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Abstract

This thesis compares the profitability of trading rules evolved by a single population genetic pro-
gram (GP), a co-operative co-evolved GP, and a competitive co-evolved GP. Profitability was deter-
mined by trading thirteen listed shares on the Johannesburg Stock Exchange (JSE) over a period of
April 2003 to June 2008. The GP parameters were optimised using a response surface methodology
known as 27 factorial design. A compound excess return over the buy-and-hold strategy was deter-
mined as the preferred fitness function via an empirical process. Various selection strategies to select
individuals for the crossover and mutation operators were compared. It was found rank selection was
the preferred strategy. The optimised GPs were tested on market data using a real world fee structure.
The results were compared to a buy-and-hold strategy and a random-walk. The results of this the-
sis show that the co-operative co-evolved GP generates trading rules that perform significantly worse
than a single population GP and a competitively co-evolved GP. The results also show that a compet-
itive co-evolved GP and the single population GP produce similar trading rules. The evolved trading
rules significantly outperform the buy-and-hold strategy when the market, including fees, was trending
downwards. No significant difference was found between the buy-and-hold strategy, the competitive

co-evolved GP, and single population GP when the market (including fees) was trending upwards.
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Chapter 1

Introduction

Like alchemy, finding the perfect algorithm to forecast the stock market is the allure of many. While
accurately forecasting the stock market is improbable, determining the current market direction is pos-
sible. Knowing the market direction and determining if the direction will continue or change can be
used to turn a profit. Market traders fall into one of two camps: either a fundamental trader or a techni-
cal trader. The fundamental trader studies a company’s fundamentals such as budget, financial books,
management, and demand, to name a few. The fundamental trader wants to understand how the com-
pany turns a profit, and if the profit will continue or change. The fundamental trader knows that profit
results in higher share prices, and potentially dividends.

The technical trader studies the historic share price, and understands that the knowledge the funda-
mental trader has, determines the market price, and therefore that the market price reflects all known
information about a share. The technical trader employs statistical techniques, known as technical anal-
ysis, to determine the market trend and potential change in the trend. A technical analysis function is
generally used in conjunction with other technical analysis functions. Each technical analysis function
has a set of parameters that must be set for the given share. The problem for a technical trader is select-
ing which technical analysis functions to use, and the values of the parameters required by the technical
analysis functions selected.

The combination of technical analysis functions and parameters is known as a trading rule. Finding
a trading rule for a given share is an optimisation problem. Computers are good at solving optimisation
problems. However, testing the sheer number of technical analysis functions and parameters is a mam-
moth task that can, even for a computer, take a very long time. Instead of comparing every combination
of technical analysis functions and parameters to each other to find the best possible solution, a smarter

approach is needed.
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One such approach is to use a meta-heuristic algorithm to find an optimal combination of technical
analysis functions and parameters. Meta-heuristic algorithms search the solution space by removing
sections of the search space that produce poor solutions. The result is an approximate solution. One
such class of meta-heuristic algorithms is evolutionary algorithms [52, 59, 103, 111].

Evolutionary algorithms use the concept of simulated evolution to produce many solutions to the
problem stochastically. Each generation probabilistically selects the best solutions to produce similar
solutions that lead to the best approximate solution, in this case a selection of technical analysis func-
tions and parameters. The process leading to the best approximate solution is referred to as evolution.

The problem is still which technical analysis functions should be tested to form a trading rule.
While many functions exist, many new functions are created each year. To find an optimal combina-
tion of technical analysis functions requires a comprehensive list of all the possible technical analysis
functions. A comprehensive list is not feasible and therefore either a sub-set of technical analysis
functions are used, or an evolutionary algorithm could evolve trading rules from basic mathematical
operations. A special evolutionary algorithm exists that can do just that, called genetic programming
[52, 59, 103, 149].

Originally developed by Koza [149] in the late 1980s to evolve computer programs, a genetic pro-
gram (GP) can evolve trading rules using basic mathematical operations. Allen and Karjalainen [43, 44]
used a GP to evolve trading rules. Their approach used a single population of individuals to evolve a
trading rule over a fixed number of generations. Allen and Karjalainen noted that, while their approach
produces trading rules that generate profitable returns, their GP was relatively simple and the parameters
were not optimised [43, 44].

This thesis extends the work of Allen and Karjalainen by empirically optimising the evolutionary
operators and parameters of their GP. The empirical process is based on the central limit theorem [40]
and uses the statistical tests proposed by Garcia et al. [122, 123, 124], and Demsar [96]. The complete
empirical process is presented in Chapter 5, Section 5.2.1.

The GP parameters were optimised using a response surface methodology known as 2r factorial
design [93]. The results of parameter sensitivity analysis are presented in Chapter 5, Section 5.5.

In nature, populations rarely evolve in isolation. Instead, populations evolve in co-operation with
other populations or in competition with other populations [185]. This thesis examines the performance
of trading rules evolved through co-operative and competitive co-evolution by comparing trading rules
evolved by co-evolution to trading rules derived by the single population GP implemented by Allen and
Karjalainen [43, 44].

The results of this thesis show that a co-operative co-evolved GP generates trading rules that perform



Chapter 1. Introduction 3

significantly worse than a single population GP and a competitively co-evolved GP. The results also
show that a competitive co-evolved GP and a single population GP produce similar trading rules. The
evolved trading rules significantly outperform the buy-and-hold strategy when the market, including
fees, was trending downwards. No significant difference was found between the buy-and-hold strategy,
the competitive co-evolved GP, and the single population GP, when the market including fees was
trending upwards.

This chapter serves as an introduction. Section 1.1 outlines the motivation for this thesis. The mo-
tivation is followed by the objectives of the thesis in Section 1.2, the methodology used in Section 1.3,
and contributions made in Section 1.4. The introduction chapter ends with an outline of the chapters

that follow.

1.1 Motivation

A stock market is a registrar of purchases and sales of commodities, securities, or equity. A registrar
is an institution, often a bank or trust company, responsible for keeping records of bondholders and
shareholders after an issuer offers securities to the public. Investors list offers to buy or sell shares on
the market, and a broker matches the transactions to facilitate the trade. Deciding when to buy or sell a
share is a personal process. Some investors trade on feelings, some on market news. There are those that
make use of economic indicators such as profit sharing, currency value, gold reef grade, or competent
managers. The process of using economic indicators for market forecasting is known as fundamental
analysis [173]. Some traders believe that the share prices have already absorbed all the feelings, news,
and market sector information. This belief is referred to as the efficient market hypothesis [106]. Using
the share price as a means of determining when to buy and sell is known as technical analysis [173].
Edwards [101] defined technical analysis as the study of the action of the market itself as opposed to
the study of the goods the market deals.

Charles Dow [85, 101, 147] studied market action, and proposed the first scientific stock movement
theory known as Dow theory [69, 101]. Dow theory states that a market is either in an upward trend,
downward trend, or continuing in the same direction [69, 101, 182]. Dow theory proposes that each
trend has three phases [69, 101, 182].

In the accumulation phase, investors close to the company start selling stock to the public or buying
back stock from the public. In the public participation phase, the public begins to sell stock to other
members of the public or buy stock back from the public. During the distribution phase the market is

mixed, and no definite trend has formed.
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Technical analysis techniques use the historic share price to find which of the three Dow trends the
market is in. Technical analysis then determines which phase the trend is in and if the trend will change.
This thesis explores just ten of the many technical analysis functions available [42, 53, 71, 84, 101, 173,
178, 197, 203, 206].

Each technical analysis function requires a set of parameters that must be set. Technical analysis
functions are used in combination with one another.

Selecting which technical analysis functions to use, and determining the correct parameters is an
optimisation problem. Fixing the set of technical analysis functions to size k and the parameters to a set
of size n takes O(n*) time [104] to compute on a Turing machine [36]. This class of complex problems
is known as NP-complete problems [36, 104]. Searching through all the combinations of technical
analysis functions and parameters is not computationally feasible. Meta-heuristics offer an alternative
approach to searching through all the combinations of functions and parameters. Meta-heuristics search
the solution space for the optimal solution by removing sections of the search space that produce poor
solutions.

Bauer [63] was one of the earliest researchers to use a class of meta-heuristics known as genetic al-
gorithms [135] to optimise the combination of technical analysis functions and parameters to maximise
return on a set of stock trades.

A genetic algorithm is based on simulated evolution. The theory of evolution, first proposed 2 600
years ago by the Greek philosophers Anaximander [81, 100] and Empedocles [41, 127], proposes that
all individuals are derived from a set of common ancestors created during the big birth.

Comte de Buffon [76] believed that creatures morph adapting to their environment, a belief shared
by Lamarck [94] and documented in his book “Philosophie Zoologique”. Lamarck believed that indi-
viduals lose characteristics they do not require and develop those which are useful.

Darwin, E. [90] rejected the morphing hypothesis of Lamarck and Buffon, and proposed that each
individual has slightly different traits to others and their traits are passed on their offspring. Darwin,
C. [53, 68, 89, 111, 201] and Wallace [89, 208] introduced the scientific theory of evolution. They
proposed that all species of life have descended over time from common ancestors. The branching of
species resulted from a process that Darwin called natural selection, in which the struggle for existence
within different environments favours different traits.

The German evolutionary biologist, Weismann [209] refined evolution by introducing heredity.
Weismann found that individuals pass genetic information on to their children via germ cells, and that
the information can mutate.

Mendel [53], an Augustinian priest and scientist, conducted hybridisation experiments on garden
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peas (Pisum sativum) and discovered that the information passed on alters the traits of the offspring.
Therefore, the mutated genetic information postulated by Weismann resulted in new characteristics
within the garden pea.

An American geneticist and embryologist, Morgan [111, 168], studied a small fly (drosophila),
and determined that a chromosome stores the traits of an individual as genes, and that these genes are
selected and passed on to offspring. The genes may undergo mutation before the offspring forms.

Neo-Darwinism is a theory that combines natural selection, germ cells, inheritance, and genetics
[111]. Neo-Darwinism consists of four operations, namely reproduction, mutation, competition, and
selection [111].

A genetic algorithm simulates the four operations of Neo-Darwinism by creating a population of
candidate solutions to an optimisation problem. Candidate solutions are called individuals. Each indi-
vidual has a set of properties defined as a chromosome. Each property is known as a gene.

Chromosomes are altered through simulated mutation and reproduction to form new individuals
referred to as offspring. Selection samples individuals from the population, forming the next generation.
Typically, selection is biased towards the best performing individuals.

A fitness function quantifies an individual’s performance [103]. Performance is generally deter-
mined by how well the candidate solution completes the problem.

The process of selection, reproduction, mutation, and competition is repeated until an adequate
solution is found or a fixed number of generations have passed [111, 112].

A genetic algorithm requires a chromosome representation of the solution domain and a fitness
function to evaluate the individual within the domain.

Friedman and Fraser [53, 112, 121] are recognised as the first to experiment with genetic algorithms.
However, it was Holland [53, 135, 136, 137] that formalised the first version of a genetic algorithm.
Holland’s emulation of evolution used a fixed length binary string representation of a chromosome.

This thesis defines the optimisation problem as finding a trading rule that can reliably return a profit
for a given share. If possible the trading rule should return a higher profit than a buy-and-hold trading
strategy. The solution domain is then defined as a domain containing every possible trading rule.

The bit string chromosome representation of a trading rule implies that each bit corresponds to
a technical analysis function and fixed parameters. The bit enables or disables the technical analysis
function. The combination of enabled technical analysis functions represents a trading rule.

Replacing a bit string vector chromosome structure with a mixed data-type vector facilitates the
storage of technical analysis parameters within the chromosome, allowing the genetic algorithm to

evolve the parameters to an enabled function.
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To evolve the technical analysis functions from basic mathematical operators requires a variable
length chromosome structure that defines a relationship between genes within the chromosome. The
chromosome structure must cater for binary, logical and numerical functions. Koza [150] experimented
with an alternative version of a genetic algorithm called a GP. A GP replaces the fixed length vec-
tor structure used in a genetic algorithm with a random length, non-linear, hierarchical abstract data
structure, known as a tree.

The tree structure naturally accommodates a trading rule. A tree is not restricted to a fixed length.
A tree is a natural structure to represent hierarchical decisions rules, and a tree can store both binary,
logical, and numeric functions within its nodes. Logical functions allow the GP to evolve conditional
execution of technical analysis functions not easily implemented using a fixed length vector.

Allen and Karjalainen [43, 44] were one of the earliest implementers of GPs in stock market trading.
Allen and Karjalainen used a GP to evolve trading rules from basic mathematical, and logical operators.
They showed that the trading rules generated by their GP are generally beneficial when the market falls
or when it is stable. Although their GPs were profitable, the excess returns were not dramatically higher
than that of a buy-and-hold strategy. Allen and Karjalainen noted that, while their approach produces
trading rules that generate profitable returns their GP was relatively simple and the parameters were not
optimised [43, 44].

Variations of Allen and Karjalainen’s implementation of a GP were reimplemented by Neely et al.
[170], Telbany [102], Mahfoud and Mani [160, 161], Li and Tsang [204, 205], and Potvina et al. [177]
with varying degrees of success.

This thesis extends the work of Allen and Karjalainen by empirically optimising the evolutionary
operators and parameters of their GP.

To be profitable when trading shares, the selling value less the buying value must be greater than
the transaction cost. Because trading costs are generally high, Allen and Karjalainen noted that only
large institutional investors with lower trading costs could implement evolutionary algorithms and be
profitable [43, 44]. Allen and Karjalainen used a percentage of the share price as a cost, which is
not the same cost structure employed by brokers. This thesis differs from Allen and Karjalainen’s
implementation by incorporating the share trading fees charged by the Standard Bank’s online share
trading platform (OST) [32, 43, 44]. The OST is a publicly accessible share trading platform.

As discussed previously, meta-heuristics search the solution space for an optimal solution by re-
moving sections of the solution space that produce poor solutions. Sometimes meta-heuristics fail to
search particular areas of the solution space, or remove areas of the search space inadvertently. When

this happens, the meta-heuristics return sub-optimal solutions.
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Evolutionary algorithms use the concept of simulated evolution to produce many solutions to the
problem stochastically. The best solutions are selected to produce similar solutions that lead to the
best approximate solution. Over time the individuals in a generation become more and more similar.
When they are so similar that all the solutions produce the same result, the solutions are said to have
converged.

Premature convergence results in inadvertently ignoring parts of the solution search space. Mutation
introduces new genetic material, therefore introducing parts of the ignored search space. However,
sometimes mutation alone is not enough to stop premature convergence.

Convergence and premature convergence is a result of selection. Selection is based on the evalua-
tion of the performance of individual solutions with respect to the performance of others. Individuals
with the highest performance have a higher probability of being selected as individuals for the next
generation than individuals with a lower performance.

Allen and Karjalainen implemented a single population GP. In nature, populations rarely evolve in
isolation. Instead populations co-evolve in co-operation with other populations or in competition with
other populations.

