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Co-evolved Genetic Program for Stock Market Trading

by

Jason Frederick Nicholls

Abstract

This thesis compares the profitability of trading rules evolved by a single population genetic pro-

gram (GP), a co-operative co-evolved GP, and a competitive co-evolved GP. Profitability was deter-

mined by trading thirteen listed shares on the Johannesburg Stock Exchange (JSE) over a period of

April 2003 to June 2008. The GP parameters were optimised using a response surface methodology

known as 2kr factorial design. A compound excess return over the buy-and-hold strategy was deter-

mined as the preferred fitness function via an empirical process. Various selection strategies to select

individuals for the crossover and mutation operators were compared. It was found rank selection was

the preferred strategy. The optimised GPs were tested on market data using a real world fee structure.

The results were compared to a buy-and-hold strategy and a random-walk. The results of this the-

sis show that the co-operative co-evolved GP generates trading rules that perform significantly worse

than a single population GP and a competitively co-evolved GP. The results also show that a compet-

itive co-evolved GP and the single population GP produce similar trading rules. The evolved trading

rules significantly outperform the buy-and-hold strategy when the market, including fees, was trending

downwards. No significant difference was found between the buy-and-hold strategy, the competitive

co-evolved GP, and single population GP when the market (including fees) was trending upwards.

Keywords: Co-evolution, Evolution, Genetic Algorithm, Genetic Program, Stock Market, Shares,

Trading Rule Optimisation
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Department: Department of Computer Science
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The most exciting phrase to hear in science, the one that heralds new discoveries, is not

“Eureka!” (I found it) but rather “Hmmm. . . That’s funny!”

Isaac Asimov

Dedicated to my amazing daughter Katherine Lynne Nicholls,

I hope you continue to enjoy learning new things as much as I do,

and your enthusiasm for life never fades...
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Chapter 1

Introduction

Like alchemy, finding the perfect algorithm to forecast the stock market is the allure of many. While

accurately forecasting the stock market is improbable, determining the current market direction is pos-

sible. Knowing the market direction and determining if the direction will continue or change can be

used to turn a profit. Market traders fall into one of two camps: either a fundamental trader or a techni-

cal trader. The fundamental trader studies a company’s fundamentals such as budget, financial books,

management, and demand, to name a few. The fundamental trader wants to understand how the com-

pany turns a profit, and if the profit will continue or change. The fundamental trader knows that profit

results in higher share prices, and potentially dividends.

The technical trader studies the historic share price, and understands that the knowledge the funda-

mental trader has, determines the market price, and therefore that the market price reflects all known

information about a share. The technical trader employs statistical techniques, known as technical anal-

ysis, to determine the market trend and potential change in the trend. A technical analysis function is

generally used in conjunction with other technical analysis functions. Each technical analysis function

has a set of parameters that must be set for the given share. The problem for a technical trader is select-

ing which technical analysis functions to use, and the values of the parameters required by the technical

analysis functions selected.

The combination of technical analysis functions and parameters is known as a trading rule. Finding

a trading rule for a given share is an optimisation problem. Computers are good at solving optimisation

problems. However, testing the sheer number of technical analysis functions and parameters is a mam-

moth task that can, even for a computer, take a very long time. Instead of comparing every combination

of technical analysis functions and parameters to each other to find the best possible solution, a smarter

approach is needed.

1
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One such approach is to use a meta-heuristic algorithm to find an optimal combination of technical

analysis functions and parameters. Meta-heuristic algorithms search the solution space by removing

sections of the search space that produce poor solutions. The result is an approximate solution. One

such class of meta-heuristic algorithms is evolutionary algorithms [52, 59, 103, 111].

Evolutionary algorithms use the concept of simulated evolution to produce many solutions to the

problem stochastically. Each generation probabilistically selects the best solutions to produce similar

solutions that lead to the best approximate solution, in this case a selection of technical analysis func-

tions and parameters. The process leading to the best approximate solution is referred to as evolution.

The problem is still which technical analysis functions should be tested to form a trading rule.

While many functions exist, many new functions are created each year. To find an optimal combina-

tion of technical analysis functions requires a comprehensive list of all the possible technical analysis

functions. A comprehensive list is not feasible and therefore either a sub-set of technical analysis

functions are used, or an evolutionary algorithm could evolve trading rules from basic mathematical

operations. A special evolutionary algorithm exists that can do just that, called genetic programming

[52, 59, 103, 149].

Originally developed by Koza [149] in the late 1980s to evolve computer programs, a genetic pro-

gram (GP) can evolve trading rules using basic mathematical operations. Allen and Karjalainen [43, 44]

used a GP to evolve trading rules. Their approach used a single population of individuals to evolve a

trading rule over a fixed number of generations. Allen and Karjalainen noted that, while their approach

produces trading rules that generate profitable returns, their GP was relatively simple and the parameters

were not optimised [43, 44].

This thesis extends the work of Allen and Karjalainen by empirically optimising the evolutionary

operators and parameters of their GP. The empirical process is based on the central limit theorem [40]

and uses the statistical tests proposed by Garcı́a et al. [122, 123, 124], and Demšar [96]. The complete

empirical process is presented in Chapter 5, Section 5.2.1.

The GP parameters were optimised using a response surface methodology known as 2kr factorial

design [93]. The results of parameter sensitivity analysis are presented in Chapter 5, Section 5.5.

In nature, populations rarely evolve in isolation. Instead, populations evolve in co-operation with

other populations or in competition with other populations [185]. This thesis examines the performance

of trading rules evolved through co-operative and competitive co-evolution by comparing trading rules

evolved by co-evolution to trading rules derived by the single population GP implemented by Allen and

Karjalainen [43, 44].

The results of this thesis show that a co-operative co-evolved GP generates trading rules that perform
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significantly worse than a single population GP and a competitively co-evolved GP. The results also

show that a competitive co-evolved GP and a single population GP produce similar trading rules. The

evolved trading rules significantly outperform the buy-and-hold strategy when the market, including

fees, was trending downwards. No significant difference was found between the buy-and-hold strategy,

the competitive co-evolved GP, and the single population GP, when the market including fees was

trending upwards.

This chapter serves as an introduction. Section 1.1 outlines the motivation for this thesis. The mo-

tivation is followed by the objectives of the thesis in Section 1.2, the methodology used in Section 1.3,

and contributions made in Section 1.4. The introduction chapter ends with an outline of the chapters

that follow.

1.1 Motivation

A stock market is a registrar of purchases and sales of commodities, securities, or equity. A registrar

is an institution, often a bank or trust company, responsible for keeping records of bondholders and

shareholders after an issuer offers securities to the public. Investors list offers to buy or sell shares on

the market, and a broker matches the transactions to facilitate the trade. Deciding when to buy or sell a

share is a personal process. Some investors trade on feelings, some on market news. There are those that

make use of economic indicators such as profit sharing, currency value, gold reef grade, or competent

managers. The process of using economic indicators for market forecasting is known as fundamental

analysis [173]. Some traders believe that the share prices have already absorbed all the feelings, news,

and market sector information. This belief is referred to as the efficient market hypothesis [106]. Using

the share price as a means of determining when to buy and sell is known as technical analysis [173].

Edwards [101] defined technical analysis as the study of the action of the market itself as opposed to

the study of the goods the market deals.

Charles Dow [85, 101, 147] studied market action, and proposed the first scientific stock movement

theory known as Dow theory [69, 101]. Dow theory states that a market is either in an upward trend,

downward trend, or continuing in the same direction [69, 101, 182]. Dow theory proposes that each

trend has three phases [69, 101, 182].

In the accumulation phase, investors close to the company start selling stock to the public or buying

back stock from the public. In the public participation phase, the public begins to sell stock to other

members of the public or buy stock back from the public. During the distribution phase the market is

mixed, and no definite trend has formed.
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Technical analysis techniques use the historic share price to find which of the three Dow trends the

market is in. Technical analysis then determines which phase the trend is in and if the trend will change.

This thesis explores just ten of the many technical analysis functions available [42, 53, 71, 84, 101, 173,

178, 197, 203, 206].

Each technical analysis function requires a set of parameters that must be set. Technical analysis

functions are used in combination with one another.

Selecting which technical analysis functions to use, and determining the correct parameters is an

optimisation problem. Fixing the set of technical analysis functions to size k and the parameters to a set

of size n takes O(nk) time [104] to compute on a Turing machine [36]. This class of complex problems

is known as NP-complete problems [36, 104]. Searching through all the combinations of technical

analysis functions and parameters is not computationally feasible. Meta-heuristics offer an alternative

approach to searching through all the combinations of functions and parameters. Meta-heuristics search

the solution space for the optimal solution by removing sections of the search space that produce poor

solutions.

Bauer [63] was one of the earliest researchers to use a class of meta-heuristics known as genetic al-

gorithms [135] to optimise the combination of technical analysis functions and parameters to maximise

return on a set of stock trades.

A genetic algorithm is based on simulated evolution. The theory of evolution, first proposed 2 600

years ago by the Greek philosophers Anaximander [81, 100] and Empedocles [41, 127], proposes that

all individuals are derived from a set of common ancestors created during the big birth.

Comte de Buffon [76] believed that creatures morph adapting to their environment, a belief shared

by Lamarck [94] and documented in his book “Philosophie Zoologique”. Lamarck believed that indi-

viduals lose characteristics they do not require and develop those which are useful.

Darwin, E. [90] rejected the morphing hypothesis of Lamarck and Buffon, and proposed that each

individual has slightly different traits to others and their traits are passed on their offspring. Darwin,

C. [53, 68, 89, 111, 201] and Wallace [89, 208] introduced the scientific theory of evolution. They

proposed that all species of life have descended over time from common ancestors. The branching of

species resulted from a process that Darwin called natural selection, in which the struggle for existence

within different environments favours different traits.

The German evolutionary biologist, Weismann [209] refined evolution by introducing heredity.

Weismann found that individuals pass genetic information on to their children via germ cells, and that

the information can mutate.

Mendel [53], an Augustinian priest and scientist, conducted hybridisation experiments on garden
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peas (Pisum sativum) and discovered that the information passed on alters the traits of the offspring.

Therefore, the mutated genetic information postulated by Weismann resulted in new characteristics

within the garden pea.

An American geneticist and embryologist, Morgan [111, 168], studied a small fly (drosophila),

and determined that a chromosome stores the traits of an individual as genes, and that these genes are

selected and passed on to offspring. The genes may undergo mutation before the offspring forms.

Neo-Darwinism is a theory that combines natural selection, germ cells, inheritance, and genetics

[111]. Neo-Darwinism consists of four operations, namely reproduction, mutation, competition, and

selection [111].

A genetic algorithm simulates the four operations of Neo-Darwinism by creating a population of

candidate solutions to an optimisation problem. Candidate solutions are called individuals. Each indi-

vidual has a set of properties defined as a chromosome. Each property is known as a gene.

Chromosomes are altered through simulated mutation and reproduction to form new individuals

referred to as offspring. Selection samples individuals from the population, forming the next generation.

Typically, selection is biased towards the best performing individuals.

A fitness function quantifies an individual’s performance [103]. Performance is generally deter-

mined by how well the candidate solution completes the problem.

The process of selection, reproduction, mutation, and competition is repeated until an adequate

solution is found or a fixed number of generations have passed [111, 112].

A genetic algorithm requires a chromosome representation of the solution domain and a fitness

function to evaluate the individual within the domain.

Friedman and Fraser [53, 112, 121] are recognised as the first to experiment with genetic algorithms.

However, it was Holland [53, 135, 136, 137] that formalised the first version of a genetic algorithm.

Holland’s emulation of evolution used a fixed length binary string representation of a chromosome.

This thesis defines the optimisation problem as finding a trading rule that can reliably return a profit

for a given share. If possible the trading rule should return a higher profit than a buy-and-hold trading

strategy. The solution domain is then defined as a domain containing every possible trading rule.

The bit string chromosome representation of a trading rule implies that each bit corresponds to

a technical analysis function and fixed parameters. The bit enables or disables the technical analysis

function. The combination of enabled technical analysis functions represents a trading rule.

Replacing a bit string vector chromosome structure with a mixed data-type vector facilitates the

storage of technical analysis parameters within the chromosome, allowing the genetic algorithm to

evolve the parameters to an enabled function.
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To evolve the technical analysis functions from basic mathematical operators requires a variable

length chromosome structure that defines a relationship between genes within the chromosome. The

chromosome structure must cater for binary, logical and numerical functions. Koza [150] experimented

with an alternative version of a genetic algorithm called a GP. A GP replaces the fixed length vec-

tor structure used in a genetic algorithm with a random length, non-linear, hierarchical abstract data

structure, known as a tree.

The tree structure naturally accommodates a trading rule. A tree is not restricted to a fixed length.

A tree is a natural structure to represent hierarchical decisions rules, and a tree can store both binary,

logical, and numeric functions within its nodes. Logical functions allow the GP to evolve conditional

execution of technical analysis functions not easily implemented using a fixed length vector.

Allen and Karjalainen [43, 44] were one of the earliest implementers of GPs in stock market trading.

Allen and Karjalainen used a GP to evolve trading rules from basic mathematical, and logical operators.

They showed that the trading rules generated by their GP are generally beneficial when the market falls

or when it is stable. Although their GPs were profitable, the excess returns were not dramatically higher

than that of a buy-and-hold strategy. Allen and Karjalainen noted that, while their approach produces

trading rules that generate profitable returns their GP was relatively simple and the parameters were not

optimised [43, 44].

Variations of Allen and Karjalainen’s implementation of a GP were reimplemented by Neely et al.

[170], Telbany [102], Mahfoud and Mani [160, 161], Li and Tsang [204, 205], and Potvina et al. [177]

with varying degrees of success.

This thesis extends the work of Allen and Karjalainen by empirically optimising the evolutionary

operators and parameters of their GP.

To be profitable when trading shares, the selling value less the buying value must be greater than

the transaction cost. Because trading costs are generally high, Allen and Karjalainen noted that only

large institutional investors with lower trading costs could implement evolutionary algorithms and be

profitable [43, 44]. Allen and Karjalainen used a percentage of the share price as a cost, which is

not the same cost structure employed by brokers. This thesis differs from Allen and Karjalainen’s

implementation by incorporating the share trading fees charged by the Standard Bank’s online share

trading platform (OST) [32, 43, 44]. The OST is a publicly accessible share trading platform.

As discussed previously, meta-heuristics search the solution space for an optimal solution by re-

moving sections of the solution space that produce poor solutions. Sometimes meta-heuristics fail to

search particular areas of the solution space, or remove areas of the search space inadvertently. When

this happens, the meta-heuristics return sub-optimal solutions.



Chapter 1. Introduction 7

Evolutionary algorithms use the concept of simulated evolution to produce many solutions to the

problem stochastically. The best solutions are selected to produce similar solutions that lead to the

best approximate solution. Over time the individuals in a generation become more and more similar.

When they are so similar that all the solutions produce the same result, the solutions are said to have

converged.

Premature convergence results in inadvertently ignoring parts of the solution search space. Mutation

introduces new genetic material, therefore introducing parts of the ignored search space. However,

sometimes mutation alone is not enough to stop premature convergence.

Convergence and premature convergence is a result of selection. Selection is based on the evalua-

tion of the performance of individual solutions with respect to the performance of others. Individuals

with the highest performance have a higher probability of being selected as individuals for the next

generation than individuals with a lower performance.

Allen and Karjalainen implemented a single population GP. In nature, populations rarely evolve in

isolation. Instead populations co-evolve in co-operation with other populations or in competition with

other populations.

Co-evoled populations evolve in isolation ensuring that each population can explore the solution

space independently [111]. Co-operative co-evolution [111, 132] results in populations evolving parts

of the solution independently. The performance of individuals are based on the performance of all

the populations. Competitive co-evolution [132] results in populations competing against each other.

The performance of individuals in one population are indirectly proportional to the performance of

individuals in other populations.

This thesis extends the single population GP of Allen and Karjalainen to two populations and com-

pares the effect co-operative and competitive co-evolution had on evolving trading rules.

The motivation behind the introduction of co-evolution is to minimise both over-fitting and prema-

ture convergence.

1.2 Objectives

The main objective of this thesis is to study the effectiveness of an evolved trading rule on real-world

market conditions. The primary objectives of this thesis are summarised as follows:

• to implement the standard GP of Allen and Karjalainen;

• to empirically optimise the parameters used by the GP;
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• to determine a preferred selection operator for the GP;

• to determine a preferred fitness function for the GP;

• to implement a co-operative co-evolved version of the GP;

• to implement a competitively co-evolved version of the GP;

• to compare trading rules evolved using co-evolution to single population evolution;

• to determine the profitability of evolved trading rules on the Johannesburg stock exchange (JSE)

against chance and a buy-and-hold strategy;

1.3 Methodology

The stock market is presented and discussed, with exploration of different trading approaches, namely

fundamental and technical analysis. The origins of technical analysis is presented, with a review of

the most popular technical analysis functions. Evolution and simulated evolution is presented and

discussed; more specifically, genetic programming is explored as a meta-heuristic search that has been

shown to be successful in optimising solutions.

Research in using genetic algorithms to find optimal technical analysis functions and parameters

is presented. The work of Allen and Karjalainen [43, 44] is explored. A set of parameter sensitivity

experiments were run to find a good GP parameter configuration for the GP implemented.

Co-evolution is explored as a multi-population extension of the GP. The optimised single popula-

tion genetic GP was implemented as both a co-operative and a competitive co-evolution GP. The GP

parameters were optimised using a response surface methodology known as 2kr factorial design [93].

The results of parameter sensitivity analysis are presented in Chapter 5, Section 5.5. Each configuration

of a GP constitutes a simulation. A simulation was run 30 times to comply with the central limit theo-

rem [40]. The null-hypothesis was assumed when comparing the results of various GP configurations.

The null-hypothesis assumes the results to be the same, unless statistically shown to be significantly

different. Significance was determined at a 95% confidence level using statistical tests proposed by

Garcı́a et al. [122, 123, 124], and Demšar [96].

Only configurations shown to invalidate the null-hypothesis were investigated further. Investiga-

tion compared the mean profit returned by the simulation runs to determine which configuration was

preferred. The complete empirical process is presented in Chapter 5, Section 5.2.1.
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All comparisons were performed using real world financial data. Each simulation was repeated for

each of the financial datasets. The financial datasets comprised of thirteen different shares across var-

ious market segments selected from the JSE. To compare the performance of the evolved trading rules

against chance, the profitability of the trading rules were compared to four simple trading strategies.

The first was a buy-and-hold strategy that bought shares on the first day of trade and sold them on the

last day of trade. The other three trading strategies were implemented as variations of a random-walk.

The random walk determines a buy and sell action randomly.

1.4 Contributions

The contributions offered by this thesis are:

• Empirically optimised GP for stock market trading.

• Empirical comparison of co-evolution and a single population GP using real work stock market

data.

• Empirical evidence that a GP can evolve trading rules to outperform the buy-and-hold when the

market is trending down.

• Results that show trading rules generated by a GP perform significantly better than chance.

The following list of published articles support the main contributions of this thesis.

• J.F. Nicholls, K.M. Malan, and A.P Engelbrecht. Comparison of trade decision strategies in an

equity market GA trader. In Proceedings of the IEEE Symposium on Computational Intelligence

for Financial Engineering and Economics 2011.

• J.F. Nicholls, K.M. Malan, and A.P Engelbrecht. Evaluation of Fitness Functions for Evolved

Stock Market Forecasting. In Proceedings of the WSPC Symposium on Artificial Intelligence for

Economics Research Centre 2008.

1.5 Thesis Outline

This thesis is organised as follows:
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• Chapter 2 describes share trading and technical analysis. The chapter begins with an introduction

to stock markets, and a discussion on fundamental and technical analysis. Technical analysis is

then described in more detail by briefly covering its history, followed by exploration of the most

common technical analysis functions, their use, and the formulae used to implement them. The

chapter introduces simple trading strategies and a transaction cost model used by Standard Bank.

• Chapter 3 covers the history of evolutionary theory and introduces the basic evolutionary oper-

ators. The history of natural evolution is followed by an introduction to evolutionary algorithms

and the history of genetic programming. The chapter concludes with a section on co-evolution

and co-evolved GPs. This is followed by a discussion on evolutionary algorithms, its history, and

the various implementations thereof, including genetic algorithms, genetic programming, evolu-

tionary programming, evolutionary strategies, and differential evolution. Genetic programming

is covered in more detail within its own section, which is followed by a section on co-evolution.

• Chapter 4 combines technical analysis and evolutionary algorithms by introducing the history

of evolutionary algorithms applied to automated stock market trading. The history begins with

research in using genetic algorithms to select technical analysis functions, which is followed by

evolving trading decision trees using GPs.

• Chapter 5 builds on the work presented in Chapter 4 by presenting the GP used in the empirical

study. The presentation includes an outline of the GP algorithm as pseudo code. A discussion

on various aspects of the algorithms and the decisions made. The decisions include the selection

criterion, mutation operators, crossover operators, and fitness functions. The various operator

parameters are explored by running parameter sensitivity analysis. The results are presented

and discussed. This chapter introduces the pre-requisites of the empirical study including stock

market data used, the simulation set up, empirical process, and empirical study configuration.

• Chapter 6 extends the single population GP presented in Chapter 5 by defining two co-evolution

versions. The first version is a co-operative co-evolution extension, and the second a competitive

co-evolution extension. The basic algorithms are defined as well as the fitness functions.

• Chapter 7 presents the empirical study of this thesis, beginning by confirming the GP configu-

ration used. The configuration is followed by the study consisting of three sub sections. The first

subsection compares the results obtained by the three GPs across various market shares without

fees. The second subsection discuses the results with the inclusion of fees. The third subsection
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compares the profit results obtained by the standard GP and the competitive co-evolved GP to

four random trading rules.

• Chapter 8 highlights the conclusions of this thesis and presents ideas relating to possible future

work.

• Appendix A examines the data used throughout this thesis. The market conditions are discussed

as well as the reasons for selecting the dataset.

• Appendix B provides a list of the important acronyms used or newly defined in the course of this

work, as well as their associated definitions.

• Appendix C lists the publications derived from this work.



Chapter 2

The Stock Market

One of the funny things about the stock market is that every time one person buys, another

sells, and both think they are astute.

-William Feather (American Publisher and Author)

12
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The purpose of this chapter is to explain share trading and technical analysis. Section 2.1 describes

stock markets and how supply and demand can drive share transactions. Section 2.1 introduces two

analytical techniques for understanding the forces of supply and demand: fundamental analysis and

technical analysis. Section 2.2 presents the history of technical analysis, while Section 2.3 highlights

modern technical analysis techniques. Section 2.4 discusses different trading platforms and the trans-

action cost structure used in the empirical study. Section 2.5 offers a summary of the chapter.

2.1 Introduction to Stock Markets

A stock market or equity market is a gathering of people for the purchase and sale of commodities,

securities, or equity.

A commodity is a physical item that can be bought or sold, for example, rice or gold. A security is

something used as a guarantee for the undertaking of a loan, also known as collateral, surety, or bond.

An equity is a stake or share in a company. A share refers to the ownership of a specific company, while

stock refers to shares in many companies.

The process of buying and selling these items is known as trading. The stock exchange manages

the market and regulates trading.

The market facilitates the trade in equity, providing a place for a company to raise capital. The

company gains capital by selling a share of ownership to investors, who in return, for cash, gain a per-

centage of ownership, but more importantly, a right to the profit in the form of dividends. Management

of dividends, company information and shareholder information is the function of the exchange. List-

ing of new equities, commodities or securities is the function of a market maker. A broker matches the

transactions of buyers and sellers.

Before the invention of the computer, stock markets were lively markets. Brokers would arrange a

trade between the market maker and the buyer or seller through shouting, pushing and shoving within

the trading area. Once visually or verbally acknowledged, the broker informs the exchange via a sliver

of paper and the exchange acknowledges the transaction in the share register. Furthermore, a market

maker selling from its inventory of stock, tries to offset the sale with a purchase of another share. The

physical trading process is known as a trading pit or open floor trading system.

The New York stock exchange (NYSE) still operates on this open floor trading system, while the

London stock exchange (LSE) and the JSE went digital in the 1980’s and 1996 respectively [5, 48]. A

digital exchange replaces paper and books with databases, and human brokers with digital transaction

matching brokers.
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Today the market is an interconnected web of computers, which buy and sell at the speed of light.

Although this market seems to be ahead of its time, the same principles of market maker, willing buyer,

and willing seller exist, and the same fears and excitement drives the price.

The following illustration explains the stock market process:

Consider a company that needs money to open a new mine. This company would list a finite

number of shares with an appropriate market maker based at an exchange such as the LSE or the JSE.

The exchange lists the share on behalf of the company at a pre-determined price. The market maker

considers the share demand and adjusts the price accordingly. Investors buy the shares at the market

price and the company raises the money needed. The new shareholders gain rights in the company

which includes a vote on the running of the company, and a share of the profit.

Investors buy shares in a company for two reasons:

• to obtain a share of the future profit, and

• to speculate and sell the share at a higher price than what they paid for it.

Investors sell shares for several reasons: it may be that the shareholder needs money, or that the

share value is dropping to a level that they have incurred a loss, or that the perceived profit is less than

expected, or perhaps the profit has reached an all-time high and is likely to start diminishing. The

perception of future profit or share price is based on beliefs or truths in factors that affect the market

and the company at a point in time. Such factors include the state of the economy, the management of

the company, and press releases related to the company or the sector that the company operates in.

If an investor wants to sell a share in the company, the share is listed on the market at a selling

price determined by the investor. A prospective investor lists with the market an interest in buying a

share in the company at a price decided by the prospective investor. If the seller’s price matches the

buyer’s price, the broker fulfils the transaction, with the seller receiving money and the buyer a share in

the company. The process of buying and selling is known as trading. Once the transaction takes place,

a new market price is set and reflected against the company’s trading code. Trading incurs levies and

costs that are determined by the exchange and the country that the exchange resides in.

More buyers than sellers create a higher demand with little supply. High demand means that the

seller decides the price, and so the offer price increases. Fewer buyers than sellers create a lower

demand with a higher supply. Low demand pushes the price down to attract buyers. The fluctuation of

price based on supply is known as the law of supply and demand [48].

Determining when to buy or sell a share is a personal process. Some investors trade on feelings,

some on news. There are those that make use of economic indicators such as profit sharing, currency
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value, gold reef grade, or competent managers. The process of using economic indicators for market

forecasting is known as fundamental analysis [101]. Fundamental analysis requires a deep understand-

ing of the specific sector of the market traded in. Some traders believe that the share price has already

absorbed all the feelings, news, and market sector information. These traders believe that patterns in

the share price can decide the future market value of the share. This type of forecasting is known as

technical analysis [101]. Technical analysis makes use of numeric data readily available. This study

focuses on technical analysis used in stock market trading. The next section briefly covers the history

of technical analysis.

2.2 History of Technical Analysis

Edwards [101] defines technical analysis as “the study of the action of the market itself as opposed to

the study of the goods the market deals”. Legend has it that the first technical analyst was Munehisa

Homma [162]. Homma was a rice merchant from Sakata, Japan, trading in the future price of rice.

Through the years, he learnt that the emotion of traders had a significant effect on the price of the

rice. His understanding of this market psychology was published in his book “San-en Kinsen Hiroku”

in 1755. Using his knowledge of the market and its psychology, Homma became legendary in the

forecasting of the rice price. To aid his forecast, Homma used a charting technique that displayed

the opening, closing, high, and low rice price for a given trading day. This charting technique was

so efficient and simple that it became widely used as a method to determine future demand, based on

patterns within the chart. This form of charting became known as candlestick charting [180].

Candlestick charting is a visual tool that requires interpretation, which is subject to human subjec-

tivity and not very scientific. One hundred years later the first editor and founder of the Wall Street

Journal, Charles Dow [85, 101, 147], proposed the first scientific stock movement theory that would

later become the bases for all technical analysis techniques [69, 101].

Dow proposed the following principles:

• Markets are either in an upward trend, downward trend, or markets continue in the same direction.

In the up-trend, the market continues to close higher than the previous high. In the down-trend

the market continues to close lower than the previous low. Markets can continue in the same

direction, neither higher nor lower, but oscillate between the two.

• Each trend has three phases: an accumulation phase, a public participation phase, and a distri-

bution phase. In the accumulation phase, investors close to the company start off-loading stock
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to the public or buying back stock from the public. In the public participation phase, the public

catches on and starts to off-load stock to other members of the public or buy stock back from

the public. In the distribution phase the market is mixed, and no definite trend has formed. The

distribution phase is also known as the speculation phase.

• The stock market absorbs all new information. This is the same as the efficient market hypothesis

(EMH) as stated by Fama [106, 107]. The market also absorbs information related to future share

prices as forecast by any trader.

William Hamilton [69], the fourth editor of the Wall Street Journal [85], added the following to the

Dow theory [69, 182]:

• The primary trend of a share can not be manipulated.

• Stock market averages must confirm each other. This is a very strong premise. In short, if one

industry is reliant on another industry, for example, the farming and bread industries, it must hold

that if the bread industry is doing well, then the farming industry supplying the wheat should

be doing equally well. The transport industry transporting all the bread and wheat should also

be benefiting from the success in the farming and bread industries. Change in market trend will

occur if there is no correlation in performance between the industries that rely on each other.

• Price trends must be confirmed by volume (the masses must agree with the price through a large

number of trades).

• Trends will continue despite market noise until the signals above indicate that the market trend

has changed.

In 1921, Rhea [162] tried to disprove the Dow theory only to successfully forecast the bottom of the

market in 1932 and the peak in 1937. Building on the success of Rhea [182], Schaefer [187] developed

additional technical analysis models to forecast trend changes. Schaefer published these techniques in

the book titled “How I Helped More than 10,000 Investors to Profit in Stocks” [187].

Although fundamental analysts such as Fama [43, 106, 107, 125, 147, 162, 189, 204] claim that the

market follows a random-walk, technical analysts have shown that patterns do exist within the market.

The American Statistical Association (ASA) [147] held a meeting on April 24, 1934 to discuss the

effectiveness of technical analysis. It was at this meeting that three analysts presented papers. The

following outlines a summary of some key points from the meeting:
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Ellsworth [147], the editor of the “Annalist”, stated that stock market prices are different from

cumulative chance in that:

• unlike chance data, stock prices can not go below zero, and

• the fact that stock prices are tied to earnings, limits the altitude to which they can climb.

Macaulay [147] commented on the relationship between chance and the market by stating that if a

slightly loaded dice (i.e. not balanced correctly) is thrown and the results are plotted on a graph, the plot

will not be uniform. This is similar to the results seen in a market. The shorter the term, the more the

market looks like a balanced dice; while the longer the sample or term, the more distorted the results.

Supporters of Fama’s EMH claim that the market is efficient, and the share price reflects all the

traders’ feelings and assumptions of the market price. The trading price absorbs all known market and

stock information as soon as the information is known. Gartley [147] argued that this is not possible,

because Dow showed that market trends enter three distinct phases. Gartley insisted that the trading

price does not change at once, but rather gradually with each trade. Price performance on a specific day

could indicate the probable changes that would occur the next day, as the market moved through the

three phases.

Schabacker [147], the financial editor of Forbes Magazine in 1934, was also present at the meeting.

He put forth his thesis on the logic of the technical approach and presented the following simple truths:

• the stock market moves in trends,

• more people buying than selling defines an upward trend,

• more people selling than buying defines a downward trend, and

• while the majority of people buying or selling is not important, it is important to know when the

majority of people are buying or selling and to do the same.

The American Statistical Association meeting showed that there is a basis in believing the market

data may offer foresight into the future market price. Based on this belief, several technical analysis

techniques have been developed to analyse the market data and to determine the current trend. The

technical analysis techniques are also used to predict a change in the trend. Knowing the trend, and if

the trend is changing, gives guidance as to when a trader should buy or sell a share.
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2.3 Technical Analysis Techniques

Technical analysts have — through the years — plotted the share price on a special type of graph called

a candlestick graph. The candlestick graph, invented by Homma [180], is illustrated in Figures 2.1

and 2.2. This graph shows the opening, closing, high, and low stock market values for a given day with

wide vertical bars and lines called shadows [173]. Analysts then added the number of individual stock

trades made within the day to the graph. The total number of trades made within a period is known as

the volume.

Highest Price

Upper Shadow

Lowest Price

Lower Shadow

Body

Closing Price

Opening Price

Opening Price

Closing Price

Figure 2.1: The format of candle stick used in the candle stick graph invented by Homma. An open block

represents a share trending upwards, where the opening price is lower than the closing price. Conversely, a filled

block represents a share trending downwards, where the closing price is lower than the opening price. The high

and low whiskers represent the highest and lowest recorded price of the trading period.

Through careful observation of the candlestick graphs, analysts found different techniques for read-

ing the graph. As noted by Macaulay [147] in the meeting of the American Statistical Association

[147], like a loaded dice the short-term market appears random, but over a longer period the dice ap-

pears “biased” and the market appears to follow a trend. At first, the graph appears random. However,

many analysts employ visual patterns to determine the trend. These patterns are subjective human in-

terpretations of the data. The reader of the graph attempts to use the patterns to decipher the market

trend within the perceived randomness of the market [173].
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Figure 2.2: An example of the candle stick graph invented by Homma.

To better detect the trend, technical analysts began to employ correlations between the volume and

the trading price, low and high boundaries, and increased deviations from the established trend. The

volume of the day represents the total number of trades captured for that day. The volume for a given

day t is represented as Volumet .

The trading price is either the opening price, closing price, the highest recorded price, or the lowest

recorded price of the trading day t and is represented as Pricet .

The market bias is difficult to detect over the short-term market, because the market is full of noise

in the form of short-term or daily fluctuations. To improve forecasting, technical analysts smooth out the

noise and view the market averages over a longer period than a day. A moving daily average function

is an example of a simple noise reduction function.

The simple moving average (SMA) has its foundation in Dow’s theory [69, 147]. Dow believed

that if the share price is on the rise, the probability of a continued rise is greater than a fall and vice

versa [85, 143, 147]. Consider a graph of the daily closing share price illustrated in Figure 2.3. The
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share price could be up in value on one day, but down in value the following day. The daily share price

is jagged and unpredictable. However, consider a graph that plots the average price of x days before

the trade day. This graph appears smoother, and the trend becomes visible [84]. Increasing the number

of days (n) used to calculate the average results in a smoother graph. Moving averages are the most

common methods employed by technical analysts. Many variations of the moving average exist. The

three most common variations include:

• the SMA, expressed as:

SMA(n) =
Pricet +Pricet−1 + · · ·+Pricet−n+1

n

• the weighted moving average (WMA), expressed as:

WMA(n) =
ωPricet +(ω−1)Pricet−1 + · · ·+2Pricet−n+2 +Pricet−n+1

ω +(ω−1)+ · · ·+2+1

where ω is a weight. In this example, ω is equal to n.

• the exponential moving average (EMA), expressed as:

α = 1− 2
n+1

EMA(n) =
αnPricet +αn−1Pricet−1 + · · ·+α2Pricet−n+2 +αPricet−n+1

αn +αn−1 + · · ·+α2 +α

where α = 1− 2
n+1 and α is the weight.

A comparison of different moving average trends can reinforce the trend certainty. For example, if

the 10-day SMA follows the same direction as the 50-day SMA, then it can be assumed that the trend

is set. If the two moving averages do not follow the same direction, it could signify a trend reversal.

A common technique used to determine the trend using two different moving averages is to subtract

the longer (i.e. slower) moving average from the shorter (i.e. faster) one. A positive result means

the trend is upwards, a negative result means the trend is downwards, and a zero result is a moment

of uncertainty. In the 1960s, Appel [42, 53, 203] subtracted a 26-day EMA from a 12-day EMA, and

called this technique moving average convergence or divergence (MACD) [42, 203]. A 9-day EMA of

the MACD is known as the signal line. The signal line is plotted on top of the MACD, functioning as

a trigger for buy and sell signals. When the MACD falls below the signal line it suggests time to sell.

When the MACD is above the signal line it suggests time to buy. Generally, the MACD and signal lines
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Figure 2.3: Illustration of a 20-day and 100-day simple moving average function plotted against the ALSI40

closing price from February 2005 - July 2005.

are plotted as a line graph, and the difference between the MACD and the signal line as a bar graph.

A positive difference signals an upward trend and a negative difference signals a downward trend. An

example of the MACD is depicted in Figure 2.4. The MACD is expressed as follows:

MACD = EMA(12)−EMA(26)

Similarly, Chaikin [101] implemented the same subtraction strategy but used a 10-day EMA and a 3-day

EMA. His technique is known as the Chaikin oscillator (CO). The CO is expressed as follows:

CO = EMA(3)−EMA(10)

The CO and MACD result in a number that oscillates above and below zero. Naturally, a positive

MACD / CO result means that the faster moving average is greater than the slower moving average

and so the market is more positive, or more bullish. This is reinforcement in an upward share price

trend. A negative MACD / CO result means that the faster moving average is lower than the slower

moving average, and therefore the market is more negative or bearish and supports a downward trend.

The MACD / CO may be positive, negative or zero. The further the MACD / CO is from zero, the

greater the change in the trend. The MACD and CO are examples of trend following indicators. A

trend following indicator is also known as a lagging indicator. Lagging indicators confirm a trend, e.g.

is the market going up, down, or remaining the same. Lagging indicators help to reduce risk, as they

indicate when the market is bearish even if the share price is high [203].
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Figure 2.4: Illustration of a moving average convergence divergence plotted, lagging indicator function against

the ALSI40 closing price from February 2005 - July 2005.

Moving averages confirm the current underlying trend by removing noise. Technical analysts also

want to know if this trend will continue, or if the trend will change. Change can be detected by com-

paring the current price change to the historic mean price deviation. In statistics, the deviation is the

difference between the current value and the average or mean value observed over a dataset. In tech-

nical analysis, the deviation refers to the average value of the share price over time, also known as the

SMA less the current share price [84]. The mean deviation of the moving average (MD) is therefore

the mean of the calculated deviation over the share price. Generally, the MD is shown as θ . The MD is

expressed as follows:

θt =
∑

n
t=1 | SMAt −Pricet |

n
Technical analysts plot the MD of the moving average on a graph as two lines. The first line is the

moving average minus the MD at that point and the other is the MD plus the moving average at that

point. This graph was introduced by Bollinger [42, 71, 101] in 1980 and is known as Bollinger bands

(BBs). Figure 2.5 illustrates an example of a BB graph. Should the share price represented by the centre

line break the upper band, the shares are said to be overbought and trend reversal is due. Breaking the

lower band results in an indication of being oversold and the trend may reverse. Another technique to

forecast a probable change in the trend, is to measure the rate of divergence between the price trend and

the current share value. An oscillating index measures the rate of divergence.

