage potential of legumes indigenous to southern Africa. PhD thesis, University of Pretoria, South Africa. http://hdl.handle.net/2263/40213.
- Trytsman M, Westfall RH, Breytenbach PJJ, Calitz FJ, Van Wyk AE. 2016. Diversity and biogeographical patterns of legumes (Leguminosae) indigenous to southern Africa. *PhytoKeys* 70: 53–96. https://doi.10.3897/phytokeys.70.9147.
- Trytsman M, Müller FL, Van Wyk AE. 2020. Diversity of grasses (Poaceae) in southern Africa, with emphasis on the conservation of pasture genetic resources. *Genetic Resources* and Crop Evolution 67: 875–894. https://doi.org/10.1007/ s10722-020-00886-8.
- Visser V, Woodward FI, Freckleton RP, Osborne CP. 2012. Environmental factors determining the phylogenetic structure of C₄ grass communities. *Journal of Biogeography* 39: 232–246. https://doi.org/10.1111/j.1365-2699.2011.02602.x.
- Van Wyk AE. 1995. The role of the plant taxonomist in the conservation of biodiversity in Africa: a practical approach.
 In: Bennun LA, Aman RA, Crafter SA (Eds), *Conservation of biodiversity in Africa: local initiatives and institutional roles,* Proceedings of an international meeting, National Museums of Kenya, 30 August–03 September 1992, Nairobi, Kenya. Kenya: Centre for Biodiversity. pp 329–334.
- Van Wyk AE, Smith G. 2001. Regions of floristic endemism in southern Africa, a review with emphasis on succulents. Pretoria: Umdaus Press.
- White F. 1983. The vegetation of Africa, a descriptive memoir to accompany the Unesco/Aetfat/Unso vegetation map of Africa. Natural Resources Research Report No. 20. https:// doi.10.2307/2260340.
- Whittaker RJ, Nogués-Bravo D, Araújo MB. 2007. Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. *Global Ecology and Biogeography* 16: 76–89. https:// doi.10.1111/j.1466-8238.2006.00268.x.
- Williams VL, Crouch NR. 2017. Locating sufficient plant distribution data for accurate estimation of geographic range: The relative value of herbaria and other sources. *South African Journal of Botany* 109: 116–127. https://doi.org/10.1016/j. sajb.2016.12.015.