Co-evoled populations evolve in isolation ensuring that each population can explore the solution
space independently [111]. Co-operative co-evolution [111, 132] results in populations evolving parts
of the solution independently. The performance of individuals are based on the performance of all
the populations. Competitive co-evolution [132] results in populations competing against each other.
The performance of individuals in one population are indirectly proportional to the performance of
individuals in other populations.

This thesis extends the single population GP of Allen and Karjalainen to two populations and com-
pares the effect co-operative and competitive co-evolution had on evolving trading rules.

The motivation behind the introduction of co-evolution is to minimise both over-fitting and prema-

ture convergence.

1.2 Objectives

The main objective of this thesis is to study the effectiveness of an evolved trading rule on real-world

market conditions. The primary objectives of this thesis are summarised as follows:

e to implement the standard GP of Allen and Karjalainen;

e to empirically optimise the parameters used by the GP;
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to determine a preferred selection operator for the GP;

e to determine a preferred fitness function for the GP;

e to implement a co-operative co-evolved version of the GP;

e to implement a competitively co-evolved version of the GP;

e to compare trading rules evolved using co-evolution to single population evolution;

e to determine the profitability of evolved trading rules on the Johannesburg stock exchange (JSE)

against chance and a buy-and-hold strategy;

1.3 Methodology

The stock market is presented and discussed, with exploration of different trading approaches, namely
fundamental and technical analysis. The origins of technical analysis is presented, with a review of
the most popular technical analysis functions. Evolution and simulated evolution is presented and
discussed; more specifically, genetic programming is explored as a meta-heuristic search that has been
shown to be successful in optimising solutions.

Research in using genetic algorithms to find optimal technical analysis functions and parameters
is presented. The work of Allen and Karjalainen [43, 44] is explored. A set of parameter sensitivity
experiments were run to find a good GP parameter configuration for the GP implemented.

Co-evolution is explored as a multi-population extension of the GP. The optimised single popula-
tion genetic GP was implemented as both a co-operative and a competitive co-evolution GP. The GP
parameters were optimised using a response surface methodology known as 2%r factorial design [93].
The results of parameter sensitivity analysis are presented in Chapter 5, Section 5.5. Each configuration
of a GP constitutes a simulation. A simulation was run 30 times to comply with the central limit theo-
rem [40]. The null-hypothesis was assumed when comparing the results of various GP configurations.
The null-hypothesis assumes the results to be the same, unless statistically shown to be significantly
different. Significance was determined at a 95% confidence level using statistical tests proposed by
Garcia et al. [122, 123, 124], and Demsar [96].

Only configurations shown to invalidate the null-hypothesis were investigated further. Investiga-
tion compared the mean profit returned by the simulation runs to determine which configuration was

preferred. The complete empirical process is presented in Chapter 5, Section 5.2.1.
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All comparisons were performed using real world financial data. Each simulation was repeated for
each of the financial datasets. The financial datasets comprised of thirteen different shares across var-
ious market segments selected from the JSE. To compare the performance of the evolved trading rules
against chance, the profitability of the trading rules were compared to four simple trading strategies.
The first was a buy-and-hold strategy that bought shares on the first day of trade and sold them on the
last day of trade. The other three trading strategies were implemented as variations of a random-walk.

The random walk determines a buy and sell action randomly.

1.4 Contributions
The contributions offered by this thesis are:

e Empirically optimised GP for stock market trading.

e Empirical comparison of co-evolution and a single population GP using real work stock market

data.

e Empirical evidence that a GP can evolve trading rules to outperform the buy-and-hold when the

market is trending down.

e Results that show trading rules generated by a GP perform significantly better than chance.
The following list of published articles support the main contributions of this thesis.

e J.F. Nicholls, K.M. Malan, and A.P Engelbrecht. Comparison of trade decision strategies in an
equity market GA trader. In Proceedings of the IEEE Symposium on Computational Intelligence

for Financial Engineering and Economics 2011.

e J.F. Nicholls, K.M. Malan, and A.P Engelbrecht. Evaluation of Fitness Functions for Evolved
Stock Market Forecasting. In Proceedings of the WSPC Symposium on Artificial Intelligence for

Economics Research Centre 2008.

1.5 Thesis Outline

This thesis is organised as follows:
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o Chapter 2 describes share trading and technical analysis. The chapter begins with an introduction
to stock markets, and a discussion on fundamental and technical analysis. Technical analysis is
then described in more detail by briefly covering its history, followed by exploration of the most
common technical analysis functions, their use, and the formulae used to implement them. The

chapter introduces simple trading strategies and a transaction cost model used by Standard Bank.

e Chapter 3 covers the history of evolutionary theory and introduces the basic evolutionary oper-
ators. The history of natural evolution is followed by an introduction to evolutionary algorithms
and the history of genetic programming. The chapter concludes with a section on co-evolution
and co-evolved GPs. This is followed by a discussion on evolutionary algorithmes, its history, and
the various implementations thereof, including genetic algorithms, genetic programming, evolu-
tionary programming, evolutionary strategies, and differential evolution. Genetic programming

is covered in more detail within its own section, which is followed by a section on co-evolution.

e Chapter 4 combines technical analysis and evolutionary algorithms by introducing the history
of evolutionary algorithms applied to automated stock market trading. The history begins with
research in using genetic algorithms to select technical analysis functions, which is followed by

evolving trading decision trees using GPs.

e Chapter 5 builds on the work presented in Chapter 4 by presenting the GP used in the empirical
study. The presentation includes an outline of the GP algorithm as pseudo code. A discussion
on various aspects of the algorithms and the decisions made. The decisions include the selection
criterion, mutation operators, crossover operators, and fitness functions. The various operator
parameters are explored by running parameter sensitivity analysis. The results are presented
and discussed. This chapter introduces the pre-requisites of the empirical study including stock

market data used, the simulation set up, empirical process, and empirical study configuration.

e Chapter 6 extends the single population GP presented in Chapter 5 by defining two co-evolution
versions. The first version is a co-operative co-evolution extension, and the second a competitive

co-evolution extension. The basic algorithms are defined as well as the fitness functions.

e Chapter 7 presents the empirical study of this thesis, beginning by confirming the GP configu-
ration used. The configuration is followed by the study consisting of three sub sections. The first
subsection compares the results obtained by the three GPs across various market shares without

fees. The second subsection discuses the results with the inclusion of fees. The third subsection
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compares the profit results obtained by the standard GP and the competitive co-evolved GP to

four random trading rules.

e Chapter 8 highlights the conclusions of this thesis and presents ideas relating to possible future

work.

e Appendix A examines the data used throughout this thesis. The market conditions are discussed

as well as the reasons for selecting the dataset.

e Appendix B provides a list of the important acronyms used or newly defined in the course of this

work, as well as their associated definitions.

e Appendix C lists the publications derived from this work.



Chapter 2

The Stock Market

One of the funny things about the stock market is that every time one person buys, another
sells, and both think they are astute.
-William Feather (American Publisher and Author)

12
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The purpose of this chapter is to explain share trading and technical analysis. Section 2.1 describes
stock markets and how supply and demand can drive share transactions. Section 2.1 introduces two
analytical techniques for understanding the forces of supply and demand: fundamental analysis and
technical analysis. Section 2.2 presents the history of technical analysis, while Section 2.3 highlights
modern technical analysis techniques. Section 2.4 discusses different trading platforms and the trans-

action cost structure used in the empirical study. Section 2.5 offers a summary of the chapter.

2.1 Introduction to Stock Markets

A stock market or equity market is a gathering of people for the purchase and sale of commodities,
securities, or equity.

A commodity is a physical item that can be bought or sold, for example, rice or gold. A security is
something used as a guarantee for the undertaking of a loan, also known as collateral, surety, or bond.
An equity is a stake or share in a company. A share refers to the ownership of a specific company, while
stock refers to shares in many companies.

The process of buying and selling these items is known as trading. The stock exchange manages
the market and regulates trading.

The market facilitates the trade in equity, providing a place for a company to raise capital. The
company gains capital by selling a share of ownership to investors, who in return, for cash, gain a per-
centage of ownership, but more importantly, a right to the profit in the form of dividends. Management
of dividends, company information and shareholder information is the function of the exchange. List-
ing of new equities, commodities or securities is the function of a market maker. A broker matches the
transactions of buyers and sellers.

Before the invention of the computer, stock markets were lively markets. Brokers would arrange a
trade between the market maker and the buyer or seller through shouting, pushing and shoving within
the trading area. Once visually or verbally acknowledged, the broker informs the exchange via a sliver
of paper and the exchange acknowledges the transaction in the share register. Furthermore, a market
maker selling from its inventory of stock, tries to offset the sale with a purchase of another share. The
physical trading process is known as a trading pit or open floor trading system.

The New York stock exchange (NYSE) still operates on this open floor trading system, while the
London stock exchange (LSE) and the JSE went digital in the 1980’s and 1996 respectively [5, 48]. A
digital exchange replaces paper and books with databases, and human brokers with digital transaction

matching brokers.
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Today the market is an interconnected web of computers, which buy and sell at the speed of light.
Although this market seems to be ahead of its time, the same principles of market maker, willing buyer,
and willing seller exist, and the same fears and excitement drives the price.

The following illustration explains the stock market process:

Consider a company that needs money to open a new mine. This company would list a finite
number of shares with an appropriate market maker based at an exchange such as the LSE or the JSE.
The exchange lists the share on behalf of the company at a pre-determined price. The market maker
considers the share demand and adjusts the price accordingly. Investors buy the shares at the market
price and the company raises the money needed. The new shareholders gain rights in the company
which includes a vote on the running of the company, and a share of the profit.

Investors buy shares in a company for two reasons:
e to obtain a share of the future profit, and
e to speculate and sell the share at a higher price than what they paid for it.

Investors sell shares for several reasons: it may be that the shareholder needs money, or that the
share value is dropping to a level that they have incurred a loss, or that the perceived profit is less than
expected, or perhaps the profit has reached an all-time high and is likely to start diminishing. The
perception of future profit or share price is based on beliefs or truths in factors that affect the market
and the company at a point in time. Such factors include the state of the economy, the management of
the company, and press releases related to the company or the sector that the company operates in.

If an investor wants to sell a share in the company, the share is listed on the market at a selling
price determined by the investor. A prospective investor lists with the market an interest in buying a
share in the company at a price decided by the prospective investor. If the seller’s price matches the
buyer’s price, the broker fulfils the transaction, with the seller receiving money and the buyer a share in
the company. The process of buying and selling is known as trading. Once the transaction takes place,
a new market price is set and reflected against the company’s trading code. Trading incurs levies and
costs that are determined by the exchange and the country that the exchange resides in.

More buyers than sellers create a higher demand with little supply. High demand means that the
seller decides the price, and so the offer price increases. Fewer buyers than sellers create a lower
demand with a higher supply. Low demand pushes the price down to attract buyers. The fluctuation of
price based on supply is known as the law of supply and demand [48].

Determining when to buy or sell a share is a personal process. Some investors trade on feelings,

some on news. There are those that make use of economic indicators such as profit sharing, currency
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value, gold reef grade, or competent managers. The process of using economic indicators for market
forecasting is known as fundamental analysis [101]. Fundamental analysis requires a deep understand-
ing of the specific sector of the market traded in. Some traders believe that the share price has already
absorbed all the feelings, news, and market sector information. These traders believe that patterns in
the share price can decide the future market value of the share. This type of forecasting is known as
technical analysis [101]. Technical analysis makes use of numeric data readily available. This study
focuses on technical analysis used in stock market trading. The next section briefly covers the history

of technical analysis.

2.2 History of Technical Analysis

Edwards [101] defines technical analysis as “the study of the action of the market itself as opposed to
the study of the goods the market deals”. Legend has it that the first technical analyst was Munehisa
Homma [162]. Homma was a rice merchant from Sakata, Japan, trading in the future price of rice.
Through the years, he learnt that the emotion of traders had a significant effect on the price of the
rice. His understanding of this market psychology was published in his book “San-en Kinsen Hiroku”
in 1755. Using his knowledge of the market and its psychology, Homma became legendary in the
forecasting of the rice price. To aid his forecast, Homma used a charting technique that displayed
the opening, closing, high, and low rice price for a given trading day. This charting technique was
so efficient and simple that it became widely used as a method to determine future demand, based on
patterns within the chart. This form of charting became known as candlestick charting [180].
Candlestick charting is a visual tool that requires interpretation, which is subject to human subjec-
tivity and not very scientific. One hundred years later the first editor and founder of the Wall Street
Journal, Charles Dow [85, 101, 147], proposed the first scientific stock movement theory that would

later become the bases for all technical analysis techniques [69, 101].

Dow proposed the following principles:

e Markets are either in an upward trend, downward trend, or markets continue in the same direction.
In the up-trend, the market continues to close higher than the previous high. In the down-trend
the market continues to close lower than the previous low. Markets can continue in the same

direction, neither higher nor lower, but oscillate between the two.

e Each trend has three phases: an accumulation phase, a public participation phase, and a distri-

bution phase. In the accumulation phase, investors close to the company start off-loading stock
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to the public or buying back stock from the public. In the public participation phase, the public
catches on and starts to off-load stock to other members of the public or buy stock back from
the public. In the distribution phase the market is mixed, and no definite trend has formed. The

distribution phase is also known as the speculation phase.

o The stock market absorbs all new information. This is the same as the efficient market hypothesis
(EMH) as stated by Fama [106, 107]. The market also absorbs information related to future share

prices as forecast by any trader.

William Hamilton [69], the fourth editor of the Wall Street Journal [85], added the following to the
Dow theory [69, 182]:

e The primary trend of a share can not be manipulated.

e Stock market averages must confirm each other. This is a very strong premise. In short, if one
industry is reliant on another industry, for example, the farming and bread industries, it must hold
that if the bread industry is doing well, then the farming industry supplying the wheat should
be doing equally well. The transport industry transporting all the bread and wheat should also
be benefiting from the success in the farming and bread industries. Change in market trend will

occur if there is no correlation in performance between the industries that rely on each other.

e Price trends must be confirmed by volume (the masses must agree with the price through a large

number of trades).

e Trends will continue despite market noise until the signals above indicate that the market trend

has changed.

In 1921, Rhea [162] tried to disprove the Dow theory only to successfully forecast the bottom of the
market in 1932 and the peak in 1937. Building on the success of Rhea [182], Schaefer [187] developed
additional technical analysis models to forecast trend changes. Schaefer published these techniques in
the book titled “How I Helped More than 10,000 Investors to Profit in Stocks” [187].

Although fundamental analysts such as Fama [43, 106, 107, 125, 147, 162, 189, 204] claim that the
market follows a random-walk, technical analysts have shown that patterns do exist within the market.
The American Statistical Association (ASA) [147] held a meeting on April 24, 1934 to discuss the
effectiveness of technical analysis. It was at this meeting that three analysts presented papers. The

following outlines a summary of some key points from the meeting:
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Ellsworth [147], the editor of the “Annalist”, stated that stock market prices are different from

cumulative chance in that:
¢ unlike chance data, stock prices can not go below zero, and
o the fact that stock prices are tied to earnings, limits the altitude to which they can climb.