An oscillating index tries to measure the difference between the current established trend and the
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Figure 2.5: Illustration of a 10-Day Bollinger bands function plotted against the ALSI40 closing price and

volume from 2007–2008.

current share price. Like the BBs, the oscillator attempts to determine if the shares are overbought or

oversold, which increases the probability of a trend reversal. The three most widely used oscillating

indices are:

• relative strength index (RSI),

• commodity channel index (CCI), and

• money flow index (MFI).

The RSI, developed in 1978 by Wilder [42, 101], shows the strength of the share price relative to

the market within a range of 1 to 100 [173]. The closer the RSI is to 100, the more overbought the

shares are; and the closer it is to 0, the more oversold the shares are. Wilder recommended a period of

14 days for the calculation and using index threshold values of 70 and 30 to determine overbought and

oversold indicators, respectively.

The RSI is expressed as follows:

TotalGainst =
n

∑
t=1

(Pricet+1−Pricet) for all t where Pricet+1−Pricet > 0

TotalLossest =
n

∑
t=1

(Pricet −Pricet+1) for all t where Pricet −Pricet+1 > 0

AverageGaint = TotalGainst/n
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AveragLosst = TotalLosst/n

RelativeStrengtht =
AverageGaint

AverageLosst

RSIt = 100− 100
1+RelativeStrengtht

Lambert created the CCI in October 1980 [197]. While the RSI returns a value between 0 and

100, the CCI returns a number that is greater or less than 0. Under normal trading the CCI should

return a value between +100 and -100. If the returned value is above 100, it means that the market has

overbought; and value less than -100 means that the market has oversold. To reduce fluctuations, an

average of the daily closing, high, and low price is used to calculate the CCI. This daily average price

is known as the typical earning price (TEP). The TEP is expressed as follows:

T EPt =
ClosePricet +HighPricet +LowPricet

3

where ClosePricet ,HighPricet ,LowPricet is the closing price, highest price, and lowest price respec-

tively for a given day t.

The CCI is expressed as follows:

CCIt =
1

0.015
× T EPt −SMAt

θ

During each day of trade, money flows in and out of the stock market. If the average amount of

money traded on a given day is less than that of the following day, the market has gained money (i.e.

inflow). If the average amount of money traded on a given day is more than that of the following day,

the market has lost money (i.e. outflow). Multiplication of the TEP and the volume of the day returns

the average amount of money traded on the day.

Quong and Soudack [178] converted the average amount of money traded between two days into

an oscillating index known as MFI. The MFI results in a number between 0 and 100, where anything

greater than 80 and less than 20, is considered overbought and oversold respectively. The MFI is

expressed as follows:

RMFt = T EPt ×Volumet

PositiveMoneyFlowt =
n

∑
t=1

(RMFt+1−RMFt) for all t where RMFt+1−RMFt > 0

NegativeMoneyFlowt =
n

∑
t=1

(RMFt+1−RMFt) for all t where RMFt+1−RMFt < 0
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MoneyFlowRatiot =
14−PositiveMoneyFlowt

14−NegativeMoneyFlowt

MFIt = 100− 100
1+MoneyFlowRatiot

The MFI is an example of a technical analysis technique that combines the share price and the

volume to measure the cumulative flow of money into and out of a share. Chaikin [42] built on the

MFI and developed what he called the cumulative money flow line, today referred to as the accumula-

tion/distribution Index (ADI) [84]. Instead of using the TEP, Chaikin used a proportion of the closing

price against the day’s high and low price. Chaikin called this the money flow multiplier (MFM),

expressed as follows:

MoneyFlowMultipliert =
(ClosePricet −LowPricet)− (HighPricet −Closet)

(HighPricet −LowPricet)

The MFM fluctuates between -1 and 1, where -1 means that the closing price is the same as the lowest

price of the day and 1 means that the closing price is the same as the highest price of the day. The MFM

is multiplied by the volume of the day and is known as the ADI. Because the ADI is an accumulation,

the ADI is added to the previous day’s ADI. ADI is expressed as follows:

ADIt = ADIt−1 +(volumet ×MoneyFlowMultipliert)

A high MFM combined with a high volume shows strong buying pressure (inflow of capital) and

pushes the ADI higher. Conversely, a low negative MFM combined with a high volume reflects strong

selling pressure (outflow of capital) and drops the ADI. ADI is highly geared to level-off the close

relative to the high-low range of the period. For example, a share price could fall dramatically and close

significantly lower, but the ADI would still rise if the close is above the midpoint of the high and low

share price of the period. Chaikin ignores the change in value from one day to the next.

The on balance volume (OBV) is a money flow index that focuses on the change in value from one

day to the next. In 1946, Woods and Vignolia [206] created the OBV statistic. Granville [84] named the

statistic OBV. The OBV gauges the market trend by observing the cumulative direction of the volume

traded. Like the MFI, and ADI, the OBV also attempts to determine the flow of money in and out

of the market. The OBV keeps a running total, and the volume is added or subtracted from this total

depending on whether the daily share price is greater or less than that of the previous day’s share price.

If the running total is positive, the market is moving in an upward trend, with an inflow of cash. If the

running total is negative, the market is moving in a downward trend, with an outflow of cash. The OBV
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is expressed as follows:

OBVt = OBVt−1 +


volume if Pricet > Pricet−1

0 if Pricet = Pricet−1

−volume if Pricet < Pricet−1

In addition to the inflow and outflow of money, technical analysts need to know the rate at which the

share price is changing. The rate of change (ROC) is commonly referred to as a momentum indicator.

The ROC is expressed as a ratio between a change in share price on a given day relative to the change

in a share price of the previous day. The ROC is expressed as follows:

ROCt =
Pricet −Pricet−n

Pricet−n
∗100

A share with a high ROC has high momentum and should outperform the market in the short-term.

Conversely, a share with a negative or low ROC, and closing price below its SMA, is more likely to

continue the negative trend and decline in value.

Each technical analysis function has several parameters that must be optimised by the analyst. Fur-

thermore, each function must be used in conjunction with other functions to confirm the trend or change

in the trend. The formulae above depict a sub-set of the available technical analysis functions. “Tech-

nical Analysis of Stock Trends” by Edwards, Magee and Bassetti [101] gives a detailed explanation of

technical analysis functions used by traders.

Technical analysis is performed on stock data, currency data, or individual company share data.

The technical analysis results are used to trade various trading products provided by exchanges. Each

type of trading product has different levels of risk and different levels of cost. The next section explores

three different trading products and the cost structures used during the empirical study.

2.4 Trading and Cost

This thesis focuses on stock listed on the JSE. The JSE provides access to its trading platform via

partner companies. Partner companies expose different trading packages to their clients. One such

trading partner is Standard Bank Group Ltd (SBK). SBK offers a simple, yet cheap investment package

called Autoshare Invest [31]. Autoshare Invest offers investors a cheap alternative to direct online

trading. Autoshare Invest exposes a sub-set of the most traded shares listed on the JSE. Trading is

limited to specific days, the prices are quoted as the previous days’ close, and purchasing is performed

in bulk. The bulk purchase allows a trader to buy a percentage of a share, while another trader or the

bank buys the rest. The bulk trading reduces fees. The reduced fees, fixed market price, and access to
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a percentage of a share makes Autoshare Invest a simple, cheap platform for investors looking to hold

onto shares for the long term. Because Autoshare Invest regulates the price, and fixes trading to specific

days, daily trading is not possible.

The OST is a more advanced trading platform giving investors direct access to the JSE to buy

and sell shares. All JSE listed shares are available to the investor, and an investor trades whenever

the exchange is open. Share prices are quoted in real-time. The platform displays the current offers

to buy and sell. Making the OST the ideal platform for daily trading. To facilitate daily trading, the

online platform makes various products available to traders. The trading products include currencies,

commodities, shares, and derivatives.

A derivative is a financial security with a value that is reliant upon or derived from an underlying

currency, commodity, or share. The types of derivatives offered are dependent on the trading platform.

Single stock futures, commonly referred to as futures, is an example of a derivative. Futures are con-

tracts between two parties based upon the underlying stock or asset. One party agrees to buy the stock

now and sell it to another party at a later date. The party buying the stock now is said to take the long po-

sition, while the party buying it later is said to take the short position. Generally, futures are purchased

on credit and settled at the end. A futures price is the value paid to take part in the transaction.

To illustrate a futures contract, consider a share trading at R1 per share. A traditional share trader

would spend R1 to purchase the share. Suppose that the share price increases in value by 10% and that

the trader sells the share. Excluding costs, the trader would make 10c profit. If the share price dropped

by 10%, the trader would have lost 10c, excluding costs. A futures contract returns far greater losses

and gains. Assume that the future requires the payment of 1% of the underlying stock value to take part

in the contract. The future consists of 100 shares. The total share value is R100. The cost to take part

is R1.

Suppose Party A takes the long position and Party B takes the short position. Both Party A and

Party B pay R1 to enter into the contract. Suppose that at the agreed contract termination date the share

price has increased by 10% to R1.10. Party B must purchase the 100 shares from Party A for R110.

Party A makes a profit of R9. Party B now owns the futures and paid R111 for stock worth R110.

Suppose that instead of increasing in value, the share price dropped by 10% to R0.90. Party B buys

the 100 shares for R90, while Party A must now cover the credit and pay the difference making a total

loss of R11. Party B paid R91 for shares worth R90. In both scenarios Party B paid more for stock than

it was worth. However, Party B entered into an agreement to buy the shares at a later date, and therefore

could have sold the shares not yet purchased at the start of the derivative contract. If Party B sold the

shares not yet owned at R100 and bought them later at R90, Party B could have made a profit of R9.
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The illustration shows that a trader can pay a fraction of the share cost and receive greater returns.

This effect is known as gearing. Gearing is the ratio between a stock price and the stock value. Gearing

is achieved through credit. Derivative products determine the gearing, the trade duration, the asset

traded and the trading limits. Derivatives such as single stock futures are superior to regular share

trading, because shares can be bought or sold for profit while the share price is going up or down.

Derivatives are the preferred trading mechanism for daily market traders.

Derivative trading requires more than just a hold, buy or sell signal. It requires the holding, buying,

or selling of a long or short position over a period. Due to the complexities of derivative trading, the

traditional buy and sell share trading is used in this thesis.

Traditional share trading has the following advantages over derivatives:

• simple trading process of buy and sell,

• simple costing model, and

• no expiry of trades.

Traditional trading requires a trader to have the cash on hand to purchase a share. A trader can only

sell a share if the trader owns the share. A trader is required to pay a number of fees when buying or

selling shares. Trading fees in South Africa are determined by the South African Government, the JSE,

and the trading platform provider.

Fees presented here are based on the 2008 fees of OST, which include:

• a headline brokerage fee of 0.5%, with a minimum of R80,

• security transfer tax of 0.25%,

• strate tax of 0.005787%, with a minimum strate of R11.58 and a maximum of R57.87,

• value added tax (VAT) of 14% (the study was done before the recent VAT increase to 15%)

• a Financial Services Board (FSB) fee of 0.0002%.

Buy and sell transactions incur the same fees, except for the security transfer tax which is payable

on purchases and not sales. The headline brokerage fee is a minimum of R80, making it highly unlikely

to return a profit on one share trading at R20 over the short term. A minimum number of shares must be

traded to cover the transaction costs. Figures 2.6 and 2.7 illustrate the difference in trading fees when

trading 100 or 1 000 000 shares in SBK respectively. The fee cost per share when buying 100 shares is

R1.28, while the fee cost per share when buying 1 000 000 shares is R0.72.
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Figure 2.6: Cost structure of trading 100 SBK shares on the Standard Bank Trading Platform. The study was

done before the recent VAT increase to 15%.

Figure 2.7: Cost structure of trading 1 000 000 SBK shares on the Standard Bank Trading Platform. The study

was done before the recent VAT increase to 15%.
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2.5 Summary

This chapter explained stock market trading, stock market trends, and how supply and demand can

drive the stock trend. Technical analysis was introduced as set of functions to determine the current

and future market trend, based on current and historic stock market data. Technical analysts combine

the results of some or all the functions described in this chapter into trading rules. Each trading rule is

tailored to a specific share or market.

A trading rule is used to determine when to buy or sell a share. This study uses evolutionary

algorithm (EA)s to evolve trading rules similar to the functions described in this chapter. The next

chapter focuses on the concept of evolution, and simulated evolution known as evolutionary compu-

tation. Chapter 4 investigates how researchers used EAs to determine which of the technical analysis

functions and parameters above are best suited for a specific share.



Chapter 3

Evolutionary Computation

A guy said to me, “Yes, but the whole theory of evolution is based on a tautology: that which

survives, survives” This is tautological; therefore it doesn’t mean anything. I thought

about that for a while and it finally occurred to me that a tautology is something that if

it means nothing, not only that no information has gone into it but that no consequence

has come out of it. So, we may have accidentally stumbled upon the ultimate answer;

it’s the only thing, the only force, arguably the most powerful of which we are aware,

which requires no other input, no other support from any other place, is self-evident,

hence tautological, but nevertheless astonishingly powerful in its effects.” [sic]

-Douglas Adams (Science Fiction Author), 1998

31
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This chapter explores the concept of evolutionary computation. The chapter begins with Sec-

tion 3.1 covering the history of evolutionary theory, more specifically the works of Darwin, Weismann,

Mendel, and Morgan postulating on natural selection, germ theory, inheritance, and genetics respec-

tively. Section 3.2 follows, describing the history of evolutionary computation and how researchers

used the processes theorised by early evolutionary theorists to build computational models to solve

optimisation problems. From the ideas defined in Section 3.2 grew a specific form of evolutionary

computation known as genetic programming, which is described in Section 3.3. Section 3.4 describes

multi-population evolution to enhance learning through a process known as co-evolution. The chapter

concludes with a summary in Section 3.5.

3.1 Theory of Evolution

The Greek philosopher Anaximander [81, 100], lived in Miletus (Turkey) between c. 610–546 B.C.

Anaximander noticed that the foetus of a human is similar to that of a fish. He reasoned that a fish

could grow into all kinds of animals including a human. He stated that humans were born from a

combination of different animals. Empedocles [41, 127] a Greek philosopher born in Akragas on the

south-east coast of Sicily, Italy in 490 B.C. documented the similarity of species and concluded that

all species came from the earth, and shared common traits. Anaximander and Empedocles concluded

that in the beginning a small group of species gave birth to all the species on earth and overtime some

species became extinct.

The French naturalist, mathematician, cosmologist Georges-Louis Leclerc, Comte de Buffon [76]

believed the world was a few thousand years old and that species were created separately and organized

into an unchanging hierarchy, with humans positioned just below the angels. Buffon believed that

as creatures migrate the supply of “organic” particles that made up the creatures changed and so the

creature would change, adapting to its environment. The proposal of ever-changing generations was

shared by the French naturalist Jean-Baptiste Lamarck in his book “Philosophie Zoologique” [94].

Lamarck [94] proposed a systematic theoretical framework for understanding evolution where fluids

etch out organs from tissue leading to ever more complex structures. Lamarck proposed that disused

organs would transform or morph into more useful organs, and useful organs would continue to be

enhanced. Overtime the organism would become more adapted to its environment.

Baron Cuvier [207] commonly known as the father of palaeontology rejected the morphology the-

ory of Lamarck. Cuvier believed that function determined if a species continues to survive and that

environmental events such as floods can kill off an entire species. While Cuvier did not believe in
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evolution, his book “Le Règne Animal” [87], which compared the anatomy of the entire known animal

kingdom provided convincing evidence for evolutionary change.

The English physician and poet Erasmus Darwin believed in evolutionary change. Darwin proposed

in the chapter “Generation” of his book “Zoonomia” [90] that a species changed over time, and that each

generation of the species is slightly different from the previous generation.

In 1837, the grandson of Erasmus Darwin, Charles Darwin [53, 68, 89, 111, 201] travelled to South

America on board the H.M.S. “Beagle” to investigate the idea of a generation. It was on this voyage that

Darwin realised that there are divisions in the distribution of the inhabitants of South America; those

inhabitants on the east coast are different from those on the west coast.

Darwin realised that the past inhabitants of both the west coast and east coast share similarities with

the present inhabitants. These observations led Darwin to formulate the concepts of modern evolution-

ary theory [89]. According to Darwin, Alfred Russel Wallace [111, 208], whom had been studying the

Malay Archipelago had also arrived at the same conclusion [89].

Charles Darwin, in his book “On the Origins of Species” [89], alludes to a book on creationism titled

“Vestiges of Creation”. According to Darwin, the author of this book argues that animals, plants, and

the like would just appear for no reason and be perfect. Perfectly appearing species did not, according

to Darwin, explain the similar traits shared between species in the embryo, geographic distribution,

and geological succession, first noted by Anaximander [81, 100] 2400 years earlier. Darwin states that

species had not been created independently, but rather descended.

Darwin and Wallace [111] presented their theory of evolution to the Linnean Society of London in

1858 [89]. Darwin outlines the theory presented at the Linnean Society in Chapter IV of his book, “On

the Origins of Species”, which is as follows: Suppose that a species gives birth to several individuals

and suppose that one individual has an advantage over the other individuals in the group. This advantage

may make this individual smarter, faster, or stronger than any other individual in the group. Because

this individual has an advantage, the conclusion is that this individual would live longer, and thus

have more opportunity to reproduce. An individual that reproduces more, would naturally have more

offspring; more offspring inheriting the advantage of the parent. It may be concluded that this new

advanced offspring would live longer and have more children than the individuals that did not inherit

the advantage.

As each generation develops, the individuals with the advantage become more, and the individuals

without the advantage become less. Eventually, over several generations, all individuals in the popula-

tion will have inherited the advantage. Darwin called this the theory of natural selection. Today, it is

known as Darwinism.
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The German evolutionary biologist, Friedrich Leopold August Weismann [209], confirmed the

speculation of heredity and small changes to individuals proposed by Darwin and Wallace. Weismann

published a paper in 1893 called “The Germ-Plasm. A theory of heredity”. In his paper, Weismann

proposed that genetic information is passed on through germ cells.

A germ cell contains half the number of genetic material of a regular cell. Regular cells are referred

to as Somatic cells. A germ cell unites with a germ cell from the opposite sex to form a new individual.

A germ cell from a specific sex is referred to as a gamete. A gamete from a male is known as sperm,

and a gamete from a female is known as an egg.

Genetic material contains genetic information in the form of genes. Genes consist of nucleic acids

and proteins that string together to form a thread-like structure referred to as a chromosome.

Weismann concluded that germ cells encode physical characteristics and not behaviour. When an

organism produces germ cells, mutation takes place. This mutation is carried over to the somatic cells

that are created by the genetic code within the germ cells. Weismann referred to the propagation of

genetic information from germ cells to somatic cells as heredity.

Building on the concept of heredity, Gregor Johann Mendel [53], an Augustinian priest and sci-

entist, conducted hybridisation experiments on garden peas (Pisum sativum). Mendel postulated two

generalisations, which became known as Mendelian inheritance. Mendel’s generalisations are the law

of segregation and the law of independent assortment. Mendel described his laws in a paper, which he

presented to the Natural History Society in 1865 called “Experiments on Plant Hybridisation” [167].

The first law of segregation says that “an individual produces gametes”. Gametes contain one copy of

an allele. An allele is a variant of a gene. Gametes are segregated from the parent organism. The second

law is that of “independent assortment” or the inheritance law. When two gametes come together (egg

and sperm) to form a new individual, the dominant phenotypes are selected with a higher probability

than the recessive ones, and traits are inherited independently of each other. A phenotype is a set of

observable characteristics of an individual.

An American geneticist and embryologist, Thomas Hunt Morgan [111, 168], aimed to discredit the

works of Darwin, Weismann, and Mendel. However, through his studies of a small fly (drosophila), he

confirmed the theories of selection and heredity. Morgan was awarded “The Nobel Prize in Physiology”

in 1933 for the role that the chromosome plays in heredity [181].

Combining Darwinism, Weismann’s theory of germ cells, Mendel’s theory of inheritance, and Mor-

gan’s theory of genetics, the bases for a set of arguments known as the Neo-Darwinism are formed

[111].

Neo-Darwinism is based on the premise that all life evolved from a primitive single cell organism.
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This single cell organism evolved into complex plants and animals through a few processes, namely

reproduction, mutation, competition, and selection [111].

The first of the processes in Neo-Darwinism, also known as Darwinian evolution, is reproduction.

Reproduction is the process of replicating traits of a parent, or two parents, to their offspring. Repro-

duction is not replication. Only molecules can replicate, cells reproduce. Cells reproduce by replicating

the molecules that make up the cell. Often, not all the molecules are replicated. This could be due to

many factors, for example, there are not enough atoms present to make the molecule, the instructions

to make the molecules are not complete, or the environment may not be conducive to the formation of

the molecule. For whatever reason, it is important that reproduction is not replication. Mutation is the

result of errors introduced during reproduction. Mutation is the second evolutionary process. Mutation

is an important process as it introduces diversification into the structure of the cell. This diversification

can affect the traits and functions of the cell.

Reproduction transfers the traits of the parents to their offspring, while mutation, a process during

reproduction, can alter the trait in the offspring. The traits of an individual directly affect its probability

of survival and reproduction. A finite set of resources such as food, or the right to reproduce exists.

Organisms are required to compete for these resources. Traits of an individual affect the outcome of

competition. If the food is fast, the fastest individuals catch more food. If the food is high, the tallest

individuals reach more food. If the food is out at night, individuals that see the best at night find more

food. If the predator of an individual has excellent eyesight, prey that blend into the surroundings the

best, survive the longest. The longer an individual survives, the higher the probability that the individual

will reproduce. Reproduction passes genetic material from parents to their offspring. Natural selection

is the process of selecting parents for reproduction. Selection is the last of the four processes, and

defines the rules or pressures for reproduction [111].

A trait is the key to the processes of reproduction, mutation, competition, and selection. Mendel

[53] found that genes of an individual store traits or characteristics of the individual. A gene is the

most basic unit of heredity. Weismann [209] proposed that germ cells store genes. During the creation

of germ cells, genes are copied from the parent to the new germ cell. The copy is not always correct,

resulting in altered genetic material or mutations. Because a gene is responsible for a specific trait, the

altered gene results in a new or different trait. A new individual is formed by combining an egg cell and

a sperm cell from the mother and father respectively. The newly formed individual has inherited traits

from its parents, and different traits through mutation. Nature tests the traits; if the traits perform well

within the individual’s environment, the probability of the traits being selected for the next generation

is much higher than that of traits that do not perform well. An organism’s performance is a product of
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the environment. Performance could be the length of time an organism lives for, the amount of food

it consumes, or the appearance or smell of the organism. The performance influences the amount of

reproduction an organism undertakes. The probability that the traits are selected for the next generation

depends on the efficiency of reproduction, or the number of times that an individual reproduces.

3.2 The History of Evolutionary Computation

The previous section explored the works of Darwin, Wallace, Weismann, Mendel, and Morgan. These

scientists pioneered our understanding of the evolutionary process in nature; a process that starts with

a population of individuals, that create offspring, either through mutation of their own genetic material,

or through re-combination of genetic material with another individual’s genetic material, or both. The

new offspring compete for survival and the right to become the parents of the next generation. The

process continues with each generation becoming slightly better (based on the criterion of selection)

than the previous generation [111, 112].

The idea that the process of evolution could be used to solve optimisation problems started about

60 years ago and has around 3000 papers published annually [112].

In 1932, Walter Bradford Cannon, an American physiologist, noted in his book, “The wisdom of

the body”, that evolution was a learning process and made a direct comparison to individual learning

[112]. The famous computer scientist, crypto-analyst, logician, and mathematician, Alan Turing [112],

once said that, “[there is an] obvious connection between [machine learning] and evolution”.

Much of the early work in evolutionary computation has been forgotten or lost to science. Unlike the

history of chemistry, physics, or mathematics, not much is known about the foundations of evolutionary

computation [53, 112]. The earliest documented use of using a computer to understand evolution, was

that of Barricelli [113]. In 1954, Barricelli performed computational experiments in evolution on an

IBM704 at the Institute for Advanced Study in Princeton. Barricelli described his work in the paper,

titled “Numerical testing of evolution theories: Part I Theoretical introduction and basic tests”, which

was originally published in Italian in 1954 and re-published in English in 1957 [62, 113].

Friedman and Fraser [53, 112, 121] performed some of the earliest evolutionary computation ex-

periments. Friedman [121] published a 158-page Master’s thesis in 1956 entitled “Selective Feedback

Computers for Engineering Synthesis and Nervous System Analogy”. An academic paper on the de-

scriptions of a computational evolutionary process by Alex Fraser in 1957 [120], followed Friedman’s

thesis. The paper appeared in the Australian Journal of Biological Sciences, volume 10, titled “Simu-

lation of Genetic Systems by Automatic Digital Computers. I. Introduction.” [110, 112, 120]. Fraser
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presented the case of diploid organisms represented by binary strings of a given length. Each bit in

the string represented a gene. Fraser proposed the process of single-point crossover for binary string

reproduction [110].

Single-point crossover selects an arbitrary point within the binary string. All data beyond that point

in either organism’s string is swapped between the two parent organisms [103, 112]. The resulting or-

ganisms are the offspring. Fraser extended the single-point crossover to n-point crossover in which each

position along an organism’s genetic string was assigned a probability of breaking for re-combination

[112].

To maintain genetic diversity from one generation to the next, Friedman and Fraser introduced

mutation. Mutation alters one or more genes within a chromosome from its initial state. A set of

probability values determines if a gene undergoes mutation. Fraser studied varying effects of linkage,

epistasis (interaction of genes that are not alleles), rates of reproduction, and additional factors on the

rates of advance under selection, as well as the genetic variability of a population and other statistics

[110]. Fraser’s work was followed by articles by Friedberg and Friedberg et al. in 1958 and 1959,

respectively [53]. Friedberg’s work represents the earliest work in machine learning and describes the

use of an EA for automatic programming.

In 1958, Bremermann [97, 112] presented a similar evolutionary computation model to that of

Friedman and Fraser. Individuals were encoded as binary strings that were processed by reproduction,

mutation, and selection to form offspring. Bremermann introduced the one-max problem, where fitness

is determined by the sum of the number of 1s within the binary string. Bremermann derived the gener-

alised optimum probability of mutation for the one-max problem. In 1962, Bremermann [74] extended

his original model to become a generalised function optimisation method.

American computer scientist John Henry Holland [135, 136, 137] and his colleagues at the Uni-

versity of Michigan formalised the EAs originally implemented by Bremermann, Fraser, Friedman and

Friedberg et al. [53, 97]. Holland’s emulation of evolution is now known as a genetic algorithm (GA),

made up of a fixed length binary representation of a chromosome, similar to the work of Fraser and

Bremermann. Holland and Fraser introduced the evolutionary operator of reproduction through the for-

mation of a process known as crossover. Selection is done by selecting the top performing percentage

of individuals. Quantification of individual performance is done by a mathematical function known as a

fitness function. Holland published this complex adaptive system in 1975 in a book titled “Adaptation in

Natural and Artificial Systems” [135], followed by two more books, “Hidden Order: How Adaptation

Builds Complexity” [136] and “Emergence: From Chaos to Order” [137].

By the mid-1960s GAs had been used in many applications, such as tuning sets of weights in the
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evaluation of fitness functions of game-playing programs [54, 60], evolution of chemical concentrations

of biochemical systems [54, 184], pattern recognition [54, 80], amongst many others.

By the early 1970s, researchers turned their focus to better understand the behaviours of imple-

mentable GAs. Alternative selection and encoding strategies were experimented with, including elitism,

rates for adaptive crossover and mutation [54, 80], and alternate selection and mating schemes [54, 139].

Aspects of GAs were documented at length, including the effects of genetic drift [118], the effects of

population size, crossover, and mutation [53, 91]. The first workshop on GAs, the “Adaptive Systems

Workshop”, was organised in 1976 by several universities including the University of Michigan, the

University of Pittsburgh and the University of Alberta [53]. By the 1990s variations of GAs had been

developed to evolve complex, non-linear, variable-length structures such as rule sets, neural networks,

and LISP code [53].

Fraser, Bremermann, and Holland simulated abstracted chromosomes and the modification thereof.

Selection criteria focused on the chromosome, to determine the parents of successive generations. The

focus on the hereditary information is known as genotypic evolution. Lawrence Fogel [116] began

researching alternative methods for simulating evolution as a phenotypic process. A phenotype is an

organism’s actual observed properties such as behaviour (actions), development (regeneration), or mor-

phology (structure).

In 1962, Fogel began experimenting with simulated evolution of finite-state machines [53, 116]. A

finite-state machine is an abstract machine that can be in exactly one of a finite number of states at any

given time. A transition moves a finite state machine from one state to another. Each transition requires

external inputs and conditions for the transition to occur. A finite-state machine is a mathematical model

of computation. Fogel focused on the behavioural link between parents and offspring, as opposed to the

genetic link. Fogel experimented on mutation of finite state machines to forecast non-stationary time

series data.

The finite-state machine had to predict a 4-symbol output sequence of a Markov process driven by

random noise. A Markov process is defined as a stochastic model describing a sequence of possible

events in which the probability of each event depends only on the state attained in the previous event

[35]. In Fogel’s simulation, a randomly mutated copy of a parent machine becomes an offspring ma-

chine. A probability distribution determines the rate of mutation. A fitness function measures the error

rate of the finite-state machine in predicting the Markov sequence. The parents and offspring are ranked

by their error measure from the least errors to the most errors. The top half performing machines are

retained as parents to generate children. The population size remains constant. Fogel called this process

evolutionary programming [115, 116].
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In 1964, Fogel published a dissertation titled “On the organisation of intellect” [114]. In 1966, a

book, “Artificial Intelligence through Simulated Evolution” [116], co-authored by Alvin Owens and

Michael Walsh followed Fogel’s dissertation. “Artificial Intelligence through Simulated Evolution” is

regarded as the first book published on evolutionary computation. In 1970, Fraser and Burnell pub-

lished the second book on evolutionary computation titled “Computer models in genetics” [112, 119].

Additional experiments by Lutter and Huntsinger [159], Burgin [77], Atmar [49], Dearholt [95], and

Takeuchi [202] followed the approach of Fogel. By the mid-1980s, the evolutionary programming (EP)

process was extended to include alternative representations such as ordered lists, vectors, and neural

networks. In 1992, the first formal conference on EP was held. The conference included applications

such as path planning [53, 109, 156, 172], robotics [45, 53, 165], artificial neural network (ANN) design

and training [53, 164, 176, 192], automatic control, and other fields [53].

At around the same time that Fogel was experimenting with simulated evolution, researchers in

Berlin were also experimenting with simulated evolution, focusing on phenotypic evolution. Bienert,

Rechenberg, and Schwefel [53, 68] began research on a robot that performed a series of experiments

on a flexible slender three-dimensional body in a wind tunnel to minimise its drag. At first Binert et

al. tried two techniques manually. The first was manually optimising one variable at a time, the second

approach was manually optimising all the variables using a mathematical optimisation technique known

as discrete gradient. Both approaches failed, because variables that affected the shape of the object were

linked. Changing one variable affected the other variables.

Rechenberg decided to change the variables randomly. The first version of their algorithm was

called (1+ 1) and it was a type of EA referred to as evolutionary strategies (ES). One parent and one

descendant per generation were tested for the lowest drag. The best individual was selected as the

parent for the next generation. Binomially distributed mutations updated the variables of a parent to

form a child. While the (1+1)-ES performed better than the manual optimisations, the strategy became

stuck prematurely. The strategy could not evolve a better solution beyond the stuck solution. Schwefel

changed the algorithm from binomially distributed mutations to normal distributed mutations, which

performed significantly better than the previous implementation. In 1973, Rechenberg extended the

(1+ 1)-ES to include multiple individuals as a population, and called the algorithm (µ + 1)-ES. Until

now, the mutation step sizes were fixed. If the step size was too large, the evolutionary process would

update the variables to a number greater or less than the optimal. If the step sizes were too small, the

(µ +1)-ES could prematurely converge. Rechenberg and Schwefel changed their algorithm to include

the ability to evolve the mutation step size. This new self-adapting (µ +1)-ES was named (µ +λ )-ES.

Schwefel used a (µ +λ )-ES to optimise the shape of a three-dimensional convergent-divergent nozzle
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for maximum energy efficiency. The technique was improved by Klockgether and Schwefel in 1970

[53]. In 1975, Schwefel [191] introduced multi-cellular individuals into an ES for binary optimisation.

This process introduced several sub-populations and niching mechanisms for global optimisation. A

wide range of ESs exists.

From the 1960s to the late 1980s, the three branches of evolutionary computation evolved indepen-

dently of each other [53]. Comparisons between the three branches, ESs, GAs and EPs are documented

by Bäck et al. [52, 53, 54, 55, 56, 57, 58, 59]. It was Bäck [52] and Bäck et al. [53] who introduced a

common algorithmic schema for all brands of EAs.

In 1991, an international workshop titled “Parallel Problem Solving from Nature” at Dortmund

attempted to provide interaction amongst the various evolutionary computing research groups [53].

More co-operation and interaction workshops followed this, namely:

• the International Conference on GAs in San Diego, CA, USA, July 1991;

• the Evolutionary Programming Conference in La Jolla, San Diego, CA, USA, 1992; and

• Parallel Problem Solving from Nature in Brussels, Belgium, September 1992.

The increased interaction led to a consensus for the name of this new field, namely evolutionary

computation (EC). In 1993, a journal with the same name was established and published by MIT Press.

The first formal conference on EC was held from the 27th to the 29th June 1994 in Orlando, Florida,

USA. The Institute of Electrical and Electronics Engineers (IEEE) held three dedicated streams at the

“IEEE World Congress on Computational Intelligence” in 1994 namely fuzzy systems, ANNs and EC.

The IEEE conference led to the publishing of an organised EC handbook to provide a more cohesive

view of EC: the “Handbook of Evolutionary Computation” was first published in 1997 by IOP Publish-

ing Ltd and Oxford University Press [53].

The Genetic and Evolutionary Computation Conference (GECCO) was the first conference to focus

solely on EC. GECCO was held in 1999 as a combination of the International Conference on Genetic

Algorithms (ICGA) and the Annual Genetic Programming Conference (AGPC). GECCO is the main

annual conference of the special interest group on genetic and evolutionary computation, which is a

special interest group of the Association for Computing Machinery (ACM).

3.3 Introduction to Genetic Programming

Holland formalised GAs by defining that a GA is a meta-heuristic algorithm that simulates the Neo-

Darwinism process of evolution and natural selection. A GA has four evolutionary operations, namely
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reproduction, mutation, competition, and selection [111]. This evolutionary process is described in the

pseudo code listing in Algorithm 1.

Algorithm 1: Basic evolutionary algorithm process [103, 111].

g = 0;

Initialise the initial population Cg;

Evaluate the fitness of each individual Cg,n in population Cg;

while not converged do
g = g+1;

Select parents from Cg−1;

Re-combine selected parents through crossover to form offspring,

which is added to Og;

Mutate the offspring in Og;

Evaluate each individual in Og;

Select a new population from Cg−1 and Og to form Cg;

end while
return the best individual in Cg as the solution;

The initial population of a GA is created stochastically. A population is made up of individuals,

with each individual having a “chromosome”. Holland defined the chromosome as a binary string

known as the genotypic instruction set. The chromosome tells the genetic algorithm how this individual

will behave within its programmed environment, referred to as the individual’s phenotypic behaviour.

The phenotypic behaviour of the individuals within the population are quantified using a defined fitness

function.

Each gene within the chromosome represents a value within the problem’s solution space. Genes are

sampled from the problem’s solution space during initialisation. The problem’s solution space is also

known as the search space. Each individual represented by a chromosome defines one possible solution

within the search space. Initialisation is done as a uniform sampling over the search space to ensure that

the solutions are diverse and cover a greater area of the solution space. The more individuals, the more

solutions representing more of the search space. A fitness function is used to quantify the performance

of a solution within the search space.

Parents are probabilistically sampled from the population of individuals. The selected parents un-

dergo reproduction using a crossover operator to form offspring. Offspring combine genetic material

from both parents. The offspring are evaluated by the fitness function. A selection function based on a
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probability proportional to the individual’s fitness value determines which of the individuals from the

previous generation and offspring are selected as individuals of the next generation.

The offspring are made from combinations of genetic material derived from the parental group, and

the parental group is smaller than the population size. For these reasons, each individual within each

new generation becomes more similar to each other than the previous generation’s individuals are to

each other. Once a certain number of individuals are similar, it is said that the process has converged.

The smaller the population size, the quicker the convergence speed. A smaller population has a

smaller sample of the search space, meaning that the most optimal solution has a higher probability

of being missed. To find the optimal solution, a smaller population might require more generations,

but convergence may cause the population to be so similar sooner, that the most optimal solutions are

missed. When this happens, it is said that the population has converged on a local optimum.

Mutation changes genes within a chromosome. Altering the genes within an individual results in

more diversity, because the individual is no longer similar to its parents. Mutation reduces convergence

speed by introducing diversity. Offspring undergo mutation by applying a mutation operator proba-

bilistically. The higher the probability of gene mutation, the more genes are altered and the greater the

difference between the offspring and their parents. The lower the mutation probability, the more similar

the offspring are to their parents.

The new offspring carry some traits inherited through reproduction, and some offspring have new

traits generated through mutation. A new generation is selected from the parents and the offspring.

The process continues until a given number of generations have elapsed, a sufficient solution to the

optimisation problem is found, or until all the members of the population are so similar that no further

generations would yield a better result.

Several implementations of a GA exist. The original GA implementation, called the canonical ge-

netic algorithm (CGA) [53] as defined by Holland [53], had distinct characteristics: a chromosome is

represented by a fixed and finite length bit string. Each bit in the string represents a gene. A gene is one

of two alleles, a 0 or a 1. Holland used a 50% probability of randomly selecting individuals and copying

them to a parent pool. Individuals within the parent pool are randomly paired as parents. Single-point

crossover is used as a reproductive method [103, 126]. A crossover point is randomly chosen and the

strings are swapped with respect to the crossover point between the two parents to form offspring.

After crossover, a probability distribution determines which of the bits within the chromosome of the

offspring are flipped. The random alteration of bits within the individual simulates mutation. Holland

used a proportional selection operator, known as rank selection, to sample individuals from the pre-

vious generation and offspring as individuals of the new generation. Proportional selection samples
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individuals with a probability proportional to the individual’s fitness [103, 126].

A GP is a specialisation of a GA where the individual’s chromosome is encoded using a tree struc-

ture. A tree structure is a random length, non-linear, hierarchical abstract data structure. A tree structure

is able to encode logical formulae, arithmetic formulae, or computer programs. Each tree represents a

symbolic expression defined by a tree grammar.

The tree consists of branch nodes and leaf nodes. Leaf nodes have no children and implement a

number or constant from a terminal set. A leaf node is also known as a terminal node. A branch node

is connected to other branch nodes or leaf nodes and implement an operator from a functional set. A

branch node is also known as a non-terminal node.

The first documented use of a GP was in 1981 by Richard Forsyth [53, 117]. Forsyth did not call his

algorithm a GP but rather biological evolutionary algorithm generating logical expressions (BEAGLE).

Forsyth screened client medical data to determine the probability of patient survival [117]. Patients

were measured against 18 variables. BEAGLE had to evolve a rule, using a bespoke language created

by Forsyth. The language had 13 operators, including arithmetic equality, arithmetic inequality, greater

than, less than, greater than or equal to, less than or equal to, logical disjunction, logical conjunction,

negation, addition, subtraction, multiplication, and division [117]. A combination of the operators

determined the rule. A rule results in a boolean value where true represents survival and false

represents death. Forsyth did not know in advance what the length of the optimal rule would be.

Forsyth used a tree structure to store the evolved logical expression [117]. The interpretation of the tree

structure was critical to the success of BEAGLE. Interpretation of a tree requires two considerations,

namely tree traversal and a tree grammar.

Forsyth used an in-order traversal of the tree [117]. The order of operation is important to BEAGLE

and to illustrate the order, each walk is encapsulated with brackets. Using the example in Figure 3.1

and adding brackets to an in-order traversal yields the following result: ((4 (2) 5) 1 (3)). Addition of

brackets maintains the structure of the tree. Examine node (2), which is encapsulated by node (4) and

node (5). This is the same as what the tree represents: (4) and (5) are children of (2).

The second important consideration of a tree structure is its grammar. Forsyth created his own lan-

guage of 13 operators [117]. The operators together with the patient variables form a rule. Forsyth’s op-

erators require variable input. Some operators required numerical input, while others accepted boolean

input. This constraint meant that terminal nodes of the tree, (3), (4), and (5) in the example could not

be an operator, and had to be a variable.

The variables are one of 18 measured patient variables. If the parent node required a boolean vari-

able, then the child node had to be a boolean type. Forsyth’s operators resulted in different output types.
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1

32

54

Figure 3.1: Simple binary tree structure, depicted here to illustrate a tree traversal. A pre-order traversal returns

1 2 4 5 3. A post-order traversal results in 4 5 2 3 1. An in-order traversal results in 4 2 5 1 3. A top down level

order traversal results in 1 2 3 4 5. A bottom up level order traversal results in 4 5 2 3 1.

For example, the operator multiplication requires two numerical inputs, and the result is a numerical

output. The operator, arithmetic inequality requires two numerical inputs and the result is a boolean

output. In the example, ((4 (2) 5) 1 (3)), the operator stored in node (2) is applied to the operands stored

in nodes (4) and (5), resulting in an operand for node (2). The operator (1) is applied to the result of (2)

and the value of (3). From the example, the root node is the last node to be executed. Because the rule

requires a boolean result, the root node must result in a boolean value.

The tree encoding requires rules, defined as syntax. Syntax defines the combinations of symbols

that represent operators and variables. Syntax does not provide any information about the meaning

of the rule or the results of executing that rule. The semantics focus on the meaning of the rule, its

operators, and the results of executing the rule. Together, the syntax and semantics are defined as the

grammar. Grammar is application specific.

Forsyth’s implementation used a bespoke language as the grammar in BEAGLE and he suggested

that LISP be used in future [155]. LISP was created by John McCarthy [163] in 1958. LISP is the

second-oldest high-level programming language. In 1985, Nichael Cramer experimented with GPs,

and also used a bespoke grammar [86]. In 1992, John Koza [150] used LISP as a grammar for his

experimentation in evolving programs with GPs.

Koza [53, 111, 112, 150] used GPs for a number of very diverse optimisation problems, some of

which included symbolic integration, discovery of reusable programs, automated synthesis of analog

electrical circuits, automated synthesis of metabolic pathways, optimisation of antennas, and evolving

a controller to balance a broom on moving carts [148, 149, 150, 151, 152, 153].

Forsyth, McCarthy, and Koza used GPs to evolve solutions to a variety of problems. Each problem

space requires a defined grammar and tree traversal. To illustrate why tree traversal and a grammar are

required, suppose a GP is tasked to evolve a set of instructions for a simple robot to complete a task,
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and another GP is tasked to find a mathematical formula to a problem. The same EA is implemented.

However, the tree traversal and tree grammar are different.

Consider the optimal program to control the robot as listed in Algorithm 2. The operation go-

Forward has a dependency on the operation multiply. The result of multiply is used by the operation

goForward. The operation turnRight is executed once the operation goForward is complete. Each op-

eration is executed in sequence, and an operation may consist of sub operations. The output of a sub

operation is the input of an operation.

To encode this simple program into a tree structure requires two considerations: a grammar and tree

traversal. The robot controller grammar is a bespoke language invented to execute robot commands

such as go forward or turn right. The tree traversal is dependent on the tree structure, and how the

program is extracted from the tree to ensure that the grammar is correct. Figure 3.1 depicts a binary

tree, where each sub-tree has at most two children. Algorithm 2 is transcribed to a binary tree structure

in Figure 3.2. To correctly extract the program from the binary tree, a pre-order traversal is used. First,

the root node is visited and then goForward, multiply, 4, 100, turnRight, 90, goForward, 200 and then

the grammar is required, so that the executor of the program understands that the operator multiply has

two variables, 4 and 100, and that the result of multiply is the parameter of goForward.

For the example tree in Figure 3.2, the operators are encoded such that any node to the left is a

child, while any node to the right is its sibling. The nodes (2) and (4) are siblings, and are children of

node multiply. Multiply is a child of goForward. GoForward, turnRight and goForward are siblings.

An alternative approach to a binary tree is to use a multi-way or k-ary-tree. A k-ary-tree is a tree with

an unlimited number of direct descendants. Figure 3.3 is an example of the algorithm in Algorithm 2

transcribed into a k-ary-tree. In this example, each level denotes a sibling. The tree is walked in a

pre-order traversal. The robot control program is different from the Forsyth’s rule problem described

previously, in that operations must be executed in sequence.

Algorithm 2: An example of simple procedural robot instructions.

Start;

goForward(multiply(4,100));

turnRight(90);

goForward(200);

An alternative to the robot program example, is that of a mathematical function. Mathematical op-

erations are executed using the defined mathematical order of operations, namely brackets, exponents,
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goForward

multiply

4

100

turnRight

90 goForward

200

Start

Figure 3.2: Simple procedural robot instructions encoded as a tree. A pre-order traversal is used to correctly

extract the instructions such that order is preserved.

roots, multiplication, division, addition, subtraction, and left to right. The grammar of a mathematical

expression is defined by the laws of mathematics. The expression is encoded within a tree structure, and

the tree must be traversed in a way that the expression remains grammatically correct. The mathemat-

ical expression (x+1)−4 is encoded as shown in Figure 3.4. The first node in the tree represents the

binary operation subtraction, its children are addition, and the number four respectively. The number of

children a node has corresponds to the arity of the operand/operator. The addition binary operator has

the unary operands x and 1, while 4 has no children. An in-order traversal extracts the expression from

the tree structure. Wrapping each extraction with brackets preserves the execution order. Traversing

the tree in Figure 3.4, using an in-order traversal and adding brackets to each traversal results in the

following mathematical expression: (((x)(+)(1))(−)4); the result is simplified to form (x+1)−4.

From the two examples it is clear that the problem determines the type of tree structure, the gram-

mar, and the traversal path. A GP is a GA with the exception that the internal chromosome structure

is different. Because the structure of a GP is different, the crossover and mutation operators have been

modified to work for tree-based representations.

Holland’s GA uses single-point crossover as a reproduction operator [135]. Single-point crossover

selects an arbitrary point within the binary string chromosome of each parent. All data beyond that

point in either parent individuals’ string is swapped between the two parent individuals [103, 112].

This works when applied to a binary string, as there is no semantic meaning associated with genes. All

genes share the same possible variations, namely a 1 or a 0.

A GP uses a tree structure that conforms to a grammar. Swapping nodes arbitrarily can invalidate the
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goForward

200

turnRight

90

goForward

multiply

1004

Start

Figure 3.3: Simple procedural robot instructions encoded as a k-ary-tree. A pre-order traversal is used to cor-

rectly extract the instructions such that order is preserved.

syntax and semantics. Consider the mathematical expression (x+1)−4, the number 4 can be replaced

by any other operand, or complete operation that results in an operand. Thus, 4 can be replaced by

a number, for example 3, because ((x+ 1)− 3) is valid. The number 4 can not be replaced by an

operation, for example × because ((x+1)−×) is invalid. However, 4 can be replaced by a complete

operation, i.e. 3×2 because ((x+1)−(3×2)) is valid. Alterations within a chromosome must comply

with the grammar defined for the problem solution.

To perform crossover between two trees, a node (A1) is selected at random from the first tree. A

sub-set of nodes are selected from the second tree, such that the nodes selected are valid grammatical

replacements for the node selected in the first tree. A random node is then selected from this sub-set.

The sub-trees of the selected nodes are then swapped. An example of crossover using two trees is

illustrated in Figure 3.5. Node (4) from the left parent is selected at random. Node (−) from the right

parent is selected at random. The nodes and their sub-trees are then swapped to form two offspring

trees.

The GA implemented by Holland used a binary string [135]. Each element in the string is either a

1 or a 0. Mutation is performed by flipping a bit from one state to the other. Holland [135] assigned

a small mutation probability to each gene within a chromosome. A small probability results in a few

altered genes or none at all. Assigning a mutation probability to individual genes is referred to as

micro-mutation [145].

Micro-mutation on a fixed length structure results in equal mutation probability across all individ-

uals. A variable length structure such as a tree results in a higher probability of larger trees undergoing
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−

4+

1x

Figure 3.4: Example of a simple mathematical expression encoded as a binary tree. Using an in-order traver-

sal and adding brackets to each traversal results in the mathematical expression: (((x)(+)(1))(−)4), which is

simplified to (x+1)−4.

mutation.

Jones [46, 145] introduced a macro-mutation called headless chicken. Headless chicken gener-

ates offspring by recombining one parent individual with a new randomly generated individual. Jones

assigned the probability of mutation to the entire individual and not specific genes. Macro-mutation en-

sures that all individuals in the population have the same probability of undergoing mutation regardless

of chromosome size.

Like crossover, mutation must ensure that altering a gene results in a grammatically correct tree.

Several mutation operators have been developed for GPs. Mutation operators are dependent on the rep-

resentation grammar. The most frequently used mutation operators are discussed below with reference

to Figure 3.6 [103] (Figure 3.6(a) illustrates the original individual before mutation):

• Root node mutation: Depending on the tree grammar, the root node might require a different

node to a function or terminal node. Root node mutation changes the root node to a randomly

selected valid node. Figure 3.6(b) illustrates that the node + is replaced with a node ×.

• Function node mutation: A functional node is randomly selected and replaced with a randomly

selected functional node of the same arity. Figure 3.6(c) illustrates that function node − is re-

placed with function node ÷.

• Terminal node mutation: A terminal node is randomly selected and replaced with a randomly

selected terminal node. Figure 3.6(d) illustrates that terminal node z is replaced with terminal

node y.

• Swapping mutation: A functional node, or root node is randomly selected. The children of the

randomly selected node are swapped, provided the result is semantically correct, e.g. division by
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+

42

2+4

Parents ×

−

79
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5× (9−7)

+

−

79

2

2 + (9−7)

Offspring ×

45

5×4

Figure 3.5: An example of GP crossover using two trees. Crossover is dependent on the grammar of the tree.

zero is not allowed. Figure 3.6(e) illustrates that function node − is selected and its children are

swapped.

• Grow mutation: A terminal, or functional node is randomly selected and replaced by a randomly

generated tree. Figure 3.6(f) illustrates that function node 2 is replaced by a new sub-tree.

• Gaussian mutation: A terminal node which represents a constant is randomly selected and

mutated by adding Gaussian noise to that constant. Figure 3.6(g) illustrates Gaussian mutation

• Truncation mutation: A functional node is randomly selected and replaced by a randomly se-

lected terminal node. Figure 3.6(g) illustrates that function node− is replaced with terminal node

a.

• Headless chicken mutation: A parent is selected and recombined with a randomly generated

tree. Recombination is done using crossover.

The examples of tree structures, traversals, mutation and crossover presented are problem specific.

Each problem has a discrete search space defined by the grammar. The grammar determines the possible
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Figure 3.6: Various examples of GP mutation strategies are depicted. Mutation is dependent on the grammar

used.

tree structures, and how the tree is traversed. The grammar determines possible mutations and valid

crossover points.

Before the evolutionary process can begin, an initial population must be created. Initialisation of

the first generation is done by stochastically generating individuals. Population initialisation for a GA is

simple, because the fixed length binary string is initialised to random values of 0 or 1. The initialisation

of a GP is problem specific and is dependent on the grammar. A valid root node is required, followed



Chapter 3. Evolutionary Computation 51

by valid children nodes. The process is repeated until either the tree is complete with valid terminal

nodes created stochastically, or a desired maximum tree depth is reached and terminal nodes are forced.

This leads to variable tree depths. Tree size is also problem specific.

The tree represents a model of the observed dataset. If the model corresponds too closely or exactly

to the dataset, the model may fail to reliably predict future observations; the model is said to over-fit

[26]. The opposite of over-fitting is under-fitting. Under-fitting results in failure to model observed

data. A tree must contain enough nodes to accurately model generalised observations in the data. If the

tree is too small it will not have enough nodes to model the observations and will under-fit. If the tree is

too large it will begin to model all the observations and begin to over-fit. Limiting the size of the trees

must be considered.

The crossover operator can exponentially grow a tree in a GP. For example, a child connected to the

root with a sub-tree of 10 descendants could swap with the lowest node in another individual of the same

size, doubling the depth of one offspring and decreasing the depth of the other. The crossover operator

could be altered to only crossover small sub-trees, slowing down the growth of the tree. Reducing the

tree size of the individuals in the initial generation can delay the generation of large offspring through

crossover. Neither approach stops the generation of large offspring it only delays the creation of large

offspring.

The mutation operator grows a tree by selecting a terminal node and replacing it with a new sub-

tree. The rate of growth is dependent on the size of the new sub-tree. Reducing the size of the newly

generated sub-tree reduces the growth rate of the mutated tree. Decreasing the probability of replacing

a terminal node with a new sub-tree reduces the growth rate. The prune mutation operator replaces a

non-terminal node with a terminal node, decreasing the tree size. Increasing the probability of pruning

delays the creation of large offspring.

Mutation and crossover inevitably produce more complex models as evolution continues leading to

greater probability of over-fitting. Several approaches have been proposed to avoid over-fitting. These

include reserving part of the in-sample data set as a validation set on which to test the performance

of the solutions, increasing the amount of in-sample data, dynamically decreasing the probability of

mutation, and penalising model complexity [43, 130].

The selection pressure determines which individuals become parents and which individuals are

carried to the next generation. Selection pressure is determined by a probability based on a fitness

measure. The fitness measure is determined by a fitness function which can include a penalty function

that penalises larger trees.

Three degrees of penalty functions exist [196]: barrier penalty functions in which no solution is
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considered that exceeds the maximum tree size, partial penalty functions in which a penalty is applied

close to a maximum tree size, and global penalty functions which are applied across all individuals. A

barrier penalty function results in a fitness measure that returns a probability of zero, while the partial

and global penalty functions decrease the probability as the tree size increases. Increasing selection

pressure on smaller trees could result in premature convergence on a suboptimal solution. Care must be

taken to ensure that the penalty value is large enough to favour smaller trees, but not too large to inhibit

exploration.

Holland’s CGA randomly selected individuals to become parents of the next generation [53]. The

individuals that comprise the next generation are sampled from both the parents and the offspring. A

selection operator determines which individuals are carried over and which are discarded.

CGA used rank selection to sample individuals from the previous generation and the offspring to

form the new generation. Rank selection uses a relative fitness value derived from the absolute fitness.

The absolute fitness of the previous generation and offspring are calculated using the fitness function.

The previous generation and offspring are then ordered by their fitness value. Once sorted, a rank is

assigned in ascending order. The worst individual is assigned 1, the second worst 2, and so on until the

best individual has the rank n, where n is the total number of individuals. A probability of selection is

assigned to each individual using:

pi =
Ranki

∑
n
t=1 Rankt

where i is the individual.

During the initial generations, absolute fitness values between individuals can differ greatly, which

results in a select few individuals dominating the selection process. Reusing the same dominant in-

dividuals for crossover results in premature convergence. Because rank selection assigns a rank as a

relative fitness, the difference in absolute fitness has no bearing on the selection probability, thereby

reducing selection pressure. Therefore, rank selection avoids premature convergence by relaxing the

selection probability on individuals that have greater fitness than others, and increasing the selection

probability for individuals with low fitness. Conversely, when fitness is similar amongst individuals,

which occurs in later generations, small differences in fitness are amplified. To illustrate the amplifica-

tion effect absolute fitness has on selection probability, consider five individuals with fitness values of

80, 6, 4, 2, and 1. After ranking, the fitness values become 5, 4, 3, 2, and 1 respectively. The selection

probabilities are 0.33, 0.266, 0.2, 0.13, and 0.06. Should the fitness of a later generation of individuals

become 80, 79.998, 79.988, 79.786, and 79.635, the selection probabilities remain the same at 0.33,

0.266, 0.2, 0.13, and 0.06, because there was no change in the ranking.
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Since the initial experiments of Holland, alternative approaches to selection have been implemented

for EAs. The following is a sub-set of the most frequently used sampling strategies:

• Random selection assigns equal selection probability to all the individuals regardless of their

fitness value [103].

• Proportional selection is similar to rank selection, except that the absolute fitness value is used and

not the relative fitness. In proportional selection, the probability of an individual being selected

is proportional to the absolute fitness value. Many proportional selection algorithms exist.

A common proportional selection algorithm is known as roulette wheel selection [103]. Roulette

wheel sampling normalises the fitness values, usually by dividing each fitness value by the max-

imum fitness value [103]. The analogy to a roulette wheel can be envisaged by imagining a

roulette wheel in which each individual represents a pocket on the wheel; the size of the pocket

is proportional to the probability of selection of that individual. While the wheel is spinning, the

ball has a greater probability of landing in a larger pocket than a smaller one [103].

Stochastic universal sampling (SUS) is an alternative proportional selection strategy introduced

by Baker [61]. Each individual is placed next to each other on the circumference of an imaginary

circle. Individuals are placed in order of their fitness value. The amount of space an individ-

ual takes up on the circumference is directly proportional to the individual’s fitness value. The

greater the individual’s fitness, the greater the amount of space allocated to the individual. SUS

uses a random number to determine a position on the circumference. A fixed distance equal to

the circumference divided by the number of individuals is used to mark positions on the circum-

ference. Each individual occupying a marked position is selected. Individuals can be selected

multiple times.

• Tournament selection randomly selects k individuals from the population. The selected individ-

uals take part in a tournament and the individual with the best fitness value is selected [103]. An

advantage of tournament selection is that the worst individual of the population will never be se-

lected for reproduction provided that k is greater than one. If k is equal to one, then the selection

process is random and the worst performing individual could be selected. If k is the same as the

population size, the best individual will always be selected [103].

• Elitism selects the best k individuals. An advantage of this approach is that the worst individuals

are never selected. However, the best individuals dominate the selection process leading to rapid
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convergence. Elitism is the same process as tournament selection with a k value equal to the

population size.

As per the pseudo code listing in Algorithm 1, the CGA randomly selects individuals as parents and

then sampled individuals from the previous generation and offspring to form the next generation. This

approach is preferred, because individuals from the previous generation that represent good solutions

have a probability of moving to the next generation. However, depending on the sampling strategy,

good solutions may dominate and lead to rapid convergence. An alternative approach is to carry only

the offspring to the next generation, discarding the previous generation entirely. This approach slows

down convergence, but good solutions are lost. A hall-of-fame can store the best individuals from each

generation to preserve good solutions.

This thesis uses the approach of Holland, using both the previous generation and the offspring as a

source for the next generation. A hall-of-fame is revisited in the next section.

3.4 Co-evolution

Generations of species rarely evolve in isolation, but rather co-evolve with other species. The word “co-

evolution” was coined by Ehrlick and Raven in 1964 [185] in their description of the probable influences

that plants, herbivores, and insects have had on each other’s evolution. Brooks and McLennan [185]

further subdivided co-evolution into co-speciation, referring to “mutual phylogenetic association”, and

co-adaptation, referring to “mutual modification”. Co-speciation is the process whereby one population

evolves in response to, and in concert with another, and is a consequence of the associate’s dependence

on its host for its survival [33]. Co-speciation is referred to as co-operative/symbiotic co-evolution. Co-

adaptation is the reciprocal adaptation of two or more genetically determined features through natural

selection [12]. Co-adaptation can occur between interacting genes or structures within an organism or

between two or more interacting species. Co-adaptation is referred to as competitive co-evolution.

Competitive co-evolution is when two or more species compete against each other, such that when

one species benefits, the other does not. Consider a certain species of plant living in an environment

containing insects that eat the plant. To survive, the plant needs to evolve mechanisms to defend itself

against the insects. The insects must evolve mechanisms to overcome the plant’s defences to survive.

This fight for survival drives an arms race. For example, the plant may develop a tough exterior, but

then the insect develops stronger jaws. The plant may evolve a poison to kill the insect, but then the

insect may evolve an enzyme to counteract the poison. The plant may develop hairs to make it difficult

for the insect to climb, and the insect could develop longer legs.
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Another classic example of competitive co-evolution is that of viruses and the immune system.

In order to replicate, a virus must infect its host; replication requires resources that the host needs to

function. The host evolves means to stop infection, while the virus evolves means to infect. Competitive

co-evolution ensures that each generation is better at its offensive or defensive role.

In nature, organisms evolve at the expense of individuals within the same species as well as indi-

viduals in different species. Co-evolution is not always destructive; mutual co-evolution also known as

co-adaptation or co-operative co-evolution, is mutually beneficial to all the parties involved. In 1981,

a paper by political scientist Robert Axelrod and evolutionary biologist William Hamilton explored

the evolution of co-adaptation [50, 51]. They argued that co-adaptation between species can emerge

through evolution and persist through numbers of generations. As an example, consider a bee and a

flower: the flowers need the bees for pollination and the bees need the nectar for food.

Co-evolution is a process where one species evolve because of the influence of another species.

In simulated evolution, competitive co-evolution requires an inverse of fitness between two or more

populations. A win for one population results in a loss for the other population, driving a simulated arms

race. To survive, the losing population must adapt, becoming the winning population. In a simulated

co-operative/symbiotic co-evolution, two or more populations work together, so that success in one

population improves the survival rate in the other.

The concept of co-evolution in EAs was first proposed by Reed et al. in 1967 [111]. Reed et

al. used different populations to evolve alternative strategies for a simple game of poker. Smith and

Price [198, 199, 200] used game theory and competitive co-evolution simulations in 1973 to show that

a “limited war” or arms race benefits individual animals within a species as well as animals within

other species. In 1990, Hillis [132] showed how competitive co-evolution can be applied to a practical

optimisation problem, and more specifically, how the addition of co-evolving populations can improve

performance by preventing the system from becoming stuck in local optima. Hillis experimented with

GAs that evolve sorting networks. Hillis introduced the notion of host and parasite populations. The

host tries to find the optimal sorting network, while the parasites are scored on how well they make the

sorting network fail the test data.

In 1994, Jan Paredis [79] successfully applied co-evolution to a constraint satisfaction problem. In

1995, De Jong and Potter [79] used co-operative co-evolution to evolve islands of populations, where

each island solves part of a solution. The island model is an example of co-operative co-evolution. A

book by Axelrod, titled “The Evolution of Co-operation” [51] explores co-operative evolution versus

competitive evolution. Axelrod solicited strategies from other game theorists to compete in a tourna-

ment. Each strategy was paired with another strategy for 200 iterations of the prisoner’s dilemma game
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and scored on the total points accumulated throughout the tournament. Axelrod showed that strategies

which focused on co-operation outperformed those strategies that focused on competition with regards

to the prisoner’s dilemma game.

In the standard GA a fitness function measures how close a solution is to the perfect solution that

solves the objective. The perfect solution represents the global optimum. Because the fitness measure

is viewed independently of any other solution within the population, it is referred to as the absolute

fitness [47]. Objectivity and absoluteness come only at the expense of significant knowledge about the

task being solved [47]. This is significantly true for difficult problems with no analytical description,

for example, a game or stock market trading. Consider the abstract strategy board game Go, in which

the aim is to surround more territory than the opponent.

An absolute objective fitness function must consider every Go strategy both known and unknown to

measure how close a solution is to the optimal solution, which is not possible. However, the rules of the

game Go are well defined and if two solutions are made to play the game Go against one another the

outcome results in a winner. This kind of fitness evaluation is known as a competitive fitness function.

Rather than calculating how close a solution is to playing the perfect game of Go, a competitive fitness

function determines which solution is better at playing the game. The competitive fitness function

determines the success of a solution relative to another solution. Angeline and Pollack [47] defined a

relative fitness function as any fitness calculation that is dependent on other individuals to calculate the

fitness measure [47].

To measure the performance of a solution against all the solutions within the population, Angeline

and Pollack used a tournament relative fitness [47, 185]. Individuals are randomly paired to compete

using a competitive fitness function. The loser is removed from the tournament. Winners move to the

next round. The process is repeated until an overall winner is determined. Individuals are ranked by

the number of rounds they lasted. Hillis [79, 132, 185] used a bipartite relative fitness, where each

individual is tested against all the other competing individuals. If the individual performs better than

the competing individual, then that individual receives a point. The individuals are ranked by their

accumulative points.

Evaluating co-operatively co-evolved individuals is more complex than competitively co-evolved

individuals. Each co-operatively co-evolved individual is part of a solution and must share its fitness

value with an individual from another population. Holland [144, 193] devised the “bucket brigade”

credit scoring system. The “bucket brigade” was modelled after the water passing chains of fire fighters.

Each type of bucket is passed through a set of fire fighter chains. The best bucket, is the one that lost

the least amount of water as it was passed along the various chains. The best fire fighter chain, is the
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one that lost the least amount of water across all the buckets the fire fighters passed along. A “bucket

brigade” credit system can be used to evaluate co-operatively evolved individuals. The fitness value of

each individual is the sum of all the evaluations the individual took part in.

Various “bucket brigade” sampling approaches exist. The most computational approach is to pair

all co-operatively co-evolved individuals with every other individual. De Jong and Potter [79, 193], and

Axelrod [51, 193] paired each individual from one island to each other individual from another island.

Cliff et al. [83, 193] paired each individual from one population to the best individual from the other

populations. Price [179, 193], and Phelps et al. [174, 193] paired each individual from one population

with a randomly selected set of individuals from another population. Co-operative co-evolution evolves

populations together, as one population increases its performance, so do the other populations.

Rosin and Belew [79, 185] showed that competitive co-evolution can lead to an arms race, in which

the two populations reciprocally drive one another to increasing levels of performance and complexity.

Two populations were used, one to act as a host and the other as a parasite. Rosin and Below used the

games of Nim and 3-D Tic-Tac-Toe as test problems to explore three new techniques in competitive

co-evolution, namely competitive fitness sharing, shared sampling, and hall-of-fame.

Competitive fitness sharing is a relative fitness function, where parasites are ranked by the number

of hosts that can not defeat it. The host fitness is calculated as a function of parasite difficulty. The

effect is to reward hosts that can defeat parasites that other hosts can not defeat.

Shared sampling provides a method for selecting a strong, diverse set of parasites. Testing all the

hosts against all the parasites is computationally expensive. A sub-set of parasites could be selected at

random. However, the best parasite could be missed. Rosin and Belew proposed a competitive fitness

sharing amongst the parasites. Each parasite is tested using competitive fitness sharing against the best

performing parasites of the previous generation. The best performing parasites are those parasites that

outperformed the most hosts. The parasites that outperform the previous generation of parasites are

used to test the competitive fitness of the host population [185].

The hall-of-fame encourages an arms race by saving the best individuals from prior generations.

Rosin and Belew introduced an infinite population model: The best n parasites of a generation are

maintained indefinitely. Shared sampling is then performed on the best individuals from all the previous

generations, and not just the previous generation [185].

Different co-evolutionary approaches have been implemented by researchers. Grefenstette and Da-

ley [129] wanted to understand which approach worked best, and if co-evolution outperforms a tradi-

tional GA. Their experiments used a GA to optimise what they termed “the most optimum symbolic

reactive rule (SAMUEL)”. The evolved rule has applications in sentry robots, autonomous delivery
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vehicles, undersea surveillance vehicles, and automated warehouse robots. Grefenstette’s and Daley’s

tests included one competitive task and one co-operative task. The tests require two agents, either acting

as a co-operator or a competitor depending on the test. The following co-evolutionary approaches were

compared:

• A single GA where the first agent evolves, and the second agent uses a hand crafted set of rules.

• A single GA that evolves a test of rules used by both agents (traditional GA).

• A separate GA for each agent, with each agent being evaluated against a random member of the

opposite agent.

• A separate GA for each agent, with each agent being evaluated against the best individual of the

previous generation of the opposite agent.

• A separate GA for each agent, with each agent being evaluated against a random selection of the

previous generations of opposite agents (hall-of-fame).

• A separate GA for each agent, with each agent being evaluated on its ability to defeat opponents

that few others in the current generation can (competitive fitness sharing).

Grefenstette and Daley showed that a competitive fitness sharing strategy produced generations

with greater diversity and resulted in a solution that performed better than the other co-evolutionary

approaches [129]. While Grefenstette and Daley considered evolutionary GAs, their approaches could

be applied to GPs.

3.5 Summary

This chapter began with the history of evolutionary theory, which researchers simulated using a com-

puter. The chapter covers the history of evolutionary computation and how it is used to evolve solutions

to problems. The chapter introduced GP as an extension of GAs. The next chapter discusses research

into stock market forecasting. More specifically, using evolutionary computation to evolve trading rules

that are used to trade shares on various stock markets.
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Evolutionary Algorithms in Trading

Progress comes from the intelligent use of experience.

-Elbert Hubbard (Writer and Philosopher)
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Technical analysis functions, as described in Chapter 2, are used to determine the market trend and

potential changes in the trend. Traders use combinations of these functions to create trading rules. This

chapter focuses on how researchers have used EAs described in Chapter 3 to determine the optimal

trading rules for share trading. This chapter concludes with a summary in Section 4.2.

4.1 Evolved Trading Rules

A trading rule is simply a set of rules that decide to buy, sell or hold stock. One of the first researchers

to use GAs to evolve trading rules was Richard Bauer [63]. Bauer published a number of papers on

GAs and computerised trading strategies between 1992 and 1994 [64, 66, 67]. Bauer was one of the first

researches to publish a book covering GAs and trading rules, titled “Genetic Algorithms and Investment

Strategies” in 1994 [63]. His book was followed by another book in 1999, titled “Technical Market

Indicators: Analysis & Performance” [65]. Bauer used the GA popularised by Holland [53, 111, 138]

(defined in Chapter 3) to select the best combination of trading functions from a set of trading functions

to form a trading rule. Bauer linked each bit position in the GA bit string to a technical analysis function.

The bit value determined if the function was included in the rule or not. Each function returned a buy,

sell or hold signal, encoded as 1, -1 or 0 respectively. The sum of all the enabled functions determined

the action. If the sum was greater than 0 a buy action was taken, if the sum was less than 0 a sell action

was taken, else nothing was done.

In 2001, Lam [154] implemented the same GA structure as Bauer [65]. However, each technical

function was a form of fuzzy logic. Fuzzy logic is a general system for performing approximate reason-

ing [154]. Lam defined fuzzy logic as the mapping from an input space to an output space by making

use of a set of if-then conditional statements or rules. An example of a fuzzy logic trading rule defined

by Lam is “if RSI is low then decision is short”. An alternative rule is “if RSI is high then decision is

long”. Low and high are arbitrary values determined by the creators of the technical analysis function.

In this case high is anything above 70 and low is anything below 30. Hold, short, and long are defined

as 0, -1 and 1 respectively, and correspond with hold, sell and buy. Lam defined 36 such fuzzy logic

rules [154]. Like Bauer, Lam linked each of the functions to a bit within the chromosome string of a

GA. The technical analysis function corresponding to the bit is enabled if the bit is 1, otherwise the

function is disabled. The GA was tested on historic Hong Kong market data. Each individual within

the population was tested against a share by running each enabled function against the share’s daily

price and volume data to determine a hold, sell, or buy action. The sum of the results determine the

action. If the sum is greater than 0, then a buy action is performed. However, if the sum is less than
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0, a sell action is performed. If the sum is 0, then nothing is done. Lam implemented two different

training approaches, namely a static and a dynamic training approach. The static approach considered

the standard GA used by Holland [53, 97, 135, 136, 137]. Data is divided into two distinct sets of data;

training data and out of sample testing data. Lam implemented a dynamic data training approach that

evolves a GA on market data of m preceding days and then uses the best performing GA to trade n days.

Lam used four different values for m and n:

• m = 90,n = ∞

• m = 90,n = 60

• m = 60,n = 30

• m = 30,n = 15

Lam showed that a GA could return profit on historic data, and that an incremental approach to

training indicated more reliability, because the incremental approach generated more profitable buy and

sell signals [154]. Lam used a return on investment (ROI) as quantifier for trader performance. ROI

measures the gain or loss generated by the trading rule relative to the money invested.

ROI =

[
∑

T
t=1(Pricet − sc)× Is(t)

]
−
[
∑

T
t=1(Pricet +bc)× Ib(t)

][
∑

T
t=1(Pricet +bc)× Ib(t)

]
where Ib(t) and Is(t) are equal to one if a rule signals a buy and sell, respectively, and zero otherwise;

sc represents the selling cost and bc the buying cost. ROI is the difference between final bank balance

and starting bank balance after trading.

In 2004, Schoreels et al. [190] showed that a simplistic GA could evolve an optimised trading rule

that produced similar returns to investment funds run by human professionals. Schoreels et al. used an

integer-based string of varying cardinality to represent a chromosome. Each gene in the chromosome

corresponds to a technical analysis function. The gene value represents a parameter value used by the

corresponding technical analysis function. Schoreels et al. [189] defined asset value as the sales price

of a share on any day less the purchase price including costs. The average asset value was used as a

mechanism to quantify the performance of a trading rule. The accumulated average asset value (AAV)

is defined as:

AAV =
∑

N
i=1[(Prices− sc)− (Priceb +bc)]

N
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where i is a buy and sell trading event, N is the number of buy and sell events, s the day the sale took

place, and b is the day the purchase took place.

Schoreels et al. expanded their GA to include 28 trading rules [188, 189] and compared the tradi-

tional static training strategy to the dynamic trading strategy of Lam [154]. Schoreels et al. showed

that the dynamic approach outperformed the static approach. The dynamic approach of Lam [154], and

Schoreels et al. [188, 189], which evolves trading rules on data closest to the testing data, validates the

claim by Gartley presented in Section 2.2 that the price performance on a specific day could indicate

the probable changes that could occur the next day [147].

Nicholls et al. [171] implemented a GA, with a similar structure to that of Lam [154], to explore the

effect of the fitness function on trader performance. They compared the return on investment generated

by trading rules evolved using the ROI fitness function implemented by Lam [154] to the return on

investment generated by trading rules evolved using the AAV fitness function implemented by Schoreels

et al. [188, 189]. Nicholls et al. also explored the effect of Ockham’s razor on the trader performance.

Ockham’s razor is a principle from philosophy, that supposes that if there exist two explanations

for an occurrence, the simpler one is usually better. Nicholls et al. [171] introduced a penalty factor to

penalise individuals with more enabled trading rules. It was shown that no difference between the results

of trading rules generated by either fitness functions were observed when the volatility of the share

was low. However, when volatility increased, the AAV produced better trading rules. No significant

difference between GAs penalised for complex rules or those that were not penalised could be found.

In 2009, Ghandar et al. [125] also implemented a GA to generate trading rules using fuzzy logic.

Like Lam [154], Ghandar et al. defined trading rules, where each rule is linked to a bit in a chromosome.

While Lam hard coded the 36 fuzzy logic rules [154], Ghandar et al. allowed the GA to determine the

fuzzy logic rule from a set of nine simple trading functions [125].

Ghandar et al. defined change in price, SMA, OBV, double SMA, and portfolio value as linguis-

tic variables, and used these variables to form nine simple trading functions, called linguistic trading

functions [125]. A linguistic trading function returns a trading signal. The signal is either a 1 for buy, 0

for nothing, or -1 for sell. Each simple linguistic trading function requires three inputs: enabled, fuzzy

logic set and weight. Enabled is a boolean value, either 0 or 1. The fuzzy logic set is one of seven cat-

egories namely: extremely low (EL), very low (VL), low (L), medium (M), high (H), very high (VH),

and extremely high (EH). The fuzzy logic set is calculated by running the linguistic variable against

all the historic data to determine a range. The range is divided into seven equal parts and assigned to

the different categories. The categories are updated as new trading data is observed. A weight variable

determines the strength of the returned trading function signal. The weight variable can be any of the
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predefined set of nine possible values starting at 0.1 and incrementing by 0.1 (0.1, . . . ,1.0). The returned

trading signal is multiplied by the weight.

An example of a simple trading rule is “if (enabled and SMA is [Fuzzy Logic]) then return 1 ×
[weight] else return 0;”. A total of 30 possible fuzzy logic rules were defined. Ghandar et al. did not

use a binary string encoding as used by Holland, but rather a matrix of variables [53, 111, 138]. The

chromosome structure is illustrated in Figure 4.1. The matrix consists of 30 rows, one for each fuzzy

logic rule. Figure 4.1 illustrates rows 1 to 30. Each fuzzy logic rule comprises of a boolean variable

(B), an integer variable (I) and nine linguistic functions. The boolean variable determines if the fuzzy

rule is enabled or not. The integer contains a natural number between 1 and 9, corresponding to the

weight values 0.1 to 1.0. Each linguistic function consists of 3 variables; a boolean variable (B) to

enable or disable the function, a fuzzy logic set category (FL) and a weight (I) assigned to the function.

Each enabled linguistic function returns a value between -1 and 1. If the rule is disabled a value of 0

is returned. If the fuzzy rule is enabled, the sum of the linguistic functions multiplied by the weight is

returned as the value for the corresponding row, otherwise zero is returned.

The trading action is determined by the sum of all the trading rules. If the sum is greater than 0, a

buy action is taken. If the sum is less than 0, a sell action is taken, otherwise no action is taken.

It was shown that the fuzzy logic approach of Ghandar et al. outperformed fixed trading strategies

such as buy-and-hold, random-walk, and market indices such as MSCI Europe listed stocks for Eu-

ropean stocks spanning 1990 to 2005 [125]. The MSCI represents the largest European shares based

on market capitalisation. The buy-and-hold strategy buys shares on the first day of trade and sells the

shares on the last day of trade. A random-walk strategy randomly buys shares, sells shares, or does

nothing over the trading period. Ghandar et al. implemented the same static and dynamic training

approach as Lam, and showed that a dynamic training outperforms static training.