Macaulay [147] commented on the relationship between chance and the market by stating that if a
slightly loaded dice (i.e. not balanced correctly) is thrown and the results are plotted on a graph, the plot
will not be uniform. This is similar to the results seen in a market. The shorter the term, the more the
market looks like a balanced dice; while the longer the sample or term, the more distorted the results.

Supporters of Fama’s EMH claim that the market is efficient, and the share price reflects all the
traders’ feelings and assumptions of the market price. The trading price absorbs all known market and
stock information as soon as the information is known. Gartley [147] argued that this is not possible,
because Dow showed that market trends enter three distinct phases. Gartley insisted that the trading
price does not change at once, but rather gradually with each trade. Price performance on a specific day
could indicate the probable changes that would occur the next day, as the market moved through the
three phases.

Schabacker [147], the financial editor of Forbes Magazine in 1934, was also present at the meeting.

He put forth his thesis on the logic of the technical approach and presented the following simple truths:

e the stock market moves in trends,
e more people buying than selling defines an upward trend,
e more people selling than buying defines a downward trend, and

e while the majority of people buying or selling is not important, it is important to know when the

majority of people are buying or selling and to do the same.

The American Statistical Association meeting showed that there is a basis in believing the market
data may offer foresight into the future market price. Based on this belief, several technical analysis
techniques have been developed to analyse the market data and to determine the current trend. The
technical analysis techniques are also used to predict a change in the trend. Knowing the trend, and if

the trend is changing, gives guidance as to when a trader should buy or sell a share.
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2.3 Technical Analysis Techniques

Technical analysts have — through the years — plotted the share price on a special type of graph called
a candlestick graph. The candlestick graph, invented by Homma [180], is illustrated in Figures 2.1
and 2.2. This graph shows the opening, closing, high, and low stock market values for a given day with
wide vertical bars and lines called shadows [173]. Analysts then added the number of individual stock

trades made within the day to the graph. The total number of trades made within a period is known as

the volume.
< >
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Figure 2.1: The format of candle stick used in the candle stick graph invented by Homma. An open block
represents a share trending upwards, where the opening price is lower than the closing price. Conversely, a filled
block represents a share trending downwards, where the closing price is lower than the opening price. The high

and low whiskers represent the highest and lowest recorded price of the trading period.

Through careful observation of the candlestick graphs, analysts found different techniques for read-
ing the graph. As noted by Macaulay [147] in the meeting of the American Statistical Association
[147], like a loaded dice the short-term market appears random, but over a longer period the dice ap-
pears “biased” and the market appears to follow a trend. At first, the graph appears random. However,
many analysts employ visual patterns to determine the trend. These patterns are subjective human in-
terpretations of the data. The reader of the graph attempts to use the patterns to decipher the market

trend within the perceived randomness of the market [173].
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Figure 2.2: An example of the candle stick graph invented by Homma.

To better detect the trend, technical analysts began to employ correlations between the volume and
the trading price, low and high boundaries, and increased deviations from the established trend. The
volume of the day represents the total number of trades captured for that day. The volume for a given
day t is represented as Volume; .

The trading price is either the opening price, closing price, the highest recorded price, or the lowest
recorded price of the trading day ¢ and is represented as Price;.

The market bias is difficult to detect over the short-term market, because the market is full of noise
in the form of short-term or daily fluctuations. To improve forecasting, technical analysts smooth out the
noise and view the market averages over a longer period than a day. A moving daily average function
is an example of a simple noise reduction function.

The simple moving average (SMA) has its foundation in Dow’s theory [69, 147]. Dow believed
that if the share price is on the rise, the probability of a continued rise is greater than a fall and vice

versa [85, 143, 147]. Consider a graph of the daily closing share price illustrated in Figure 2.3. The
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share price could be up in value on one day, but down in value the following day. The daily share price
is jagged and unpredictable. However, consider a graph that plots the average price of x days before
the trade day. This graph appears smoother, and the trend becomes visible [84]. Increasing the number
of days (n) used to calculate the average results in a smoother graph. Moving averages are the most
common methods employed by technical analysts. Many variations of the moving average exist. The

three most common variations include:

e the SMA, expressed as:

SMA(n) = Price; 4 Price;—1 + - -+ Price;—, 11

n

o the weighted moving average (WMA), expressed as:

WMA(n) WPrice; + (@ — 1)Price;—y + -+ - + 2Price;_p12 + Price;_pi1
n)=
w+(a)—1)+--~+2+1

where o is a weight. In this example, o is equal to n.

o the exponential moving average (EMA), expressed as:

2
—1—
n+1
EMA(n) = a"Price; + 0" Price,_| + - - - + 02 Price; 12 + QPrice;pi1
at+oar 4+ o2+ a
where ¢ = 1 — % and o is the weight.

A comparison of different moving average trends can reinforce the trend certainty. For example, if
the 10-day SMA follows the same direction as the 50-day SMA, then it can be assumed that the trend
is set. If the two moving averages do not follow the same direction, it could signify a trend reversal.
A common technique used to determine the trend using two different moving averages is to subtract
the longer (i.e. slower) moving average from the shorter (i.e. faster) one. A positive result means
the trend is upwards, a negative result means the trend is downwards, and a zero result is a moment
of uncertainty. In the 1960s, Appel [42, 53, 203] subtracted a 26-day EMA from a 12-day EMA, and
called this technique moving average convergence or divergence (MACD) [42, 203]. A 9-day EMA of
the MACD is known as the signal line. The signal line is plotted on top of the MACD, functioning as
a trigger for buy and sell signals. When the MACD falls below the signal line it suggests time to sell.
When the MACD is above the signal line it suggests time to buy. Generally, the MACD and signal lines
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Figure 2.3: Illustration of a 20-day and 100-day simple moving average function plotted against the ALSI40
closing price from February 2005 - July 2005.

are plotted as a line graph, and the difference between the MACD and the signal line as a bar graph.
A positive difference signals an upward trend and a negative difference signals a downward trend. An

example of the MACD is depicted in Figure 2.4. The MACD is expressed as follows:
MACD = EMA(12) — EMA(26)

Similarly, Chaikin [101] implemented the same subtraction strategy but used a 10-day EMA and a 3-day
EMA. His technique is known as the Chaikin oscillator (CO). The CO is expressed as follows:

CO = EMA(3) — EMA(10)

The CO and MACD result in a number that oscillates above and below zero. Naturally, a positive
MACD / CO result means that the faster moving average is greater than the slower moving average
and so the market is more positive, or more bullish. This is reinforcement in an upward share price
trend. A negative MACD / CO result means that the faster moving average is lower than the slower
moving average, and therefore the market is more negative or bearish and supports a downward trend.
The MACD / CO may be positive, negative or zero. The further the MACD / CO is from zero, the
greater the change in the trend. The MACD and CO are examples of trend following indicators. A
trend following indicator is also known as a lagging indicator. Lagging indicators confirm a trend, e.g.
is the market going up, down, or remaining the same. Lagging indicators help to reduce risk, as they

indicate when the market is bearish even if the share price is high [203].
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Figure 2.4: Illustration of a moving average convergence divergence plotted, lagging indicator function against
the ALSI40 closing price from February 2005 - July 2005.

Moving averages confirm the current underlying trend by removing noise. Technical analysts also
want to know if this trend will continue, or if the trend will change. Change can be detected by com-
paring the current price change to the historic mean price deviation. In statistics, the deviation is the
difference between the current value and the average or mean value observed over a dataset. In tech-
nical analysis, the deviation refers to the average value of the share price over time, also known as the
SMA less the current share price [84]. The mean deviation of the moving average (MD) is therefore
the mean of the calculated deviation over the share price. Generally, the MD is shown as 8. The MD is

expressed as follows:

Y | SMA; — Price; |
n

6

Technical analysts plot the MD of the moving average on a graph as two lines. The first line is the
moving average minus the MD at that point and the other is the MD plus the moving average at that
point. This graph was introduced by Bollinger [42, 71, 101] in 1980 and is known as Bollinger bands
(BBs). Figure 2.5 illustrates an example of a BB graph. Should the share price represented by the centre
line break the upper band, the shares are said to be overbought and trend reversal is due. Breaking the
lower band results in an indication of being oversold and the trend may reverse. Another technique to
forecast a probable change in the trend, is to measure the rate of divergence between the price trend and
the current share value. An oscillating index measures the rate of divergence.

An oscillating index tries to measure the difference between the current established trend and the
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Figure 2.5: Illustration of a 10-Day Bollinger bands function plotted against the ALSI40 closing price and
volume from 2007-2008.

current share price. Like the BBs, the oscillator attempts to determine if the shares are overbought or

oversold, which increases the probability of a trend reversal. The three most widely used oscillating

indices are:
e relative strength index (RSI),
e commodity channel index (CCI), and
e money flow index (MFI).

The RSI, developed in 1978 by Wilder [42, 101], shows the strength of the share price relative to
the market within a range of 1 to 100 [173]. The closer the RSI is to 100, the more overbought the
shares are; and the closer it is to 0, the more oversold the shares are. Wilder recommended a period of
14 days for the calculation and using index threshold values of 70 and 30 to determine overbought and
oversold indicators, respectively.

The RSI is expressed as follows:

n

TotalGains, = Z(Price,H — Price,) for all t where Price;+ — Price; > 0
=1

n

TotalLosses; = Z(Pricet — Price, ) for all r where Price; — Price, 1 > 0
=1

AverageGain, = TotalGains, /n
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AveragLoss; = TotalLoss; /n

A Gai
RelativeStrength, = Averagetrain,
AverageLoss;
100
RSI; =100 —

1 + RelativeStrength,

Lambert created the CCI in October 1980 [197]. While the RSI returns a value between 0 and
100, the CCI returns a number that is greater or less than 0. Under normal trading the CCI should
return a value between +100 and -100. If the returned value is above 100, it means that the market has
overbought; and value less than -100 means that the market has oversold. To reduce fluctuations, an
average of the daily closing, high, and low price is used to calculate the CCI. This daily average price
is known as the typical earning price (TEP). The TEP is expressed as follows:

ClosePrice; + HighPrice; + LowPrice;
3

TEP =

where ClosePrice;, HighPrice;,LowPrice; is the closing price, highest price, and lowest price respec-
tively for a given day ¢.
The CClI is expressed as follows:

1 o TEP, — SMA;
0.015 0

CCI[ —

During each day of trade, money flows in and out of the stock market. If the average amount of
money traded on a given day is less than that of the following day, the market has gained money (i.e.
inflow). If the average amount of money traded on a given day is more than that of the following day,
the market has lost money (i.e. outflow). Multiplication of the TEP and the volume of the day returns
the average amount of money traded on the day.

Quong and Soudack [178] converted the average amount of money traded between two days into
an oscillating index known as MFI. The MFI results in a number between 0 and 100, where anything
greater than 80 and less than 20, is considered overbought and oversold respectively. The MFI is

expressed as follows:

RMF, = TEP; x Volume,

n

PositiveMoneyFlow; = Z(RME+1 — RME,) for all t where RMF; . — RMF, >0
=1
n

NegativeMoneyF low, = Z(RME+1 — RMEF,) for all r where RMF; .| — RMF, <0
=1



Chapter 2. The Stock Market 25

. 14 — PositiveMoneyF low;,
MoneyF lowRatio;, =

14 — NegativeMoneyF low;

100
1 + MoneyF lowRatio,

MFI, =100 —

The MFI is an example of a technical analysis technique that combines the share price and the
volume to measure the cumulative flow of money into and out of a share. Chaikin [42] built on the
MFI and developed what he called the cumulative money flow line, today referred to as the accumula-
tion/distribution Index (ADI) [84]. Instead of using the TEP, Chaikin used a proportion of the closing
price against the day’s high and low price. Chaikin called this the money flow multiplier (MFM),
expressed as follows:

(ClosePrice, — LowPrice,) — (HighPrice; — Close,)
(HighPrice; — LowPrice;)

MoneyFlowMultiplier, =

The MFM fluctuates between -1 and 1, where -1 means that the closing price is the same as the lowest
price of the day and 1 means that the closing price is the same as the highest price of the day. The MFM
is multiplied by the volume of the day and is known as the ADI. Because the ADI is an accumulation,

the ADI is added to the previous day’s ADI. ADI is expressed as follows:
ADIt = ADI,_| 4 (volume,; x MoneyFlowMultiplier,)

A high MFM combined with a high volume shows strong buying pressure (inflow of capital) and
pushes the ADI higher. Conversely, a low negative MFM combined with a high volume reflects strong
selling pressure (outflow of capital) and drops the ADI. ADI is highly geared to level-off the close
relative to the high-low range of the period. For example, a share price could fall dramatically and close
significantly lower, but the ADI would still rise if the close is above the midpoint of the high and low
share price of the period. Chaikin ignores the change in value from one day to the next.

The on balance volume (OBV) is a money flow index that focuses on the change in value from one
day to the next. In 1946, Woods and Vignolia [206] created the OBV statistic. Granville [84] named the
statistic OBV. The OBV gauges the market trend by observing the cumulative direction of the volume
traded. Like the MFI, and ADI, the OBV also attempts to determine the flow of money in and out
of the market. The OBV keeps a running total, and the volume is added or subtracted from this total
depending on whether the daily share price is greater or less than that of the previous day’s share price.
If the running total is positive, the market is moving in an upward trend, with an inflow of cash. If the

running total is negative, the market is moving in a downward trend, with an outflow of cash. The OBV
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is expressed as follows:

volume if Price; > Price;
OBV, =0BV,_1+<¢ 0 if Price, = Price; |

—volume if Price; < Price;_y

In addition to the inflow and outflow of money, technical analysts need to know the rate at which the
share price is changing. The rate of change (ROC) is commonly referred to as a momentum indicator.
The ROC is expressed as a ratio between a change in share price on a given day relative to the change

in a share price of the previous day. The ROC is expressed as follows:

Price; — Price;_,,
ROC; = * 100
! Price;_,,

A share with a high ROC has high momentum and should outperform the market in the short-term.
Conversely, a share with a negative or low ROC, and closing price below its SMA, is more likely to
continue the negative trend and decline in value.

Each technical analysis function has several parameters that must be optimised by the analyst. Fur-
thermore, each function must be used in conjunction with other functions to confirm the trend or change
in the trend. The formulae above depict a sub-set of the available technical analysis functions. “Tech-
nical Analysis of Stock Trends” by Edwards, Magee and Bassetti [101] gives a detailed explanation of
technical analysis functions used by traders.

Technical analysis is performed on stock data, currency data, or individual company share data.
The technical analysis results are used to trade various trading products provided by exchanges. Each
type of trading product has different levels of risk and different levels of cost. The next section explores

three different trading products and the cost structures used during the empirical study.