Nicholls et al. [171] used a GA to compare the weighted strategy of Ghandar et al. [125] to the

standard enabled or disabled strategy of Lam et al. [154]. The purpose was to explore the effect of

weighted technical analysis rules on trader performance. It was shown that weighted strategies perform

better than non-weighted strategies on bearish shares, and concluded that the weighted approach of

Ghandar et al. is risk adverse.

Bauer [65], Lam [154], Ghandar et al. [125], and Schoreels et al. [188, 189] used GAs to evolve

trading rules. A GA uses a vector structure to represent a chromosome. A tree structure provides

three advantages over a vector, namely not restricted to a fixed length, a natural structure to represent

hierarchical decisions rules, and a tree can store both binary, logical and numeric functions within its

nodes. A tree structure is therefore a natural representation for a trading rule. One of the first researchers
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1 B I B FL I B FL I B FL I B FL I B FL I B FL I B FL I B FL I B FL I

Rule Linguistic Rule 2

Linguistic Rule 1

2 B I B FL I B FL I B FL I B FL I B FL I B FL I B FL I B FL I B FL I

3 B I B FL I B FL I B FL I B FL I B FL I B FL I B FL I B FL I B FL I
...

30 B I B FL I B FL I B FL I B FL I B FL I B FL I B FL I B FL I B FL I

Figure 4.1: Chromosome structure implemented by Ghandar et al. [125] where B represents a boolean value

enabled or disabled, FL is one of seven fuzzy logic categories, and I is a natural number between 1 and 9

representing a weight. Each row represents a fuzzy logic rule. A rule consists of 9 linguistic rules. Linguistic

rules are defined by their position and are hard coded.

to evolve trading rules using tree structures was Allen and Karjalainen [43, 44].

Allen and Karjalainen [43, 44] encoded a trading rule as a decision tree. A grammar and tree

traversal were defined to extract and execute the trading rule. An in-order traversal was used to extract

the node values from the tree. The grammar defines non-terminal node values and terminal node values.

Non-terminal nodes have two possible function types: a real number function and a boolean func-

tion. A real number function returns a real number while a boolean function returns a boolean value.

The real value functions include “average”, “minimum”, “maximum”, “arithmetic operators”, “lag”

and “norm”. “Minimum” returns the minimum of two real value parameters. “Maximum” returns the

maximum value of two real-valued parameters. The “arithmetic operators” perform their functions

(+,−,÷,×) on two real-valued parameters. “Lag” returns the price of the share n days prior, where n

is a natural number. “Average” returns the SMA for the n days prior. “Norm” returns the absolute value

between the difference of two real-valued parameters.

The boolean functions include “if-then-else”,“and”,“or”,“not”, “<” and “>”. “If-then-else” re-

quires three boolean parameters, “and” requires two boolean parameters, “or” requires two boolean

parameters, and the logical comparison operators (“<” and “>”) require two real-valued parameters.

Parameters are defined as the children of the node.

Terminal nodes are either the boolean constants true or false, “price”, a real number constant,

or a natural number constant. Real number and natural number constants are drawn from a uniform

distribution of numbers between a minimum and maximum configured value during initialisation of the
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Figure 4.2: Allen and Karjalainen [43, 44] decision trees. The left tree corresponds to a 50-day moving average,

returning a buy action if the closing price is greater than the 50-day SMA otherwise a sell action is returned. The

tree on the right depicts a break out rule, similar to BBs. If the day’s trading price is greater than the maximum

price over the last 30 days then a buy action is returned, otherwise a sell actions is returned.

GP. “Price” is the price on that day’s trade.

The trading rule returns a boolean value of true or false, which is transcoded to buy, sell or hold

depending on whether the trader has shares or not. The rule is described in Table 4.1. For the rule to be

grammatically correct, the root node must return a boolean value.

Examples of the Allen and Karjalainen [43, 44] decision trees are shown in Figure 4.2.

Table 4.1: Trading actions based on the result of a trading rule and shares on hand as defined by Allen

and Karjalainen [43, 44].

has shares no shares
true hold buy

false sell hold

Allen and Karjalainen [43, 44] used a fitness measure based on the compounded excess returns over

the buy-and-hold strategy. The excess return is given by:

∆r = r− rbh

where the continuously compounded return of the trading rule is computed as

r =
T

∑
t=1

riIb(t)+
T

∑
t=1

r f Is(t)+n log
(

1− c
1+ c′

)
and the return for the buy-and-hold strategy is calculated as

rbh =
T

∑
t=1

rt +n log
(

1− c
1+ c′

)
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In the above,

ri = logPt − logPt−1

and P is the daily close price for a given day t, c denotes the one-way transaction cost; r f is the risk

free cost when the trader is not trading, Ib(t) and Is(t) are equal to one if a rule signals buy and sell,

respectively, and zero otherwise; n denotes the number of trades and rbh represents the returns of a

buy-and-hold, while r represents the returns of the trader.

A fixed trading cost of c = 0.25% of the transaction [43, 44] was defined. The continuously com-

pounded return function rewards an individual when the share value is dropping and the individual is

out of the market. The continuously compounded return function penalises the individual when the

market is rising and the individual is out of the market.

The same crossover process defined in the Section 3.3 was used by Allen and Karjalainen. Muta-

tions are introduced by randomly generating a new tree in place of the second parent used in crossover

[43, 44]. This technique is known as headless-chicken [145].

Using data from the S&P 500 index and the NYSE Allen and Karjalainen [43, 44] showed that

evolved trading rules do not earn excess returns over a simple buy-and-hold strategy after transaction

costs. The trading rules enter the market when returns are positive and daily volatility is low and stay

out of the market when the returns are negative and volatility is high. The trading rules are sensitive to

trading costs, but showed robustness to the impact of the 1987 stock market crash [43, 44]. Lowering

the trading costs, increases the returns of the GP [43, 44]. The GP of Allen and Karjalainen was

reimplemented by Neely et al. [170], Telbany [102], Mahfoud and Mani [160, 161], Li and Tsang

[204, 205], and Potvina et al. [177] with varying degrees of success.

Neely et al. [170] implemented a similar GP as Allen and Karjalainen, and showed that consistent,

significant returns could be earned in currency markets against the USD over the period 1981-1995.

Telbany [102] experimented with a GP similar to Neely et al. and Allen and Karjalainen, to trade

on the Egyptian Stock Market. The results of the GP were compared with the results of an ANN. The

results re-enforced the findings of Mahfoud and Mani [160, 161], and showed that a GP outperforms

an ANN when predicting stock market time series data. Iba and Sasaki [141] also compared a GP to an

ANN using a simulated stock market and came to the same conclusions. Telbany [102], Iba and Sasaki

[141], and Mahfoud and Mani [160, 161] showed mixed results in returns generated by the GP. They

showed that the GP performed marginally better than a buy-and-hold strategy [102, 141, 160, 161].

They also showed that some shares are easier to trade than others. Their results are consistent with

Neely et al. [170], and Allen and Karjalainen [43, 44].

Butler [205] implemented a GP to classify horses as winners or losers. Butler named his GP the
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evolutionary dynamic data investment evaluator (EDDIE). EDDIE was shown to be significantly better

at predicting the winners and losers of a race than two other horse classifying systems, SEAGUL de-

veloped by de la Maza [92] and HOBBES developed McNatton [166]. Butler showed that SEAGUL,

HOBBES and EDDIE are significantly better at predicting the outcome of a race than human experts

[205]. Li and Tsang [204, 205] later enhanced EDDIE and applied it to financial forecasting. Li

and Tsang changed the decision tree of EDDIE to use the grammar defined by Allen and Karjalainen

[204, 205]. Tsang showed mixed results using EDDIE to forecast the market [204, 205]: EDDIE is

successful at making high volume low margin trades. The downside is that high volume incur high

transaction costs. If forced to make high margin trades, EDDIE fails to capitalise on changes in the

market. The findings of Tsang were that transaction costs determine the success of a GP.

Potvina et al. [177] evolved trading rules using the GP structure defined by Allen and Karjalainen,

only to show that the algorithm over-fitted the training data. Potvina et al. showed positive returns on

sample data, but not on the out-of-sample data.

Chen and Yeh [82, 188] also developed a GP for stock market forecasting, using an approach fun-

damentally different from the approaches described above. Until now, a GA or GP was used to find a

trading rule that outperformed the market. The fitness of an individual was determined by the return on

investment obtained at the end of trading. Chen and Yeh defined a GP to predict the next day’s share

price. The fitness of an individual is based on how well the individual predicts the future price, using

the mean absolute percentage error (MAPE). The MAPE is calculated as follows:

MAPE =
100

n

n

∑
t=1

∣∣∣∣At −Ft

At

∣∣∣∣
where At is the actual share price for day t and Ft is the forecast share price for day t. The closer MAPE

is to zero, the better the individual performed.

An in-order traversal was used to extract the future price calculation. Terminal nodes are defined

as a natural number between 1 and a maximum, or real numbers between -1 and 1. A natural number

terminal node represents a day’s closing price. Therefore, a value of 10 represents the closing price 10

days ago. A real number is a node used as a parameter to a non-terminal node. The non-terminal nodes

use the mathematical operators +,−,÷,×, log, sin, and cos. The algorithm was evaluated on the S&P

index and TAIEX indexes. If the evolved solution predicted an increase in the future price, the shares

were bought. If the evolved solution predicted a decrease in the price the shares were sold. The main

findings were that the GP successfully evolved a function to map the sample data, but over-fitted and

therefore failed to produce positive returns on out-of-sample data [82].

Kaboudan [146], also developed a GP to predict the future share price using a GP and a grammar
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similar to that of Chen and Yeh. Non-terminal nodes comprised of mathematical operators (+,−,÷,×),

sin, cos, exponent, square root, and the natural logarithm. Terminal nodes could be a random real

number constant, or a price n days in the past. The GP was evaluated on different share data (i.e.

Citigroup, Compaq, General Electric, Pepsi, Sears and Microsoft) and randomly generated share data.

The GP was used to predict the share’s high price, and to predict the share’s low price. The regression

sum of squared errors (ESS) was used to quantify fitness, calculated as follows:

ESS =
100
n

n

∑
t=1

(At −Ft)
2

Results showed that the GP could forecast the next day’s minimum and maximum share prices.

However, when presented with the randomly generated share data, the GP was unable to predict the

next day’s low and high share price. When presented with different shares it was evident that the GP

could forecast the next day’s minimum and maximum share prices with varying degrees of accuracy

[146].

Most EAs used the daily close, open, high, and low price to evolve the trading rules. Wilson and

Banzhaf [210] focused on forecasting the individual trades that occur throughout the day using the same

GP as Kaboudan [210]. Each daily transaction is known as a tick. Intra-day trading focuses on ticks

rather than the daily close, open, high or low price. Intra-day trading generates a large amount of data.

Filters were developed to reduce the dataset: a low frequency filter, which removes trades that do not

change the share price, and a high frequency filter, which calculates the moving average of the trade

and blocks trades that do not change the moving average.

It was shown that adding filters to high frequency trading results in more conservative investing.

The filtered system results in greater return on investment in some price trends, but overall does not

perform as well as filter-less systems. The filter-less system takes advantage of anomalies in the data

that the filtered system misses, resulting in greater return on investment. The low frequency filter had

no effect on trading performance. Wilson and Banzhaf concluded that agents should use all data and

not filter out data that may be deemed outlier data [210], because a GP may use the outlier data to detect

trend changes [210].

By 1999, fewer than fifty papers had been published on the topic of EAs in financial markets [146].

Researchers showed that EAs could capitalise on market bias and outperform a buy-and-hold strategy.

However, transaction costs determined the profitability of the trading rules.

Myszkowski et al. [169] compared three different GP approaches: A standard GP with one tree

structure that determines both the buy and sell action, an extended GP where the GP evolves two trees

(one for a buy action and the other for a sell action), and a co-operative co-evolved GP where one
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population evolves a buy action and the other the sell action. An in-order traversal was used to extract

the trading rule [169]. Terminal nodes contain a technical analysis function, closing price, volume, or

a real number. The technical analysis functions include SMA, MACD, ROC, and RSI. Non-terminal

nodes contained the functions >, <, AND, and OR. The fitness function is calculated as follows:

f itness =
CASHstop

CASHstart

where CASHstart is the opening bank balance and CASHstop is the bank balance at the end of trading.

Tournament selection was used to select the individuals for the next generation. The co-evolved GP

used an average of the fitness function to find the best individuals from each population. An individual

is selected from the buy population and tested against all the individuals in the sell population. The

average fitness across all the tests is assigned to the individual from the buy population. The process is

repeated using the sell population.

It was shown that a GP can generate a trading rule that outperforms the standard buy-and-hold

strategy. However, not enough data was available to show which GP technique was better than the

another [169]. The co-evolved traders produced greater gains on upward markets while the standard

GP produced greater gains on downward markets.

Myszkowski and Rachwalski [169] noted that data used to evolve the GP is important as those indi-

viduals evolved on downward trending data produced higher returns in all market conditions compared

to individuals evolved on upward trending data [169].

Seshadri [193] compared the general algorithm on Allen and Karjalainen [43, 44] to two variations

of the same algorithm. The first variation extended an individual’s chromosome to two distinct branches

joined by a combination node. The combination node decided which of the two branches to execute.

The left branch determined when to buy shares and the right branch determined when to sell shares. The

second variation was a co-operative co-evolved GP. Seshadri [193] evolved two different populations.

The first population evolved a buy rule, and the second population a sell rule. Seshadri [193] showed

that a co-operative co-evolved GP performed better than a single population GP and could outperform

a buy-and-hold strategy when trading the S&P500.

Dreżewski et al. [98] successfully implemented co-evolved GPs to generate buy and sell rules.

Dreżewski et al. compared a simple GP to a co-operative co-evolved GP and found the co-evolved GP

approach to be more profitable.
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4.2 Summary

This chapter provides a review of previous research on EAs used to generate trading rules. The next

chapter builds on the work discussed in this chapter, and presents a GP and a competitively co-evolved

GP that are used in this study to evolve trading rules.



Chapter 5

Genetic Program For Trading Rules

Evolution continually innovates, but at each level it conserves the elements that are recom-

bined to yield the innovations.

- John Henry Holland (Scientist, Professor of Psychology, Electrical Engineering and Computer

Science.)

71
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The purpose of this chapter is to describe the GP implementation used in this study. This chapter

begins with Section 5.1 describing the GP implementation used in the empirical study with regards

to grammar, recombination, mutation, selection, and the fitness function. Section 5.2 introduces the

datasets used in this thesis. Section 5.3 empirically determines the most suited selection operator,

by presenting various selection operators, describing the empirical process and discussing the results.

Section 5.4 discusses the effect that three different fitness functions had on evolving trading rules. The

results of parameter sensitivity analysis are presented in Section 5.5. This chapter concludes with a

summary in Section 5.6.

5.1 Genetic Program for Stock Market Trading

A GP is a specialised GA where the individual’s chromosome is encoded as a decision tree. A tree

structure is able to encode logical formulae, arithmetic formulae, or computer programs. Each tree

represents a symbolic expression defined by a tree grammar.

A trading rule results in a buy, sell or hold action. A trading rule is represented as either a logical

formulae, arithmetic formulae, or a computer program. Therefore, a tree is a perfect encoding structure

for a trading rule.

A tree requires a grammar to correctly encode and read a logical formulae, arithmetic formulae, or

“a computer program”. The grammar used in this thesis is based on the tree structure implemented by

Allen and Karjalainen [43], Neely et al. [170], Telbany [102], and Li and Tsang [204, 205].

The basic tree structure defined by Allen and Karjalainen was introduced in Chapter 4. This thesis

extends the grammar of Allen and Karjalainen with the introduction of additional functional operators

and terminal constants. The additions make it possible for the GP to evolve trading rules similar to

technical analysis functions: CCI, MFI, OBV, and ADI.

CCI, MFI, OBV, and ADI require daily volume, high, and low price values. To make it possible for

evolution to evolve these technical analysis functions, the terminal set was expanded to include: “high”

and “low”, respectively returning the highest, and the lowest prices of the day. The functional set oper-

ators “minimum” and “maximum” were replaced by “minimum price”, “maximum price”, “minimum

volume”, and “maximum volume” over a period of n days, where n is a parameter to the operator. The

complete list of function set operators is presented in Table 5.1.

Each function within the function set had a set arity or number of parameters. A function with an

arity n had n branches associated to it. Each parameter within the function had a required type. Each

associated branch returned a value of the required parameter type.
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Three parameter types were defined to ensure that a function was passed the correct parameter type.

These types were: natural number, numeric, and boolean. A numeric could either be a natural number or

a real number. The boolean constants were either true or false, while the real number constants were

drawn from a uniform distribution between configured minimum and maximum values, and natural

numbers were drawn from a uniform distribution between configured minimum and maximum natural

numbers. Allen and Karjalainen [43] did not specify the configured minimum and maximum natural

numbers, except that they are parameters to the lag, and average functions. For this study, natural

numbers were drawn from a uniform distribution between 1 and 500. The reason for choosing 1 and

500 was that the dataset samples used did not exceed 500 days.

Allen and Karjalainen [43] specified the limits of the real numbers to be between 0.0 and 2.0,

without offering any explanation why. A positive real number limit between 0.0 and 2.0 in conjunction

with positive natural number limits does not allow the evolution of negative numbers. Some technical

analysis functions such as the oscillating indexes defined in Chapter 2 return values within limits such

as -100.0 and 100.0 or -1.0 and 1.0. Changing the real number limits from 0.0 and 2.0 to -1.0 and 1.0

allowed the GP to evolve a sub-tree that returned negative numbers such as -100.0 (−1.0×100).

The mathematical operator “÷” can invalidate a trading rule, as division by zero is undefined. The

second parameter of the “÷” operator was therefore restricted to a non-zero numeric constant.

To simplify the tree structure, the tree generation algorithm automatically simplified nodes. For

example, if initialisation or mutation grew a sub-tree, (−1.0× 100), the node × was automatically

simplified to a numeric constant -100. This ensured that the tree sizes remained small and decreased

the computation time when evaluating the decision trees. Only sub-trees that did not include a variable

such as opening price were simplified.

Each tree structure was subject to the evolutionary process defined by Holland [135, 137, 136] and

Koza [150]. The evolutionary process has four operations, namely competition, reproduction, mutation,

and selection [111].

Many variations of the evolutionary process exist, some of which have been described previously.

This thesis implements the same basic GP algorithm implemented by Allen and Karjalainen [43]. The

pseudo code listing presented in Algorithm 3 outlines Allen and Karjalainen’s evolutionary process.

The process is described later in more detail.

A GP is a specialised GA requiring evolutionary operators adapted to the tree encoded chromosome

structure. A GP has a set of meta-parameters that must be configured. The evolutionary operators

were selected through empirical analysis presented in Section 5.2.1, and the meta-parameters selected

through parameter sensitivity analysis described in Section 5.5.
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Table 5.1: GP Grammar - A list of possible nodes, their function, parameters and return types.

Name Placement Description Parameters Return
type

Boolean constant Terminal Node Returns either true or false Boolean

Real Number

constant

Terminal Node Returns a real number between -1.0 and 1.0 inclusive Numeric

Natural Number

constant

Terminal Node Returns a natural number between 1 and 500 inclusive Numeric

High Terminal Node Returns the highest price of the day Numeric

Low Terminal Node Returns the lowest price of the day Numeric

Price Terminal Node Returns the closing price of the day Numeric

Average Non-terminal Node Returns the SMA for the n days prior Natural number: n Numeric

Maximum Price Non-terminal Node Returns the maximum price for the n days prior Natural number: n Numeric

Minimum Price Non-terminal Node Returns the minimum price for the n days prior Natural number: n Numeric

Maximum Volume Non-terminal Node Returns the maximum volume for the n days prior Natural number: n Numeric

Minimum Volume Non-terminal Node Returns the minimum volume for the n days prior Natural number: n Numeric

Lag Non-terminal Node Returns the closing price n days prior Natural number: n Numeric

Norm Non-terminal Node Returns the absolute value of x Numeric: x Numeric

+ Non-terminal Node Returns the result of adding a and b Numeric: a, Numeric : b Numeric

− Non-terminal Node Returns the result of subtracting b from a Numeric: a, Numeric: b Numeric

÷ Non-terminal Node Returns the result of dividing b into a Numeric: a, non-zero nu-

meric constant b

Numeric

× Non-terminal Node Returns the result of multiplying a and b Numeric: a, Numeric: b Numeric

Boolean if-then-else Non-terminal Node if a is true return b else return c Boolean: a, Boolean: b,

Boolean: c

Boolean

Numeric if-then-else Non-terminal Node if a is true return b else return c Boolean: a, Numeric: b, Nu-

meric: c

Numeric

And Non-terminal Node Returns the result of a logical AND between a and b Boolean: a, Boolean: b Boolean

Or Non-terminal Node Returns the result of a logical OR between a and b Boolean: a, Boolean: b Boolean

Not Non-terminal Node Returns the result of a logical negation of a Boolean: a Boolean

< Non-terminal Node Returns the result of a logical less than comparison between

a and b

Numeric: a, Numeric: b Boolean

> Non-terminal Node Returns the result of a logical greater than comparison be-

tween a and b

Numeric: a, Numeric: b Boolean

Root Root Node Any function or constant that returns a boolean value Boolean
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Algorithm 3: Implemented GP algorithm as presented by Allen and Karjalainen [43].

g = 0; . Generation counter

Set the maximum number of generations G;

Set the total number of individuals µ;

Initialise the initial population Cg;

Draw three continuous samples from the dataset . The dataset is the share data

Initialise the in sample dataset Samplein . Defined in Section 5.2

Initialise the validation sample dataset Samplesel

Evaluate fitness fCg,n,Samplein of each individual Cg,n in population Cg using Samplein;

Set B =Cg,n where Cg,n has the largest Samplein fitness;

Evaluate fitness fB,Samplesel of B using Samplesel ;

while g < G do
g = g+1;

Set number of offspring λ = 0;

while λ < µ do
Set random number r ∼ U(0,1);

if r < Pm then
. Sampling is performed using rank selection

Sample parent P1 from Cg−1 with bias to worst fitness;

Mutate P1 to form O1;

Evaluate the f of O1 using Samplein ;

Add O1 to Cg;

Sample D1 from Cg with bias to worst fCg,Samplein ;

Remove D1 from Cg;

λ = λ +1;

else
. Sampling is performed using rank selection

Sample parents P1 and P2 from Cg−1 with bias to best fCg,Samplein ;

Offspring O1 = Re-combination of P1 and P2;

Offspring O2 = Re-combination of P2 and P1;

Evaluate the f of O1 and O2 using Samplein;

Add O1 and O2 to Cg;

Sample D1 and D2 from Cg with bias to worst fCg,Samplein ;

Remove D1 and D2 from Cg;

λ = λ +2;

end if
end while
Set Bg =Cg,n where Cg,n has the largest fCg,Samplein

if fBg,Samplein > fB,Samplein then
Evaluate the f of Bg using Samplesel ;

if fBg,Samplesel > fB,Samplesel then
B = Bg;

end if
end if

end while
return B as the solution;

Mutation

Crossover
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The initial population of the GP was created stochastically. The population consisted of µ individ-

uals. An individual represented a trading rule encoded as a parse tree. The trading rule was initialised

stochastically to a maximum configured initialisation tree depth of three.

Three continuous samples were drawn from a dataset. The first sample represents the evolution

sample referred to as Samplein. The fitness values of the individuals within the population were quan-

tified by a fitness function over Samplein. The quantified fitness value was used by a selection operator

to determine which individuals were selected for crossover, mutation, and removal for the current gen-

eration. An empirical analysis of three different fitness functions showed that the Allen and Karjalainen

fitness function (AK) was the preferred fitness function for this study.

The second sample represents a selection validation sample and is referred to as Samplesel . As dis-

cussed in Chapter 3, GAs are prone to over-fitting the data. To minimise over-fitting, the best individual

within a generation (Bg) was compared to the global best individual (B). If the Samplein fitness of Bg

was greater than the Samplein fitness of B and the Samplesel fitness of Bg was greater than the Samplesel

of B, then Bg became the new global best B.

The third sample represents an out-of-sample dataset and is referred to as Sampleout . Sampleout

was not used during the evolutionary process, but Sampleout was used to test the generalisation of the

evolved solution on unseen data.

A steady state population model was implemented allowing for stronger individuals to survive many

generations. During a generation, a probability factor determined if mutation was performed. Parameter

sensitivity analysis determined that a static mutation probability factor of 35% was preferred for this

thesis. Allen and Karjalainen [43] used a static mutation probability and a low number of generations.

Further work is required to determine if a dynamic mutation probability that decreases over time results

in better trading rules than a static mutation probability.

Mutation used a rank selection biased towards the worst individuals within the population. An

empirical analysis of various selection operators showed that rank selection was the preferred selection

operator.

Allen and Karjalainen [43] used headless-chicken mutation [43, 145] to mutate an individual. Head-

less chicken, while very simple in concept, is computationally more expensive than updating a single

node. For example, suppose a terminal node is mutated, headless-chicken requires that an entire indi-

vidual is initialised and then crossed over with the selected parent. In this case only one node is altered.

It is computationally more efficient to alter the terminal node than growing an entire new tree to swap

one node. For this reason two types of mutation were implemented, namely grow mutation and prune

mutation.
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Each mutation type was executed with equal probability. Prune mutation replaced a randomly

selected node with a syntactically correct terminal node. Grow mutation replaced a randomly selected

node with a new stochastically generated syntactically correct sub-tree.

Once mutation was completed, the new offspring was evaluated using a fitness function across the

Samplein dataset. The new mutated individual was added to the population. An individual was then

removed from the population using rank selection biased towards the worst individual. The offspring

count λ was incremented by 1.

If mutation did not occur, two individuals were selected as parents and underwent crossover to form

two new offspring. Rank selection biased towards the best individuals within the population selected

two parents from the population to undergo crossover. Crossover randomly selected a node within the

first parent, and randomly selected a node from the second parent where the selected node was gram-

matically valid. If no grammatically correct node was found, a node within the second parent was

randomly selected and matched to a grammatically correct node in the first parent. If no grammati-

cally valid nodes were found, the parents were discarded and two new parents were sampled from the

population.

If a node from the first parent was a grammatically valid replacement for a node within the second

parent, the nodes were swapped to form two new offspring. The new offspring were quantified using a

fitness function over the Samplein dataset. The new offspring were added to the population. Rank se-

lection sampled two individuals from the population with a bias towards the worst individuals. The two

selected individuals were then removed from the population. The offspring count λ was incremented

by 2.

The processes of crossover and mutation were repeated until the total number of generated offspring

λ was equal to or greater than the configured population size µ . Because individuals were removed

during crossover and mutation, the size of the population remained constant.

Once crossover and mutation have completed, the global best individual (B) was compared to the

current generation’s best (Bg) to determine a new global best individual. The fitness values obtained by

the trading rules over both the Samplein and Samplesel datasets were compared. The current genera-

tion’s best individual would only become the global best if its fitness was greater than the global best

over both the samples. The generation counter was incremented and the process was repeated until the

maximum number of generations had elapsed.

At the end of evolution the global best individual was returned as the evolved trading rule.
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5.2 Datasets

The datasets used in this thesis were sourced from Sharenet. Sharenet is a market statistics company

based in Cape Town, South Africa. The data contained eleven shares from a variety of market sectors;

including mining, resources, consumer goods and services, industrials, banking, and insurance. The

stocks are listed in Table 5.2 and cover the period April 2003 to June 2008. The start date is referred to

as day 0. Trading days exclude weekends and public holidays. Simulations reference the share code,

which is the code used by the JSE.

The stock market dataset spans 13̇50 days. In addition to company shares, the data includes the

All Share Index 40 (ALSI40) market index. The ALSI40 index constitutes the 40 largest companies by

market capitalisation across all sectors listed on the JSE. In addition to the datasets listed in Table 5.2,

fictitious datasets known as inverted shares were created by reversing the share price of Nedbank,

Remgro and Standard Bank. To reverse the dataset, a new list of inverted prices were generated where

the inverted price on day 0 corresponded to the original price data on day 13̇50. The inverted price on

day 1 corresponded to the original price on day 12̇49. The inverted price on day 2 equalled the original

price on day 12̇48, and so on.

Each share dataset was divided into three continuous samples. The first sample, Samplein, was used

to drive the rule generation process. Samplein spans 2 years of trading days from day 0 to day 500. The

selection validation sample Samplesel , was used compare the performance of the best individual within

a generation to the global best individual to determine the new global best. Samplesel spans a year

of trading days from day 500 to 750. The out-of-sample, Sampleout , dataset is used to determine the

performance of the trading rule against unseen data. Sampleout spans 2 years of trading days from day

750 to 1250. Figure 5.1 plots the daily closing price of each share presented in Table 5.2 as well as the

market trend across the three samples.

Appendix A provides a market overview covering each of the shares presented in Table 5.2.

Table 5.2: The share data used in simulations.

Code Short Name Long Name JSE Sector (Sector Code) Start End

AGL Anglo Anglo American Plc Metals & Minerals (1775) 2003-04-03 2008-06-18

ALSI All Share Index JSE All Share Index (Top 40) Exchange Traded Fund 2003-04-04 2008-06-19

BIL Billiton Bhp Billiton Plc Metals & Minerals (1775) 2003-04-05 2008-06-20

GFI Gfields Gold Fields Limited Gold Mining (1777) 2003-04-06 2008-06-21

IMP Implats Impala Platinum Holdings Limited Platinum (1779) 2003-04-07 2008-06-22

LON Lonmin Lonmin Plc Platinum (1779) 2003-04-08 2008-06-23

NED Nedcor Nedbank Group Ltd Banks (8355) 2003-04-09 2008-06-24

RCH Richemont Richemont Securities AG Clothing & Footware (3763) 2003-04-10 2008-06-25

REM Remgro Remgro Limited Diversified Industrials (2727) 2003-04-11 2008-06-26

SAB Sabmiller Sabmiller Plc Beverages - Brewers (3533) 2003-04-12 2008-06-27

SBK Stanbank Standard Bank Group Limited Banks (8355) 2003-04-13 2008-06-28

SOL Sasol Sasol Limited Oil - Integrated (0537) 2003-04-14 2008-06-29
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(a) AGL

(b) ALSI

(c) BIL

(d) GFI

Figure 5.1: Share data used for the trading rule evaluation. Each graph shows the opening share price in cents,

the average trend line per data sample, and the sample composition.
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(e) IMP

(f) INV-NED

(g) INV-REM

(h) INV-SBK

Figure 5.1: Share data used for the trading rule evaluation. Each graph shows the opening share price in cents,

the average trend line per data sample, and the sample composition (cont.).
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(i) LON

(j) NED

(k) RCH

(l) REM

Figure 5.1: Share data used for the trading rule evaluation. Each graph shows the opening share price in cents,

the average trend line per data sample, and the sample composition (cont.).
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(m) SAB

(n) SBK

(o) SOL

Figure 5.1: Share data used for the trading rule evaluation. Each graph shows the opening share price in cents,

the average trend line per data sample, and the sample composition (cont.).
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5.2.1 Empirical Process

A GP is stochastic, meaning that each sequential run of a GP yields a random result from a probable

distribution of results. To compare the performance of one GP configuration to another, an empirical

process is required. An empirical process is a stochastic process based on the central limit theorem

[70]. The central limit theorem states that, as the sample size increases without limit, the shape of the

distribution of the sample means approaches a normal distribution. This is generally true regardless of

whether the source results are normally distributed or skewed, provided that the sample is sufficiently

large [40].

The evolutionary process drives a GP towards an optimal solution. Therefore, GP results are not

normally distributed within the solution space, but rather skewed towards a set of solutions within the

solution space. To ensure that the central limit theorem holds, a sufficiently large sample, usually greater

or equal to 30, is required [70]. A large data sample ensures that there is enough data to distinguish

the normal distribution from the outliers, providing a reasonable degree of confidence that the data are

consistent with the distribution.

A sample was the result of a simulation run. A simulation was a fixed configuration of a GP. A

simulation was repeated 30 times, from different initial conditions, recording the results as individual

samples. The simulation was repeated for all share datasets independently.

Each configuration of a simulation was intended to test the effect the configuration had on the

outcome of the simulation. However, each run of the simulation requires an initial set of randomly

generated individuals. Naturally, if two GPs are initialised with two different populations of individuals,

the outcome could be different. Furthermore, each decision such as whether to implement mutation or

crossover depends on a random probability that affects the outcome of the simulation. To minimise the

effect randomness had in comparing various simulations a fixed set of random seeds were used.

The random seed ensures that the GP returns the same result no matter how may times it is run. The

random seed ensures that the GP is initialised with the same initial population. This means that if two

GPs are run with the same random seed but a different configuration, then the result of the run is due

to the configuration change and not the initial population. Thirty random seeds were generated, one for

each simulation run and used across all simulations.

To compare the results of two or more different simulations the null-hypothesis was assumed [70].

The null-hypothesis assumes that the results of various simulations are the same, and that no further

investigation is required unless the results are significantly different. A statistical test was performed

on the results to determine if two of more simulation results rejected the null-hypothesis.

The most common statistical tests used to test the validity of the null-hypothesis are t-tests and
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Wilcoxon signed rank tests [70, 96, 122]. These tests are not adequate when comparing more than

two different result sets due to the multiplicity effect [128, 186]. Experiments in EAs have shown that

the results do not fulfil the requirements for parametric testing such as t-tests [128, 195]. Therefore, a

common non-parametric statistical test known as a Krushkal-Wallis test is used to test the validity of

the null-hypothesis across more than two result sets.

The Krushkal-Wallis test is a non-parametric method based on a one-way analysis of variance

(ANOVA) between the sample ranks. The Krushkal-Wallis test indicates if at least one sample is

stochastically different from the other samples. The Krushkal-Wallis test does not show which samples

are different [128]. If the Krushkal-Wallis test rejects the null-hypothesis, a post-hoc test is required to

determine which result set fails the null-hypothesis [96, 128].

Post-hoc analysis performs a pairwise comparison of sample results to determine which sample

results are different from one another. Traditionally, Wilcoxon signed rank tests are used for post-hoc

analysis [70, 96, 122, 128].

The statistical tests return a value known as a p-value. The p-value is a number between 0 and 1

denoting the probability that the null-hypothesis is valid. A p-value of less than 0.05 indicates a strong

possibility that the null-hypothesis is incorrect and that the samples are not the same.

Demšar [96] noted that ANOVA is based on assumptions which are most probably violated when

testing the results of EAs. ANOVA assumes the samples are drawn from normal distributions. Demšar

pointed out that there is no guarantee for normality of accuracy across a set of algorithms or various

configurations of algorithms. The second more important assumption of ANOVA is that the random

variables such as parameters and the initialised population have equal variance, which, as Demšar noted,

can not be taken for granted [96].

Demšar [96] proposed that the Friedman test be used for pairwise comparison, and that the Iman

and Davenport extension [142] to the Friedman statistical test be used for multiple results comparison

in place of a one-way ANOVA.

If the null-hypothesis is rejected, Demšar proposed the Nemenyi test as a post-hoc pairwise test [96].

The Nemenyi test produces a critical difference value which is easily displayed graphically as a critical

difference plot. An example of a critical difference plot is presented in Figure 5.2. The top line in the

figure represents the average ranks. The lowest or best ranks are on the right. The critical difference is

displayed above the graph. Algorithms similar to the control are within the critical difference marking.

Similar algorithms are plotted to the left and the right of the control. Groups that are not significantly

different are connected by a line. If there is no control sample, the sample with the highest mean is used

as a control.



Chapter 5. Genetic Program For Trading Rules 85

Figure 5.2: Critical difference plot illustration.

Figure 5.2 shows no significant difference was found between Competitive and Standard and that

CoOperative is significantly different from both Competitive and Standard.

Garcı́a et al. [122, 123, 124] discussed the advances in non-parametric testing and present correc-

tions and extensions that improve the results obtained by the Friedman test when comparing multiple

results. Garcı́a et al. proposed that the Iman and Davenport extension is used instead of the standard

Friedman test [122, 123, 124] for multiple comparisons.

The probability of rejecting the null-hypothesis increases as more samples are compared. The p-

value is adjusted to compensate for this probability. A number of correction procedures exist including

Holm [140], Holland [134], Hochberg [133], Rom [183], and Bonferroni-Dunn [99] to name a few

[122, 123, 124]. Garcı́a et al. recommended that Finner’s [108] correction is performed on the result of

Iman and Davenport test [142].

The empirical study conducted in this thesis used the Iman and Davenport test [142] with Finner’s

correction [108] to determine if the null-hypothesis was rejected. The null-hypothesis assumed that

all the sample results are the same. A confidence level of 95% was used to reject the null-hypothesis.

If the null-hypothesis was rejected post-hoc analysis was performed to find which samples failed the

null-hypothesis.

Two kinds of post-hoc analysis were performed. The first was a Friedman test as suggested by

Demšar [96] and Garcı́a et al. [122, 123, 124], and the second was the Nemenyi test to generate critical

difference plots. The Friedman test returns a p-value indicating the probability of the null-hypothesis

being valid, while the critical difference plot provides a visual representation of result groups.

The empirical analysis was performed using the statistical comparison of multiple algorithms in

multiple problems [78] library for R (a statistical programming language).

Experiments ran different simulations that were configured to use different fitness functions. To

ensure that experiments were compared fairly, the profit returned at the end of trading was used to
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quantify the performance of a simulation. Profit was calculated as:

Pro f it =

[
T

∑
t=1

(Pricet − sc)× Is(t)

]
−

[
T

∑
t=1

(Pricet +bc)× Ib(t)

]
where Ib(t) and Is(t) are equal to one if a trading rule signals a buy and sell, respectively, and zero

otherwise; sc represents the selling cost and bc the buying cost.

Chatper 4 discussed the effects that transactional costs have on trading. The greater the costs, the

less profitable the trader’s are. Because costs are generally proportional to the volume traded, trading

costs were ignored for optimisation.

The final set of simulations were performed with cost and the trade of 10̇00 shares. The mean profit

was calculated as the mean of the profit returned by the best individual from each run of the simulation.

The mean standard deviation of profit (σ ) was calculated as:

σ =
√

1
N−1 ∑

N
i=1(xi− x)2

where x1,x2, . . . ,xN are the observed values of the sample items (i.e. profit with or without cost), x is

the mean value of these observations, and N is the number of observations in the sample. The lower the

σ the similar the trading rules.

5.3 Selection Strategy Sensitivity Analysis

Various selection strategies have been presented. Allen and Karjalainen [43] used rank selection to sam-

ple individuals for mutation, parental selection, and survivor selection. The empirical results discussed

in Subsection 5.3.2 confirmed that rank selection was the preferred selection strategy.