2.4 Trading and Cost

This thesis focuses on stock listed on the JSE. The JSE provides access to its trading platform via
partner companies. Partner companies expose different trading packages to their clients. One such
trading partner is Standard Bank Group Ltd (SBK). SBK offers a simple, yet cheap investment package
called Autoshare Invest [31]. Autoshare Invest offers investors a cheap alternative to direct online
trading. Autoshare Invest exposes a sub-set of the most traded shares listed on the JSE. Trading is
limited to specific days, the prices are quoted as the previous days’ close, and purchasing is performed
in bulk. The bulk purchase allows a trader to buy a percentage of a share, while another trader or the

bank buys the rest. The bulk trading reduces fees. The reduced fees, fixed market price, and access to
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a percentage of a share makes Autoshare Invest a simple, cheap platform for investors looking to hold
onto shares for the long term. Because Autoshare Invest regulates the price, and fixes trading to specific
days, daily trading is not possible.

The OST is a more advanced trading platform giving investors direct access to the JSE to buy
and sell shares. All JSE listed shares are available to the investor, and an investor trades whenever
the exchange is open. Share prices are quoted in real-time. The platform displays the current offers
to buy and sell. Making the OST the ideal platform for daily trading. To facilitate daily trading, the
online platform makes various products available to traders. The trading products include currencies,
commodities, shares, and derivatives.

A derivative is a financial security with a value that is reliant upon or derived from an underlying
currency, commodity, or share. The types of derivatives offered are dependent on the trading platform.
Single stock futures, commonly referred to as futures, is an example of a derivative. Futures are con-
tracts between two parties based upon the underlying stock or asset. One party agrees to buy the stock
now and sell it to another party at a later date. The party buying the stock now is said to take the long po-
sition, while the party buying it later is said to take the short position. Generally, futures are purchased
on credit and settled at the end. A futures price is the value paid to take part in the transaction.

To illustrate a futures contract, consider a share trading at R1 per share. A traditional share trader
would spend R1 to purchase the share. Suppose that the share price increases in value by 10% and that
the trader sells the share. Excluding costs, the trader would make 10c profit. If the share price dropped
by 10%, the trader would have lost 10c, excluding costs. A futures contract returns far greater losses
and gains. Assume that the future requires the payment of 1% of the underlying stock value to take part
in the contract. The future consists of 100 shares. The total share value is R100. The cost to take part
is R1.

Suppose Party A takes the long position and Party B takes the short position. Both Party A and
Party B pay R1 to enter into the contract. Suppose that at the agreed contract termination date the share
price has increased by 10% to R1.10. Party B must purchase the 100 shares from Party A for R110.
Party A makes a profit of R9. Party B now owns the futures and paid R111 for stock worth R110.

Suppose that instead of increasing in value, the share price dropped by 10% to R0.90. Party B buys
the 100 shares for R90, while Party A must now cover the credit and pay the difference making a total
loss of R11. Party B paid R91 for shares worth R90. In both scenarios Party B paid more for stock than
it was worth. However, Party B entered into an agreement to buy the shares at a later date, and therefore
could have sold the shares not yet purchased at the start of the derivative contract. If Party B sold the

shares not yet owned at R100 and bought them later at R90, Party B could have made a profit of R9.
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The illustration shows that a trader can pay a fraction of the share cost and receive greater returns.
This effect is known as gearing. Gearing is the ratio between a stock price and the stock value. Gearing
is achieved through credit. Derivative products determine the gearing, the trade duration, the asset
traded and the trading limits. Derivatives such as single stock futures are superior to regular share
trading, because shares can be bought or sold for profit while the share price is going up or down.
Derivatives are the preferred trading mechanism for daily market traders.

Derivative trading requires more than just a hold, buy or sell signal. It requires the holding, buying,
or selling of a long or short position over a period. Due to the complexities of derivative trading, the
traditional buy and sell share trading is used in this thesis.

Traditional share trading has the following advantages over derivatives:
e simple trading process of buy and sell,

e simple costing model, and

e no expiry of trades.

Traditional trading requires a trader to have the cash on hand to purchase a share. A trader can only
sell a share if the trader owns the share. A trader is required to pay a number of fees when buying or
selling shares. Trading fees in South Africa are determined by the South African Government, the JSE,
and the trading platform provider.

Fees presented here are based on the 2008 fees of OST, which include:

a headline brokerage fee of 0.5%, with a minimum of R80,

security transfer tax of 0.25%,

strate tax of 0.005787%, with a minimum strate of R11.58 and a maximum of R57.87,

value added tax (VAT) of 14% (the study was done before the recent VAT increase to 15%)

a Financial Services Board (FSB) fee of 0.0002%.

Buy and sell transactions incur the same fees, except for the security transfer tax which is payable
on purchases and not sales. The headline brokerage fee is a minimum of R80, making it highly unlikely
to return a profit on one share trading at R20 over the short term. A minimum number of shares must be
traded to cover the transaction costs. Figures 2.6 and 2.7 illustrate the difference in trading fees when
trading 100 or 1 000 000 shares in SBK respectively. The fee cost per share when buying 100 shares is
R1.28, while the fee cost per share when buying 1 000 000 shares is R0.72.
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Purchase and Sale of SBK Shares
Number of Shares 100
Share Price R84.50

Bought SBK Shares  Sold SBK Shares
Share Value R8 450.00 R8 450.00
Brokerage Fee of 0.5% with a minimum of R80 R80.00 R80.00
Security Transfer Tax of 0.25% R21.13 R0.00
Strate Fee of 0.005787%, minimum of R11.58 and a
maximum of R57.87 R11.58 R11.58
Insider Trading Levy (FSB) of 0.0002% R0.02 R0.02
Total Charges R112.72 R91.60
Value Added Tax (VAT) of 14% R15.78 R12.82
Total cost of the transaction R128.50 R104.42

Figure 2.6: Cost structure of trading 100 SBK shares on the Standard Bank Trading Platform. The study was

done before the recent VAT increase to 15%.

Purchase and Sale of SBK Shares
Number of Shares 1000000
Share Price R84.50

Bought SBK Shares  Sold SBK Shares
Share Value R84 500 000.00 R84 500 000.00
Brokerage Fee of 0.5% with a minimum of R80 R422 500.00 R422 500.00
Security Transfer Tax of 0.25% R211 250.00 R0.00
Strate Fee of 0.005787%, minimum of R11.58 and a
maximum of R57.87 R57.87 R57.87
Insider Trading Levy (FSB) of 0.0002% R169.00 R169.00
Total Charges R633 976.87 R422 726.87
Value Added Tax (VAT) of 14% R88 756.76 R59 181.76
Total cost of the transaction R722 733.63 R481 908.63

Figure 2.7: Cost structure of trading 1 000 000 SBK shares on the Standard Bank Trading Platform. The study

was done before the recent VAT increase to 15%.
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2.5 Summary

This chapter explained stock market trading, stock market trends, and how supply and demand can
drive the stock trend. Technical analysis was introduced as set of functions to determine the current
and future market trend, based on current and historic stock market data. Technical analysts combine
the results of some or all the functions described in this chapter into trading rules. Each trading rule is
tailored to a specific share or market.

A trading rule is used to determine when to buy or sell a share. This study uses evolutionary
algorithm (EA)s to evolve trading rules similar to the functions described in this chapter. The next
chapter focuses on the concept of evolution, and simulated evolution known as evolutionary compu-
tation. Chapter 4 investigates how researchers used EAs to determine which of the technical analysis

functions and parameters above are best suited for a specific share.



Chapter 3

Evolutionary Computation

A guy said to me, “Yes, but the whole theory of evolution is based on a tautology: that which
survives, survives” This is tautological; therefore it doesn’t mean anything. I thought
about that for a while and it finally occurred to me that a tautology is something that if
it means nothing, not only that no information has gone into it but that no consequence
has come out of it. So, we may have accidentally stumbled upon the ultimate answer;
it’s the only thing, the only force, arguably the most powerful of which we are aware,
which requires no other input, no other support from any other place, is self-evident,

hence tautological, but nevertheless astonishingly powerful in its effects.” [sic]

-Douglas Adams (Science Fiction Author), 1998

31
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This chapter explores the concept of evolutionary computation. The chapter begins with Sec-
tion 3.1 covering the history of evolutionary theory, more specifically the works of Darwin, Weismann,
Mendel, and Morgan postulating on natural selection, germ theory, inheritance, and genetics respec-
tively. Section 3.2 follows, describing the history of evolutionary computation and how researchers
used the processes theorised by early evolutionary theorists to build computational models to solve
optimisation problems. From the ideas defined in Section 3.2 grew a specific form of evolutionary
computation known as genetic programming, which is described in Section 3.3. Section 3.4 describes
multi-population evolution to enhance learning through a process known as co-evolution. The chapter

concludes with a summary in Section 3.5.

3.1 Theory of Evolution

The Greek philosopher Anaximander [81, 100], lived in Miletus (Turkey) between c. 610-546 B.C.
Anaximander noticed that the foetus of a human is similar to that of a fish. He reasoned that a fish
could grow into all kinds of animals including a human. He stated that humans were born from a
combination of different animals. Empedocles [41, 127] a Greek philosopher born in Akragas on the
south-east coast of Sicily, Italy in 490 B.C. documented the similarity of species and concluded that
all species came from the earth, and shared common traits. Anaximander and Empedocles concluded
that in the beginning a small group of species gave birth to all the species on earth and overtime some
species became extinct.

The French naturalist, mathematician, cosmologist Georges-Louis Leclerc, Comte de Buffon [76]
believed the world was a few thousand years old and that species were created separately and organized
into an unchanging hierarchy, with humans positioned just below the angels. Buffon believed that
as creatures migrate the supply of “organic” particles that made up the creatures changed and so the
creature would change, adapting to its environment. The proposal of ever-changing generations was
shared by the French naturalist Jean-Baptiste Lamarck in his book “Philosophie Zoologique” [94].

Lamarck [94] proposed a systematic theoretical framework for understanding evolution where fluids
etch out organs from tissue leading to ever more complex structures. Lamarck proposed that disused
organs would transform or morph into more useful organs, and useful organs would continue to be
enhanced. Overtime the organism would become more adapted to its environment.

Baron Cuvier [207] commonly known as the father of palacontology rejected the morphology the-
ory of Lamarck. Cuvier believed that function determined if a species continues to survive and that

environmental events such as floods can kill off an entire species. While Cuvier did not believe in
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evolution, his book “Le Reégne Animal” [87], which compared the anatomy of the entire known animal
kingdom provided convincing evidence for evolutionary change.

The English physician and poet Erasmus Darwin believed in evolutionary change. Darwin proposed
in the chapter “Generation” of his book ‘“Zoonomia” [90] that a species changed over time, and that each
generation of the species is slightly different from the previous generation.

In 1837, the grandson of Erasmus Darwin, Charles Darwin [53, 68, 89, 111, 201] travelled to South
America on board the H.M.S. “Beagle” to investigate the idea of a generation. It was on this voyage that
Darwin realised that there are divisions in the distribution of the inhabitants of South America; those
inhabitants on the east coast are different from those on the west coast.

Darwin realised that the past inhabitants of both the west coast and east coast share similarities with
the present inhabitants. These observations led Darwin to formulate the concepts of modern evolution-
ary theory [89]. According to Darwin, Alfred Russel Wallace [111, 208], whom had been studying the
Malay Archipelago had also arrived at the same conclusion [89].

Charles Darwin, in his book “On the Origins of Species” [89], alludes to a book on creationism titled
“Vestiges of Creation”. According to Darwin, the author of this book argues that animals, plants, and
the like would just appear for no reason and be perfect. Perfectly appearing species did not, according
to Darwin, explain the similar traits shared between species in the embryo, geographic distribution,
and geological succession, first noted by Anaximander [81, 100] 2400 years earlier. Darwin states that
species had not been created independently, but rather descended.

Darwin and Wallace [111] presented their theory of evolution to the Linnean Society of London in
1858 [89]. Darwin outlines the theory presented at the Linnean Society in Chapter IV of his book, “On
the Origins of Species”, which is as follows: Suppose that a species gives birth to several individuals
and suppose that one individual has an advantage over the other individuals in the group. This advantage
may make this individual smarter, faster, or stronger than any other individual in the group. Because
this individual has an advantage, the conclusion is that this individual would live longer, and thus
have more opportunity to reproduce. An individual that reproduces more, would naturally have more
offspring; more offspring inheriting the advantage of the parent. It may be concluded that this new
advanced offspring would live longer and have more children than the individuals that did not inherit
the advantage.

As each generation develops, the individuals with the advantage become more, and the individuals
without the advantage become less. Eventually, over several generations, all individuals in the popula-
tion will have inherited the advantage. Darwin called this the theory of natural selection. Today, it is

known as Darwinism.
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The German evolutionary biologist, Friedrich Leopold August Weismann [209], confirmed the
speculation of heredity and small changes to individuals proposed by Darwin and Wallace. Weismann
published a paper in 1893 called “The Germ-Plasm. A theory of heredity”. In his paper, Weismann
proposed that genetic information is passed on through germ cells.

A germ cell contains half the number of genetic material of a regular cell. Regular cells are referred
to as Somatic cells. A germ cell unites with a germ cell from the opposite sex to form a new individual.
A germ cell from a specific sex is referred to as a gamete. A gamete from a male is known as sperm,
and a gamete from a female is known as an egg.

Genetic material contains genetic information in the form of genes. Genes consist of nucleic acids
and proteins that string together to form a thread-like structure referred to as a chromosome.

Weismann concluded that germ cells encode physical characteristics and not behaviour. When an
organism produces germ cells, mutation takes place. This mutation is carried over to the somatic cells
that are created by the genetic code within the germ cells. Weismann referred to the propagation of
genetic information from germ cells to somatic cells as heredity.

Building on the concept of heredity, Gregor Johann Mendel [53], an Augustinian priest and sci-
entist, conducted hybridisation experiments on garden peas (Pisum sativum). Mendel postulated two
generalisations, which became known as Mendelian inheritance. Mendel’s generalisations are the law
of segregation and the law of independent assortment. Mendel described his laws in a paper, which he
presented to the Natural History Society in 1865 called “Experiments on Plant Hybridisation” [167].
The first law of segregation says that “an individual produces gametes”. Gametes contain one copy of
an allele. An allele is a variant of a gene. Gametes are segregated from the parent organism. The second
law is that of “independent assortment” or the inheritance law. When two gametes come together (egg
and sperm) to form a new individual, the dominant phenotypes are selected with a higher probability
than the recessive ones, and traits are inherited independently of each other. A phenotype is a set of
observable characteristics of an individual.

An American geneticist and embryologist, Thomas Hunt Morgan [111, 168], aimed to discredit the
works of Darwin, Weismann, and Mendel. However, through his studies of a small fly (drosophila), he
confirmed the theories of selection and heredity. Morgan was awarded “The Nobel Prize in Physiology”
in 1933 for the role that the chromosome plays in heredity [181].

Combining Darwinism, Weismann’s theory of germ cells, Mendel’s theory of inheritance, and Mor-
gan’s theory of genetics, the bases for a set of arguments known as the Neo-Darwinism are formed
[111].

Neo-Darwinism is based on the premise that all life evolved from a primitive single cell organism.
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This single cell organism evolved into complex plants and animals through a few processes, namely
reproduction, mutation, competition, and selection [111].

The first of the processes in Neo-Darwinism, also known as Darwinian evolution, is reproduction.
Reproduction is the process of replicating traits of a parent, or two parents, to their offspring. Repro-
duction is not replication. Only molecules can replicate, cells reproduce. Cells reproduce by replicating
the molecules that make up the cell. Often, not all the molecules are replicated. This could be due to
many factors, for example, there are not enough atoms present to make the molecule, the instructions
to make the molecules are not complete, or the environment may not be conducive to the formation of
the molecule. For whatever reason, it is important that reproduction is not replication. Mutation is the
result of errors introduced during reproduction. Mutation is the second evolutionary process. Mutation
is an important process as it introduces diversification into the structure of the cell. This diversification
can affect the traits and functions of the cell.

Reproduction transfers the traits of the parents to their offspring, while mutation, a process during
reproduction, can alter the trait in the offspring. The traits of an individual directly affect its probability
of survival and reproduction. A finite set of resources such as food, or the right to reproduce exists.
Organisms are required to compete for these resources. Traits of an individual affect the outcome of
competition. If the food is fast, the fastest individuals catch more food. If the food is high, the tallest
individuals reach more food. If the food is out at night, individuals that see the best at night find more
food. If the predator of an individual has excellent eyesight, prey that blend into the surroundings the
best, survive the longest. The longer an individual survives, the higher the probability that the individual
will reproduce. Reproduction passes genetic material from parents to their offspring. Natural selection
is the process of selecting parents for reproduction. Selection is the last of the four processes, and
defines the rules or pressures for reproduction [111].

A trait is the key to the processes of reproduction, mutation, competition, and selection. Mendel
[53] found that genes of an individual store traits or characteristics of the individual. A gene is the
most basic unit of heredity. Weismann [209] proposed that germ cells store genes. During the creation
of germ cells, genes are copied from the parent to the new germ cell. The copy is not always correct,
resulting in altered genetic material or mutations. Because a gene is responsible for a specific trait, the
altered gene results in a new or different trait. A new individual is formed by combining an egg cell and
a sperm cell from the mother and father respectively. The newly formed individual has inherited traits
from its parents, and different traits through mutation. Nature tests the traits; if the traits perform well
within the individual’s environment, the probability of the traits being selected for the next generation

is much higher than that of traits that do not perform well. An organism’s performance is a product of
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the environment. Performance could be the length of time an organism lives for, the amount of food
it consumes, or the appearance or smell of the organism. The performance influences the amount of
reproduction an organism undertakes. The probability that the traits are selected for the next generation

depends on the efficiency of reproduction, or the number of times that an individual reproduces.

3.2 The History of Evolutionary Computation

The previous section explored the works of Darwin, Wallace, Weismann, Mendel, and Morgan. These
scientists pioneered our understanding of the evolutionary process in nature; a process that starts with
a population of individuals, that create offspring, either through mutation of their own genetic material,
or through re-combination of genetic material with another individual’s genetic material, or both. The
new offspring compete for survival and the right to become the parents of the next generation. The
process continues with each generation becoming slightly better (based on the criterion of selection)
than the previous generation [111, 112].

The idea that the process of evolution could be used to solve optimisation problems started about
60 years ago and has around 3000 papers published annually [112].

In 1932, Walter Bradford Cannon, an American physiologist, noted in his book, “The wisdom of
the body”, that evolution was a learning process and made a direct comparison to individual learning
[112]. The famous computer scientist, crypto-analyst, logician, and mathematician, Alan Turing [112],
once said that, “[there is an] obvious connection between [machine learning] and evolution”.

Much of the early work in evolutionary computation has been forgotten or lost to science. Unlike the
history of chemistry, physics, or mathematics, not much is known about the foundations of evolutionary
computation [53, 112]. The earliest documented use of using a computer to understand evolution, was
that of Barricelli [113]. In 1954, Barricelli performed computational experiments in evolution on an
IBM704 at the Institute for Advanced Study in Princeton. Barricelli described his work in the paper,
titled “Numerical testing of evolution theories: Part I Theoretical introduction and basic tests”, which
was originally published in Italian in 1954 and re-published in English in 1957 [62, 113].

Friedman and Fraser [53, 112, 121] performed some of the earliest evolutionary computation ex-
periments. Friedman [121] published a 158-page Master’s thesis in 1956 entitled “Selective Feedback
Computers for Engineering Synthesis and Nervous System Analogy”. An academic paper on the de-
scriptions of a computational evolutionary process by Alex Fraser in 1957 [120], followed Friedman’s
thesis. The paper appeared in the Australian Journal of Biological Sciences, volume 10, titled “Simu-

lation of Genetic Systems by Automatic Digital Computers. I. Introduction.” [110, 112, 120]. Fraser
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presented the case of diploid organisms represented by binary strings of a given length. Each bit in
the string represented a gene. Fraser proposed the process of single-point crossover for binary string
reproduction [110].

Single-point crossover selects an arbitrary point within the binary string. All data beyond that point
in either organism’s string is swapped between the two parent organisms [103, 112]. The resulting or-
ganisms are the offspring. Fraser extended the single-point crossover to n-point crossover in which each
position along an organism’s genetic string was assigned a probability of breaking for re-combination
[112].

To maintain genetic diversity from one generation to the next, Friedman and Fraser introduced
mutation. Mutation alters one or more genes within a chromosome from its initial state. A set of
probability values determines if a gene undergoes mutation. Fraser studied varying effects of linkage,
epistasis (interaction of genes that are not alleles), rates of reproduction, and additional factors on the
rates of advance under selection, as well as the genetic variability of a population and other statistics
[110]. Fraser’s work was followed by articles by Friedberg and Friedberg ef al. in 1958 and 1959,
respectively [53]. Friedberg’s work represents the earliest work in machine learning and describes the
use of an EA for automatic programming.

In 1958, Bremermann [97, 112] presented a similar evolutionary computation model to that of
Friedman and Fraser. Individuals were encoded as binary strings that were processed by reproduction,
mutation, and selection to form offspring. Bremermann introduced the one-max problem, where fitness
is determined by the sum of the number of 1s within the binary string. Bremermann derived the gener-
alised optimum probability of mutation for the one-max problem. In 1962, Bremermann [74] extended
his original model to become a generalised function optimisation method.

American computer scientist John Henry Holland [135, 136, 137] and his colleagues at the Uni-
versity of Michigan formalised the EAs originally implemented by Bremermann, Fraser, Friedman and
Friedberg et al. [53, 97]. Holland’s emulation of evolution is now known as a genetic algorithm (GA),
made up of a fixed length binary representation of a chromosome, similar to the work of Fraser and
Bremermann. Holland and Fraser introduced the evolutionary operator of reproduction through the for-
mation of a process known as crossover. Selection is done by selecting the top performing percentage
of individuals. Quantification of individual performance is done by a mathematical function known as a
fitness function. Holland published this complex adaptive system in 1975 in a book titled “Adaptation in
Natural and Artificial Systems” [135], followed by two more books, “Hidden Order: How Adaptation
Builds Complexity” [136] and “Emergence: From Chaos to Order” [137].

By the mid-1960s GAs had been used in many applications, such as tuning sets of weights in the
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evaluation of fitness functions of game-playing programs [54, 60], evolution of chemical concentrations
of biochemical systems [54, 184], pattern recognition [54, 80], amongst many others.

By the early 1970s, researchers turned their focus to better understand the behaviours of imple-
mentable GAs. Alternative selection and encoding strategies were experimented with, including elitism,
rates for adaptive crossover and mutation [54, 80], and alternate selection and mating schemes [54, 139].
Aspects of GAs were documented at length, including the effects of genetic drift [118], the effects of
population size, crossover, and mutation [53, 91]. The first workshop on GAs, the “Adaptive Systems
Workshop”, was organised in 1976 by several universities including the University of Michigan, the
University of Pittsburgh and the University of Alberta [53]. By the 1990s variations of GAs had been
developed to evolve complex, non-linear, variable-length structures such as rule sets, neural networks,
and LISP code [53].

Fraser, Bremermann, and Holland simulated abstracted chromosomes and the modification thereof.
Selection criteria focused on the chromosome, to determine the parents of successive generations. The
focus on the hereditary information is known as genotypic evolution. Lawrence Fogel [116] began
researching alternative methods for simulating evolution as a phenotypic process. A phenotype is an
organism’s actual observed properties such as behaviour (actions), development (regeneration), or mor-
phology (structure).

In 1962, Fogel began experimenting with simulated evolution of finite-state machines [53, 116]. A
finite-state machine is an abstract machine that can be in exactly one of a finite number of states at any
given time. A transition moves a finite state machine from one state to another. Each transition requires
external inputs and conditions for the transition to occur. A finite-state machine is a mathematical model
of computation. Fogel focused on the behavioural link between parents and offspring, as opposed to the
genetic link. Fogel experimented on mutation of finite state machines to forecast non-stationary time
series data.

The finite-state machine had to predict a 4-symbol output sequence of a Markov process driven by
random noise. A Markov process is defined as a stochastic model describing a sequence of possible
events in which the probability of each event depends only on the state attained in the previous event
[35]. In Fogel’s simulation, a randomly mutated copy of a parent machine becomes an offspring ma-
chine. A probability distribution determines the rate of mutation. A fitness function measures the error
rate of the finite-state machine in predicting the Markov sequence. The parents and offspring are ranked
by their error measure from the least errors to the most errors. The top half performing machines are
retained as parents to generate children. The population size remains constant. Fogel called this process

evolutionary programming [115, 116].
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In 1964, Fogel published a dissertation titled “On the organisation of intellect” [114]. In 1966, a
book, “Artificial Intelligence through Simulated Evolution” [116], co-authored by Alvin Owens and
Michael Walsh followed Fogel’s dissertation. “Artificial Intelligence through Simulated Evolution” is
regarded as the first book published on evolutionary computation. In 1970, Fraser and Burnell pub-
lished the second book on evolutionary computation titled “Computer models in genetics” [112, 119].
Additional experiments by Lutter and Huntsinger [159], Burgin [77], Atmar [49], Dearholt [95], and
Takeuchi [202] followed the approach of Fogel. By the mid-1980s, the evolutionary programming (EP)
process was extended to include alternative representations such as ordered lists, vectors, and neural
networks. In 1992, the first formal conference on EP was held. The conference included applications
such as path planning [53, 109, 156, 172], robotics [45, 53, 165], artificial neural network (ANN) design
and training [53, 164, 176, 192], automatic control, and other fields [53].

At around the same time that Fogel was experimenting with simulated evolution, researchers in
Berlin were also experimenting with simulated evolution, focusing on phenotypic evolution. Bienert,
Rechenberg, and Schwefel [53, 68] began research on a robot that performed a series of experiments
on a flexible slender three-dimensional body in a wind tunnel to minimise its drag. At first Binert e?
al. tried two techniques manually. The first was manually optimising one variable at a time, the second
approach was manually optimising all the variables using a mathematical optimisation technique known
as discrete gradient. Both approaches failed, because variables that affected the shape of the object were
linked. Changing one variable affected the other variables.

Rechenberg decided to change the variables randomly. The first version of their algorithm was
called (1 + 1) and it was a type of EA referred to as evolutionary strategies (ES). One parent and one
descendant per generation were tested for the lowest drag. The best individual was selected as the
parent for the next generation. Binomially distributed mutations updated the variables of a parent to
form a child. While the (1 + 1)-ES performed better than the manual optimisations, the strategy became
stuck prematurely. The strategy could not evolve a better solution beyond the stuck solution. Schwefel
changed the algorithm from binomially distributed mutations to normal distributed mutations, which
performed significantly better than the previous implementation. In 1973, Rechenberg extended the
(14 1)-ES to include multiple individuals as a population, and called the algorithm (u + 1)-ES. Until
now, the mutation step sizes were fixed. If the step size was too large, the evolutionary process would
update the variables to a number greater or less than the optimal. If the step sizes were too small, the
(1 + 1)-ES could prematurely converge. Rechenberg and Schwefel changed their algorithm to include
the ability to evolve the mutation step size. This new self-adapting (1 + 1)-ES was named (i + A)-ES.

Schwefel used a (1 + A)-ES to optimise the shape of a three-dimensional convergent-divergent nozzle



Chapter 3. Evolutionary Computation 40

for maximum energy efficiency. The technique was improved by Klockgether and Schwefel in 1970
[53]. In 1975, Schwefel [191] introduced multi-cellular individuals into an ES for binary optimisation.
This process introduced several sub-populations and niching mechanisms for global optimisation. A
wide range of ESs exists.

From the 1960s to the late 1980s, the three branches of evolutionary computation evolved indepen-
dently of each other [53]. Comparisons between the three branches, ESs, GAs and EPs are documented
by Bick et al. [52, 53, 54, 55, 56, 57, 58, 59]. It was Béck [52] and Béck et al. [53] who introduced a
common algorithmic schema for all brands of EAs.

In 1991, an international workshop titled “Parallel Problem Solving from Nature” at Dortmund
attempted to provide interaction amongst the various evolutionary computing research groups [53].

More co-operation and interaction workshops followed this, namely:
o the International Conference on GAs in San Diego, CA, USA, July 1991;
e the Evolutionary Programming Conference in La Jolla, San Diego, CA, USA, 1992; and
e Parallel Problem Solving from Nature in Brussels, Belgium, September 1992.

The increased interaction led to a consensus for the name of this new field, namely evolutionary
computation (EC). In 1993, a journal with the same name was established and published by MIT Press.
The first formal conference on EC was held from the 27" to the 29" June 1994 in Orlando, Florida,
USA. The Institute of Electrical and Electronics Engineers (IEEE) held three dedicated streams at the
“IEEE World Congress on Computational Intelligence” in 1994 namely fuzzy systems, ANNs and EC.
The IEEE conference led to the publishing of an organised EC handbook to provide a more cohesive
view of EC: the “Handbook of Evolutionary Computation” was first published in 1997 by IOP Publish-
ing Ltd and Oxford University Press [53].

The Genetic and Evolutionary Computation Conference (GECCO) was the first conference to focus
solely on EC. GECCO was held in 1999 as a combination of the International Conference on Genetic
Algorithms (ICGA) and the Annual Genetic Programming Conference (AGPC). GECCO is the main
annual conference of the special interest group on genetic and evolutionary computation, which is a

special interest group of the Association for Computing Machinery (ACM).

3.3 Introduction to Genetic Programming

Holland formalised GAs by defining that a GA is a meta-heuristic algorithm that simulates the Neo-

Darwinism process of evolution and natural selection. A GA has four evolutionary operations, namely
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reproduction, mutation, competition, and selection [111]. This evolutionary process is described in the

pseudo code listing in Algorithm 1.

Algorithm 1: Basic evolutionary algorithm process [103, 111].

§=0;
Initialise the initial population C;
Evaluate the fitness of each individual Cy , in population Cg;
while not converged do
g=g+1;
Select parents from C,_1;
Re-combine selected parents through crossover to form offspring,
which is added to O,;
Mutate the offspring in Og;
Evaluate each individual in O,;
Select a new population from Cy_ and Oy to form C,;

end while

return the best individual in C, as the solution;

The initial population of a GA is created stochastically. A population is made up of individuals,
with each individual having a “chromosome”. Holland defined the chromosome as a binary string
known as the genotypic instruction set. The chromosome tells the genetic algorithm how this individual
will behave within its programmed environment, referred to as the individual’s phenotypic behaviour.
The phenotypic behaviour of the individuals within the population are quantified using a defined fitness
function.