Various selection strategies were compared using the empirical process defined in Section 5.2.1 to

determine the most adequate selection strategy. The selection strategies compared were tournament

selection, roulette wheel selection, elitist selection, and SUS [103].

Tournament selection requires a sample size. The smaller the sample the size, the more random the

sampling, while the greater the sample size, the more biased the sampling is towards the best performing

individuals within the population. A set of simulations were run comparing the results returned by

the trading rules evolved using various tournament selection sample sizes, to determine the preferred

sample size of 20%. The results are discussed in Subsection 5.3.1.

The results of trading rules evolved using tournament selection with a sample size of 20% was then

compared to the other the results of trading rules evolved using other selection strategies to confirm

that rank selection was the preferred selection operator. To compare the various selection strategies a
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base GP configuration was required. The GP parameters of Allen and Karjalainen [43] were used as

presented in Table 5.3. No transaction fees were used, and the number of shares bought and sold were

limited to one.

Table 5.3: GP parameter configuration for selection strategy evaluation, based on the parameters used

by Allen and Karjalainen [43].

Parameter Value

Number of individuals 500

Number of generations 50

Maximum tree depth 10

Maximum number of tree nodes 100

Mutation probability 30%

Fitness Function Allen and Karjalainen

5.3.1 Tournament Selection

Tournament selection requires a sample size as a parameter. The sample size can be a fixed value

or a percentage of the population size. To determine the preferred sample size, a percentage of the

population was used. Ten different GP simulations were run each with a different sample size. All the

simulations were configured using the same configuration presented in Table 5.3.

An initial sample size of 10% was used, incrementing it by 10 to 100% for a total of ten simulations.

The simulations are named Tour10, Tour20, Tour30, . . . , Tour100, where the number refers to the

percentage of the population used for tournament sampling.

Each simulation recorded the best individual’s Sampleout profit. The mean of the 30 runs for each

simulation across each share dataset is presented in Table 5.4. The bold values represent the highest

mean profit, while the italic values represent the lowest mean profit. Profit after trading is presented in

cents.

At first glance, it appears that a tournament sample size of 50% or 90% is preferred as they resulted

in the best Sampleout mean profit.

Table 5.5 compares the Sampleout mean profit deviation. The deviation (σ ) represents the level

of convergence between the individuals. The lower σ , the more the individuals have converged on a

solution that returns a similar profit. The σ for Tour50 and Tour90 was too large, therefore not robust.

Because Tour20 had the next best mean profit and a low σ , a tournament selection sample size of 20%

was preferred.

To determine if Tour20 results were significantly different from the other tournament selection

results, the null-hypothesis was assumed, declaring that all the results were not significantly different.
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To test if the null-hypothesis was valid, the Iman and Davenport extension of the Friedman test with

Finner’s [108] correction was run [142] across the sample results. The p-values of the statistical test are

presented in Table 5.6

The statistical results show that, after correction, none of the Sampleout results were found to be sig-

nificantly different. A significant difference was found in the Samplesel results when trading Richmond

Securities AG (RCH) and SABMiller Plc (SAB).

Based on the Sampleout results, it is not feasible to continue with a post-hoc analysis. However,

because the p-values calculated from the Nedcor Ltd (NED) simulations show a significant difference

before correction on the Sampleout dataset, and the p-values of the RCH and SAB simulations show a

significant difference before correction on the Samplesel dataset, post-hoc analysis was performed.

The Friedman [96] pairwise test was preformed on the significantly different results and is presented

in Figure 5.3. The p-values for the RCH results indicate a significant difference between a Tour100 and

the rest of the sample sizes. A significant difference was found between Tour80 SAB Samplesel results

and Tour40 SAB Samplesel results. In most cases, the null-hypothesis was valid, and any tournament

sample size would have been sufficient. However, a sample size still needed to be selected.

A win-loss ranking (win-loss) was performed to determine the overall performance of the individu-

als within a population. The profit from each best individual across each simulation run was compared

to the profit of all the best individuals from all the other simulations. A simulation was awarded a point

for each individual that returned a greater profit than another individual from a different simulation with

the same share dataset. A simulation was deducted a point each time an individual had a profit less than

an individual from another simulation with the same share dataset. For each share that the total wins

were greater than the losses for a specific share, the rank was incremented.

The win-loss table shows the number of times that the best individuals outperformed the best indi-

viduals from another simulation. The win-loss table also shows in brackets the number of times the win

count was greater than the loss count for a specific share and simulation run.

A win-loss ranking presented in Table 5.7 shows that tournament sample sizes of 10% and 20%

resulted in trading rules that out-performed all the other trading rules across all three Samples, and

that a sample size of 20% evolved better performing trading rules than trading rules evolved using a

tournament selection sample size of 10%. It is for this reason that a tournament sample size of 20%

was used during the selection strategy comparison that follows.



Chapter 5. Genetic Program For Trading Rules 89

Table 5.4: Mean Sampleout profit per share analysis.

Share Code Tour10 Tour20 Tour30 Tour40 Tour50 Tour60 Tour70 Tour80 Tour90 Tour100

agl 25438.23 25768.77 26249.50 25991.00 24864.17 25991.00 25745.90 25246.70 25219.47 25855.07

alsi 9301.07 9272.70 9361.70 9357.37 9232.77 9403.10 9238.70 9278.37 9452.93 9287.17

bil 13728.30 14491.07 12507.50 13329.13 15280.87 13929.90 14987.33 13481.30 14583.57 14500.23

gfi -253.13 144.50 -1074.10 216.10 -1776.40 -749.57 -313.93 -543.57 223.97 -708.97

imp 16612.00 16612.00 16612.00 16612.00 16612.00 16612.00 16612.00 16601.23 16612.00 16609.67

inv-ned 12233.53 11996.37 11938.90 11589.93 12249.00 12025.03 11817.83 11962.83 11869.37 11890.20

inv-rem 3461.60 4247.60 3465.47 4521.40 3318.33 3706.43 3768.40 3141.20 3413.10 3465.77

inv-sbk 5093.07 4767.13 5268.83 5018.37 5085.00 5203.30 5041.00 4833.00 5594.97 5418.10

lon 20239.87 19221.90 16209.37 20225.73 20227.17 19067.87 16698.50 16506.40 22319.00 19320.93

ned -1892.90 -1104.80 -961.03 -2313.00 -661.27 -2015.07 -2281.00 -1880.97 -2285.73 -1790.40

rch 2190.60 2161.60 2208.57 2192.00 2183.57 2236.03 2156.80 2164.80 2176.17 2024.87

rem 9819.00 9832.40 9835.10 9832.20 9846.27 9843.57 9774.50 9802.77 9798.63 9595.00

sab 5365.33 5439.07 5314.60 5088.80 5422.43 5241.53 5698.17 5112.23 5607.97 5461.37

sbk 1623.17 1606.17 1653.27 1548.20 1544.60 1663.37 1549.03 1556.97 1618.97 1597.13

sol 14849.53 12926.00 13500.70 14614.67 14004.13 12133.67 12459.73 12970.87 13849.60 12082.00

Note: bold represents the highest value, and italic the lowest value.

Table 5.5: Mean Sampleout profit σ analysis.

Share Code Tour10 Tour20 Tour30 Tour40 Tour50 Tour60 Tour70 Tour80 Tour90 Tour100

agl 1042.91 429.65 499.77 0.00 2103.42 0.00 865.32 1438.98 1491.63 262.80

alsi 677.78 492.23 325.77 381.79 355.95 316.47 552.60 450.75 282.84 354.84

bil 3444.07 2250.78 3775.63 3361.45 1549.90 2970.73 2286.38 3080.06 2585.24 2213.34

gfi 2194.79 2203.90 2525.96 2299.78 2083.65 1855.00 2395.67 1664.90 2755.69 2171.03

imp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.82 0.00 4.51

inv-ned 695.01 1082.50 1059.09 1348.23 894.13 925.82 1187.79 1282.58 1113.47 1075.25

inv-rem 2427.25 2060.71 2453.10 1074.36 2266.36 2164.28 2074.47 2384.79 2117.34 2458.88

inv-sbk 1145.44 1371.16 600.78 1212.38 1187.73 1006.47 1085.00 1266.07 615.98 610.13

lon 4251.12 5621.37 7294.49 5784.84 4900.71 6189.79 7733.17 7420.85 5083.07 5746.61

ned 2260.85 1662.28 2290.90 2279.00 1982.10 2177.60 1767.67 1735.63 2298.33 1922.40

rch 202.67 214.31 162.66 182.60 182.10 192.48 196.72 190.15 200.38 259.01

rem 0.00 25.91 31.13 25.92 55.36 47.50 87.70 147.44 214.28 396.40

sab 758.11 754.10 578.35 832.25 429.37 530.32 313.13 729.56 772.22 424.55

sbk 227.90 178.84 224.82 225.57 211.68 175.51 238.05 176.88 151.82 277.85

sol 3354.24 5961.40 5454.83 3013.07 4403.26 6244.76 6849.46 5399.15 3498.16 6086.60

Note: bold represents the lowest value or more preferred σ , and italic the highest or least preferred σ .
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Table 5.6: p-value results using Iman and Davenport test with Finner’s correction.

Samplein Samplesel Sampleout

Share Code P-Value Corrected P-Value Corrected P-Value Corrected
P-Value P-Value P-Value

agl 0.995212 0.997181 0.977789 0.987635 0.999948 0.999974

alsi 0.958453 0.995016 0.165154 0.594462 0.323347 0.858150

bil 0.552850 0.993638 0.466016 0.847741 0.503300 0.858150

gfi 0.904743 0.993638 0.208242 0.594462 0.365972 0.858150

imp 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

inv-ned 0.631749 0.993638 0.871336 0.956562 0.801395 0.946880

inv-rem 0.722276 0.993638 0.755475 0.928697 0.791003 0.946880

inv-sbk 0.973805 0.995703 0.847693 0.956562 0.398486 0.858150

lon 0.851801 0.993638 0.506021 0.847741 0.075282 0.457946

ned 0.693556 0.993638 0.670151 0.907142 0.040004 0.457946

rch 0.490500 0.993638 0.000001 0.000012 0.840278 0.946880

rem 0.985376 0.995703 0.968617 0.986791 0.991544 0.995942

sab 0.281567 0.992989 0.044250 0.287833 0.707602 0.928277

sbk 0.973569 0.995703 0.998751 0.999225 0.985131 0.994808

sol 0.993833 0.997181 0.863695 0.956562 0.924223 0.970345

Note: bold values represent a significant difference.

Table 5.7: Win-loss ranking.

Simulation Samplein Samplesel Sampleout Average

Tour10 4701(66) 4417(67) 2048(69) 3722(67.333)

Tour20 1084(71) 1501(79) 4851(66) 2478.667(72)

Tour30 3066(64) -2285(91) -1072(74) -97(76.333)

Tour70 1280(69) -1117(79) -1180(83) -339(77)

Tour90 -987(86) 1601(78) 5001(67) 1871.667(77)

Tour50 -999(82) -755(81) 2829(69) 358.333(77.333)

Tour60 -1637(95) -535(78) 1207(63) -321.667(78.667)

Tour40 -5208(111) 7072(65) 53(80) 639(85.333)

Tour100 -2655(80) -4681(75) -4985(101) -4107(85.333)

Tour80 1355(71) -5218(102) -8752(124) -4205(99)
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(a) Samplesel RCH (b) Samplesel SAB

(c) Sampleout NED

Figure 5.3: Friedman pairwise comparison of p-values.

5.3.2 Selection Strategy Comparison

A number of selection strategies exist. Four of the most popular selection strategies were compared

to determine if the rank selection used by Allen and Karjalainen [43] was preferred. The selection

strategies compared were tournament selection with a 20% sample size, roulette wheel selection, elitist

selection, and SUS [103].

A simulation was setup for each of the selection strategies. Each simulation was run independently

for each share presented in Table 5.2. The average profit obtained by the best trading rules from each

simulation was recorded and is presented in Table 5.8. The mean profit results show that Tour20 ob-

tained the highest mean profit in 6 of the 15 shares, followed by roulette wheel selection and SUS

obtaining the highest mean profits across 4 of the shares traded. The worst performing simulations
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returning the lowest profit were configured with elitism selection.

The results of the simulations were compared using the empirical process described in Section 5.2.1

to determine which of the selection strategies was best suited for this study. The Iman and Davenport

[142] statistical test was applied to the simulation results to determine if the results were significantly

different. Table 5.10 shows the p-values returned by the Iman and Davenport. The p-values show a high

confidence that a significant difference exists between the Sampleout results returned by the trading rules

evolved using the BHP Billiton Plc (BIL), Inverted Remgro Ltd (INVREM), and NED datasets.

Post-hoc analysis was done comparing the significantly different results. The Friedman pairwise

results presented in Figure 5.4 show a significant difference between the results returned by the trading

rules evolved using elitism selection and the trading rules of the rest of the selection operators. The crit-

ical difference plots presented in Figure 5.5 show that the results returned by the trading rules evolved

using elitism selection were critically different from the results returned by the other selection strate-

gies. Based on the poor performance of the trading rules evolved with elitism selection as presented in

Table 5.8 and the post-hoc results, elitism selection was excluded from any further analysis.

The Friedman p-values failed to find a significant difference between the results returned by traders

evolved with tournament selection, rank selection, roulette wheel selection and SUS. The critical differ-

ence plot in Figure 5.5g shows that the trading rules evolved using Tour20 for the BIL dataset produced

critically different Sampleout results compared to the trading rules evolved using SUS and roulette

wheel selection. Table 5.8 shows that the trading rules evolved using Tour20 resulted in a greater av-

erage Sampleout profit than those trading rules using SUS and roulette wheel selection. Because no

significant difference and no critical difference was found between the results returned by the trading

rules evolved using Tour20, and the results returned by the trading rules evolved using rank selection,

both rank selection and Tour20 are the preferred selection strategies when evolving trading rules for the

BIL dataset.

Figure 5.5i shows that a critical difference exists between the results returned by that trading rules

evolved using SUS and the results of the trading rules for the rest of the selection operators for the NED

dataset. Because trading rules evolved with SUS returned the lowest average Sampleout NED profit as

presented in Table 5.8, SUS is the least preferred selection strategy when evolving trading rules for the

NED dataset.

The results presented show that Tour20 and rank selection are the most preferred selection strategies,

because no significant difference or critical difference was found between the results returned by the

trading rules evolved using Tour20 and rank selection. Tour20 and rank selection simulations together

resulted in the highest mean Sampleout profit as shown in Table 5.8.
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The win-loss results presented in Table 5.9 show that rank selection evolved trading rules that

out-performed other trading rules consistently across all the Samples. The win-loss results also show

that rank selection resulted in trading rules that on average out-performed trading rules evolved us-

ing Tour20. Therefore, based on these observations, and that Allen and Karjalainen [43] used rank

selection, rank selection remains the preferred selection strategy for the purposes of this study.

Table 5.8: Mean Sampleout profit per share analysis.

Share Code Tour20 Elitism Rank Roulette SUS

agl 25768.77 25991.00 25258.77 25246.70 25901.27

alsi 9272.70 9376.33 9400.57 9263.63 9097.17

bil 14491.07 13703.50 14327.53 10601.17 11655.03

gfi 144.50 -1246.73 -1260.00 79.67 -432.90

imp 16612.00 16612.00 16612.00 16612.00 16612.00
inv-ned 11996.37 11646.50 12891.57 12414.73 12015.13

inv-rem 4247.60 3252.00 5315.40 5588.80 5817.63
inv-sbk 4767.13 5097.23 5465.23 5590.57 5454.63

lon 19221.90 18639.13 18202.93 19158.03 18539.13

ned -1104.80 -1889.40 -2399.90 -1802.83 -3155.03

rch 2161.60 2089.63 2188.17 2225.33 2261.57
rem 9832.40 9819.00 9819.00 9848.50 9838.50

sab 5439.07 5308.10 5160.70 5456.87 5516.80
sbk 1606.17 1533.23 1555.27 1382.17 1439.73

sol 12926.00 10300.30 14196.20 14772.27 14290.93

Note: bold represents the highest value, and italic the lowest value.

Table 5.9: Win-loss ranking.

Simulation Samplein Samplesel Sampleout Average

Roulette -825(46) 6007(28) 516(38) 1899.333(37.333)

SUS -633(44) 4082(34) 384(37) 1277.667(38.333)

Rank 1416(36) 2548(35) 907(50) 1623.667(40.333)

Tour20 2811(35) -2965(55) 1914(36) 586.667(42)

Elitism -2769(52) -9672(61) -3721(53) -5387.333(55.333)
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Table 5.10: P-value results using Iman and Davenport test with Finner’s correction.

Samplein Samplesel Sampleout

Share Code P-Value Corrected P-Value Corrected P-Value Corrected
P-Value P-Value P-Value

agl 0.996869 0.997926 0.968058 0.986496 0.996869 0.997926

alsi 0.273701 0.558096 0.013071 0.063669 0.816455 0.900914

bil 0.260592 0.558096 0.137509 0.271664 0.001424 0.010631
gfi 0.061243 0.331357 0.043859 0.125890 0.261235 0.433174

imp 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

inv-ned 0.180946 0.526934 0.062665 0.149377 0.114719 0.306185

inv-rem 0.000613 0.009157 0.005069 0.037397 0.000664 0.009917
inv-sbk 0.838586 0.916839 0.533236 0.681106 0.298664 0.446383

lon 0.386357 0.599740 0.826999 0.908594 0.986727 0.995495

ned 0.577753 0.762347 0.297231 0.444495 0.009361 0.045937
rch 0.052253 0.331357 0.000000 0.000000 0.136042 0.306204

rem 0.993990 0.997264 0.993990 0.995829 0.993655 0.997087

sab 0.972063 0.988579 0.991079 0.995684 0.479425 0.624401

sbk 0.597220 0.762347 0.029020 0.104557 0.179075 0.344813

sol 0.238314 0.558096 0.241309 0.404171 0.057819 0.200159

Note: bold values represent a significant difference.

(a) Samplein REM (b) Samplesel ALSI

Figure 5.4: Friedman pairwise comparison of p-values for results.
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(c) Samplesel GFI (d) Samplesel REM

(e) Samplesel RCH (f) Samplesel SBK

(g) Sampleout BIL (h) Sampleout INV-REM

Figure 5.4: Friedman pairwise comparison of p-values for results (Cont.).
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(i) Sampleout NED

Figure 5.4: Friedman pairwise comparison of p-values for results (Cont.).

(a) Samplein REM (b) Samplesel ALSI

(c) Samplesel GFI (d) Samplesel REM

(e) Samplesel RCH (f) Samplesel SBK

Figure 5.5: Critical difference plots for results.
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(g) Sampleout BIL (h) Sampleout INV-REM

(i) Sampleout NED

Figure 5.5: Critical difference plots for results (Cont.).

Table 5.11: Standard deviation of Sampleout profit per share analysis.

Share Code Tour20 Elitism Rank Roulette SUS

agl 429.65 0.00 1366.84 1438.98 173.48

alsi 492.23 243.64 587.77 352.31 709.92

bil 2250.78 3313.30 2434.89 4563.56 3132.42

gfi 2203.90 2178.27 2440.20 2381.93 1479.91
imp 0.00 0.00 0.00 0.00 0.00
inv-ned 1082.50 1520.60 614.99 717.24 1137.67

inv-rem 2060.71 2352.13 2083.13 1420.25 2125.70

inv-sbk 1371.16 1071.26 978.17 823.36 855.74

lon 5621.37 4301.88 5970.22 6287.76 5761.31

ned 1662.28 2220.73 2235.23 2398.69 1933.17

rch 214.31 190.31 163.68 170.82 138.16
rem 25.91 0.00 0.00 55.07 37.70

sab 754.10 558.17 635.53 339.99 447.05

sbk 178.84 233.41 205.99 355.38 489.47

sol 5961.40 7137.87 3791.01 4456.72 3689.58

Note: bold represents the lowest value or more preferred σ , and italic the highest or least preferred σ .

5.4 Fitness Function Analysis

A fitness function quantifies the performance of a solution. Each individual within the population

represents a solution, in this case a trading rule.

A trading rule’s primary objective is to determine when to buy, sell or hold a position to maximise
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profit. This simple objective can be quantified by the total gain or loss when trading a given share.

Return on investment (ROI) is a measure of return. ROI was used by Lam [154] as a fitness function

and presented here as the profit fitness function. The ROI rewards a trading rule when it is profitable at

the end of trading.

The second objective of a trading rule is profit consistency. A trading rule should at any point within

the trading period be profitable. The ROI measures the difference between the initial investment and the

final asset value at the end of the trading period. ROI does not measure the average investment return

obtained during trading. Schoreels et al. [190] introduced accumulated (average) asset value (AAV) as

the average daily ROI. The AAV is the second fitness function presented here as avgProfit. The AAV

rewards a trading rule when it is consistently profitable over the course of trading.

The third objective of a trading rule is to be in the market when the market is trending up, and out

of the market when the market is trending down. Furthermore, buying shares early on and returning

a profit result in compounded capital gains, while buying shares and returning a loss result in com-

pounded capital losses. Allen and Karjalainen [43] implemented a fitness function (AK) that measures

the compounded excess return over the buy-and-hold strategy presented here as ak. AK rewards a trad-

ing rule when the rule has stock and the shares are moving up, or if the trading rule does not have stock

and the shares are moving down.

Three simulations were run to determine which of the three fitness functions was preferred. The

empirical process described in Section 5.2.1 was followed. The configuration presented in Table 5.3

was used with the selection strategy set to rank selection, and the fitness function defined as one of the

three fitness functions: ak, avgProfit, or profit. The simulations were run independently across the share

data defined in Table 5.2

Table 5.12 shows that the profit fitness function evolved trading rules that resulted in the highest

mean profit in 8 of the 15 shares. The ak fitness function evolved trading rules that returned the highest

mean profit for 6 of the 15 shares. The mean profit results clearly show that avgProfit evolved the worst

performing trading rules.

A statistical comparison of the results presented in Table 5.14 found a significant difference between

the Sampleout results obtained for the BIL, INVREM, and NED datasets.

A post-hoc analysis was performed for those Samples that showed a significant difference. The

p-value results are presented in Figure 5.6. A significant difference between ak and profit results was

found when trading Gold Fields Ltd (GFI). A significant difference between avgProfit and profit results

was found when trading BIL and Lonmin (LON).

Figure 5.7 confirms the significant difference between the results obtained by the trading rules
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evolved using the ak and profit fitness functions when trading GFI. The critical difference plots also

show that the results from the avgProfit simulation was significantly different from the results returned

in the profit and ak simulations when trading Inverted Nedcor Ltd (INVNED) and LON.

The win-loss results presented in Table 5.13 show that the trading rules evolved using the ak fitness

function performed consistently better than the trading rules evolved using avgProfit and profit when

trading shares using the Samplein and Sampleout datasets. Although ak resulted in the least Samplesel

win-loss score, its overall average was still greater than avgProfit and profit. It is for these reasons that

ak was used for the purposes of this study.

Table 5.12: Mean Sampleout profit per share without fees.

Share Code AK AvgProfit Profit

agl 25258.77 23849.50 25294.30
alsi 9400.57 9120.37 9301.53

bil 14327.53 14028.07 12058.30

gfi -1260.00 -1905.53 -2696.00

imp 16612.00 16168.43 16612.00
inv-ned 12891.57 11694.53 12705.50

inv-rem 5315.40 4206.37 5027.93

inv-sbk 5465.23 4810.83 5514.00
lon 18202.93 10723.07 21960.50
ned -2399.90 -1588.63 -1584.57
rch 2188.17 2159.83 2227.77
rem 9819.00 9618.50 9820.17
sab 5160.70 5571.83 5412.37

sbk 1555.27 1355.80 1613.17
sol 14196.20 16937.10 13690.60

Note: bold represents the highest value, and italic the lowest value.

Table 5.13: Win-loss ranking.

Simulation Samplein Samplesel Sampleout Average

Profit 437(27) 957(27) 74(28) 489.333(27.333)

AK 1288(31) -1330(31) 2083(24) 680.333(28.667)

AvgProfit -1725(31) 373(31) -2157(36) -1169.667(32.667)
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Table 5.14: p-value results using Iman and Davenport test with Finner’s correction.

Samplein Samplesel Sampleout

Share Code P-Value Corrected P-Value Corrected P-Value Corrected
P-Value P-Value P-Value

agl 0.976113 0.976113 0.803868 0.847346 0.976113 0.976113

alsi 0.024323 0.088205 0.023022 0.083635 0.655771 0.798037

bil 0.594406 0.707867 0.003966 0.019673 0.103354 0.266339

gfi 0.000000 0.000000 0.000001 0.000011 0.007935 0.039049
imp 0.413409 0.573048 0.677553 0.757019 0.543053 0.769724

inv-ned 0.017460 0.084303 0.103354 0.238706 0.000140 0.002098
inv-rem 0.361860 0.569258 0.594406 0.707867 0.552059 0.769724

inv-sbk 0.907712 0.922156 0.475932 0.621544 0.098086 0.266339

lon 0.057826 0.138356 0.000178 0.001334 0.002153 0.016037
ned 0.399894 0.573048 0.023022 0.083635 0.878819 0.928502

rch 0.741116 0.804603 0.929981 0.929981 0.778175 0.871709

rem 0.729146 0.804603 0.843950 0.863341 0.929981 0.942093

sab 0.046682 0.133609 0.138774 0.273951 0.016515 0.060538

sbk 0.004457 0.032948 0.209314 0.356189 0.900404 0.930157

sol 0.276732 0.500542 0.441775 0.621544 0.106089 0.266339

Note: bold values represent a significant difference.

(a) Samplein GFI (b) Samplein SBK

Figure 5.6: Friedman pairwise comparison of p-values for results.
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(c) Samplesel BIL (d) Samplesel GFI

(e) Samplesel LON (f) Sampleout GFI

(g) Sampleout INV-NED (h) Sampleout LON

Figure 5.6: Friedman pairwise comparison of p-values for results (Cont.).
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(a) Samplein GFI (b) Samplein SBK

(c) Samplesel BIL (d) Samplesel GFI

(e) Samplesel LON (f) Sampleout GFI

(g) Sampleout INV-NED (h) Sampleout LON

Figure 5.7: Critical difference plots for results.

5.5 Control Parameter Sensitivity Analysis

EAs and most machine learning algorithms require the setting of control parameter values. For GAs

and GPs, these values include the probability of crossover, probability of mutation, the number of

individuals within a population, and the number of generations.

There are two main approaches to parameter setting: parameter tuning and parameter control. The

main difference is that parameter control is done as part of the EA’s execution and parameter tuning is

done before the EA is executed. An example of parameter control is a dynamic mutation probability

control parameter. Initially, the probability of mutation can be high to promote exploration. Each subse-

quent generation decreases the mutation probability, reducing exploration and increasing optimisation.

Parameter tuning relies on an appropriate parameter value set before execution.

Parameter tuning is a hard problem because there are a great number of possible parameter com-
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binations [93]. Most EAs use parameters based on basic rules, for example, mutation should be low

and crossover high. Allen and Karjalainen [43] admitted in their paper that they did not optimise the

parameters chosen [211]. This thesis uses parameter tuning.

To select the most appropriate parameters, the response surface methodology (RSM) was used [93].

RSM is a collection of statistical techniques useful for modelling and analysis of problems in which

responses are affected by several variables [194]. The relationship between parameters of a GP are not

definite and must be estimated. RSM uses a sequence of experiments to obtain the relationship between

parameters and their optimal values.

Box and Wilson [73] suggested using a second-degree polynomial model for the RSM. A second-

degree polynomial model is complex, and should be performed on those parameters that have the largest

impact on the results. To determine which parameters impact the results the most, a first-degree poly-

nomial model is used.

The simplest first-degree polynomial is a fractional factorial design [175]. A factorial design is

used to determine the relationship between the parameters and the effect that the parameters have on

the results, i.e. if the factor is increased or decreased does the result of the simulation change, and is

that change significant. A factorial design obtains the most appropriate information about the factors

with the least amount of experimentation. With reference to GP, a factor refers to a control parameter.

The control parameter tuning methodology proposed by Lima et al. [93] was used. Their methodology

is based on 2k factorial design to estimate the influence that a GP control parameter has on the results

returned by evolved trading rules. Once the parameters with the largest impact were identified, they

were fine-tuned using the empirical process described in Section 5.2.1.

Consider that an evolved trading rule is required to return a profit. The profit is the response variable.

Factors are variables that affect the outcome of the response variable. Each factor can have several

alternative values which Lima et al. refer to as levels [93]. The combination of factors and levels is

large. Computing each alternative variation of factors and levels might not be the best possible use of

computing resources. Therefore, it is important to reduce the number of factors and to consider only

those that have a significant impact on the GP’s performance.

2k factorial design focuses on the minimum and maximum factor levels for each factor k. This is

based on the assumption that the effect of the factor is unidirectional [93]. The intent is to determine if

the difference in response variables of two levels of a factor warrants further investigation. Furthermore,

2k factorial design also analyses the interaction of the factors to determine if the change in one factor

affects another factor. 2k factorial design requires one simulation run per factor. However, GPs are

stochastic and one run is not sufficient to determine the effect of a factor. Lima et al. altered 2k factorial
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design to include r, where r denotes the number of runs.

The empirical process presented in Section 5.2.1 assumed the normal distribution and showed that

the results of EAs are generally skewed. Therefore, a comparison of the results of EAs requires non-

parametric statistical tests as opposed to standard parametric statistical tests. To ensure that results

generated by the GPs were caused by a factor and not the naturally skewed results a multiplicative

factorial model was used as proposed by Lima et al. [93].

2kr factorial design is performed in four steps: compute the effect each factor has on the outcome

of the simulation, allocate the response variable variation explained by each factor, determine the confi-

dence interval of the effects to determine which are significant, and verify if the technique’s assumptions

are not violated. Each step is discussed in more detail in the paragraphs that follow.

Computation of the effects of each factor or factor interaction has on the change in the response

variables requires a list of factors. For this thesis four factors were identified, namely the number of in-

dividuals within a population (factor A), the maximum number of generations (factor B), the maximum

tree size quantified as two values, i.e. tree depth and number of nodes (factor C), and the probability of

mutation (factor D). Each factor is required to have an upper and lower bound. The factor boundaries

are defined as a factor configuration set. One upper and lower value per factor.

Deciding on the upper and lower bounds is one of the most difficult tasks when building a 2kr

factorial design [93]. For example, should the mutation probability boundaries be set at [0%, 100%], or

[10%, 50%]? No mutation takes place when the probability of mutation is set at 0%, while no crossover

takes place when the probability of mutation is set at 100%. Therefore, one set of simulations could

test the effect that two different degrees of mutation probability have on the response variable, while

another simulation could test if no probability of mutation or a low mutation probability effects the

change in the response variable. For this reason, two different factor configuration sets were defined as

presented in Table 5.15.

Table 5.15: Factor boundary values for 2kr factorial design.

Parameter Config. 1 Config. 2
Lower bound Upper bound Lower bound Upper bound

Population Size (A) 20 1000 100 500

Number of Generations (B) 5 500 20 50

Tree Size [Depth, Nodes] (C) 3 , 30 20, 300 3, 20 20, 200

Mutation Probability (D) 0.1 0.4 0 0.5
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To compute the effect that each factor has on the response variable, each factor must be evaluated

r times. A simulation was run 30 times (r is 30) for each share dataset and each control parameter

combination. Each control parameter combination is a distinct combination of factors and levels defined

by the factor configuration set. The combinations of factors and response variable results are recorded

in a 2430 sign matrix as defined by Lima et al. [93]. To illustrate how the effects are computed consider

the 223 signed matrix is presented in Table5.16.

The 223 (2 factors of 2 levels each with 3 repetitions) signed matrix defines two factors namely, A
and B. The first column I of the matrix always consists of 1’s. The second and third columns A and B
contain every possible combination of -1 and 1. Column AB is the product of the entries in columns

A and B. Each line of the matrix represents a simulation. Each simulation is configured with control

parameters represented by the factors A and B. If the column contains a -1, then the lower factor bound

is set as the control parameter for that factor. The simulation is repeated three times. The response

variable is the result of a simulation run. The response variables of twelve simulation runs (2 factors ×
2 levels × 3 repetitions) are presented in column y. The average of the results is recorded in column ȳ.

Next, the sum of the products of the entries in column I and the mean results in column ȳ is recorded

under column I (i.e., 1×15+1×24+1×48+1×77 = 164). The process is repeated for columns A,

B, and AB. The sums are then divided by 22 to give the effect each factor has on the result recorded in

column y. Once the effects have been calculated, the factorial model is used to estimate the response

variable returned by a given combination of factors. The estimated response variable is compared to

the actual response variable recorded in column y to estimate the variance of the error. The sum of the

squared errors is referred to as the experimental error. The experimental error is a result of experimental

factors such as the value of the random seed used to generate random numbers and not the control

parameters. The total factor effect less the experimental error is referred to as the explained effect.

A factor’s importance is measured by the proportion of the total variation in the response variable

it explains. A factor or combination of factors with the higher response variation is deemed more

influential in the outcome of the response variable.
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Table 5.16: Example of a sign matrix for a 223 factorial design.

I A B AB y Mean ȳ

1 -1 -1 1 (15, 18, 12) 15

1 -1 1 -1 (25, 28, 19) 24

1 1 -1 -1 (45, 48, 51) 48

1 1 1 1 (75, 75, 81) 77

164 86 38 20 Total

41 21.5 9.5 5 Total/22

Table 5.17 and Table 5.18 report the importance of each factor and factor interaction as a contribu-

tion percentage, calculated as its coefficient in the 2430 sign matrix model. The results in Table 5.17 and

Table 5.18 were calculated using simulations run with the factor configuration set 1 and configuration

set 2, respectively. Both results show that the simulations run using the INVNED, Inverted Standard

Bank Group Ltd (INVSBK), and RCH datasets have the largest explained variation percentages.

The results presented in Table 5.17 show that the factors with the largest influence on the GP’s

performance when run using the INVNED, INVSBK, and RCH datasets were A, B, D, AB, and AD.

The individual factors A, B, and D had a larger influence on the response variable than the combinations

of AB and AD. The overall influencers were therefore, population size, number of generations and

mutation probability.

The results presented in Table 5.18 show that factor A, D, and AD had the greatest influence on

the response variable returned by the simulations using the INVNED, INVSBK, and RCH datasets.

Factors A and D represent the population size and the mutation probability respectively. The population

size factor was configured with a lower bound population size of 100 individuals and an upper bound

population size of 500 individuals. The mutation probability was configured with a lower bound value

of 0% and an upper bound value of 50%. These configured factors meant one quarter of the simulations

ran with a population size of 100 individuals and no mutation.

Mutation drives exploration, without mutation a population will rapidly converge. Simulations that

use mutation have a greater probability of evolving better solutions than those simulations that do not

use mutation. Without mutation constantly introducing new genetic material, an alternative source of

genetic diversity is required. Increasing the number of individuals within the population increases the

genetic diversity. Therefore, without mutation, larger populations have a greater probability of con-

verging on a better solution than smaller populations. The upper and lower bounds set for factor con-
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figuration set 2 resulted in at least one quarter of the simulations converging much faster than the other

simulations, resulting in larger influence percentages of factor A, D and AD presented in Table 5.18

than the results presented in Table 5.17.

The 2430 factorial design results showed that the individual factors population size, mutation prob-

ability and the number of generations influenced the response variable the most. The empirical process

described in Section 5.2.1 was used to determine the most appropriate control parameter values for the

three identified factors.

The results of the empirical process is presented in the subsections that follow. Subsection 5.5.1

explores the impact that the mutation probability had on the result. Subsection 5.5.2 explores the impact

that the population size had on the result. Subsection 5.5.3 investigates the effect the maximum number

of generations had on the result.

5.5.1 Mutation Probability Sensitivity Analysis

Allen and Karjalainen [43] used a mutation probability of 30%. The simulations performed found that

a mutation probability of between 30% and 40% was adequate.

Ten simulations were run, each with a different probability of mutation. Each simulation imple-

mented the same configuration presented in Table 5.3. Rank selection was used as the selection strat-

egy. The first simulation used a mutation probability of 0% implying that no mutation took place. The

second simulation used a mutation probability of 10%, the next 20%, with each subsequent simulation

increasing the mutation probability by 10 until 90%.

The best profit was recorded for each of the simulation runs, and the mean profits are summarised

in Table 5.19. The mean profit results did not show a clear preferred simulation. Table 5.20 presents

the p-values from the Iman Davenport test [142]. The statistical test applied to the results reject the

null-hypothesis for a majority of the share datasets. The only Sampleout shares where no significant

difference was found between the mean profit results were Anglo American Plc (AGL), GFI, Impala

Platinum (IMP), Remgro Ltd (REM), SAB, SBK, and Sasol Ltd (SOL).

The results of a post-hoc analysis using the Friedman aligned ranks test are presented in Figure 5.8.

The pairwise results found a significant difference between a mutation probability of less than 10% and

a mutation probability greater than 20%.

A comparison of the mean deviation (σ ) values presented in Table 5.21 confirms the significant

differences between a mutation probability of less than 10% and a mutation probability greater than

20%. The σ values for a mutation probability of 0% is zero. No exploration occurs when mutation

is zero, and all the individuals tend to converge on the same Sampleout solution. Each significantly
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different result set was analysed in detail to find the most adequate mutation probability for this thesis.

Table 5.19: Mean Sampleout profit per share.

Share Code 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

agl 25991.00 25991.00 25981.73 25258.77 26369.63 25991.00 25430.80 26007.33 24533.67 25383.70

alsi 9234.00 9265.23 9390.07 9400.57 9413.50 9261.17 9449.50 9097.87 8936.23 9059.63

bil 16559.00 16194.20 13301.83 14327.53 12275.53 12254.70 12997.63 11134.63 12831.83 13125.20

gfi 0.00 -170.80 -369.00 -1260.00 -784.33 -760.17 -519.90 -292.17 60.43 983.73
imp 16612.00 16612.00 16711.40 16612.00 16612.00 16711.40 16612.00 16612.00 16215.50 16210.90

inv-ned 7878.00 10156.00 12391.57 12891.57 12642.10 12615.23 12843.53 13365.70 13281.00 12839.27

inv-rem 2037.00 3623.37 4928.70 5315.40 4451.57 4774.47 5941.67 5442.23 6484.17 5711.57

inv-sbk 1703.00 4662.43 5153.70 5465.23 5326.30 5895.87 6016.97 5876.40 5947.90 5908.63

lon 17517.00 19475.97 19543.53 18202.93 18408.33 19099.03 18917.67 17854.13 12252.50 11824.10

ned 0.00 -1649.77 -2141.17 -2399.90 -1372.43 -3137.40 -2350.50 -3555.03 -2784.33 -2237.77

rch 1977.00 2193.23 2213.03 2188.17 2161.23 2213.40 2197.40 2187.53 2274.23 2205.80

rem 9819.00 9819.00 9854.60 9819.00 9819.00 9821.77 9838.50 9861.83 9601.53 9836.53

sab 5500.00 5481.57 5536.77 5160.70 5337.63 5107.20 4758.10 4941.17 5221.93 5318.30

sbk 1538.00 1657.90 1562.47 1555.27 1644.30 1502.67 1673.83 1477.23 1677.50 1641.13

sol 16459.00 16363.27 16453.27 14196.20 15614.47 12682.87 13190.80 14258.40 13477.30 10050.43

Note: bold represents the highest value, and italic the lowest value.