Each gene within the chromosome represents a value within the problem’s solution space. Genes are
sampled from the problem’s solution space during initialisation. The problem’s solution space is also
known as the search space. Each individual represented by a chromosome defines one possible solution
within the search space. Initialisation is done as a uniform sampling over the search space to ensure that
the solutions are diverse and cover a greater area of the solution space. The more individuals, the more
solutions representing more of the search space. A fitness function is used to quantify the performance
of a solution within the search space.

Parents are probabilistically sampled from the population of individuals. The selected parents un-
dergo reproduction using a crossover operator to form offspring. Offspring combine genetic material

from both parents. The offspring are evaluated by the fitness function. A selection function based on a
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probability proportional to the individual’s fitness value determines which of the individuals from the
previous generation and offspring are selected as individuals of the next generation.

The offspring are made from combinations of genetic material derived from the parental group, and
the parental group is smaller than the population size. For these reasons, each individual within each
new generation becomes more similar to each other than the previous generation’s individuals are to
each other. Once a certain number of individuals are similar, it is said that the process has converged.

The smaller the population size, the quicker the convergence speed. A smaller population has a
smaller sample of the search space, meaning that the most optimal solution has a higher probability
of being missed. To find the optimal solution, a smaller population might require more generations,
but convergence may cause the population to be so similar sooner, that the most optimal solutions are
missed. When this happens, it is said that the population has converged on a local optimum.

Mutation changes genes within a chromosome. Altering the genes within an individual results in
more diversity, because the individual is no longer similar to its parents. Mutation reduces convergence
speed by introducing diversity. Offspring undergo mutation by applying a mutation operator proba-
bilistically. The higher the probability of gene mutation, the more genes are altered and the greater the
difference between the offspring and their parents. The lower the mutation probability, the more similar
the offspring are to their parents.

The new offspring carry some traits inherited through reproduction, and some offspring have new
traits generated through mutation. A new generation is selected from the parents and the offspring.
The process continues until a given number of generations have elapsed, a sufficient solution to the
optimisation problem is found, or until all the members of the population are so similar that no further
generations would yield a better result.

Several implementations of a GA exist. The original GA implementation, called the canonical ge-
netic algorithm (CGA) [53] as defined by Holland [53], had distinct characteristics: a chromosome is
represented by a fixed and finite length bit string. Each bit in the string represents a gene. A gene is one
of two alleles, a 0 or a 1. Holland used a 50% probability of randomly selecting individuals and copying
them to a parent pool. Individuals within the parent pool are randomly paired as parents. Single-point
crossover is used as a reproductive method [103, 126]. A crossover point is randomly chosen and the
strings are swapped with respect to the crossover point between the two parents to form offspring.
After crossover, a probability distribution determines which of the bits within the chromosome of the
offspring are flipped. The random alteration of bits within the individual simulates mutation. Holland
used a proportional selection operator, known as rank selection, to sample individuals from the pre-

vious generation and offspring as individuals of the new generation. Proportional selection samples
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individuals with a probability proportional to the individual’s fitness [103, 126].

A GP is a specialisation of a GA where the individual’s chromosome is encoded using a ree struc-
ture. A tree structure is a random length, non-linear, hierarchical abstract data structure. A tree structure
is able to encode logical formulae, arithmetic formulae, or computer programs. Each tree represents a
symbolic expression defined by a tree grammar.

The tree consists of branch nodes and leaf nodes. Leaf nodes have no children and implement a
number or constant from a ferminal set. A leaf node is also known as a terminal node. A branch node
is connected to other branch nodes or leaf nodes and implement an operator from a functional set. A
branch node is also known as a non-terminal node.

The first documented use of a GP was in 1981 by Richard Forsyth [53, 117]. Forsyth did not call his
algorithm a GP but rather biological evolutionary algorithm generating logical expressions (BEAGLE).
Forsyth screened client medical data to determine the probability of patient survival [117]. Patients
were measured against 18 variables. BEAGLE had to evolve a rule, using a bespoke language created
by Forsyth. The language had 13 operators, including arithmetic equality, arithmetic inequality, greater
than, less than, greater than or equal to, less than or equal to, logical disjunction, logical conjunction,
negation, addition, subtraction, multiplication, and division [117]. A combination of the operators
determined the rule. A rule results in a boolean value where true represents survival and false
represents death. Forsyth did not know in advance what the length of the optimal rule would be.
Forsyth used a tree structure to store the evolved logical expression [117]. The interpretation of the tree
structure was critical to the success of BEAGLE. Interpretation of a tree requires two considerations,
namely tree traversal and a tree grammar.

Forsyth used an in-order traversal of the tree [117]. The order of operation is important to BEAGLE
and to illustrate the order, each walk is encapsulated with brackets. Using the example in Figure 3.1
and adding brackets to an in-order traversal yields the following result: ((4 (2) 5) 1 (3)). Addition of
brackets maintains the structure of the tree. Examine node (2), which is encapsulated by node (4) and
node (5). This is the same as what the tree represents: (4) and (5) are children of (2).

The second important consideration of a tree structure is its grammar. Forsyth created his own lan-
guage of 13 operators [117]. The operators together with the patient variables form a rule. Forsyth’s op-
erators require variable input. Some operators required numerical input, while others accepted boolean
input. This constraint meant that terminal nodes of the tree, (3), (4), and (5) in the example could not
be an operator, and had to be a variable.

The variables are one of 18 measured patient variables. If the parent node required a boolean vari-

able, then the child node had to be a boolean type. Forsyth’s operators resulted in different output types.



Chapter 3. Evolutionary Computation 44

2
AN

Figure 3.1: Simple binary tree structure, depicted here to illustrate a tree traversal. A pre-order traversal returns
1245 3. A post-order traversal results in 4 5 2 3 1. An in-order traversal results in4 2 5 1 3. A top down level

order traversal results in 1 2 3 4 5. A bottom up level order traversal resultsin4 52 3 1.

For example, the operator multiplication requires two numerical inputs, and the result is a numerical
output. The operator, arithmetic inequality requires two numerical inputs and the result is a boolean
output. In the example, ((4 (2) 5) 1 (3)), the operator stored in node (2) is applied to the operands stored
in nodes (4) and (5), resulting in an operand for node (2). The operator (1) is applied to the result of (2)
and the value of (3). From the example, the root node is the last node to be executed. Because the rule
requires a boolean result, the root node must result in a boolean value.

The tree encoding requires rules, defined as syntax. Syntax defines the combinations of symbols
that represent operators and variables. Syntax does not provide any information about the meaning
of the rule or the results of executing that rule. The semantics focus on the meaning of the rule, its
operators, and the results of executing the rule. Together, the syntax and semantics are defined as the
grammar. Grammar is application specific.

Forsyth’s implementation used a bespoke language as the grammar in BEAGLE and he suggested
that LISP be used in future [155]. LISP was created by John McCarthy [163] in 1958. LISP is the
second-oldest high-level programming language. In 1985, Nichael Cramer experimented with GPs,
and also used a bespoke grammar [86]. In 1992, John Koza [150] used LISP as a grammar for his
experimentation in evolving programs with GPs.

Koza [53, 111, 112, 150] used GPs for a number of very diverse optimisation problems, some of
which included symbolic integration, discovery of reusable programs, automated synthesis of analog
electrical circuits, automated synthesis of metabolic pathways, optimisation of antennas, and evolving
a controller to balance a broom on moving carts [148, 149, 150, 151, 152, 153].

Forsyth, McCarthy, and Koza used GPs to evolve solutions to a variety of problems. Each problem
space requires a defined grammar and tree traversal. To illustrate why tree traversal and a grammar are

required, suppose a GP is tasked to evolve a set of instructions for a simple robot to complete a task,
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and another GP is tasked to find a mathematical formula to a problem. The same EA is implemented.
However, the tree traversal and tree grammar are different.

Consider the optimal program to control the robot as listed in Algorithm 2. The operation go-
Forward has a dependency on the operation multiply. The result of multiply is used by the operation
goForward. The operation turnRight is executed once the operation goForward is complete. Each op-
eration is executed in sequence, and an operation may consist of sub operations. The output of a sub
operation is the input of an operation.

To encode this simple program into a tree structure requires two considerations: a grammar and tree
traversal. The robot controller grammar is a bespoke language invented to execute robot commands
such as go forward or turn right. The tree traversal is dependent on the tree structure, and how the
program is extracted from the tree to ensure that the grammar is correct. Figure 3.1 depicts a binary
tree, where each sub-tree has at most two children. Algorithm 2 is transcribed to a binary tree structure
in Figure 3.2. To correctly extract the program from the binary tree, a pre-order traversal is used. First,
the root node is visited and then goForward, multiply, 4, 100, turnRight, 90, goForward, 200 and then
the grammar is required, so that the executor of the program understands that the operator multiply has
two variables, 4 and 100, and that the result of multiply is the parameter of goForward.

For the example tree in Figure 3.2, the operators are encoded such that any node to the left is a
child, while any node to the right is its sibling. The nodes (2) and (4) are siblings, and are children of
node multiply. Multiply is a child of goForward. GoForward, turnRight and goForward are siblings.
An alternative approach to a binary tree is to use a multi-way or k-ary-tree. A k-ary-tree is a tree with
an unlimited number of direct descendants. Figure 3.3 is an example of the algorithm in Algorithm 2
transcribed into a k-ary-tree. In this example, each level denotes a sibling. The tree is walked in a
pre-order traversal. The robot control program is different from the Forsyth’s rule problem described

previously, in that operations must be executed in sequence.

Algorithm 2: An example of simple procedural robot instructions.

Start;
goForward(multiply(4,100));
turnRight(90);
goForward(200);

An alternative to the robot program example, is that of a mathematical function. Mathematical op-

erations are executed using the defined mathematical order of operations, namely brackets, exponents,
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Figure 3.2: Simple procedural robot instructions encoded as a tree. A pre-order traversal is used to correctly

extract the instructions such that order is preserved.

roots, multiplication, division, addition, subtraction, and left to right. The grammar of a mathematical
expression is defined by the laws of mathematics. The expression is encoded within a tree structure, and
the tree must be traversed in a way that the expression remains grammatically correct. The mathemat-
ical expression (x+ 1) —4 is encoded as shown in Figure 3.4. The first node in the tree represents the
binary operation subtraction, its children are addition, and the number four respectively. The number of
children a node has corresponds to the arity of the operand/operator. The addition binary operator has
the unary operands x and 1, while 4 has no children. An in-order traversal extracts the expression from
the tree structure. Wrapping each extraction with brackets preserves the execution order. Traversing
the tree in Figure 3.4, using an in-order traversal and adding brackets to each traversal results in the
following mathematical expression: (((x)(+)(1))(—)4); the result is simplified to form (x+1) —4.

From the two examples it is clear that the problem determines the type of tree structure, the gram-
mar, and the traversal path. A GP is a GA with the exception that the internal chromosome structure
is different. Because the structure of a GP is different, the crossover and mutation operators have been
modified to work for tree-based representations.

Holland’s GA uses single-point crossover as a reproduction operator [135]. Single-point crossover
selects an arbitrary point within the binary string chromosome of each parent. All data beyond that
point in either parent individuals’ string is swapped between the two parent individuals [103, 112].
This works when applied to a binary string, as there is no semantic meaning associated with genes. All
genes share the same possible variations, namely a 1 or a 0.

A GP uses a tree structure that conforms to a grammar. Swapping nodes arbitrarily can invalidate the
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Start
goForward turnRight goForward
multiply 90 200
4 100

Figure 3.3: Simple procedural robot instructions encoded as a k-ary-tree. A pre-order traversal is used to cor-

rectly extract the instructions such that order is preserved.

syntax and semantics. Consider the mathematical expression (x+ 1) — 4, the number 4 can be replaced
by any other operand, or complete operation that results in an operand. Thus, 4 can be replaced by
a number, for example 3, because ((x+ 1) —3) is valid. The number 4 can not be replaced by an
operation, for example x because ((x+ 1) — x) is invalid. However, 4 can be replaced by a complete
operation, i.e. 3 x 2 because ((x+ 1) — (3 x 2)) is valid. Alterations within a chromosome must comply
with the grammar defined for the problem solution.

To perform crossover between two trees, a node (Al) is selected at random from the first tree. A
sub-set of nodes are selected from the second tree, such that the nodes selected are valid grammatical
replacements for the node selected in the first tree. A random node is then selected from this sub-set.
The sub-trees of the selected nodes are then swapped. An example of crossover using two trees is
illustrated in Figure 3.5. Node (4) from the left parent is selected at random. Node (—) from the right
parent is selected at random. The nodes and their sub-trees are then swapped to form two offspring
trees.

The GA implemented by Holland used a binary string [135]. Each element in the string is either a
1 or a 0. Mutation is performed by flipping a bit from one state to the other. Holland [135] assigned
a small mutation probability to each gene within a chromosome. A small probability results in a few
altered genes or none at all. Assigning a mutation probability to individual genes is referred to as
micro-mutation [145].

Micro-mutation on a fixed length structure results in equal mutation probability across all individ-

uals. A variable length structure such as a tree results in a higher probability of larger trees undergoing
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Figure 3.4: Example of a simple mathematical expression encoded as a binary tree. Using an in-order traver-
sal and adding brackets to each traversal results in the mathematical expression: (((x)(+)(1))(—)4), which is

simplified to (x+ 1) — 4.

mutation.

Jones [46, 145] introduced a macro-mutation called headless chicken. Headless chicken gener-
ates offspring by recombining one parent individual with a new randomly generated individual. Jones
assigned the probability of mutation to the entire individual and not specific genes. Macro-mutation en-
sures that all individuals in the population have the same probability of undergoing mutation regardless
of chromosome size.

Like crossover, mutation must ensure that altering a gene results in a grammatically correct tree.
Several mutation operators have been developed for GPs. Mutation operators are dependent on the rep-
resentation grammar. The most frequently used mutation operators are discussed below with reference

to Figure 3.6 [103] (Figure 3.6(a) illustrates the original individual before mutation):

¢ Root node mutation: Depending on the tree grammar, the root node might require a different
node to a function or terminal node. Root node mutation changes the root node to a randomly

selected valid node. Figure 3.6(b) illustrates that the node + is replaced with a node x.