Table 5.20: p-value results using Iman and Davenport test with Finner’s correction.

Samplein Samplesel Sampleout

Share Code P-Value Corrected P-Value Corrected P-Value Corrected
P-Value P-Value P-Value

agl 0.999064 0.999431 0.999669 0.999813 0.999539 0.999851

alsi 0.004895 0.006669 0.000000 0.000000 0.010590 0.022556
bil 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
gfi 0.000000 0.000000 0.000000 0.000000 0.522826 0.635387

imp 0.999988 0.999988 0.999956 0.999956 0.999993 0.999993

inv-ned 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inv-rem 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inv-sbk 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

lon 0.000000 0.000000 0.000000 0.000000 0.012128 0.022619
ned 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
rch 0.000000 0.000000 0.000000 0.000000 0.001752 0.004374

rem 0.692617 0.743633 0.947281 0.966477 0.999517 0.999851

sab 0.000000 0.000000 0.000000 0.000000 0.146689 0.232322

sbk 0.054678 0.067874 0.514034 0.594251 0.834941 0.894792

sol 0.000000 0.000000 0.000000 0.000000 0.429543 0.569142

Note: bold values represent a significant difference.
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Table 5.21: Standard deviation of Sampleout profit per share analysis.

Share Code 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

agl 0.00 0.00 110.78 1366.84 706.78 0.00 1078.37 31.58 2753.02 1174.11

alsi 0.00 238.42 272.67 587.77 425.90 171.87 344.50 526.40 551.96 549.98

bil 0.00 608.00 3126.13 2434.89 3223.83 3791.31 3237.02 3108.51 2683.76 1950.33

gfi 0.00 1806.91 2130.13 2440.20 2866.33 2790.36 2781.47 2015.67 2317.50 2241.45

imp 0.00 0.00 192.17 0.00 0.00 192.17 0.00 0.00 766.57 775.46

inv-ned 0.00 2381.33 1115.73 614.99 646.78 661.89 617.48 1015.71 1088.93 741.37

inv-rem 0.00 1951.02 1699.41 2083.13 2206.62 2212.24 2236.51 1996.56 1966.99 2243.00

inv-sbk 0.00 1495.13 1530.09 978.17 825.03 486.81 894.35 350.68 519.86 584.34

lon 0.00 3918.96 4418.50 5970.22 5030.53 7017.43 7841.58 8660.73 8668.00 8899.77

ned 0.00 2189.47 2204.63 2235.23 1864.80 1544.16 1902.43 1873.44 2688.11 2215.90

rch 0.00 160.64 173.35 163.68 207.42 158.29 166.05 191.88 147.84 159.44

rem 0.00 0.00 66.45 0.00 0.00 10.68 37.70 115.30 501.24 120.12

sab 0.00 166.61 416.45 635.53 653.17 812.44 1263.59 856.37 861.96 668.01

sbk 0.00 228.53 229.99 205.99 234.44 198.31 310.56 316.04 558.77 318.48

sol 0.00 395.02 366.17 3791.01 3661.59 6572.80 6796.61 6097.17 6834.80 8376.04

Note: bold represents the lowest value or more preferred σ , and italic the highest or least preferred σ .

(a) Sampleout ALSI (b) Sampleout BIL

Figure 5.8: Friedman pairwise comparison of p-values for results.
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(c) Sampleout INV-NED (d) Sampleout INV-REM

(e) Sampleout INV-SBK (f) Sampleout LON

(g) Sampleout NED (h) Sampleout RCH

Figure 5.8: Friedman pairwise comparison of p-values for results (Cont.).



Chapter 5. Genetic Program For Trading Rules 113

A comparison of the Sampleout results returned by the trading rules evolved using the ALSI40

dataset is presented as a critical difference graph in Figure 5.9. The critical difference graph shows no

significant difference between the Sampleout results for the various simulations. This is consistent with

the p-value results that show only one significant difference between the Sampleout results obtained by

the trading rules evolved using a mutation probability of 60% and the results of the rules evolved with

a mutation probability of 0%.

Figure 5.9: Critical difference plot of ALSI Sampleout results using various mutation probabilities.

A mutation probability is required, and while the Sampleout results are similar, the graph presented

in Figure 5.10 shows that mutation probability does impact population diversity. The graph plots the

mean deviation (σ ) of the Samplein profit returned by all the individuals within the population over each

generation per configured mutation probability. The graph shows that σ is large for all simulations at

generation zero, and the lower the mutation probability the faster the σ drops to zero as the populations

evolve.

The average Samplein profit returned by the trading rules evolved using different mutation prob-

abilities is presented in Figure 5.11. The figure shows that simulations configured with a mutation

probability larger than 20% evolved trading rules that returned larger profits than trading rules evolved

with lower mutation probabilities.

The scatter plot in Figure 5.14 shows that the impact of the mutation probability on evolving prof-

itable solutions by plotting the average generation profit per simulation as a dot and the average best

Samplein, Samplesel , and Sampleout profit as lines.

The scatter plots in Figure 5.14 shows that the trading rules evolved with a mutation probability

between 10% and 40% reached a Samplein trading profit of around 5000 at generation 15. Figure 5.14

shows that the trading rules evolved using a mutation probability greater than 40% reached a Samplein

profit of 5000 much later at around 25 to 30 generations. The only simulations to reach a Samplein profit

greater than 6000 within 50 generations were those trading rules that were evolved with a mutation

probability of 10% and 50%. A mutation probability of 0% resulted in profit stagnation, where none of

the generations shows any increase in profit. A similar result was seen when mutation probability was

90%.
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Figure 5.10: 3D Perspective plot of the mean deviation of ALSI Samplein profit results using various mutation

probabilities.

Figure 5.11: 3D Perspective plot of the mean ALSI Samplein profit results using various mutation probabilities.
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The observed profit stagnation is expected, because, when the mutation probability is set at 0%,

no new individuals are introduced. Selection pressure results in premature convergence, due to no

exploration, resulting in profit stagnation. Premature convergence also results in fewer nodes per tree

as observed in Figure 5.13. When the mutation probability is 90%, each generation undergoes mutation

with little to no crossover. Each generation is compared to the global best solution, and because more

mutation becomes more of a random search, it becomes less likely that a better global best solution

will be found, resulting in the observed global best profit stagnation. The continuous reintroduction of

new individuals through exploration reduces the effect that crossover had on evolution and manifests as

fewer nodes within a tree as observed in Figure 5.13. Except for the results returned by the trading rules

evolved from the LON dataset, a similar pattern was found across all the share code samples examined

in this section.

Figure 5.12 compares the average best Sampleout profit returned by each simulation per generation.

The figure shows that a mutation probability of 40% resulted in the highest Sampleout profit, followed

by 60% and 30%. Analysis of the ALSI40 results shows that a mutation probability between 30% and

40% resulted in the best combination of mutation and crossover, driving the population towards the best

solution across all the dataset samples.

Figure 5.12: Average Sampleout profit returned by the best individual within a simulation evolved using the

ALSI40 dataset and various mutation probabilities.
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Figure 5.13: Average node count of an individual evolved using the ALSI40 dataset and various mutation prob-

abilities.

(a) Mutation probability set at 0%

(b) Mutation probability set at 10%

Figure 5.14: Scatter plot plotting returned profit using ALSI40 dataset and various mutation probabilities.
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(c) Mutation probability set at 20%

(d) Mutation probability set at 30%

(e) Mutation probability set at 40%

(f) Mutation probability set at 50%

Figure 5.14: Scatter plot plotting returned profit using ALSI40 dataset and various mutation probabilities (Cont.).
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(g) Mutation probability set at 60%

(h) Mutation probability set at 70%

(i) Mutation probability set at 80%

(j) Mutation probability set at 90%

Figure 5.14: Scatter plot plotting returned profit using the ALSI40 dataset and various mutation probabilities

(Cont.).
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The Samplein profit results returned by the trading rules evolved using the BIL dataset are presented

in Figure 5.19 and Figure 5.17. The figures show that a mutation probability of between 40% and 50%

evolved trading rules that reached the greatest profit in the shortest number of generations. The second

best performing trading rules were evolved with a mutation probability of 30% and 60%. However,

the Sampleout profit presented in Figure 5.19 and Figure 5.17 shows that the average Sampleout profit

decreased with increase in the mutation probability. The best Sampleout profit was obtained by the

trading rules evolved with a mutation probability of 0%, 10%, and 30%. No mutation occurred at a

0% probability, and the critical difference plot in Figure 5.15 shows no critical difference between the

results obtained by the trading rules evolved using a mutation probability of 0% or 10%. Based on the

BIL results, a mutation probability of 30% is preferred.

Figure 5.15: Critical difference plot of BIL Sampleout results using various mutation probabilities.

Figure 5.16: Average node count of an individual evolved using the BIL dataset and various mutation probabili-

ties.
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Figure 5.17: Average Sampleout profit returned by the best individual within a simulation evolved using the BIL

dataset and various mutation probabilities.

Figure 5.18: 3D Perspective plot of the mean BIL Samplein profit results using various mutation probabilities.
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(a) Mutation probability set at 0%

(b) Mutation probability set at 10%

(c) Mutation probability set at 20%

(d) Mutation probability set at 30%

Figure 5.19: Scatter plot plotting returned profit using BIL dataset and various mutation probabilities.
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(e) Mutation probability set at 40%

(f) Mutation probability set at 50%

(g) Mutation probability set at 60%

(h) Mutation probability set at 70%

Figure 5.19: Scatter plot plotting returned profit using BIL dataset and various mutation probabilities (Cont.).
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(i) Mutation probability set at 80%

(j) Mutation probability set at 90%

Figure 5.19: Scatter plot plotting returned profit using BIL dataset and various mutation probabilities (Cont.).

Figure 5.24 and Figure 5.23 show that only those trading rules evolved with a mutation probability

between 30% and 90% reached an average best Samplein profit greater than 35000. Further examination

of the graphs shows that the average Samplein population profit was much lower than the average best

individual’s Samplein profit when the trading rules were evolved using a mutation probability between

60% and 90%. The difference between the average best individual Samplein profit and the average

population Samplein profit observed in Figure 5.24 continues in the Sampleout results as presented

by the high σ value recorded in Table 5.21. Therefore, the trading rules evolved with a mutation

between 30% and 50% produced more consistent results than the trading rules evolved with a mutation

probability between 60% and 90%.

Figure 5.21 shows that the trading rules evolved with a mutation probability of 40%, 70%, and

50% returned the largest average Sampleout profit. The critical difference plot in Figure 5.20 shows no

critical difference between the Sampleout results obtained by the trading rules evolved with a mutation
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probability between 30% and 50%. The p-values presented previously in Figure 5.8c found no signif-

icant difference between the Sampleout results obtained by the trading rules evolved with a mutation

probability between 30% and 50%. Based on the results presented for the INVNED dataset, a mutation

probability between 30% and 50% is preferred.

Figure 5.20: Critical difference plot of INVNED Sampleout results using various mutation probabilities.

Figure 5.21: Average Sampleout profit returned by the best individual within a simulation evolved using the

INVNED dataset and various mutation probabilities.
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Figure 5.22: Average node count of an individual evolved using the INVNED dataset and various mutation

probabilities.

Figure 5.23: 3D Perspective plot of the mean INVNED Samplein profit results using various mutation probabil-

ities.
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(a) Mutation probability set at 0%

(b) Mutation probability set at 10%

(c) Mutation probability set at 20%

(d) Mutation probability set at 30%

Figure 5.24: Scatter plot plotting returned profit using INVNED dataset and various mutation probabilities.
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(e) Mutation probability set at 40%

(f) Mutation probability set at 50%

(g) Mutation probability set at 60%

(h) Mutation probability set at 70%

Figure 5.24: Scatter plot plotting returned profit using INVNED dataset and various mutation probabilities

(Cont.).
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(i) Mutation probability set at 80%

(j) Mutation probability set at 90%

Figure 5.24: Scatter plot plotting returned profit using INVNED dataset and various mutation probabilities

(Cont.).

The results of the trading rules evolved using the INVREM dataset are presented in Figure 5.27. The

trading rules evolved for the INVREM dataset performed similar to the rules evolved for the INVNED

dataset. Figure 5.27 shows that only those trading rules evolved with a mutation probability between

30% and 90% reached an average best Samplein profit greater than 30000. Like INVNED, the trading

rules evolved using a mutation probability between 30% and 50% produced more consistent Samplein

results than the trading rules evolved using a mutation probability between 60% and 90%.

Figure 5.28 shows that the best Sampleout performing trading rules were evolved using a mutation

probability of 20% followed by 30%, 40%, 50% and 60%. Although the average best individual trading

rules evolved with a mutation probability of 20% did not exceed a Samplein profit of 30000, the aver-

age Samplein population profit did. Furthermore, a mutation probability of 20% resulted in a smaller

Sampleout σ as presented in Table 5.21. Based on the observed results of the trading rules evolved for
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the INVREM dataset, a mutation probability between 20% and 50% is preferred.

Figure 5.25: Critical difference plot of INVREM Sampleout results using various mutation probabilities.

Figure 5.26: 3D Perspective plot of the mean INVREM Samplein profit results using various mutation probabil-

ities.
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(a) Mutation probability set at 0%

(b) Mutation probability set at 10%

(c) Mutation probability set at 20%

(d) Mutation probability set at 30%

Figure 5.27: Scatter plot plotting returned profit using INVREM dataset and various mutation probabilities.
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(e) Mutation probability set at 40%

(f) Mutation probability set at 50%

(g) Mutation probability set at 60%

(h) Mutation probability set at 70%

Figure 5.27: Scatter plot plotting returned profit using INVREM dataset and various mutation probabilities

(Cont.).
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(i) Mutation probability set at 80%

(j) Mutation probability set at 90%

Figure 5.27: Scatter plot plotting returned profit using INVREM dataset and various mutation probabilities

(Cont.).

Figure 5.28: Average Sampleout profit returned by the best individual within a simulation evolved using the

INVREM dataset and various mutation probabilities.
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Figure 5.29: Average node count of an individual evolved using the INVREM dataset and various mutation

probabilities.

The results of the trading rules evolved using the INVSBK dataset are presented in Figure 5.31. The

figure shows that the best Sampleout profit was returned by the trading rules evolved using a mutation

probability of 60%. The critical difference graph in Figure 5.30 found no critical difference between

the Sampleout results returned by the trading rules evolved using a mutation probability between 20%

and 90%. The p-values presented in Figure 5.8e found no significant difference between the results

obtained by the trading rules evolved using a mutation probability between 20% and 90%. The Samplein

results presented in Figure 5.33 and Figure 5.32 show that a mutation probability of 30% generated the

best performing Samplein trading rules. Only the trading rules evolved with a mutation probability of

10%, 20%, and 30% produced an average population Samplein profit greater than 25000. A mutation

probability between 30% and 90% evolved the trading rules with an average best individual Samplein

profit greater than 25000. The difference between the average best individual Samplein profit and

the average population Samplein profit is the smallest for the trading rules evolved using a mutation

probability between 10% and 40%.

Figure 5.30: Critical difference plot of INVSBK Sampleout results using various mutation probabilities.
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Figure 5.31: Average Sampleout profit returned by the best individual within a simulation evolved using the

INVSBK dataset and various mutation probabilities.

Figure 5.32: 3D Perspective plot of the mean INVSBK Samplein profit results using various mutation probabili-

ties.
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(a) Mutation probability set at 0%

(b) Mutation probability set at 10%

(c) Mutation probability set at 20%

(d) Mutation probability set at 30%

Figure 5.33: Scatter plot plotting returned profit using INVSBK dataset and various mutation probabilities.
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(e) Mutation probability set at 40%

(f) Mutation probability set at 50%

(g) Mutation probability set at 60%

(h) Mutation probability set at 70%

Figure 5.33: Scatter plot plotting returned profit using INVSBK dataset and various mutation probabilities

(Cont.).
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(i) Mutation probability set at 80%

(j) Mutation probability set at 90%

Figure 5.33: Scatter plot plotting returned profit using INVSBK dataset and various mutation probabilities

(Cont.).

Figure 5.34: Average node count of an individual evolved using the INVSBK dataset and various mutation

probabilities.



Chapter 5. Genetic Program For Trading Rules 138

The best Sampleout profit was returned by the trading rules evolved using a mutation probability

of 70% as presented in Figure 5.38. The critical difference graph in Figure 5.35 found no critical

difference between any of the Sampleout results. Figure 5.37 and Figure 5.36 show that the trading

rules evolved with a mutation probability of 70% is preferred, because, only the trading rules evolved

using a mutation probability between 70% and 80% produced average best Samplesel profits greater

than 10000, all trading rules produced a Samplein profit greater than 5000, trading rules evolved using

a mutation probability of 70% produced the highest Sampleout results. A high mutation probability of

70% is not in-line with the observations of the previous datasets. These results are in contradiction of a

low mutation probability rule of thumb.

Figure 5.35: Critical difference plot of LON Sampleout results using various mutation probabilities.

Figure 5.36: 3D Perspective plot of the mean LON Samplein profit results using various mutation probabilities.
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(a) Mutation probability set at 0%

(b) Mutation probability set at 10%

(c) Mutation probability set at 20%

(d) Mutation probability set at 30%

Figure 5.37: Scatter plot plotting returned profit using LON dataset and various mutation probabilities.
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(e) Mutation probability set at 40%

(f) Mutation probability set at 50%

(g) Mutation probability set at 60%

(h) Mutation probability set at 70%

Figure 5.37: Scatter plot plotting returned profit using LON dataset and various mutation probabilities (Cont.).



Chapter 5. Genetic Program For Trading Rules 141

(i) Mutation probability set at 80%

(j) Mutation probability set at 90%

Figure 5.37: Scatter plot plotting returned profit using LON dataset and various mutation probabilities (Cont.).

Figure 5.38: Average Sampleout profit returned by the best individual within a simulation evolved using the LON

dataset and various mutation probabilities.
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Figure 5.39: Average node count of an individual evolved using the LON dataset and various mutation probabil-

ities.

Figure 5.42 shows that a mutation probability of 40% produced the trading rules that returned the

largest Sampleout profit using the NED dataset. Figure 5.40 shows no critical difference between the

Sampleout results returned by the trading rules evolved using a mutation probability of 40% and the

results returned by the trading rules evolved using a mutation probability between 10% and 90%. A

critical difference was found between the Sampleout results of the trading rules evolved using a mutation

probability of 10% and 90%. The critical difference plot confirms the p-values presented previously in

Table 5.8g that shows no significant difference was found between the Sampleout results of the trading

rules evolved using a mutation probability of 20% and 80%. Figure 5.41 and Figure 5.43 show that the

best Samplein results were obtained by the trading rules evolved using a mutation probability of 40%.

The trading rules evolved with a mutation probability 40% returned an average Samplein profit greater

than 2500 quicker than any other simulation, and trading rules evolved with a mutation probability

between 10% and 40% reached an average population profit greater than 3000. Therefore, based on

these observations, a mutation probability of 40% is preferred for the trading rules evolved for the NED

dataset.

Figure 5.40: Critical difference plot of NED Sampleout results using various mutation probabilities.
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(a) Mutation probability set at 0%

(b) Mutation probability set at 10%

(c) Mutation probability set at 20%

(d) Mutation probability set at 30%

Figure 5.41: Scatter plot plotting returned profit using NED dataset and various mutation probabilities.
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(e) Mutation probability set at 40%

(f) Mutation probability set at 50%

(g) Mutation probability set at 60%

(h) Mutation probability set at 70%

Figure 5.41: Scatter plot plotting returned profit using NED dataset and various mutation probabilities (Cont.).
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(i) Mutation probability set at 80%

(j) Mutation probability set at 90%

Figure 5.41: Scatter plot plotting returned profit using NED dataset and various mutation probabilities (Cont.).

Figure 5.42: Average Sampleout profit returned by the best individual within a simulation evolved using the NED

dataset and various mutation probabilities.
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Figure 5.43: 3D Perspective plot of the mean NED Samplein profit results using various mutation probabilities.

Figure 5.44: Average node count of an individual evolved using the NED dataset and various mutation probabil-

ities.

Figure 5.48 shows that a mutation probability of 80% evolved trading rules that returned the highest

Sampleout profit for the RCH dataset. The second highest profit was returned by the trading rules

evolved using a mutation probability between 30% and 70%. The critical difference plot in Figure 5.45

shows no critical difference between the Sampleout results returned by the trading rules evolved using

a mutation probability of 80% and those results returned by the trading rules evolved using a mutation
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probability between 30% and 70%. Figure 5.47 and Figure 5.46 show that the average Samplein profit

returned by the trading rules evolved using a mutation probability between 30% and 70% were higher

than the profit returned by the trading rules evolved using a mutation probability of 80%. Figure 5.47

and Figure 5.46 show that only the trading rules evolved with a mutation probability between 20% and

50% returned an Samplein profit greater than 1500. Therefore, based on these observations, a mutation

probability between 30% and 50% is preferred for the RCH dataset.

Figure 5.45: Critical difference plot of RCH Sampleout results using various mutation probabilities.

Figure 5.46: 3D Perspective plot of the mean RCH Samplein profit results using various mutation probabilities.
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(a) Mutation probability set at 0%

(b) Mutation probability set at 10%

(c) Mutation probability set at 20%

(d) Mutation probability set at 30%

Figure 5.47: Scatter plot plotting returned profit using RCH dataset and various mutation probabilities.
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(e) Mutation probability set at 40%

(f) Mutation probability set at 50%

(g) Mutation probability set at 60%

(h) Mutation probability set at 70%

Figure 5.47: Scatter plot plotting returned profit using RCH dataset and various mutation probabilities (Cont.).
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(i) Mutation probability set at 80%

(j) Mutation probability set at 90%

Figure 5.47: Scatter plot plotting returned profit using RCH dataset and various mutation probabilities (Cont.).

Figure 5.48: Average Sampleout profit returned by the best individual within a simulation evolved using the RCH

dataset and various mutation probabilities.
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Figure 5.49: Average node count of an individual evolved using the RCH dataset and various mutation probabil-

ities.

The results presented in this section vary depending on the dataset used. The results presented

in this section found that a 70% mutation probability resulted in the best performing trading rules

when trading LON. This result contradicts the results returned by the trading rules evolved for other

datasets. Perhaps a variable mutation probability that begins high and decreases over time is preferred

when evolving trading rules. Further research is required to study the effects of a variable mutation

probability on the results returned by evolved stock market traders.

A mutation probability of 30% and 40% evolved the best trading rules when trading BIL and NED

respectively. A mutation probability between 30% and 40% was presented as the preferred muta-

tion probability when evolving trading rules with ALSI40, INVNED, INVREM, INVSBK, and RCH

datasets. Therefore, based on these observations, a mutation probability of 35% was selected as the

preferred mutation probabilities the remainder of this thesis.

5.5.2 Population Size Sensitivity Analysis

The results of the 2430 factorial design showed that the population size has the largest impact on the

outcome of the evolutionary process. Each individual within a population represents a potential trading

rule. More individuals result in a greater initial genetic diversity within the population and more ways in

which crossover can optimise the trading rule. However, at which point does the number of individuals

in a population become large enough to contain all the variations of genetic elements so that any new

individual within the population has no effect on the outcome? At which point is the population too

small to contain a sufficient set of genetic elements for crossover to provide any benefit?

Allen and Karjalainen [43] used a population size of 500. Simulations are run in this section to

determine the preferred population size. The simulations were configured to use the control parameter
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values in Table 5.3. Rank selection was used as the selection strategy. The first simulation was config-

ured with a population size of 20. Each subsequent simulation doubled the population size until 64̇00

individuals were configured for a total of eight simulations. The results show that a population size of

1600 is preferred.

The simulations were repeated for each share presented in Table 5.2. Following the empirical

process introduced in Section 5.2.1, the null-hypothesis was assumed. The null-hypothesis assumes that

the results returned by traders evolved using various configured population sizes are not significantly

different. The Iman and Davenport [142] test results presented in Table 5.22 rejected the null-hypothesis

for most of the samples. For those samples where the null-hypothesis was rejected, a post-hoc analysis

was done and is presented in Figure 5.50. Figure 5.50 shows a significant difference in performance

between a low population size and a large population size. Each set of results were analysed individually

to determine the effect that population size had on the profit generated by the evolved trading rules.

Figure 5.50a shows that a significant difference exists between the Sampleout results obtained by the

trading rules evolved using the AGL dataset and a population size of 50, and any population size greater

than 50. Figure 5.52 shows that the lowest average Sampleout profit was generated by the trading rules

evolved using a population size of 50 and 100. The critical difference plot in Figure 5.51 does not show

a critical difference between the Sampleout results, but does show how similar the Sampleout results are

for trading rules evolved using a population size of 200, 400, 800, 1600, 3200, and 6400.

Figure 5.53 shows that the trading rules evolved using the AGL dataset and a population size greater

than 800 returned a Samplein profit greater than 10000 within 50 generations. Therefore, based on these

observations, a population size between 800 and 6400 is preferred for evolving trading rules for the AGL

dataset.
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Table 5.22: p-value results using Iman and Davenport test with Finner’s correction.

Samplein Samplesel Sampleout

Share Code P-Value Corrected P-Value Corrected P-Value Corrected
P-Value P-Value P-Value

agl 0.000018 0.000028 0.000328 0.000703 0.014381 0.026795
alsi 0.000000 0.000000 0.084855 0.097255 0.320479 0.383045

bil 0.000000 0.000000 0.046116 0.057309 0.000280 0.001048
gfi 0.000000 0.000000 0.012699 0.017277 0.008051 0.023959

imp 0.958187 0.958187 0.967481 0.967481 0.975481 0.978529

inv-ned 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inv-rem 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inv-sbk 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

lon 0.000000 0.000000 0.000001 0.000002 0.264645 0.342418

ned 0.029597 0.034072 0.005943 0.009885 0.010857 0.024127
rch 0.000111 0.000151 0.001402 0.002627 0.066452 0.098003

rem 0.045741 0.048927 0.253427 0.268850 0.972263 0.978529

sab 0.000000 0.000000 0.000000 0.000000 0.009722 0.024127
sbk 0.012643 0.015778 0.006889 0.010316 0.933219 0.955962

sol 0.000000 0.000000 0.000000 0.000000 0.031862 0.052538

Note: bold values represent a significant difference.

(a) Sampleout AGL (b) Sampleout BIL

Figure 5.50: Friedman pairwise comparison of p-values for results.
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(c) Sampleout GFI (d) Sampleout INV-NED

(e) Sampleout INV-REM (f) Sampleout INV-SBK

(g) Sampleout NED (h) Sampleout SAB

Figure 5.50: Friedman pairwise comparison of p-values for results (Cont.).
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Figure 5.51: Critical difference plot of AGL Sampleout results using various population sizes.

Figure 5.52: Average Sampleout profit returned by the best individual within a simulation evolved using the AGL

dataset and various population sizes.

(a) Population size set at 50 individuals

Figure 5.53: Scatter plot plotting returned profit using AGL dataset and various population sizes.
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(b) Population size set at 100 individuals

(c) Population size set at 200 individuals

(d) Population size set at 400 individuals

(e) Population size set at 800 individuals

Figure 5.53: Scatter plot plotting returned profit using AGL dataset and various population sizes (Cont.).
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(f) Population size set at 1600 individuals

(g) Population size set at 3200 individuals

(h) Population size set at 6400 individuals

Figure 5.53: Scatter plot plotting returned profit using AGL dataset and various population sizes (Cont.).

Figure 5.50b shows that a significant difference exists between the Sampleout results obtained by

the trading rules evolved using the BIL dataset and a population size of 6400, and trading rules evolved

using any population size less than 6400. The p-value results are confirmed by the critical difference
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plot in Figure 5.54. Figure 5.56 shows that the largest profit was returned after 50 generations by the

trading rules evolved using a population size of 100. Figure 5.56 shows that the trading rules evolved

with 6400 individuals performed the worst after 50 generations. The scatter plot in Figure 5.55 shows

that the trading rules that returned a Samplein profit greater than 5000 were those trading rules evolved

using more than 200 individuals. Therefore, based on these observations, a population size between

200 and 3200 is preferred when evolving trading rules for the BIL dataset.

Figure 5.54: Critical difference plot of BIL Sampleout results using various population sizes.

(a) Population size set at 50 individuals

(b) Population size set at 100 individuals

Figure 5.55: Scatter plot plotting returned profit using BIL dataset and various population sizes.
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(c) Population size set at 200 individuals

(d) Population size set at 400 individuals

(e) Population size set at 800 individuals

(f) Population size set at 1600 individuals

Figure 5.55: Scatter plot plotting returned profit using BIL dataset and various population sizes (Cont.).
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(g) Population size set at 3200 individuals

(h) Population size set at 6400 individuals

Figure 5.55: Scatter plot plotting returned profit using BIL dataset and various population sizes (Cont.).

Figure 5.56: Average Sampleout profit returned by the best individual within a simulation evolved using the BIL

dataset and various population sizes.
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Figure 5.59 shows three different profit bands returned by the trading rules evolved for the GFI

dataset, i.e. the lowest Sampleout profit returned by the trading rules evolved using a population size

of 200 and 400, the second lowest Sampleout results returned by the trading rules evolved using a

population size of 50, 100, and 800, and the lowest profit band using a population size of 6400. The

best Sampleout performing trading rules were evolved using a population size of 1600, 3200, 6400. The

Sampleout results are consistent with the p-value results presented Figure 5.50c. The p-value results

show that the Sampleout results returned by the trading rules evolved using a population size of 200 and

400 are significantly different to the results returned by the trading rules evolved using a population size

of 3200. The critical difference plot in Figure 5.57 confirms these observations and presents two groups

of Sampleout results: Sampleout results returned by the trading rules evolved using a population size of

50, 100, 200, and 400, and Sampleout results returned by the trading rules evolved using a population

size of 1600, 3200, and 6400. The Samplein results presented as a scatter plot in Figure 5.58 show

that only the trading rules evolved with a population size of 3200 and 6400 returned a Samplein profit

greater than 7500. Figure 5.58 also shows that the trading rules evolved using a population size greater

than 800 reached an average best Samplein profit of 2500 before 15 generations. Therefore, based on

these observations, a population size of 1600, 3200, or 6400 is preferred when evolving trading rules

for the GFI dataset.

Figure 5.57: Critical difference plot of GFI Sampleout results using various population sizes.
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(a) Population size set at 50 individuals

(b) Population size set at 100 individuals

(c) Population size set at 200 individuals

(d) Population size set at 400 individuals

Figure 5.58: Scatter plot plotting returned profit using GFI dataset and various population sizes.
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(e) Population size set at 800 individuals

(f) Population size set at 1600 individuals

(g) Population size set at 3200 individuals

(h) Population size set at 6400 individuals

Figure 5.58: Scatter plot plotting returned profit using GFI dataset and various population sizes (Cont.).
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Figure 5.59: Average Sampleout profit returned by the best individual within a simulation evolved using the GFI

dataset and various population sizes.

Figure 5.62 shows that the trading rules evolved with a population size of 1600, 3200, and 6400 for

the INVNED dataset returned the largest Sampleout results within 50 generations. The graph also shows

that the trading rules evolved using a population size of 50 returned the lowest profit. The p-value results

presented in Figure 5.50d fail to show a significant difference between the Sampleout results returned

by the trading rules evolved using a population size of 400, 800, 1600, 3200, and 6400. The critical

different plot presented in Figure 5.60 confirms the p-value results. The critical difference plot also

shows the similarity of the Sampleout results returned by the trading rules evolved using a population

size of 1600, 3200 and 6400. The Friedman pairwise test found with a confidence level greater than

73% that the Sampleout results returned by the trading rules evolved using a population size of 1600,

3200 and 6400 are not significantly different.

Analysis of the Samplein results presented in Figure 5.61 shows that the trading rules evolved using

the INVNED dataset and a population size of 800, 1600, 3200, or 6400 individuals returned an average

best individual profit greater than 30000 within 15 generations. Based on these results, a population

size of 1600, 3200, or 6400 is preferred when evolving trading rules for the INVNED dataset.

Figure 5.60: Critical difference plot of INVNED Sampleout results using various population sizes.
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(a) Population size set at 50 individuals

(b) Population size set at 100 individuals

(c) Population size set at 200 individuals

(d) Population size set at 400 individuals

Figure 5.61: Scatter plot plotting returned profit using INVNED dataset and various population sizes.
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(e) Population size set at 800 individuals

(f) Population size set at 1600 individuals

(g) Population size set at 3200 individuals

(h) Population size set at 6400 individuals

Figure 5.61: Scatter plot plotting returned profit using INVNED dataset and various population sizes (Cont.).
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Figure 5.62: Average Sampleout profit returned by the best individual within a simulation evolved using the

INVNED dataset and various population sizes.

The profit results returned by the trading evolved evolved for the INVREM dataset are presented

in Figure 5.64, and are similar to the trading results for the INVNED dataset presented in Figure 5.61.

The best performing Sampleout trading rules presented in Figure 5.65 were evolved using a population

size of 6400, followed by 3200 and 1600. The critical difference graph in Figure 5.63 shows no critical

difference between the Sampleout results returned by the trading rules evolved using a population size

of 1600, 3200, and 6400. Figure 5.64 shows that only the trading rules evolved with a population size of

1600, 3200, and 6400 returned an average best individual Sampleout profit greater than 2000 within 10

generations. Based on these observations, a population size of 1600, 3200, or 6400 is preferred when

evolving trading rules for the INVNED dataset.

Figure 5.63: Critical difference plot of INVREM Sampleout results using various population sizes.
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(a) Population size set at 50 individuals

(b) Population size set at 100 individuals

(c) Population size set at 200 individuals

(d) Population size set at 400 individuals

Figure 5.64: Scatter plot plotting returned profit using INVREM dataset and various population sizes.
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(e) Population size set at 800 individuals

(f) Population size set at 1600 individuals

(g) Population size set at 3200 individuals

(h) Population size set at 6400 individuals

Figure 5.64: Scatter plot plotting returned profit using INVREM dataset and various population sizes (Cont.).
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Figure 5.65: Average Sampleout profit returned by the best individual within a simulation evolved using the

INVREM dataset and various population sizes.

The results for trading rules evolved for the INVSBK dataset are presented in Figure 5.67. The best

performing Sampleout trading rules presented in Figure 5.68 were evolved using a population size of

3200, and 6400, followed by 800 and 1600. Figure 5.50f shows no significant difference was found

between the Sampleout results returned by the trading rules evolved using a population size of 400, 800,

1600, 2400, 3200, and 6400. The critical difference graph in Figure 5.66 shows no critical difference

between the Sampleout results returned by the trading rules evolved using a population size of 400, 800,

1600, 3200, and 6400. Figure 5.67 shows that only the trading rules evolved with a population size

of 1600, 3200, and 6400 returned an average best individual Sampleout profit greater than 2500 within

15 generations. Therefore, based on these observations, a population size of 1600, 3200, or 6400 is

preferred when evolving trading rules for the INVSBK dataset.

Figure 5.66: Critical difference plot of INVSBK Sampleout results using various population sizes.



Chapter 5. Genetic Program For Trading Rules 171

(a) Population size set at 50 individuals

(b) Population size set at 100 individuals

(c) Population size set at 200 individuals

(d) Population size set at 400 individuals

Figure 5.67: Scatter plot plotting returned profit using INVSBK dataset and various population sizes.
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(e) Population size set at 800 individuals

(f) Population size set at 1600 individuals

(g) Population size set at 3200 individuals

(h) Population size set at 6400 individuals

Figure 5.67: Scatter plot plotting returned profit using INVSBK dataset and various population sizes (Cont.).
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Figure 5.68: Average Sampleout profit returned by the best individual within a simulation evolved using the

INVSBK dataset and various population sizes.

The profit for the trading rules evolved using the NED dataset are presented in Figure 5.71. The

profit results show that the trading rules evolved using a population size of 50 returned the largest

Sampleout . The critical difference plot presented in Figure 5.69 shows that the Sampleout results re-

turned by the trading rules evolved using the NED dataset and a population size of 50 are critically

different from the results returned by the trading rules evolved using a population size of 100, 200, 400,

800, 1600, and 3200. Figure 5.70 shows that the Samplein and Samplesel profit results returned by the

trading rules evolved using a population size of 50 were the lowest. These observations show that a low

population size of 50 is preferred when evolving trading rules for the NED dataset and contradicts the

results observed in the previous datasets.

Figure 5.69: Critical difference plot of NED Sampleout results using various population sizes.
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(a) Population size set at 50 individuals

(b) Population size set at 100 individuals

(c) Population size set at 200 individuals

(d) Population size set at 400 individuals

Figure 5.70: Scatter plot plotting returned profit using NED dataset and various population sizes.
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(e) Population size set at 800 individuals

(f) Population size set at 1600 individuals

(g) Population size set at 3200 individuals

(h) Population size set at 6400 individuals

Figure 5.70: Scatter plot plotting returned profit using NED dataset and various population sizes (Cont.).
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Figure 5.71: Average Sampleout profit returned by the best individual within a simulation evolved using the NED

dataset and various population sizes.

The Sampleout profit returned by the trading rules evolved for the SAB dataset is presented in

Figure 5.74 and shows that the trading rules evolved with a population size of 3200 and 6400 returned

the largest Sampleout profit. The graph also shows that the trading rules evolved using the SAB dataset

and a population size of 1600 resulted in the lowest Sampleout profit. The difference in average returns

equates to less than 1.8% of the share price. The critical difference plot presented in Figure 5.72 shows

a critical difference between the results returned by the trading rules evolved using a population size of

3200 and 6400 and the results returned by the trading rules evolved using a population size of 1600.

The Samplein results presented in Figure 5.73 shows that the trading rules evolved using a population

size of 3200 and 6400 returned the largest Samplein profit. Based on these observations, a population

size of 3200, or 6400 was preferred when evolving trading rules for the SAB dataset.

Figure 5.72: Critical difference plot of SAB Sampleout results using various population sizes.
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(a) Population size set at 50 individuals

(b) Population size set at 100 individuals

(c) Population size set at 200 individuals

(d) Population size set at 400 individuals

Figure 5.73: Scatter plot plotting returned profit using SAB dataset and various population sizes.
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(e) Population size set at 800 individuals

(f) Population size set at 1600 individuals

(g) Population size set at 3200 individuals

(h) Population size set at 6400 individuals

Figure 5.73: Scatter plot plotting returned profit using SAB dataset and various population sizes (Cont.).
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Figure 5.74: Average Sampleout profit returned by the best individual within a simulation evolved using the SAB

dataset and various population sizes.