¢ Function node mutation: A functional node is randomly selected and replaced with a randomly
selected functional node of the same arity. Figure 3.6(c) illustrates that function node — is re-

placed with function node .

e Terminal node mutation: A terminal node is randomly selected and replaced with a randomly
selected terminal node. Figure 3.6(d) illustrates that terminal node z is replaced with terminal

node y.

e Swapping mutation: A functional node, or root node is randomly selected. The children of the

randomly selected node are swapped, provided the result is semantically correct, e.g. division by
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Figure 3.5: An example of GP crossover using two trees. Crossover is dependent on the grammar of the tree.

zero is not allowed. Figure 3.6(e) illustrates that function node — is selected and its children are

swapped.

e Grow mutation: A terminal, or functional node is randomly selected and replaced by a randomly

generated tree. Figure 3.6(f) illustrates that function node 2 is replaced by a new sub-tree.

e Gaussian mutation: A terminal node which represents a constant is randomly selected and

mutated by adding Gaussian noise to that constant. Figure 3.6(g) illustrates Gaussian mutation

e Truncation mutation: A functional node is randomly selected and replaced by a randomly se-
lected terminal node. Figure 3.6(g) illustrates that function node — is replaced with terminal node

a.

e Headless chicken mutation: A parent is selected and recombined with a randomly generated

tree. Recombination is done using crossover.

The examples of tree structures, traversals, mutation and crossover presented are problem specific.

Each problem has a discrete search space defined by the grammar. The grammar determines the possible
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Figure 3.6: Various examples of GP mutation strategies are depicted. Mutation is dependent on the grammar
used.

tree structures, and how the tree is traversed. The grammar determines possible mutations and valid
Crossover points.

Before the evolutionary process can begin, an initial population must be created. Initialisation of
the first generation is done by stochastically generating individuals. Population initialisation for a GA is
simple, because the fixed length binary string is initialised to random values of O or 1. The initialisation

of a GP is problem specific and is dependent on the grammar. A valid root node is required, followed
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by valid children nodes. The process is repeated until either the tree is complete with valid terminal
nodes created stochastically, or a desired maximum tree depth is reached and terminal nodes are forced.
This leads to variable tree depths. Tree size is also problem specific.

The tree represents a model of the observed dataset. If the model corresponds too closely or exactly
to the dataset, the model may fail to reliably predict future observations; the model is said to over-fit
[26]. The opposite of over-fitting is under-fitting. Under-fitting results in failure to model observed
data. A tree must contain enough nodes to accurately model generalised observations in the data. If the
tree is too small it will not have enough nodes to model the observations and will under-fit. If the tree is
too large it will begin to model all the observations and begin to over-fit. Limiting the size of the trees
must be considered.

The crossover operator can exponentially grow a tree in a GP. For example, a child connected to the
root with a sub-tree of 10 descendants could swap with the lowest node in another individual of the same
size, doubling the depth of one offspring and decreasing the depth of the other. The crossover operator
could be altered to only crossover small sub-trees, slowing down the growth of the tree. Reducing the
tree size of the individuals in the initial generation can delay the generation of large offspring through
crossover. Neither approach stops the generation of large offspring it only delays the creation of large
offspring.

The mutation operator grows a tree by selecting a terminal node and replacing it with a new sub-
tree. The rate of growth is dependent on the size of the new sub-tree. Reducing the size of the newly
generated sub-tree reduces the growth rate of the mutated tree. Decreasing the probability of replacing
a terminal node with a new sub-tree reduces the growth rate. The prune mutation operator replaces a
non-terminal node with a terminal node, decreasing the tree size. Increasing the probability of pruning
delays the creation of large offspring.

Mutation and crossover inevitably produce more complex models as evolution continues leading to
greater probability of over-fitting. Several approaches have been proposed to avoid over-fitting. These
include reserving part of the in-sample data set as a validation set on which to test the performance
of the solutions, increasing the amount of in-sample data, dynamically decreasing the probability of
mutation, and penalising model complexity [43, 130].

The selection pressure determines which individuals become parents and which individuals are
carried to the next generation. Selection pressure is determined by a probability based on a fitness
measure. The fitness measure is determined by a fitness function which can include a penalty function
that penalises larger trees.

Three degrees of penalty functions exist [196]: barrier penalty functions in which no solution is
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considered that exceeds the maximum tree size, partial penalty functions in which a penalty is applied
close to a maximum tree size, and global penalty functions which are applied across all individuals. A
barrier penalty function results in a fitness measure that returns a probability of zero, while the partial
and global penalty functions decrease the probability as the tree size increases. Increasing selection
pressure on smaller trees could result in premature convergence on a suboptimal solution. Care must be
taken to ensure that the penalty value is large enough to favour smaller trees, but not too large to inhibit
exploration.

Holland’s CGA randomly selected individuals to become parents of the next generation [53]. The
individuals that comprise the next generation are sampled from both the parents and the offspring. A
selection operator determines which individuals are carried over and which are discarded.

CGA used rank selection to sample individuals from the previous generation and the offspring to
form the new generation. Rank selection uses a relative fitness value derived from the absolute fitness.
The absolute fitness of the previous generation and offspring are calculated using the fitness function.
The previous generation and offspring are then ordered by their fitness value. Once sorted, a rank is
assigned in ascending order. The worst individual is assigned 1, the second worst 2, and so on until the
best individual has the rank n, where n is the total number of individuals. A probability of selection is

assigned to each individual using:

_ Rank;
Pi = m
where i is the individual.

During the initial generations, absolute fitness values between individuals can differ greatly, which
results in a select few individuals dominating the selection process. Reusing the same dominant in-
dividuals for crossover results in premature convergence. Because rank selection assigns a rank as a
relative fitness, the difference in absolute fitness has no bearing on the selection probability, thereby
reducing selection pressure. Therefore, rank selection avoids premature convergence by relaxing the
selection probability on individuals that have greater fitness than others, and increasing the selection
probability for individuals with low fitness. Conversely, when fitness is similar amongst individuals,
which occurs in later generations, small differences in fitness are amplified. To illustrate the amplifica-
tion effect absolute fitness has on selection probability, consider five individuals with fitness values of
80, 6, 4, 2, and 1. After ranking, the fitness values become 5, 4, 3, 2, and 1 respectively. The selection
probabilities are 0.33, 0.266, 0.2, 0.13, and 0.06. Should the fitness of a later generation of individuals
become 80, 79.998, 79.988, 79.786, and 79.635, the selection probabilities remain the same at 0.33,

0.266, 0.2, 0.13, and 0.06, because there was no change in the ranking.
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Since the initial experiments of Holland, alternative approaches to selection have been implemented

for EAs. The following is a sub-set of the most frequently used sampling strategies:

e Random selection assigns equal selection probability to all the individuals regardless of their

fitness value [103].

e Proportional selection is similar to rank selection, except that the absolute fitness value is used and
not the relative fitness. In proportional selection, the probability of an individual being selected

is proportional to the absolute fitness value. Many proportional selection algorithms exist.

A common proportional selection algorithm is known as roulette wheel selection [103]. Roulette
wheel sampling normalises the fitness values, usually by dividing each fitness value by the max-
imum fitness value [103]. The analogy to a roulette wheel can be envisaged by imagining a
roulette wheel in which each individual represents a pocket on the wheel; the size of the pocket
is proportional to the probability of selection of that individual. While the wheel is spinning, the

ball has a greater probability of landing in a larger pocket than a smaller one [103].

Stochastic universal sampling (SUS) is an alternative proportional selection strategy introduced
by Baker [61]. Each individual is placed next to each other on the circumference of an imaginary
circle. Individuals are placed in order of their fitness value. The amount of space an individ-
ual takes up on the circumference is directly proportional to the individual’s fitness value. The
greater the individual’s fitness, the greater the amount of space allocated to the individual. SUS
uses a random number to determine a position on the circumference. A fixed distance equal to
the circumference divided by the number of individuals is used to mark positions on the circum-
ference. Each individual occupying a marked position is selected. Individuals can be selected

multiple times.

e Tournament selection randomly selects k individuals from the population. The selected individ-
uals take part in a tournament and the individual with the best fitness value is selected [103]. An
advantage of tournament selection is that the worst individual of the population will never be se-
lected for reproduction provided that k is greater than one. If & is equal to one, then the selection
process is random and the worst performing individual could be selected. If & is the same as the

population size, the best individual will always be selected [103].

o Elitism selects the best k individuals. An advantage of this approach is that the worst individuals

are never selected. However, the best individuals dominate the selection process leading to rapid
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convergence. Elitism is the same process as tournament selection with a k value equal to the

population size.

As per the pseudo code listing in Algorithm 1, the CGA randomly selects individuals as parents and
then sampled individuals from the previous generation and offspring to form the next generation. This
approach is preferred, because individuals from the previous generation that represent good solutions
have a probability of moving to the next generation. However, depending on the sampling strategy,
good solutions may dominate and lead to rapid convergence. An alternative approach is to carry only
the offspring to the next generation, discarding the previous generation entirely. This approach slows
down convergence, but good solutions are lost. A hall-of-fame can store the best individuals from each
generation to preserve good solutions.

This thesis uses the approach of Holland, using both the previous generation and the offspring as a

source for the next generation. A hall-of-fame is revisited in the next section.

3.4 Co-evolution

Generations of species rarely evolve in isolation, but rather co-evolve with other species. The word “co-
evolution” was coined by Ehrlick and Raven in 1964 [185] in their description of the probable influences
that plants, herbivores, and insects have had on each other’s evolution. Brooks and McLennan [185]
further subdivided co-evolution into co-speciation, referring to “mutual phylogenetic association”, and
co-adaptation, referring to “mutual modification”. Co-speciation is the process whereby one population
evolves in response to, and in concert with another, and is a consequence of the associate’s dependence
on its host for its survival [33]. Co-speciation is referred to as co-operative/symbiotic co-evolution. Co-
adaptation is the reciprocal adaptation of two or more genetically determined features through natural
selection [12]. Co-adaptation can occur between interacting genes or structures within an organism or
between two or more interacting species. Co-adaptation is referred to as competitive co-evolution.
Competitive co-evolution is when two or more species compete against each other, such that when
one species benefits, the other does not. Consider a certain species of plant living in an environment
containing insects that eat the plant. To survive, the plant needs to evolve mechanisms to defend itself
against the insects. The insects must evolve mechanisms to overcome the plant’s defences to survive.
This fight for survival drives an arms race. For example, the plant may develop a tough exterior, but
then the insect develops stronger jaws. The plant may evolve a poison to kill the insect, but then the
insect may evolve an enzyme to counteract the poison. The plant may develop hairs to make it difficult

for the insect to climb, and the insect could develop longer legs.
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Another classic example of competitive co-evolution is that of viruses and the immune system.
In order to replicate, a virus must infect its host; replication requires resources that the host needs to
function. The host evolves means to stop infection, while the virus evolves means to infect. Competitive
co-evolution ensures that each generation is better at its offensive or defensive role.

In nature, organisms evolve at the expense of individuals within the same species as well as indi-
viduals in different species. Co-evolution is not always destructive; mutual co-evolution also known as
co-adaptation or co-operative co-evolution, is mutually beneficial to all the parties involved. In 1981,
a paper by political scientist Robert Axelrod and evolutionary biologist William Hamilton explored
the evolution of co-adaptation [50, 51]. They argued that co-adaptation between species can emerge
through evolution and persist through numbers of generations. As an example, consider a bee and a
flower: the flowers need the bees for pollination and the bees need the nectar for food.

Co-evolution is a process where one species evolve because of the influence of another species.
In simulated evolution, competitive co-evolution requires an inverse of fitness between two or more
populations. A win for one population results in a loss for the other population, driving a simulated arms
race. To survive, the losing population must adapt, becoming the winning population. In a simulated
co-operative/symbiotic co-evolution, two or more populations work together, so that success in one
population improves the survival rate in the other.

The concept of co-evolution in EAs was first proposed by Reed ef al. in 1967 [111]. Reed et
al. used different populations to evolve alternative strategies for a simple game of poker. Smith and
Price [198, 199, 200] used game theory and competitive co-evolution simulations in 1973 to show that
a “limited war” or arms race benefits individual animals within a species as well as animals within
other species. In 1990, Hillis [132] showed how competitive co-evolution can be applied to a practical
optimisation problem, and more specifically, how the addition of co-evolving populations can improve
performance by preventing the system from becoming stuck in local optima. Hillis experimented with
GAs that evolve sorting networks. Hillis introduced the notion of host and parasite populations. The
host tries to find the optimal sorting network, while the parasites are scored on how well they make the
sorting network fail the test data.

In 1994, Jan Paredis [79] successfully applied co-evolution to a constraint satisfaction problem. In
1995, De Jong and Potter [79] used co-operative co-evolution to evolve islands of populations, where
each island solves part of a solution. The island model is an example of co-operative co-evolution. A
book by Axelrod, titled “The Evolution of Co-operation” [51] explores co-operative evolution versus
competitive evolution. Axelrod solicited strategies from other game theorists to compete in a tourna-

ment. Each strategy was paired with another strategy for 200 iterations of the prisoner’s dilemma game
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and scored on the total points accumulated throughout the tournament. Axelrod showed that strategies
which focused on co-operation outperformed those strategies that focused on competition with regards
to the prisoner’s dilemma game.

In the standard GA a fitness function measures how close a solution is to the perfect solution that
solves the objective. The perfect solution represents the global optimum. Because the fitness measure
is viewed independently of any other solution within the population, it is referred to as the absolute
fitness [47]. Objectivity and absoluteness come only at the expense of significant knowledge about the
task being solved [47]. This is significantly true for difficult problems with no analytical description,
for example, a game or stock market trading. Consider the abstract strategy board game Go, in which
the aim is to surround more territory than the opponent.

An absolute objective fitness function must consider every Go strategy both known and unknown to
measure how close a solution is to the optimal solution, which is not possible. However, the rules of the
game Go are well defined and if two solutions are made to play the game Go against one another the
outcome results in a winner. This kind of fitness evaluation is known as a competitive fitness function.
Rather than calculating how close a solution is to playing the perfect game of Go, a competitive fitness
function determines which solution is better at playing the game. The competitive fitness function
determines the success of a solution relative to another solution. Angeline and Pollack [47] defined a
relative fitness function as any fitness calculation that is dependent on other individuals to calculate the
fitness measure [47].

To measure the performance of a solution against all the solutions within the population, Angeline
and Pollack used a tournament relative fitness [47, 185]. Individuals are randomly paired to compete
using a competitive fitness function. The loser is removed from the tournament. Winners move to the
next round. The process is repeated until an overall winner is determined. Individuals are ranked by
the number of rounds they lasted. Hillis [79, 132, 185] used a bipartite relative fitness, where each
individual is tested against all the other competing individuals. If the individual performs better than
the competing individual, then that individual receives a point. The individuals are ranked by their
accumulative points.

Evaluating co-operatively co-evolved individuals is more complex than competitively co-evolved
individuals. Each co-operatively co-evolved individual is part of a solution and must share its fitness
value with an individual from another population. Holland [144, 193] devised the “bucket brigade”
credit scoring system. The “bucket brigade” was modelled after the water passing chains of fire fighters.
Each type of bucket is passed through a set of fire fighter chains. The best bucket, is the one that lost

the least amount of water as it was passed along the various chains. The best fire fighter chain, is the
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one that lost the least amount of water across all the buckets the fire fighters passed along. A “bucket
brigade” credit system can be used to evaluate co-operatively evolved individuals. The fitness value of
each individual is the sum of all the evaluations the individual took part in.