The results returned by the trading rules evolved using various populations sizes show that, gen-

erally larger population sizes of 1600, 3200, or 6400 evolve the best performing trading rules. The

exception to this observation was the results returned by the trading rules evolved for the NED dataset,

which shows that a small population size of 50 is preferred. Except for the trading rules evolved for

the SAB dataset, no significant difference was found between the results returned by the trading rules

evolved using population sizes of 1600, 3200, and 6400. Trading rules evolved for the SAB dataset

show no significant difference between the results returned by the trading rules evolved using a popu-

lation size of 3200 or 6400. A significant difference between the results returned by the trading rules

evolved using a population size of 1600 and 3200 was found. However, the average returned profit was

less than 1.8%.

The population size has a computational expense. Selecting the lowest population size is preferred.

Therefore, based on the observations in this section, a population size of 1600 was used for the remain-

der of this study.

5.5.3 Maximum Generation Sensitivity Analysis

Each generation allows the evolutionary process to optimise the genetic material within the population.

Allen and Karjalainen [43] terminated evolution when the number of generations reached 50 or if there

was no improvement within 25 generations. The purpose of this section is to determine the maximum

number of generations that must pass before the trading rules stop improving significantly.

A simulation was run for each share presented in Table 5.2. The simulation used the configuration

defined in Table 5.3. Rank selection was used as the selection operator, and the maximum number of



Chapter 5. Genetic Program For Trading Rules 180

generations was set to 1500. A maximum of 1500 generations was selected as 1500 generations took

approximately a week to compute per share code.

At set intervals the best individual for a given generation was run using the Sampleout dataset. The

result was recorded as a sample profit. The first sample profit was taken at 20 generations and then next

sample at 40. Each subsequent profit sample interval was doubled, until the interval was 1280. A total

of seven profit samples were taken for each share. The samples were compared using the Iman and

Davenport test [142] and the test results are presented in Table 5.23.

The p-values in Table 5.23 show that a significant difference between the profit samples drawn from

the trading rules evolved using the inverted shares INVNED, INVREM, and INVSBK exists. A post-

hoc analysis was done on the sample results returned by the trading rules evolved for the INVNED,

INVREM, and INVSBK datasets. The post-hoc results are presented in Figure 5.75. Post-hoc analysis

shows that a significant difference in the profit samples returned at various intervals exists.

Figure 5.75a shows three groups of INVNED Sampleout profit results. Each group is shown to be

significantly different from any other group. The first group represents the profit results recorded at

interval 20. The second group represents the Sampleout profit results recorded intervals 40, 80, and

160. The third group represents the Sampleout profit results recorded at intervals 320, 640, and 1280.

The three groups are better represented in the critical difference plot presented in Figure 5.76a.

The scatter plot in Figure 5.77a plots the average INVNED Samplein profit returned by all the

trading rules per simulation run per generation as dots. The lines represent the average profit returned

by the best trading rules for each of the Samplein, Samplesel , and Sampleout datasets. A comparison of

the interval groups to the Sampleout profit recorded in Figure 5.77a shows that the first group performed

worse than the second and third group. The graph shows that the third group is the most stable, but at

around generation 125, the Sampleout profit plotted is greater than the profit plotted for the generations

80 and 160. The Sampleout profit plotted at generation 125 is in-line with the profit plotted for the third

interval group at generations 320, 640, and 1280.

Overall the scatter plot shows a rapid increase in profit across all the INVNED sample datasets and

at around generation 150 the recorded profit begins to drop. The downward profit trend continues until

generation 300 where it increases and stabilises at around generation 500. The Samplein and Sampleout

profit peaks at generation 125 and again at generation 500. Therefore, based on these observations, the

maximum number of generations set by Allen and Karjalainen [43] is too low when trading INVNED.

The number of generations should either be capped at 125 generations or be allowed to continue past

500 generations. An increase in the number of generations increases the computation time. A smaller

number of generations is preferred. Therefore, based on the observations, a maximum number of 125
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generations is preferred.

A pairwise comparison of the Sampleout profits returned by the trading rules evolved for the IN-

VREM profits recorded at each interval is presented in Figure 5.75b. The p-values show two signifi-

cantly different groups. The first group contains the Sampleout profits recorded at intervals 20, 40, 80,

and 160. The second group contains the Sampleout profits recorded at intervals 320, 640, and 1280.

The critical difference plot presented in Figure 5.76b confirms that the result groupings are critically

different. The scatter plot in Figure 5.77b is similar to that of Figure 5.77a. Profit increases rapidly

until generation 125, then declines until generation 310, increasing again until generation 375, and

stabilising at around 500 generations.

The results recorded for the trading rules evolved for the INVSBK dataset are similar to the results

recoded for the trading rules evolved for the INVNED and the INVREM datasets. Therefore, based on

the observations, a maximum number of generations is set at 125 for the remainder of this study.

Table 5.23: p-value results using Iman and Davenport test with Finner’s correction.

Samplein Samplesel Sampleout

Share Code P-Value Corrected P-Value Corrected P-Value Corrected
P-Value P-Value P-Value

agl 0.253419 0.306021 0.253419 0.328690 0.549709 0.908698

alsi 0.029435 0.043826 0.119918 0.174371 0.999776 0.999877

bil 0.005263 0.008756 0.007969 0.013246 0.331166 0.778719

gfi 0.855114 0.873789 0.908160 0.922560 0.966144 0.990116

imp 0.999938 0.999938 0.999938 0.999938 0.999938 0.999938

inv-ned 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inv-rem 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inv-sbk 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

lon 0.000000 0.000000 0.000000 0.000000 0.764884 0.955048

ned 0.221408 0.289136 0.391329 0.460252 0.992314 0.997724

rch 0.332543 0.372792 0.389405 0.460252 0.997573 0.999039

rem 0.000000 0.000000 0.000000 0.000000 0.934164 0.983107

sab 0.000000 0.000000 0.000000 0.000000 0.628701 0.915994

sbk 0.000000 0.000000 0.000000 0.000000 0.881647 0.981710

sol 0.000000 0.000000 0.000000 0.000000 0.905040 0.981710

Note: bold values represent a significant difference.
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(a) Sampleout INV-NED

(b) Sampleout INV-REM

(c) Sampleout INV-SBK

Figure 5.75: Friedman pairwise comparison of p-values for results (Cont.).
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(a) Sampleout INV-NED

(b) Sampleout INV-REM

(c) Sampleout INV-SBK

Figure 5.76: Critical difference plots for results (Cont.).

(a) INV-NED

Figure 5.77: Scatter plots of average profit. The dots represent the average Samplein profit for each simulation

run. The Samplein plot shows that the level of exploration. The lines represent the mean best profit across

Samplein, Samplesel , and Sampleout .
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(b) INV-REM

(c) INV-SBK

Figure 5.77: Scatter plots of average profit. The dots represent the average Samplein profit for each simulation

run. The Samplein plot shows that the level of exploration. The lines represent the mean best profit across

Samplein, Samplesel , and Sampleout (Cont.).

5.6 Summary

This chapter defined a single population GP by presenting the basic algorithm and grammar to evolve

trading rules for stock market trading. The share datasets used in this thesis were discussed. The

empirical process used in this thesis to evaluate the results was presented.
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This chapter evaluated various fitness functions and concluded that the compounded excess return

fitness function implemented by Allen and Karjalainen [43] is the preferred fitness function for this

thesis. This chapter studied the effects that selection strategies have on the performance of evolved

trading rules and concluded that rank selection [103, 126] is the most appropriate selection strategy

for this thesis. The chapter ended with a parameter sensitivity analysis to conclude that the parameters

defined by Allen and Karjalainen [43] will be used in the chapters that follow, except for the following

parameter values determined by the parameter sensitivity analysis:

• Mutation probability of 35%;

• Population size of 16̇00 individuals;

• A maximum of 125 generations.



Chapter 6

Co-evolved Genetic Program For Trading
Rules

It is not the strongest of the species that survives, nor the most intelligent that survives. It

is the one that is the most adaptable to change.

- Charles Darwin (English Naturalist)

186
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The purpose of this chapter is to describe the co-evolved GP implementations used in the empir-

ical study that follows. The chapter begins with a short description of co-evolution in Section 6.1.

Section 6.1 comprises of two sub sections which describe in detail co-operative co-evolution and com-

petitive co-evolution. This chapter concludes with a summary in Section 6.2.

6.1 Co-evolved Genetic Program for Stock Market Trading

Chapter 5 focused on optimising the GP implemented by Allen and Karjalainen [43]. This chapter

introduces two different multi-population versions of the single population GP presented previously.

Recall from Section 3.4, that a co-evolved GP is a multi-population GP where either populations

work together to evolve a solution, or compete to evolve a solution. Populations that work together

are referred to as co-operative, while populations that work against one another are called competitive.

This thesis compares trading rules evolved using both competitive co-evolution and co-operative co-

evolution to trading rules evolved using the single population GP presented in the previous chapter.

The standard GP presented in Chapter 5 evolved a trading rule to return a boolean value of true

or false based on the current market conditions. The boolean result was transcoded to buy, sell or

hold depending on whether the trader had shares or not. Separating the trading rule into two questions,

i.e. “If I have no shares, should I buy some?” and “If I have shares, should I sell them?”, creates two

distinct trading rules. These two rules, a buy rule and sell rule could be evolved independently. Co-

operative co-evolution was used to evolve two different populations. Each population represented either

the buy rule or sell rule. Together the populations form a trading rule. The implemented co-operative

co-evolved GP is described in more detail in sub section 6.1.1.

The competitive co-evolved trader evolves two populations that compete against each other to be-

come the best individual. The implemented competitive co-evolved GP is described in more detail later

in sub section 6.1.2.

6.1.1 Co-operative Co-evolved Genetic Program

Co-operative co-evolution requires two or more populations that evolve together, each population ben-

efits from the other through information sharing and reward sharing. Each population undergoes evolu-

tion independently. The single population evolutionary process defined in Algorithm 3 in Chapter 5 was

divided into two parts to support co-operative co-evolution. The first part, presented in Algorithm 4,

initialises multiple populations, iterates through the generations and returns the global best individuals

from each population. The second part, illustrated in Algorithm 5 evolves each population indepen-
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dently.

The key differences between the co-operative co-evolution algorithm presented here and the single

population algorithm is that more than one population is evolved, a reward sharing is used to determine

the best individuals, and multiple individuals are returned. The dual population approach of Seshadri

[193] was applied to the optimised GP of Chapter 5, to implement a co-operative co-evolved GP.

Seshadri [193] used two populations to evolve a trading rule. One population evolved a buy rule

and the other a sell rule. Two individuals were required to form a trading rule. One individual from the

buy population, and one individual from the sell population. Using the sell population, Seshadri [193]

sampled the best five individuals from the previous generation and five random individuals from the

current population two form a sell reciprocal trading rule set. Each individual from the buy population

was evaluated with each individual within the sell reciprocal trading rule set. A buy rule and a reciprocal

sell rule combination were evaluated using the compounded excess return [43, 193] fitness function.

Seshadri adjusted the fitness value using a penalty function proportional to the number of nodes within

the individual. The fitness value of an individual from the buy population was set as the total fitness

obtained across all evaluations. The process was repeated for the individuals within the sell population.

Seshadri [193] used the S&P500 index to evolve the trading rules.

The co-operative co-evolution GP implemented in this thesis differs from the algorithm presented by

Seshadri [193], in that a reward sharing system was used across all individuals. The reward sharing was

based on the “bucket brigade” [144] credit scoring system. Each individual from the buy population

was evaluated with each individual from the sell population, an approach followed by De Jong and

Potter [79, 193], and Axelrod [51, 193]. The buy and sell rule combination was evaluated using a

fitness function, to return a fitness value. The total reward of both the individuals used in the evaluation

were incremented by the fitness value.

The process of buying and selling shares is illustrated in Algorithm 7. EvaluateCombination re-

ceives three parameters. The first parameter is an individual that represents a buying rule, the second is

an individual that represents a selling rule. A buy or sell individual is defined by the same grammar and

syntax as the optimised GP presented in Chapter 5 . The third parameter represents the dataset used for

evaluation.

A trader has no shares on the first day of trading. The trader must execute the trading rule rep-

resented by an individual from the buy population. If the buy rule returns true, the trader must buy

shares, otherwise no shares are bought. If the trader has no shares on day two the trader executes the

buy trading rule again. If the trader has shares, the trader executes the sell trading rule. If the sell

trading rule returns true, the trader must sell the shares. If the sell trading rule returns false the trader
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does nothing. The process continues for each trading day. On the last day of trade any shares in the

possession of the trader are sold. Each trading action is used to determine a compound excess return

for the given buy, sell trading rules. An empirical study presented in Chapter 5 showed that the com-

pound excess return (AK fitness function) was the preferred fitness function. The AK fitness function

is therefore used to calculate the fitness value of the combination of buy and sell trading rules. The

EvaluateCombination function returns the fitness value.

The optimised GP presented in Algorithm 3 in Chapter 5 maintained a global best individual. The

global best individual of a population was only updated if the iteration best individual performed better

than the global best on both the in sample dataset (Samplein) and validation sample dataset (Samplesel).

The co-operative co-evolution GP implemented in this thesis maintained two global best individuals,

one from each population. Because the reward value of an individual is the sum of the fitness values

returned by all the evaluations an individual took part in, the global best individual is included in the

reward sharing process.

The complete reward sharing process is illustrated in Algorithm 6. The function RewardSharing

receives five parameters. The first two parameters represent the individuals from the buy population

as the array cBuy and the global best individual from the buy population. The second two parameters

represent the sell population, and the final parameter contains the dataset. The reward process evalu-

ates every combination of individuals from the buy population and sell population using the function

presented in Algorithm 7. The fitness result is added to the accumulated individual’s reward. The re-

ward process is repeated by evaluating the combination of each individual in the buy population and

the global best individual from the sell population, and again combining each individual within the sell

population and the global best individual from the buy population. The accumulated reward of each

individual is returned.
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Algorithm 4: Co-operative co-evolved GP algorithm.

g = 0; . Generation counter

Set the maximum number of generations G;

Set the total number of individuals µ;

Initialise the in sample dataset Samplein . Defined in Section 5.2

Initialise the validation sample dataset Samplesel

Initialise buy population cBuyg; . Randomly generate a population of trading rules

Initialise sell population cSellg; . Randomly generate a population of trading rules

Calculate the shared reward of each individual:

rBuyg, rSellg = REWARDSHARING(cBuyg, null, cSellg, null, Samplein)

Set the best buy individual bBuy = cBuyg,n,n ∈ {rBuyg,0, . . . ,rBuyg, µ

2
}, where

rBuyg,n is the maximum shared reward;

Set the best sell individual bSell = cSellg,n,n ∈ {rSellg,0, . . . ,rSellg, µ

2
}, where

rSellg,n is the maximum shared reward;

while g < G do
g = g+1;

EVOLVE(cBuyg, bBuy, cSellg, bSell, Samplein, ‘buy’);

EVOLVE(cBuyg, bBuy, cSellg, bSell, Samplein, ‘sell’);

Calculate the shared reward of each individual using Samplein:

rbBuy, rbSell, rBuyg, rSellg = REWARDSHARING(cBuyg, bBuy, cSellg, bSell, Samplein)

Re-calculate the temporary shared reward of each individual using Samplesel :

rbBuyT , rbSellT , rBuyTg, rSellTg = REWARDSHARING(cBuyg, bBuy, cSellg, bSell, Samplesel)

Set the best buy individual index x = rBuyg,n,n ∈ {rBuyg,0, . . . ,rBuy µ

g,2
}, where

rBuyg,n is the maximum shared reward;

if rbBuy > rBuyg,x and rbBuyT > rBuyTx then
bBuy = cBuyg,x; . New global best buy rule

end if
Set the best sell individual index y = rSellg,n,n ∈ {rSellg,0, . . . ,rSellg, µ

2
}, where

rSellg,n is the maximum shared reward;

if rbSell > rSellg,y and rbSellT > rSellTg,y then
bSell = cSellg,y; . New global best sell rule

end if
end while
return bBuy,bSell as the solution; . Returns both parts of the trading rule
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Algorithm 5: Co-operative co-evolved GP evolutionary process.

procedure EVOLVE(cBuyg, bBuy, cSellg, bSell, Samplein, rule)

Set number of offspring λ = 0;

while λ < (µ÷2) do . µ÷2 because there are 2 populations

Calculate the shared reward of each individual using Samplein:

rbBuy, rbSell, rBuyg, rSellg = REWARDSHARING(cBuyg, bBuy, cSellg, bSell, Samplein)

Set evolution population Cg and reward share Rg:

if rule= ‘buy’ then
Cg = cBuyg;

Rg = rBuyg;

else
Cg = rSellg;

Rg = rSellg;

end if
Set random number r ∼ U(0,1);

if r < Pm then . Pm is the mutation probability

. Sampling is performed using rank selection

Sample parent P1 from Cg−1 with bias to the worst Rg−1;

Mutate P2 to form O1;

Sample D1 from Cg with bias to the worst shared reward Rg;

Remove D1 from Cg;

Add O1 to Cg;

λ = λ +1;

else
. Sampling is performed using rank selection

Sample parents P1 and P2 from Cg−1 with bias to the worst Rg−1;

Offspring O1 = Re-combination of P1 and P2;

Offspring O2 = Re-combination of P2 and P1;

Add O1 and O2 to Cg;

Sample D1 and D2 from Cg with bias to the worst Rg;

Remove D1 and D2 from Cg;

λ = λ +2;

end if
end while

end procedure

Mutation

Crossover
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Algorithm 6: Co-operative co-evolution reward sharing algorithm.

function REWARDSHARING(cBuy, bBuy, cSell, bSell, Sample)

Initialise the total reward rBuy of each buy individual in the population cBuy to 0;

Initialise the total reward rSell of each sell individual in the population cSell to 0;

for x = 0;x < (µ÷2);x = x+1; do . 2, Because there are 2 populations

for y = 0;y < (µ÷2);y = y+1; do
Calculate the fitness f = EVALUATECOMBINATION(cBuyx, cSelly, Sample);

Update the total reward of the individuals used in the evaluation:

rBuyx = rBuyx + f ;

rSelly = rSelly + f ;

end for
end for
if bBuy 6= null and bSell 6= null then

Initialise total reward rbBuy of the best buy individual bBuy to 0;

Initialise total reward rbSell of the best sell individual bSell to 0;

for y = 0;y < (µ÷2);y = y+1; do
Calculate the fitness f = EVALUATECOMBINATION(bBuy, cSelly, Sample);

Update the total reward of the individuals used in the evaluation:

rbBuy = rbBuy+ f ;

rSelly = rSelly + f ;

end for
for x = 0;x < (µ÷2);x = x+1; do

Calculate the fitness f = EVALUATECOMBINATION(bSell, cBuyx, Sample);

Update the total reward of the individuals used in the evaluation:

rbSell = rbSell + f ;

rBuyx = rBuyx + f ;

end for
end if
return rbBuy, rbSell, rBuy, rSell; . Return the shared rewards

end function
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Algorithm 7: Co-operative co-evolved trading rule evaluation.

function EVALUATECOMBINATION(BuyRule, SellRule, Sample)

Set boolean s = false; . The trader has no shares on the first day

Set fitness f = 0;

for i = 0; i < LENGTH(Sample); i = i+1; do
if s == false then

Set buy action a = BuyRule(Samplei); . Determine the action using the BuyRule

if a == true then
Buy shares;

s = true;

end if
Update fitness value f using fitness function and action;

else
Set sell action a = SellRule(Samplei); . Determine the action using the SellRule

if a == true then
Sell shares;

s = false;

end if
Update fitness value f using fitness function and action;

end if
end for
if s == true then

Sell shares;

Update fitness value f using fitness function and action;

end if
return f ; . Return the fitness value of the BuyRule, SellRule combination

end function

6.1.2 Competitive Co-evolved Genetic Program

Competitive co-evolution requires two or more populations that evolve in competition, each population

reciprocally driving one another to increasing levels of performance and complexity [79, 185]. The

performance of one population is inversely proportional to the performance of another, implying the

fitness of one individual is dependent on the fitness of another. Angeline and Pollack [47] defined a

relative fitness function as any fitness calculation that is dependent on other individuals to calculate the

fitness measure [47].
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The single population evolutionary process defined in Algorithm 3 in Chapter 5 was modified to

support a relative fitness function, and more than one population. The modified evolutionary process is

presented in Algorithm 8. Instead of a single population, the competitively co-evolved algorithm begins

by initialising P populations of equal size. Individuals within a population are initialised using the same

approach as the single population GP presented in Chapter 5. The size of each population is determined

by the configured total number of individuals µ divided by the number of populations P.

Just like the single population GP, each individual within a population represents a complete trading

rule. The trading rule returns a boolean value of true or false, which is transcoded to buy, sell or

hold depending on whether the trader has shares or not. The evaluation of a competitively co-evolved

individual is determined by a relative fitness value as opposed to the absolute fitness value used in a

single population GP.

The relative fitness calculation is presented in Algorithm 10 as two functions: CalcAllRelative

Fitness and CalcRelativeFitness. The function CalcAllRelativeFitness requires true pa-

rameters. The first parameter Cg contains all the iteration individuals from every population. The

second parameter denotes the current population p. CalcAllRelativeFitness iterates through each

individual in population p calling function CalcRelativeFitness.

CalcRelativeFitness compares an individual from population p to all individuals in all other

populations. Comparison is done by calculating the absolute fitness of each individual to determine

which individual has the largest absolute fitness value. The individual from population p receives a

point each time its absolute fitness value is greater than the absolute fitness value of the individual it is

compared too [79, 132, 185]. CalcRelativeFitness returns the total awarded points as the relative

fitness value of the individual.

The optimised GP presented in Algorithm 3 in Chapter 5 maintains a global best individual. The

competitive co-evolution GP implemented in this thesis maintains a global best individual for each

population. At the end of each generation the relative fitness value of the global best individuals are

re-calculated by comparing the global best individual to all the individuals in all the other populations.

The best individual from the current population is the individual that has the largest relative fitness value

across all the individuals within the current population. The best individual from the current population

is then compared to the global best individual from the current population. The iteration best individual

from the population becomes the new global best individual, if its Samplein, and Samplesel relative

fitness values are greater than the relative fitness values of the global best individual of the population.

At the end of evolution, the competitive co-evolved GP returns the overall global best individual as the

solution.
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Algorithm 8: Competitive co-evolved GP algorithm.

g = 0; . Generation counter

Set the maximum number of generations G;

Set the maximum number of populations P;

Set the total number of individuals µ;

Initialise the in sample dataset Samplein . Defined in Section 5.2

Initialise the validation sample dataset Samplesel

for p = 0; p < P; p = p+1; do
Initialise initial generation’s population Cp,g; . Randomly generate a population of trading rules

end for
for p = 0; p < P; p = p+1; do

Calculate relative fitness r f for each individual in Cp,g

r fp,g = CALCALLRELATIVEFITNESS(Cg, p);

Set the population’s global best individual for this population pBp =Cp,g,n, n ∈Cp,g, where

pBp produces the maximum relative fitness r fp;

end for
while g < G do

g = g+1;

for p = 0; p < P; p = p+1; do
EVOLVE(C, p, g);

Calculate relative fitness r f for each individual in Cp,g

r fp,g = CALCALLRELATIVEFITNESS(Cg, p);

Set the best individual index x, for this population and generation:

x = r fp,g,n, n ∈ {r fp,g,0, . . . ,r fp,g, µ

P
}, where

r fp,g,n is the maximum relative fitness value;

Re-calculate the population’s global best individual’s relative fitness using Samplein:

r f B = CALCRELATIVEFITNESS(pBp, Samplein, Cg, p);

if r f B > r fp,g,x then
Calculate temporary relative fitness using the validation sample Samplesel :

r f I = CALCRELATIVEFITNESS(Cp,g,x, Samplesel , Cg, p);

r f B = CALCRELATIVEFITNESS(pBp, Samplesel , Cg, p);

if r f I > r f B then
Set pBp =Cp,g,x; . New global population best

end if
end if

end for
end while
return Bx, x ∈ {pB0, . . . , pBP}, where . Return the best individual across all the populations

Bx produces the maximum relative fitness for both Samplein and Samplesel ;
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Algorithm 9: Competitive co-evolved GP evolutionary process.

. Evolve receives all populations as C

procedure EVOLVE(C, p, g)

Set number of offspring λ = 0;

while λ < (µ÷P) do . µ÷P because there are P populations

Set random number r ∼ U(0,1);

if r < Pm then . Pm is the mutation probability

. Sampling is performed using rank selection

Sample parent P1 from Cp,g−1 with bias to worst r fp,g−1;

Mutate P2 to form O1;

Sample D1 from Cp,g with bias to worst r fp,g;

Remove D1 from Cp,g;

Add O1 to Cp,g as Cp,g,n+1, where n is the size of Cp,g;

Set relative fitness:

r fp,g,n+1 = CALCRELATIVEFITNESS(Cp,g,n+1, Samplein, Cg, p);

λ = λ +1;

else
. Sampling is performed using rank selection

Sample parents P1 and P2 from Cp,g−1, with bias to best r fp,g−1;

Offspring O1 = Re-combination of P1 and P2;

Offspring O2 = Re-combination of P2 and P1;

Sample D1 and D2 from Cp,g with bias to worst r fp,g;

Remove D1 and D2 from Cp,g;

Add O1 and O2 to Cp,g as Cp,g,n+1 and Cp,g,n+2, where n is the size of Cp,g;

Set relative fitness:

r fp,g,n+1 = CALCRELATIVEFITNESS(Cp,g,n+1, Samplein, Cg, p);

Set relative fitness:

r fp,g,n+2 = CALCRELATIVEFITNESS(Cp,g,n+2, Samplein, Cg, p);

λ = λ +2;

end if
end while

end procedure

Mutation

Crossover
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Algorithm 10: Competitive co-evolved GP relative fitness algorithms.

. C denotes all the populations, and generations

function CALCALLRELATIVEFITNESS(Cg, p)

for n = 0;n < (µ÷P);n = n+1; do . For each individual within the population

Set the relative fitness r f of the individual n in population p, and generation g:

r fp,n = CALCRELATIVEFITNESS(Cp,g,n, Samplein, p);

end for
return r fp,g . Return the fitness values for all individuals within the population and generation

end function
function CALCRELATIVEFITNESS(Individual, Sample, Cg, p)

Set relative fitness r f = 0;

Calculate the Individual’s fitness value f using a fitness function and the Sample dataset;

for i = 0; i < P; i = i+1; do
if i 6= p then . Compare the Individual against individuals from other populations

for n = 0;n < (µ÷P);n = n+1; do . For each individual within the population

Calculate the temporary Sample fitness value t of Cp,g,n,

using a fitness function and the Sample dataset;

Individual gets a point each time its fitness f

is greater than an individual in another population

if f > t then
r f = r f +1;

end if
end for

end if
end for
return f R; . Return the individual’s relative fitness for the sample provided

end function

6.2 Summary

This chapter extended the single population GP presented in Chapter 5 to form two different multi-

population co-evolution approaches. The first approach a co-operative co-evolved GP and the second a

competitive co-evolved GP. The co-evolved GPs and the single population GPs are compared in the next

chapter to determine if evolved and co-evolved trading rules can outperform a buy-and-hold strategy,

and if a co-evolved GP performs better than a single population GP.



Chapter 7

Empirical Study

The true method of knowledge is experiment.

-William Blake (English painter, poet and printmaker)

198
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This chapter compares an optimised GP to two co-evolved GPs to show that trading rules evolved

by a co-operative co-evolved GP does not perform as well as rules evolved by either a standard GP

or a competitively co-evolved GP. This chapter begins with Section 7.1, describing the study and the

empirical process implemented. Section 7.2 compares the evolved trading rules applied to a real world

market without the complexities of transaction costs. The ability of the evolved traders to trade using

real world fees is discussed in Section 7.3. Section 7.4 compares the evolved traders to four random

trading strategies. The chapter concludes with a summary in Section 7.5.

7.1 Empirical Study

This thesis examines the profitability of evolved stock market trading rules on the JSE. A trading rule is

a result of an evolutionary process. The basic evolutionary process described in Chapter 5 was extended

to co-evolution, a multi-population evolutionary process. Two variations of co-evolution, namely co-

operative and competitive co-evolution, were defined in Chapter 6. The three GPs were used to evolve

trading rules over a set of shares listed on the JSE. A complete list of the shares used was presented in

Table 5.2.

Following the same empirical process as presented in Chapter 5, an independent simulation was

run for each of the three GPs. Each simulation was repeated for each of the shares. To ensure that

the simulations were evaluated fairly, a fixed set of random seeds were used. Each simulation run

was assigned one of the 30 random seeds. This ensured that each simulation was repeatable, and

differences in the performance were not due to random chance, but due to differences in the algorithm’s

implementation.

Each GP used a fixed number of individuals determined by parameter sensitivity analysis outlined

in Chapter 5. To ensure that all three GPs were initialised in the same way, 30 random seeds were used

to generate 30 sets of µ individuals. These individuals were used as the initial individuals for each of

the three GPs. This ensured that differences in performance of the GPs were due to differences in the

algorithm’s implementation and not the initial populations.

Each simulation was configured using the same evolutionary operators and parameters. The pa-

rameter sensitivity analysis presented in Chapter 5 determined that a mutation probability of 35%, a

population size (µ) of 16̇00, and a maximum number of 125 generations were the preferred GP con-

figuration parameters for this thesis. An empirical analysis in Chapter 5 determined that rank selection

was the preferred selection operator. Rank selection was used to determine which individuals under-

went mutation, crossover, and which individuals survived to the next generation. An empirical analysis
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in Chapter 5 determined that the compounded excess returns fitness function (AK) defined by Allen and

Karjalainen [43] was the preferred fitness function for this thesis.

Allen and Karjalainen noted that lowering the trading costs increases the returns of the GP [43].

Neely et al. [170], Telbany [102], Mahfoud and Mani [160, 161], Li and Tsang [204, 205], and Potvina

et al. [177] reimplemented the work of Allen and Karjalainen using various fee structures with varying

degrees of success. Because of this, the simulations were repeated twice, once without fees and once

with fees. The results without fees are discussed in Section 7.2, and the analysis of the results with fees

are discussed in Section 7.3. Section 7.4 compares the trading results presented in Section 7.3 to four

random trading strategies.

7.2 Excluding fees

This section compares the profitability of trading rules evolved using three different GP approaches,

namely a single population GP, competitively co-evolved GP, and a co-operative co-evolved GP. The

results discussed in this section excluded trading fees. The profit at the end of trading was recorded for

each of the trading rules. The Iman and Davenport extension [142] of the Friedman statistical test was

run on profit returned by the best individuals from each simulation, dataset, and share. The results of

the Iman and Davenport test are presented in Table 7.1.

The Iman and Davenport test results show that a significant difference exists between the results

returned by the evolved trading rules. A Friedman pairwise test was performed on the significantly

different Sampleout results to determine which of the GP’s results were significantly different. The

results are presented in Figure 7.1. The Friedman test showed that the results returned by the evolved

trading rules using a co-operative co-evolved GP were significantly different from the other results.

The critical difference plots presented in Figure 7.1 confirm the p-value results and show that the

results of the co-operative co-evolved GP are significantly worse than the results returned by the trading

rules evolved using single population evolution and competitive co-evolution.

The mean profit obtained by the best individuals for each simulation is summarised in Table 7.2.

The mean profit results show that the co-operative co-evolved GP performed significantly worse than

the other two approaches for 10 of the 11 significantly different Sampleout share datasets. The box plots

presented in Figure 7.3 depict how poorly the co-operative co-evolved trading rules performed. Except

for NED, the results returned by the evolved trading rules using the standard single population GP and

the competitively co-evolved GP have smaller boxes denoting a smaller deviation in the results, and a

higher mean than the co-operative co-evolved GP across all the significantly different shares. The mean
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deviation measures the average difference that an individual simulation run result is from the overall

simulation average. This implies that the smaller the deviation, the less chance the results are skewed

by outliers and therefore more reliable.

The box plots in Figure 7.3 in conjunction with the mean results in Table 7.2 show that the compet-

itively co-evolved trading rules performed better than the trading rules evolved using the single popula-

tion GP when trading ALSI40, BIL, NED, REM, SBK, SAB, and SOL. The trading rules evolved using

the single population GP performed better than the competitively co-evolved trading rules when trading

INVNED, INVREM, INVSBK, and RCH. However, except for the INVREM results, the Friedman test

failed to find a significant difference between the results returned by the trading rules evolved using

competitive co-evolution and the results returned by the trading rules evolved using single population

evolution.

The results show that the trading rules evolved using competitive co-evolution and single population

evolution performed equally well across all shares, except for NED and INVREM. When trading NED,

a cooperative co-evolved GP was preferred. When trading INVREM, a single population GP was

preferred.

Table 7.1: p-value results without fees using Iman and Davenport test with Finner’s correction.

Samplein Samplesel Sampleout

Share Code P-Value Corrected P-Value Corrected P-Value Corrected
P-Value P-Value P-Value

agl 0.005204 0.005204 0.000000 0.000000 0.000000 0.000000
alsi 0.000000 0.000000 0.001532 0.001767 0.130636 0.160536

bil 0.000001 0.000001 0.335652 0.335652 0.000000 0.000000
gfi 0.000002 0.000002 0.000000 0.000000 0.677553 0.707859

imp 0.000000 0.000000 0.024323 0.026038 0.991976 0.991976

inv-ned 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inv-rem 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inv-sbk 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

lon 0.000000 0.000000 0.000000 0.000000 0.655771 0.707859

ned 0.000000 0.000000 0.000000 0.000000 0.000007 0.000010
rch 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

rem 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
sab 0.000000 0.000000 0.000000 0.000000 0.000003 0.000004
sbk 0.000000 0.000000 0.000000 0.000000 0.000002 0.000003
sol 0.000000 0.000000 0.000238 0.000298 0.000000 0.000000

Note: bold values represent a significant difference.
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(a) Sampleout AGL (b) Sampleout ALSI (c) Sampleout BIL

(d) Sampleout INV-NED (e) Sampleout INV-REM (f) Sampleout INV-SBK

(g) Sampleout NED (h) Sampleout RCH (i) Sampleout REM

(j) Sampleout SAB (k) Sampleout SBK (l) Sampleout SOL

Figure 7.1: Friedman pairwise comparison of p-values for results without fees.
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(a) Sampleout AGL (b) Sampleout ALSI (c) Sampleout BIL

(d) Sampleout INV-NED (e) Sampleout INV-REM (f) Sampleout INV-SBK

(g) Sampleout NED (h) Sampleout RCH (i) Sampleout REM

(j) Sampleout SAB (k) Sampleout SBK (l) Sampleout SOL

Figure 7.2: Critical difference plots for results without fees.

Table 7.2: Mean Sampleout profit per share without fees.

Share Code Co-Operative Competitive Standard

agl 17518.23 25381.37 25139.13

alsi 4783.57 9316.80 9065.63

bil 5870.03 14118.47 13075.57

gfi -419.67 131.97 -1280.03

imp 13243.33 16291.73 15982.73

inv-ned 929.77 12892.07 13091.80
inv-rem -1251.40 6323.30 7977.53
inv-sbk 130.83 5037.13 6693.43
lon 13807.13 17522.17 15756.33

ned -219.60 -2279.83 -2848.47

rch 641.73 2184.63 2187.70
rem 5108.03 9835.50 9762.33

sab 1868.63 5453.03 4969.83

sbk 249.20 1692.23 1555.63

sol 5010.50 16213.47 13053.43

Note: bold represents the highest value, and italic the lowest value.
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(a) Sampleout AGL (b) Sampleout ALSI (c) Sampleout BIL

(d) Sampleout INV-NED (e) Sampleout INV-REM (f) Sampleout INV-SBK

(g) Sampleout NED (h) Sampleout RCH (i) Sampleout REM

(j) Sampleout SAB (k) Sampleout SBK (l) Sampleout SOL

Figure 7.3: Box-plots of Sampleout profit results without fees.
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7.3 Including fees

This section repeats the simulations of Section 7.2 to determine the effect that fees has on the perfor-

mance of the evolved trading rules. The fee structure defined in Section 2.4 was used. Each trade was

made with 1000 shares. The mean profit returned by the evolved trading rules are presented in Table 7.3.

The results show that the competitive co-evolved trading rules returned the highest mean profit in 11 of

the 15 shares and the co-operative co-evolved trading rules produced the lowest mean profit across 14

of the 15 shares.

The mean profit deviation results presented in Table 7.3 show that the competitively co-evolved

trading rules were the most consistent resulting in the lowest deviation across 11 of the 15 shares. The

Iman and Davenport [142] statistical test with Finner’s correction was done on the mean profit results

to determine if the simulation results are significantly different. The p-values of the statistical test

presented in Table 7.4 show that a significant difference exists across all the share simulations.

The results of a post-hoc analysis of the profit results are presented in Figure 7.4. The p-values show

that the profit results returned by the co-operatively co-evolved trading rules were significantly different

from the results of the other two algorithms. The critical difference plots presented in Figure 7.5, in

conjunction with the mean profit results of the best individuals, confirm that the trading rules evolved

using the co-operative co-evolved GP performed significantly worse than the other trading rules.

The p-values obtained from the post-hoc analysis of the INVNED and SOL profit results show that

the results obtained from the trading rules evolved using a competitive co-evolved GP are significantly

different from that of the single population GP results. The results show that the trading rules evolved

using the competitive co-evolved GP performed significantly better than the trading rules evolved using

the standard GP when trading SOL. However, trading rules evolved using the standard GP performed

significantly better than the trading rules evolved using the competitive co-evolved GP when trading

INVNED. The trading rules evolved using a competitive co-evolved GP performed better than the

evolved trading rules using the single single population GP for 10 of the 15 shares.
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Table 7.3: Mean Sampleout profit, and standard deviation per share with fees.

Standard Competitive Co-Operative

Share Code Mean σ Mean σ Mean σ

Profit Profit Profit

agl 233796.07 ±8624.00 238416.06 ±0.00 116075.26 ±116075.26

alsi 91128.61 ±2851.79 92640.05 ±258.73 33711.21 ±43035.70

bil 123908.93 ±7832.92 128804.51 ±0.00 44087.70 ±56477.87

gfi -12889.49 ±13785.28 -13837.08 ±14357.16 -27415.77 ±11547.11
imp 169605.59 ±5426.77 172412.54 ±0.00 122435.69 ±58605.91

inv-ned 54435.84 ±6730.08 46679.36 ±9018.08 250.53 ±515.66
inv-rem 6769.87 ±10045.23 10404.96 ±4781.11 -2952.77 ±5511.83

inv-sbk 20998.47 ±2718.97 14849.33 ±8208.28 -5591.64 ±9319.41

lon 196280.74 ±13085.38 197359.67 ±10999.45 98341.61 ±90639.88

ned -48931.84 ±28239.59 -54749.04 ±32513.65 -1393.64 ±4543.67
rch 15436.26 ±0.00 15436.26 ±0.00 4286.16 ±6690.06

rem 67225.70 ±960.79 67722.66 ±0.00 33692.59 ±31862.22

sab 49231.25 6338.79 53030.66 ±0.00 17676.89 ±23569.18

sbk 6152.10 ±131.01 6219.87 ±0.00 1800.57 3240.82

sol 98461.25 ±55094.09 142051.53 ±0.00 46388.96 ±61851.94

Note: the profit values in bold and italic represents the highest and lowest profit values respectively, and the σ values in

Bold and italic, represents the lowest value or more preferred σ and the highest or least preferred σ respectively.
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Table 7.4: p-value results with fees using Iman and Davenport test with Finner’s correction.

Samplein Samplesel Sampleout

Share Code P-Value Corrected P-Value Corrected P-Value Corrected
P-Value P-Value P-Value

agl 0.000000 0.000000 0.878819 0.895777 0.000912 0.001053
alsi 0.006682 0.006682 0.000000 0.000001 0.000026 0.000065
bil 0.000001 0.000001 0.000001 0.000002 0.000018 0.000053
gfi 0.000000 0.000000 0.005621 0.007658 0.000190 0.000237

imp 0.000000 0.000000 0.797369 0.841494 0.005621 0.005621
inv-ned 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inv-rem 0.000000 0.000000 0.000000 0.000000 0.000026 0.000065
inv-sbk 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

lon 0.000000 0.000000 0.475932 0.554103 0.000109 0.000148
ned 0.000000 0.000000 0.000190 0.000356 0.000000 0.000000
rch 0.000002 0.000002 0.000335 0.000558 0.000002 0.000006

rem 0.000000 0.000000 0.929981 0.929981 0.003668 0.003930
sab 0.000003 0.000003 0.000003 0.000005 0.000037 0.000065
sbk 0.000002 0.000002 0.002402 0.003601 0.000031 0.000065
sol 0.000000 0.000000 0.000000 0.000000 0.000029 0.000065

Note: bold values represent a significant difference.

(a) Sampleout AGL (b) Sampleout ALSI (c) Sampleout BIL

Figure 7.4: Friedman pairwise comparison of p-values for results with fees.
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(d) Sampleout GFI (e) Sampleout IMP (f) Sampleout INV-NED

(g) Sampleout INV-REM (h) Sampleout INV-SBK (i) Sampleout LON

(j) Sampleout NED (k) Sampleout RCH (l) Sampleout REM

(m) Sampleout SAB (n) Sampleout SBK (o) Sampleout SOL

Figure 7.4: Friedman pairwise comparison of p-values for results with fees (Cont.).
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(a) Sampleout AGL (b) Sampleout ALSI

(c) Sampleout BIL (d) Sampleout GFI

(e) Sampleout IMP (f) Sampleout INV-NED

(g) Sampleout INV-REM (h) Sampleout INV-SBK

(i) Sampleout LON (j) Sampleout NED

(k) Sampleout RCH (l) Sampleout REM

(m) Sampleout SAB (n) Sampleout SBK

Figure 7.5: Critical difference plots for results with fees.
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(o) Sampleout SOL

Figure 7.5: Critical difference plots for results with fees (Cont.).

7.4 Comparison to random strategies

Section 7.3 compared the results returned by the trading rules evolved using three different GP algo-

rithms. This section compares the results returned by the evolved trading rules to a random trader in

order to determine if the performance of evolved trading rules is due to chance. Three random trading

rules were created.

The first random trading rule is referred to as the flip-flop trading strategy. On the first day of trade,

the flip-flop strategy either buys a share or not. The decision to buy or not to buy is performed with

equal probability. If the flip-flop strategy bought shares on the first day, it sells the shares on the second

day. If the flip-flop strategy did not buy shares on the first day, it buys shares on the second day and

sells them on the third day. The flip-flop trading rule results in a buy on one day, and a sell the day after,

followed by a buy, and then a sell. The process continues until the last day of trade.

The second and third random trading rules are referred to as random walks. The random walk

trading strategy uses a probability to determine if it should buy a share when it has none, or sell a share

when it has shares. The decision to buy, sell, or hold shares is presented in Algorithm 11. The first

random walk is aggressive, configured to use a probability Pa of 50%, implying the aggressive random

walk has a 50% chance of changing its position. The second random walk is conservative, configured

with a probability of 30%. The conservative random walk has a 30% chance of buying shares when it

has none, and 30% of selling the shares when it has shares.
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Algorithm 11: Random walk algorithm.

Set boolean s = false; . The trader has no shares on the first day

Set action probability Pa . Configured probability

for d = startDay;d < endDay;d = d +1; do
Set random number r ∼ U(0,1);

if r < Pa then
if s == false then

Buy shares;

s = true;

else
Sell shares;

s = false;

end if
else

Do nothing;

end if
end for
Trading is over sell shares;

The EMH states that a market is efficient and therefore returning a profit greater than the market is

difficult. The trading rules were compared to a buy-and-hold trading strategy to test the trading rules

performance against the market’s performance. A buy-and-hold strategy buys shares on the first day

and sells them on the last day.

Four simulations were run, one for each of the random trading strategies. Each simulation was run

30 times independently with trading fees against each share. The mean profit returned by the random

trading strategies are presented in Table 7.5. The results of random strategies were compared to the

results returned by the trading rules evolved using the standard GP and the competitively co-evolved

GP. Section 7.3 and Section 7.2 show that the results returned by the co-operative co-evolved trading

rules performed significantly worse than the trading rules evolved using competitive co-evolution and

single population evolution, and therefore the co-operative co-evolved GP results were excluded from

this section. The co-evolved and evolved trading rule results are also presented in Table 7.5.

The Iman and Davenport [142] statistical test returned a p-value less than 0.00001 across all the

result comparisons, showing that the results were significantly different and required post-hoc analysis.

The results of the post-hoc analysis are presented in Figure 7.6. The post-hoc analysis, in conjunction
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with the mean profit results, shows that the profit returned by the buy-and-hold strategy and the evolved

trading rules were significantly greater than the profit returned by the random trading strategies. This

shows that the performance of evolved trading rules is not due to random chance.

The GFI, INVNED, INVREM, and INVSBK profit results returned by the buy-and-hold strategy

were significantly less than the results returned by the co-evolved and evolved trading rules. The NED

profit results returned by the buy-and-hold strategy were significantly more than the results returned by

the co-evolved and evolved trading rules. The evolved trading rules returned a positive trading balance

at the end of trading INVNED, INVREM, and INVSBK, compared to the buy-and-hold strategy that

returned a positive trading balance at the end of INVREM.

The results show that the trading rules evolved using either a competitive co-evolved GP or a stan-

dard GP can return a profit significantly greater than the buy-and-hold strategy if the shares are trending

down, or are highly volatile. However, when the share price is trending upwards; the trading rules

evolved using either a competitive co-evolved GP or a standard GP performed as well as the buy-and-

hold strategy.

(a) Sampleout AGL (b) Sampleout ALSI

Figure 7.6: Friedman pairwise comparison of p-values for results with fees.
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(c) Sampleout BIL (d) Sampleout GFI

(e) Sampleout IMP (f) Sampleout INV-NED

(g) Sampleout INV-REM (h) Sampleout INV-SBK

Figure 7.6: Friedman pairwise comparison of p-values for results with fees (Cont.).
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(i) Sampleout LON (j) Sampleout NED

(k) Sampleout RCH (l) Sampleout REM

(m) Sampleout SAB (n) Sampleout SBK

Figure 7.6: Friedman pairwise comparison of p-values for results with fees (Cont.).
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(o) Sampleout SOL

Figure 7.6: Friedman pairwise comparison of p-values for results with fees (Cont.).

Table 7.5: Mean Sampleout profit per share with fees analysis.

Share Code Flip-Flop Aggresive-Walk Conservative-Walk Buy-And-Hold Standard-GP Competitive-GP

agl -1181250.1 -545804.39 -73380.09 238416.064 233796.066 238416.064

alsi -798813.6 -368276.96 -70352.65 92773.873 91128.609 91619.901

bil -530573.3 -239004.29 -17670.24 128804.507 123908.929 126006.385

gfi -449855.0 -227971.68 -71642.77 -31688.221 -12986.580 -13982.185

imp -609825.0 -281131.76 -17836.25 172412.542 167401.685 172412.542

inv-ned -247838.6 -117399.32 -30503.31 13036.492 54847.899 47000.941

inv-rem -300960.2 -159758.40 -61094.00 -45929.835 5271.031 10195.870

inv-sbk -198314.5 -99682.58 -40331.80 -34220.852 20835.322 18103.539

lon -1475372.0 -669354.48 -110665.79 203049.046 196280.745 197359.673

ned -493363.5 -229928.73 -63381.78 -6736.434 -48931.842 -53313.152

rch -140858.0 -60216.61 -11959.24 15436.255 15436.255 15436.255

rem -619371.6 -264102.02 -51334.02 67722.663 67225.703 67722.663

sab -508261.6 -252189.20 -53341.61 53030.657 48300.081 53030.657

sbk -334221.9 -160191.85 -45572.17 6219.866 6152.103 6219.866

sol -973212.5 -411406.68 -59980.31 142051.531 93724.734 142051.531

7.5 Summary

Three different GPs were compared with and without trading fees. It was found that a co-operative co-

evolved GP produced trading rules that performed significantly worse than trading rules evolved using

either a standard GP or a competitive co-evolved GP. This chapter compared the profitability of trading

rules evolved using a standard GP and trading rules evolved using a competitively co-evolved GP to

four random trading strategies on shares traded on the JSE. The next chapter discusses the findings of

this thesis, and presents ideas for future work.



Chapter 8

Conclusions

A conclusion is the place where you got tired of thinking

-Arthur Bloch (American Writer)
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This chapter briefly highlights the findings and contributions of this thesis and discusses directions

for future research.

8.1 Summary of Conclusions

This thesis presented an empirical process to optimise and evaluate the single population genetic pro-

gram (GP) algorithm developed by Allen and Karjalainen [43]. Parameter sensitivity experiments were

run to determine the preferred parameters, while an empirical process showed that: rank selection was

the preferred selection operator, and that a compounded excess return over the buy-and-hold strategy

was the preferred fitness function.

Two co-evolution variations of the single population GP were proposed. The first variation was

that of a co-operative co-evolved GP. The second variation was a competitive co-evolved GP. The three

different GPs were run against 15 different share datasets. Each dataset was sub-divided into three

different samples. An in-sample dataset used for evolving a generation. A selection or verification

sample dataset used to validate the best individual, and an out-of-sample dataset to test the performance

of the evolved rules on unseen data.

The GPs were run with and without transaction fees. The results of the different runs were compared

using an empirical process. Post-hoc analysis found a significant difference between the results of the

trading rules generated by the co-operative co-evolved GP and the other two GPs. The co-operative

co-evolved trading rules performed significantly worse across all the shares, with and without fees than

the other trading rules.

The results including transaction fees showed that the trading rules evolved by the competitively co-

evolved GPs performed better, but not significantly better than the rules evolved by the standard single

population GP, for 10 of the 15 shares. The results also showed that the competitively co-evolved GP

evolved trading rules that performed significantly better than the trading rules evolved by the standard

GP when trading SOL. However, trading rules evolved using the standard GP performed significantly

better than trading rules evolved by the competitively co-evolved GP when trading INVNED.

The trading rules evolved by the competitive co-evolved GP and the standard GP were compared

to three random trading rules. The results found that the evolved trading rules performed significantly

better than randomly buying and selling shares. The trading rules were compared to the passive trading

strategy, buy-and-hold. No significant difference was found between the results returned by the trading

rules and the results returned by the buy-and-hold strategy for 10 of the 15 shares. The shares that

showed significant difference were shares trending downwards. In these cases the evolved traders per-
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formed significantly better than the buy-and-hold strategy. The trading rules significantly out-performed

the buy-and-hold for 4 of the 15 different shares.

This thesis presented evidence showing that trading rules evolved using either a competitive co-

evolved GP or a standard GP can return a profit significantly greater than the buy-and-hold strategy if

the shares are trending down, or are highly volatile. However, when the share price is trending upwards,

trading rules evolved using either a competitive co-evolved GP or a standard GP performed as well as

the buy-and-hold strategy.

The thesis found that the competitive co-evolved GP produced more reliable trading rules and per-

formed generally better than trading rules evolved using a single population GP.

8.2 Future Work

Several areas are identified for future research to improve the competitive co-evolved GP in stock market

trading rule generation.

Improve the competitive co-evolved algorithm

This thesis implemented a simple competitive co-evolved GP. The algorithm used two populations and

a simple bipartite relative fitness as defined by Hillis [79, 132, 185]. Future work could include the work

of Rosin and Belew [79, 185] by studying the effect that competitive fitness sharing, shared sampling,

and the hall-of-fame has on the performance of the evolved trading rules.

Classify training data

This thesis shows that the market conditions used during evolution affect the performance of a trad-

ing rule when exposed to the out-of-sample data. To evolve the trading rules, this thesis divided datasets

into three distinct continuous samples of fixed sizes. A suggestion is to automatically classify contin-

uous samples within the dataset, determining the trend of the sample. Then to combine continuous

samples of varying trends into an in sample dataset and selection dataset. The intent is to expose the

evolutionary process to share trends that evolve the best out-of-sample trading rules.

Include more datasets

Each trading rule uses the share data of the share it is trading. No additional market information

is provided. Perhaps more information could be made available to the trading rules. For example,

currency price, interest rate, weather data, season, day of the week, and, other share data from similar

or other market sectors.
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Improve the mutation operator

The mutation operator used in this thesis implemented both a grow mutation operator and a prune

mutation operator with equal probability. Future work could study the effect the probability has on

the performance of evolved trading rules. Furthermore, the probability could change overtime. For

example, while the population has a small average tree size, the mutation operator may favour growing

the chromosome. When the population has a large average tree size the mutation operator may favour

pruning the chromosomes.

Implementation of a dynamic mutation probability

This thesis used a static mutation probability of 35%. The mutation probability was determined

by an empirical analysis. The empirical analysis also showed that a mutation probability of 70% was

preferred when evolving trading rules over the LON dataset. Future work could explore the impact that

a dynamic mutation probability has on the profitability of evolved trading rules. The dynamic mutation

probability could start high allowing the GP to explore the search space, and overtime the mutation

probability could decrease, resulting in less exploration and more optimisation.
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[98] R. Dreżewski, J. Sepielak, and L. Siwik. Generating robust investment strategies with agent-

based co-evolutionary system. In International conference on computational science, pages 664–

673. Springer, 2008.

[99] O. J. Dunn. Multiple comparisons among means. Journal of the American statistical association,

56(293):52–64, 1961.

[100] C. R. Eastman. Anaximander, earliest precursor of Darwin. Harvard University, 1905.

[101] R. D. Edwards, J. Magee, and W. H. C. Bassetti. Technical analysis of stock trends. Taylor &

Francis, ninth edition, 2007.



Bibliography 228

[102] M. E. El-Telbany. The Egyptian stock market return prediction: A genetic programming ap-

proach. In Electrical, electronic and computer engineering, 2004. ICEEC ’04. 2004 international

conference on, pages 161–164, Sept. 2004.

[103] A. P. Engelbrecht. Computational intelligence: An introduction. Wiley, 2007.

[104] S. S. Epp. Discrete mathematics with applications. Cengage Learning, forth international edition,

2010.

[105] B. Erten and J. A. Ocampo. Super cycles of commodity prices since the mid-nineteenth century.

United Nations Department of Economic and Social Affairs, 44(110):14–30, Feb. 2012.

[106] E. F. Fama. The behaviour of stock market prices. The journal of business, 38(1):34–105, 1965.

[107] E. F. Fama. Efficient capital markets: A review of theory and empirical work. The journal of

Finance, 25(2):383–417, 1970.

[108] H. Finner. On a monotonicity problem in step-down multiple test procedures. Journal of the

American statistical association, 88(423):920–923, 1993.

[109] D. B. Fogel. Applying evolutionary programming to selected travelling salesman problems.

Cybernetics and systems, 24(1):27–36, 1993.

[110] D. B. Fogel. In memoriam Alex S. Fraser [1923-2002]. IEEE Transactions on Evolutionary

Computation, 6(5):429–430, 2002.

[111] D. B. Fogel. Evolutionary computation: Toward a new philosophy of machine intelligence. IEEE

Press Series on Computational Intelligence. Wiley, 2006.

[112] D. B. Fogel. Foundations of evolutionary computing. In Modeling and Simulation for Military

Applications, pages 1–13, May 2006.

[113] D. B. Fogel. Nils Barricelli-artificial life, co-evolution, self-adaptation. IEEE computational

intelligence magazine, 1(1):41–45, 2006.

[114] L. J. Fogel. On the organisation of intellect, 1964.

[115] L. J. Fogel, P. J. Angeline, and D. B. Fogel. Approach to self-adaptation on finite state machines.

In Evolutionary programming IV: Proceedings of the fourth annual conference on evolutionary

programming, volume 355. MIT Press, 1995.



Bibliography 229

[116] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through simulated evolution.

John Wiley, 1966.

[117] R. Forsyth. BEAGLE - A Darwinian approach to pattern recognition. Kybernetes, 10(3):159–

166, 1981.

[118] D. R. Frantz. Non-linearities in genetic adaptive search. Technical report, Department of Health,

Education, and Welfare, 1972.

[119] A. Fraser and D. Burnell. Computer models in genetics. Mcgraw-Hill Book Co., New York.,

1970.

[120] A. S. Fraser. Simulation of genetic systems by automatic digital computers I. Introduction.

Australian Journal of Biological Sciences, 10(4):484–491, 1957.

[121] G. J. Friedman. Selective feedback computers for engineering synthesis and nervous system

analogy. Master’s thesis, UCLA, 1956.

[122] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera. A study of statistical techniques and perfor-

mance measures for genetics-based machine learning: Accuracy and interpretability. Computa-

tional Intelligence and Complexity, 13(10):959, Dec. 2008.

[123] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera. Advanced non-parametric tests for mul-

tiple comparisons in the design of experiments in computational intelligence and data mining:

Experimental analysis of power. Information sciences, 180(10):2044–2064, May 2010.

[124] S. Garcia and F. Herrera. An extension on “statistical comparisons of classifiers over multiple

data sets” for all pairwise comparisons. Journal of machine learning research, 9(Dec):2677–

2694, 2008.

[125] A. Ghandar, Z. Michalewicz, M. Schmidt, T.-D. Tô, and R. Zurbrugg. Computational intelli-
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Appendix A

Appendix 1 - Stock Data

Abstract

This appendix is supplementary to the data introduction presented in Section 5.2. A description of each

share is presented in Section A.1.

A.1 Stock Data

Data for the experiments was sourced from Sharenet. Sharenet is a market statistics company based

in Cape Town, South Africa. The data used covers the period April 2003 to June 2008. This section

begins with an overview of the financial market during the period 2003 to 2008. The sub sections that

follow cover each of the shares used in this study, ending with a sub section on inverted shares.

A.1.1 Overview of the financial market 2003 to 2008

The selection of shares not only covers different sectors, but different market conditions: In 2003, the

then president, Mr. Thabo Mbeki [29], was running for his second term, the Truth and Reconciliation

Commission [19] released its final report, and South Africans in general were looking forward to eco-

nomic prosperity. The year 2003 saw the second invasion of Iraq [2]; this saw investors running to safe

havens such as gold, putting pressure on the American dollar [13]. In 2000, gold traded at $272.65 and

by 2004 it was at $435.60 [13, 25].

The period 2004 to 2006 saw an increase in world attacks with the Madrid [11] and UK train

bombings [4], revolutions throughout eastern Europe [6], political change in Liberia [15] and Lebanon

237
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[8], and more bombings in Mumbai. The world had changed from a positive outlook to a negative one,

marked by the fall of the twin towers in New York in September of 2001 [7].

While the rest of the world experienced the pressure of war, the rising cost of living and oil [34],

South Africa felt immune lagging behind the rest of the world. On 15 May 2004 South Africa was

selected as the host of the football World Cup [3], promising infrastructure upgrades, and greater in-

vestment. By 2006, South Africa was experiencing their lowest interest rates in years [1]. All the

upbeat sentiment, low interest rates, and government spending on infrastructure saw a rise in consumer

spending.

The pressure of resources, the diminishing Rand value, and the appetite of South African con-

sumers, all drove consumer inflation to new heights. June 2008 saw the consumer price inflation index

(CPIX) at a high of 11.1% [18]. As prices increased, so did consumer’s demand for credit [157]. With

South Africa’s neighbour, Zimbabwe, experiencing runaway inflation levels never seen before in any

country, the South African Government needed to control inflation in South Africa. Monetary pol-

icy wanted inflation contained within 3-6% [157]. The South African Reserve Bank Governor, Tito

Mboweni, started raising the interest rates in 2006 to curb consumer spending. Interest rate hikes put

consumers into more debt, causing an increase in bank repossessions — ultimately a loss to the bank

[157].

Towards the end of 2007 the western world, including South Africa, experienced the same increase

in property prices, and an increase in demand for credit. Consumerism was at an all-time high [212].

Financial markets were pushed on the back of borrowed money and borrowed time. Ultimately, in

2008 the deck of cards came crashing down. The world market experienced a bull run on resources,

known as the commodity super cycle [105]. The American economy suffered at the hands of the sub-

prime crisis [131], causing the American housing bubble to burst. Barely hanging on, the Federal

Reserve Chairman, Ben Bernanke, cut the American interest rates [75, 131], which in turn caused the

American dollar to fall. Investors moved their money out of the American dollar and into gold. The

sub-prime crisis caused worried investors to retreat from financial shares [75]. The ripple effects were

felt throughout the world. Emerging markets, such as China and India, required more resources for

their manufacturing industries. Investors that used to play in the financial market pushed money into

resources stock, pushing resources higher. The sub-prime forced banks to cut-off credit. No credit

meant no spending [72, 88].

Two sectors of the South African economy experienced two different cycles. The resources sector

driven by emerging markets experienced a bull run, or as some economists were calling it, a resource

super-cycle. The financial sector driven by high consumer debt experienced a bear run not seen since
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the late 1990’s. Other industries experienced mixed cycles as a result of consumer spending, rise in

resource cost, and decline in the accessibility of credit.

A.1.2 All Share Index 40

The ALSI40 is not a share price, but rather an index of shares. The ALSI is short for the all share index,

and refers to the JSE all share index. The ALSI40 is a sub-set of the ALSI, made up of the forty largest

companies by market capitalisation across all sectors listed on the JSE. The ALSI40 share price history

is outlined in Figure A.1. Between 2003 and 2008, South Africa was a commodity based country, with

a large portion of the JSE consisting of mining stock. It is for this reason that the ALSI40 reflects the

commodity boom during the period 2003 to 2008. The financial sector is a large component of the

JSE, and this too is reflected in the ALSI40, specifically the drop in 2007, which reflects the start of the

financial crises. ALSI40 closed on 2003-04-03 with a share price of R73.55 and closed on 2008-06-16

with a share price of R291.82.

Figure A.1: ALSI40 share price from 2003–2008. The ALSI40 represented the top 40 shares on the JSE by

market capitalisation.

A.1.3 Anglo American Plc

Founded in 1917, AGL [9] is a multinational mining company based in Johannesburg, South Africa

and London, United Kingdom. AGL produces 40% of the worlds platinum and is a major producer of

diamonds, copper, nickel, iron ore, and metallurgical and thermal coal. AGL is listed on the LSE as

AAL and the JSE as AGL. AGL operates in the metals and mining sector. The AGL share price history

is outlined in Figure A.2. The graph shows how AGL benefited from the commodities super cycle.
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AGL closed on 2003-04-03 with a share price of R121.00 and closed on 2008-06-16 with a share price

of R532.50.

Figure A.2: Anglo American Plc share price from 2003–2008.

A.1.4 BHP Billiton Plc

Created in 2001 [10], by the merger of an Australian company, Broken Hill Proprietary Company

(BHP), founded in 1885 and a British company, Billiton, founded in 1860. BIL is a multinational min-

ing company based Melbourne Australia. BIL produces iron ore, manganese, petroleum, aluminium,

copper, lean, zinc, uranium, coal, nickel, cobalt, stainless steel, titanium, and diamonds. BIL is listed

on the JSE, NYSE and LSE as BIL, BBL and BLT respectively. BIL operates in the metals and mining

sector. The BIL share price history is outlined in Figure A.3. The graph shows how BIL benefited from

the commodities super cycle. BIL closed on 2003-04-03 with a share price of R41.90 and closed on

2008-06-16 with a share price of R300.00.

Figure A.3: BHP Billiton share price from 2003–2008.
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A.1.5 Gold Fields Ltd

Created in 1998 [16], with the amalgamation of Gold Fields of South Africa Ltd and Glencore Ltd, GFI

is a multinational mining company based in Johannesburg, South Africa. GFI is a gold mining company.

GFI is listed on the JSE, NYSE, Euronext NV, European stock exchange (ENX), SIX Swiss stock

exchange (SIX), and the NASDAQ Dubai exchange as GFI, GFI, GFLB, GOLI and GFI respectively.

GFI operates in the gold mining sector. The GFI share price history is outlined in Figure A.4. Gold is

a currency metal, and is a haven in times of economic conflict. This is clearly seen in the share price.

The data shows a rise in the share price. This was due to the Iraq war and the fall of the twin towers.

As global conflict eased from 2003–2004, a drop is seen in the share price. The start of the European

conflict, and the bombings in Madrid and London in 2004 saw a rise in the GFI share price. The

share price gained momentum in 2006 and slowly declined during the sub-prime crises and continues

to decline during the commodity super cycle of 2008 as money was moved to resources. GFI closed on

2003-04-03 with a share price of R81.01, it reached a high on 2006-07-12 with a price of R173.80, and

closed on 2008-06-16 with a share price of R87.01.

Figure A.4: Gold Fields of South Africa Ltd share price from 2003–2008.

A.1.6 Impala Platinum

Founded in 1917, IMP [17] is a multinational mining company based in Johannesburg, South Africa.

IMP is in the business of mining, refining and marketing of platinum group metals (PGMs), as well as

nickel, copper and cobalt. IMP is listed on the JSE, LSE, and OTC Markets Group as IMP, IPLA and

IMPUY respectively. IMP operates in the platinum sector. The IMP share price history is outlined in

Figure A.5. The graph shows how IMP benefited from the commodities super cycle. IMP closed on

2003-04-03 with a share price of R53.00 and closed on 2008-06-16 with a share price of R307.00.
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Figure A.5: Impala Platinum share price from 2003–2008.

A.1.7 Lonmin

Founded in 1909, LON [20] is a British mining company, operating in South Africa. LON is based in

London, England. LON is a producer of platinum group metals (PGMs). LON is listed on the JSE, and

LSE as LON and LMI, respectively. LON operates in the platinum sector. The LON share history is

outlined in Figure A.6. The graph shows how LON benefited from the commodities super cycle. Mid

2007 saw a decline in LON shares. This was due to a number of factors including, the global financial

crisis and the decrease in accessible capital, a hostile take over bid from Xstrata that failed in 2008, the

eventual sale of shares by Glencore in 2012, and labour unrest that resulted in the Marikana massacre

in 2012 [21, 22]. LON closed on 2003-04-03 with a share price of R87.00 and closed on 2008-06-16

with a share price of R503.00.

Figure A.6: Lonmin share price from 2003–2008.
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A.1.8 Nedcor Ltd

Founded in 1888, NED, commonly known as Nedbank [23], is one of the largest banks in South Africa.

NED was founded in Amsterdam as the Nederlandsche Bank en Credietvereeniging voor Zuid-Afrika

[24]. NED is based in Johannesburg, South Africa, and has interests in finance, mortgage, investments

and banking. NED is listed on the JSE as NED. NED operates in the banking sector. The NED share

price history is outlined in Figure A.7. The graph shows how the flow of money out of financial markets

affected NED at the beginning of 2000 to 2004. South Africa was awarded the football World Cup in

2004 [3]. The promise of infrastructure upgrades, and greater investment saw the financial industry

increase in value. This is reflected in the NED share price. The downturn in interest rates saw an

increase in the financial sector. In 2006, South Africa was experiencing their lowest interest [1] rates

in years, meaning more people began to borrow money, credit increased, and the financial industry

benefited. The financial crisis started in 2008, and this saw the fall of the banking sector. This fall is

reflected in the NED share price. NED closed on 2003-04-03 with a share price of R92.05 and closed

on 2008-06-16 with a share price of R90.25.

Figure A.7: Nedcor Ltd share price from 2003–2008.

A.1.9 Richmond Securities AG

Compagnie Financière Richemont SA, also known as RCH [28], is a Switzerland based luxury goods

holding company founded in 1988. RCH is listed on the JSE and SIX as RCH and CFR, respectively.

RCH operates in the management, logistics and luxury goods sectors. The RCH share price history is

outlined in Figure A.8. RCH markets to the wealthy; its goods include expensive commodities such as

gold, platinum, diamonds, and leather. RCH offers alternative investments to the super rich in the form

of luxury goods such as watches or jewellery. The commodities boom saw an increase in the cost of
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gold, diamonds, and platinum as reflected in the share price of RCH. As credit became available from

2006 onwards, more people could afford luxury items, which saw an increase in the RCH share price.

RCH closed on 2003-04-03 with a share price of R10.30 and closed on 2008-06-16 with a share price

of R46.75.

Figure A.8: Richmond Securities AG share price from 2003–2008.

A.1.10 Remgro Ltd

Founded in 1968, REM [27] is a multinational investment holding company based in Stellenbosch,

South Africa. REM consists of diversified stock; with shares in food, banking, healthcare, industrial,

insurance, infrastructure, media, and sport. REM is listed on the JSE as REM. REM operates across

many sectors and is referred to as a conglomerate. The REM share price history is outlined in Fig-

ure A.9. The inflation increase of 2000 saw an increase in goods and services. Inflation was due to a

number of reasons. Two of the biggest reasons for inflation at that time was the opening of the South

African market to the world post 1994 [158], and the inclusion of a market sector that, due to the laws

of Apartheid, was not allowed to participate in. Both the ability to sell to the rest of the world, and

to sell to a new local market increased the demand in goods, thereby increasing prices. The demand

for goods increased further when interest rates were decreased and the availability of credit increased.

REM co-founded South Africa’s first cellular telecoms company, Vodacom, in 1993 [14] and unbun-

dled British American Tobacco in 2008 [14]. All these factors contributed to an increase in revenue for

REM, which is reflected in the share price. REM closed on 2003-04-03 with a share price of R52.51

and closed on 2008-06-16 with a share price of R205.00.
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Figure A.9: Remgro Ltd share price from 2003–2008.

A.1.11 SABMiller Plc

Founded in 1895, SAB [37] was a multinational brewing and beverage company head-quartered in

London, England. SAB was the first industrial company to list on the JSE in 1897. From the early

1990’s SAB expanded internationally through acquisitions until eventually it acquired Miller Brewing

in 2002 to form SABMiller Plc and moved its primary listing from the JSE to the LSE. SAB traded as

SAB on the JSE. SAB is primarily a beer brewing and distribution company. However, it also bottles

and produces non-alcoholic and alcoholic beverages. SAB has operations throughout the world. The

SAB share price history is outlined in Figure A.10. The graph shows the rapid growth of SAB as it

acquired company after company. The financial crisis and sudden drop in access capital saw the share

price fall in 2008, but it continued to climb as the markets stabilised. SAB closed on 2003-04-03 with

a share price of R52.00 and closed on 2008-06-16 with a share price of R184.25.

Figure A.10: SABMiller Plc share price from 2003–2008.



Appendix A. Appendix 1 - Stock Data 246

A.1.12 Standard Bank Group Ltd

Founded in 1862, SBK [39] is a multinational financial services company based in Johannesburg, South

Africa. SBK is in the business of commercial banking, foreign exchange, insurance, investment bank-

ing, investment management, private banking and wealth management. SBK is listed on the JSE as

SBK and operates in the financial and banking sector. The SBK share price history is outlined in Fig-

ure A.11. The decrease in the interest rate saw an increase in credit demand, reflected in the SBK share

price. The interest rate began to climb in 2006, which resulted in greater profit for the bank until the

financial crisis of 2008, which resulted in an increase in SBK share price followed by a rapid fall. SBK

closed on 2003-04-03 with a share price of R28.00 and closed on 2008-06-16 with a share price of

R78.01.

Figure A.11: Standard Bank share price from 2003–2008.

A.1.13 Sasol Ltd

Founded in 1950, SOL [30, 38] is an energy and chemical company based in Johannesburg, South

Africa. SOL develops synthetic fuels and produces different liquid fuels, and electricity. SOL is listed

on the JSE, and NYSE as SOL and SSL, respectively. SOL operates in the oil and gas sector. The SOL

share price history is outlined in Figure A.12. SOL benefited from the commodities super cycle, which

is reflected in its share price. SBK closed on 2003-04-03 with a share price of R90.10 and closed on

2008-06-16 with a share price of R464.01.
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Figure A.12: Sasol Ltd share price from 2003–2008.

A.1.14 Inverted shares

South Africa has in the past been a commodity driven economy. This is reflected in the history of the

ALSI40 index, and the number of commodity companies that contributed to the index. It is for this

reason that South Africa benefited from the commodities super cycle that occurred between 2003 and

2008. Almost all sectors of the South African economy benefited. While the financial sector saw a

sharp decline towards the end of 2008, it was not enough to end lower than the start of 2003. It is for

this reason that three simulated share prices were introduced.

Consider the possibility that the share data reflects all possible share information, and that the trend

can be observed using technical analysis. More importantly, consider the possibility that technical

analysis can predict the trend change and capitalise on it. It is then logical that the market is not random

because it can be forecast. From this assumption, it is logical to say that the factors that predict the

forward movement of the share should work in reverse. Based on this, three shares were selected,

namely NED, REM, and SBK and their share data was reversed so that the price on the last day 2008-

06-16 became the price on the first day 2003-04-03.

The inverted shares are referred to as INVNED, INVREM, and INVSBK, and depicted in Fig-

ures A.13, A.14, and A.15, respectively. This creates a new trading dataset which is different from the

datasets already discussed. INVNED begins bullish increasing until mid 2004 when it drops suddenly,

increases again in 2005 until July and then falls rapidly. INVREM is a typical bear chart that begins

high and continues to fall. INVSBK provides a bull run from the start of trade until 2004 and then it

falls with a small upswing in 2005.
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Figure A.13: Inverted Nedbank Ltd share price from 2003–2008.

Figure A.14: Inverted Remgro share price from 2003–2008.

Figure A.15: Inverted Standard Bank Ltd share price from 2003–2008.
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Acronyms

AAV Accumulated (Average) Asset Value. 62, 63, 84, 85, 119

ACM Association for Computing Machinery. 41

ADI Accumulation/Distribution Index. 26

AGL Anglo American Plc. 159, 160, 198

AGPC Annual Genetic Programming Conference. 41

ALSI40 All Share Index 40. 76, 108, 160, 197

ANN Artificial Neural Network. 39, 41, 67

ASA American Statistical Association. 17

BB Bollinger Bands. 23, 24, 66

BEAGLE Biological Evolutionary Algorithm Generating Logical Expressions. 44, 45

BIL BHP Billiton Plc. 160, 161, 199

CCI Commodity Channel Index. 25

CGA Canonical Genetic Algorithm. 43

CO Chaikin Oscillator. 22
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CPIX Consumer Price Inflation Index. 195

EA Evolutionary Algorithm. 31, 37, 38, 40, 46, 54, 56, 61, 69, 70, 84, 88, 100, 108, 109, 111, 119,

123, 135, 142, 144, 154, 156, 157, 159, 165–167, 171, 172, 175

EC Evolutionary Computation. 41

EDDIE Evolutionary Dynamic Data Investment Evaluator. 67, 68

EMA Exponential Moving Average. 21, 22

EMH Efficient Market Hypothesis. 17, 18

ENX Euronext NV. 200

EP Evolutionary Programming. 39, 40

ES Evolutionary Strategies. 40

ESS Regression Sum of Squared Errors. 69

GA Genetic Algorithm. 38, 40–44, 48, 51, 52, 56–59, 61–63, 65, 68, 84, 85, 111, 119, 120

GECCO Genetic and Evolutionary Computation Conference. 41

GFI Gold Fields Ltd. 200

GP Genetic Program. 8, 43–46, 48, 49, 51–53, 59, 65, 67–70, 72–74, 77, 81, 84, 85, 88, 92, 99, 100,

108, 109, 111, 112, 116, 119, 120, 123, 127, 134, 135, 139, 142–144, 154, 156–161, 164, 167,

168, 171, 172, 175–177

ICGA International Conference on Genetic Algorithms. 41

IEEE Institute of Electrical and Electronics Engineers. 41

IMP Impala Platinum. 163, 201

INVNED Inverted Nedcor Ltd. 142, 160, 167, 168, 209

INVREM Inverted Remgro Ltd. 165, 167, 168, 209

INVSBK Inverted Standard Bank Group Ltd. 167, 168, 209

JSE Johannesburg Stock Exchange. 14, 15, 27–29, 76, 108, 172, 197–208
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LON Lonmin. 160, 202

LSE London Stock Exchange. 14, 15, 198, 199, 201, 202, 206

MACD Moving Average Convergence or Divergence. 22, 69

MAPE Mean Absolute Percentage Error. 68

MD Mean Deviation of the Moving Average. 23

MFI Money Flow Index. 25, 26

MFM Money Flow Multiplier. 26

NED Nedcor Ltd. 203, 209

NYSE New York Stock Exchange. 14, 67, 199, 200, 208

OBV On Balance Volume. 26, 63

RCH Richmond Securities AG. 204

REM Remgro Ltd. 163, 205, 209

ROC Rate of Change. 27, 69

ROI Return on Investment. 62, 63, 74, 80–86, 90, 95–99, 110, 114, 116–120, 125, 130–136, 140, 144,

156–170, 172, 175–177

RSI Relative Strength Index. 24, 25, 61, 69

SAB SABMiller Plc. 160, 206

SBK Standard Bank Group Ltd. 27, 28, 30, 79, 89, 99, 114, 124, 134, 163, 207–209

SIX SIX Swiss Stock Exchange. 200, 204

SMA Simple Moving Average. 20, 21, 23, 27, 63, 65, 66, 69, 74

SOL Sasol Ltd. 163, 167, 168, 208

TEP Typical Earning Price. 25, 26

WMA Weighted Moving Average. 21
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