Various “bucket brigade” sampling approaches exist. The most computational approach is to pair
all co-operatively co-evolved individuals with every other individual. De Jong and Potter [79, 193], and
Axelrod [51, 193] paired each individual from one island to each other individual from another island.
CIliff et al. [83, 193] paired each individual from one population to the best individual from the other
populations. Price [179, 193], and Phelps et al. [174, 193] paired each individual from one population
with a randomly selected set of individuals from another population. Co-operative co-evolution evolves
populations together, as one population increases its performance, so do the other populations.

Rosin and Belew [79, 185] showed that competitive co-evolution can lead to an arms race, in which
the two populations reciprocally drive one another to increasing levels of performance and complexity.
Two populations were used, one to act as a host and the other as a parasite. Rosin and Below used the
games of Nim and 3-D Tic-Tac-Toe as test problems to explore three new techniques in competitive
co-evolution, namely competitive fitness sharing, shared sampling, and hall-of-fame.

Competitive fitness sharing is a relative fitness function, where parasites are ranked by the number
of hosts that can not defeat it. The host fitness is calculated as a function of parasite difficulty. The
effect is to reward hosts that can defeat parasites that other hosts can not defeat.

Shared sampling provides a method for selecting a strong, diverse set of parasites. Testing all the
hosts against all the parasites is computationally expensive. A sub-set of parasites could be selected at
random. However, the best parasite could be missed. Rosin and Belew proposed a competitive fitness
sharing amongst the parasites. Each parasite is tested using competitive fitness sharing against the best
performing parasites of the previous generation. The best performing parasites are those parasites that
outperformed the most hosts. The parasites that outperform the previous generation of parasites are
used to test the competitive fitness of the host population [185].

The hall-of-fame encourages an arms race by saving the best individuals from prior generations.
Rosin and Belew introduced an infinite population model: The best n parasites of a generation are
maintained indefinitely. Shared sampling is then performed on the best individuals from all the previous
generations, and not just the previous generation [185].

Different co-evolutionary approaches have been implemented by researchers. Grefenstette and Da-
ley [129] wanted to understand which approach worked best, and if co-evolution outperforms a tradi-
tional GA. Their experiments used a GA to optimise what they termed “the most optimum symbolic

reactive rule (SAMUEL)”. The evolved rule has applications in sentry robots, autonomous delivery
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vehicles, undersea surveillance vehicles, and automated warehouse robots. Grefenstette’s and Daley’s
tests included one competitive task and one co-operative task. The tests require two agents, either acting
as a co-operator or a competitor depending on the test. The following co-evolutionary approaches were

compared:

e A single GA where the first agent evolves, and the second agent uses a hand crafted set of rules.

A single GA that evolves a test of rules used by both agents (traditional GA).

A separate GA for each agent, with each agent being evaluated against a random member of the

opposite agent.

A separate GA for each agent, with each agent being evaluated against the best individual of the

previous generation of the opposite agent.

A separate GA for each agent, with each agent being evaluated against a random selection of the

previous generations of opposite agents (hall-of-fame).

A separate GA for each agent, with each agent being evaluated on its ability to defeat opponents

that few others in the current generation can (competitive fitness sharing).

Grefenstette and Daley showed that a competitive fitness sharing strategy produced generations
with greater diversity and resulted in a solution that performed better than the other co-evolutionary
approaches [129]. While Grefenstette and Daley considered evolutionary GAs, their approaches could
be applied to GPs.

3.5 Summary

This chapter began with the history of evolutionary theory, which researchers simulated using a com-
puter. The chapter covers the history of evolutionary computation and how it is used to evolve solutions
to problems. The chapter introduced GP as an extension of GAs. The next chapter discusses research
into stock market forecasting. More specifically, using evolutionary computation to evolve trading rules

that are used to trade shares on various stock markets.
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Evolutionary Algorithms in Trading

Progress comes from the intelligent use of experience.

-Elbert Hubbard (Writer and Philosopher)
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Technical analysis functions, as described in Chapter 2, are used to determine the market trend and
potential changes in the trend. Traders use combinations of these functions to create trading rules. This
chapter focuses on how researchers have used EAs described in Chapter 3 to determine the optimal

trading rules for share trading. This chapter concludes with a summary in Section 4.2.

4.1 Evolved Trading Rules

A trading rule is simply a set of rules that decide to buy, sell or hold stock. One of the first researchers
to use GAs to evolve trading rules was Richard Bauer [63]. Bauer published a number of papers on
GAs and computerised trading strategies between 1992 and 1994 [64, 66, 67]. Bauer was one of the first
researches to publish a book covering GAs and trading rules, titled “Genetic Algorithms and Investment
Strategies” in 1994 [63]. His book was followed by another book in 1999, titled “Technical Market
Indicators: Analysis & Performance” [65]. Bauer used the GA popularised by Holland [53, 111, 138]
(defined in Chapter 3) to select the best combination of trading functions from a set of trading functions
to form a trading rule. Bauer linked each bit position in the GA bit string to a technical analysis function.
The bit value determined if the function was included in the rule or not. Each function returned a buy,
sell or hold signal, encoded as 1, -1 or O respectively. The sum of all the enabled functions determined
the action. If the sum was greater than O a buy action was taken, if the sum was less than 0 a sell action
was taken, else nothing was done.

In 2001, Lam [154] implemented the same GA structure as Bauer [65]. However, each technical
function was a form of fuzzy logic. Fuzzy logic is a general system for performing approximate reason-
ing [154]. Lam defined fuzzy logic as the mapping from an input space to an output space by making
use of a set of if-then conditional statements or rules. An example of a fuzzy logic trading rule defined
by Lam is “if RSI is low then decision is short”. An alternative rule is “if RSI is high then decision is
long”. Low and high are arbitrary values determined by the creators of the technical analysis function.
In this case high is anything above 70 and low is anything below 30. Hold, short, and long are defined
as 0, -1 and 1 respectively, and correspond with hold, sell and buy. Lam defined 36 such fuzzy logic
rules [154]. Like Bauer, Lam linked each of the functions to a bit within the chromosome string of a
GA. The technical analysis function corresponding to the bit is enabled if the bit is 1, otherwise the
function is disabled. The GA was tested on historic Hong Kong market data. Each individual within
the population was tested against a share by running each enabled function against the share’s daily
price and volume data to determine a hold, sell, or buy action. The sum of the results determine the

action. If the sum is greater than 0, then a buy action is performed. However, if the sum is less than
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0, a sell action is performed. If the sum is O, then nothing is done. Lam implemented two different
training approaches, namely a static and a dynamic training approach. The static approach considered
the standard GA used by Holland [53, 97, 135, 136, 137]. Data is divided into two distinct sets of data;
training data and out of sample testing data. Lam implemented a dynamic data training approach that
evolves a GA on market data of m preceding days and then uses the best performing GA to trade n days.

Lam used four different values for m and n:

e m=90,n=0c0

e m=90,n=060

e m=060,n=30

e m=30,n=15

Lam showed that a GA could return profit on historic data, and that an incremental approach to
training indicated more reliability, because the incremental approach generated more profitable buy and

sell signals [154]. Lam used a return on investment (ROI) as quantifier for trader performance. ROI

measures the gain or loss generated by the trading rule relative to the money invested.

(X (Price; —sc) x I(t)] — [L1_ (Price, + bc) x I(1)]
(Y[ (Price; +bc) x I(t)]

where I,(¢) and I;(¢) are equal to one if a rule signals a buy and sell, respectively, and zero otherwise;

ROI =

sc represents the selling cost and bc the buying cost. ROI is the difference between final bank balance
and starting bank balance after trading.

In 2004, Schoreels et al. [190] showed that a simplistic GA could evolve an optimised trading rule
that produced similar returns to investment funds run by human professionals. Schoreels et al. used an
integer-based string of varying cardinality to represent a chromosome. Each gene in the chromosome
corresponds to a technical analysis function. The gene value represents a parameter value used by the
corresponding technical analysis function. Schoreels et al. [189] defined asset value as the sales price
of a share on any day less the purchase price including costs. The average asset value was used as a
mechanism to quantify the performance of a trading rule. The accumulated average asset value (AAV)

is defined as:

_ Zi'vzl [(Prices — sc) — (Pricep + bc)]
B N

AAV
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where i is a buy and sell trading event, N is the number of buy and sell events, s the day the sale took
place, and b is the day the purchase took place.

Schoreels et al. expanded their GA to include 28 trading rules [188, 189] and compared the tradi-
tional static training strategy to the dynamic trading strategy of Lam [154]. Schoreels et al. showed
that the dynamic approach outperformed the static approach. The dynamic approach of Lam [154], and
Schoreels et al. [188, 189], which evolves trading rules on data closest to the testing data, validates the
claim by Gartley presented in Section 2.2 that the price performance on a specific day could indicate
the probable changes that could occur the next day [147].

Nicholls et al. [171] implemented a GA, with a similar structure to that of Lam [154], to explore the
effect of the fitness function on trader performance. They compared the return on investment generated
by trading rules evolved using the ROI fitness function implemented by Lam [154] to the return on
investment generated by trading rules evolved using the AAV fitness function implemented by Schoreels
et al. [188, 189]. Nicholls et al. also explored the effect of Ockham’s razor on the trader performance.

Ockham’s razor is a principle from philosophy, that supposes that if there exist two explanations
for an occurrence, the simpler one is usually better. Nicholls ef al. [171] introduced a penalty factor to
penalise individuals with more enabled trading rules. It was shown that no difference between the results
of trading rules generated by either fitness functions were observed when the volatility of the share
was low. However, when volatility increased, the AAV produced better trading rules. No significant
difference between GAs penalised for complex rules or those that were not penalised could be found.

In 2009, Ghandar et al. [125] also implemented a GA to generate trading rules using fuzzy logic.
Like Lam [154], Ghandar et al. defined trading rules, where each rule is linked to a bit in a chromosome.
While Lam hard coded the 36 fuzzy logic rules [154], Ghandar et al. allowed the GA to determine the
fuzzy logic rule from a set of nine simple trading functions [125].

Ghandar et al. defined change in price, SMA, OBV, double SMA, and portfolio value as linguis-
tic variables, and used these variables to form nine simple trading functions, called linguistic trading
Sunctions [125]. A linguistic trading function returns a trading signal. The signal is either a 1 for buy, 0
for nothing, or -1 for sell. Each simple linguistic trading function requires three inputs: enabled, fuzzy
logic set and weight. Enabled is a boolean value, either O or 1. The fuzzy logic set is one of seven cat-
egories namely: extremely low (EL), very low (VL), low (L), medium (M), high (H), very high (VH),
and extremely high (EH). The fuzzy logic set is calculated by running the linguistic variable against
all the historic data to determine a range. The range is divided into seven equal parts and assigned to
the different categories. The categories are updated as new trading data is observed. A weight variable

determines the strength of the returned trading function signal. The weight variable can be any of the
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predefined set of nine possible values starting at 0.1 and incrementing by 0.1 (0.1, ... ,1.0). The returned
trading signal is multiplied by the weight.

An example of a simple trading rule is “if (enabled and SMA is [Fuzzy Logic]) then return 1 x
[weight] else return 0;”. A total of 30 possible fuzzy logic rules were defined. Ghandar et al. did not
use a binary string encoding as used by Holland, but rather a matrix of variables [53, 111, 138]. The
chromosome structure is illustrated in Figure 4.1. The matrix consists of 30 rows, one for each fuzzy
logic rule. Figure 4.1 illustrates rows 1 to 30. Each fuzzy logic rule comprises of a boolean variable
(B), an integer variable (I) and nine linguistic functions. The boolean variable determines if the fuzzy
rule is enabled or not. The integer contains a natural number between 1 and 9, corresponding to the
weight values 0.1 to 1.0. Each linguistic function consists of 3 variables; a boolean variable (B) to
enable or disable the function, a fuzzy logic set category (FL) and a weight (I) assigned to the function.
Each enabled linguistic function returns a value between -1 and 1. If the rule is disabled a value of 0
is returned. If the fuzzy rule is enabled, the sum of the linguistic functions multiplied by the weight is
returned as the value for the corresponding row, otherwise zero is returned.

The trading action is determined by the sum of all the trading rules. If the sum is greater than 0, a
buy action is taken. If the sum is less than 0, a sell action is taken, otherwise no action is taken.

It was shown that the fuzzy logic approach of Ghandar et al. outperformed fixed trading strategies
such as buy-and-hold, random-walk, and market indices such as MSCI Europe listed stocks for Eu-
ropean stocks spanning 1990 to 2005 [125]. The MSCI represents the largest European shares based
on market capitalisation. The buy-and-hold strategy buys shares on the first day of trade and sells the
shares on the last day of trade. A random-walk strategy randomly buys shares, sells shares, or does
nothing over the trading period. Ghandar et al. implemented the same static and dynamic training
approach as Lam, and showed that a dynamic training outperforms static training.

Nicholls et al. [171] used a GA to compare the weighted strategy of Ghandar et al. [125] to the
standard enabled or disabled strategy of Lam ef al. [154]. The purpose was to explore the effect of
weighted technical analysis rules on trader performance. It was shown that weighted strategies perform
better than non-weighted strategies on bearish shares, and concluded that the weighted approach of
Ghandar et al. is risk adverse.

Bauer [65], Lam [154], Ghandar et al. [125], and Schoreels et al. [188, 189] used GAs to evolve
trading rules. A GA uses a vector structure to represent a chromosome. A tree structure provides
three advantages over a vector, namely not restricted to a fixed length, a natural structure to represent
hierarchical decisions rules, and a tree can store both binary, logical and numeric functions within its

nodes. A tree structure is therefore a natural representation for a trading rule. One of the first researchers
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Linguistic Rule 1
/_/H

|1 |B| 1 [BFLI|BFLI|BFLI|BFLI|BFLI|BFLI|[BFLI|BFLI|BFLI|
— S~

Rule Linguistic Rule 2

|2 |B| 1 |BFLI|BFLI|BFLI|BFLI|BFLI|BFLI|BFLI|BFLI|BFLI|
| 3|B| I [BFLI|BFLI|BFLI|BFLI|BFLI|BFLI|[BFLI|BFLI|BFLI|

(30| B| I [BFLI|BFLI|BFLI|BFLI|BFLI|BFLI|[BFLI|BFLI|BFLI|

Figure 4.1: Chromosome structure implemented by Ghandar et al. [125] where B represents a boolean value
enabled or disabled, FL is one of seven fuzzy logic categories, and I is a natural number between 1 and 9
representing a weight. Each row represents a fuzzy logic rule. A rule consists of 9 linguistic rules. Linguistic

rules are defined by their position and are hard coded.

to evolve trading rules using tree structures was Allen and Karjalainen [43, 44].

Allen and Karjalainen [43, 44] encoded a trading rule as a decision tree. A grammar and tree
traversal were defined to extract and execute the trading rule. An in-order traversal was used to extract
the node values from the tree. The grammar defines non-terminal node values and terminal node values.

Non-terminal nodes have two possible function types: a real number function and a boolean func-
tion. A real number function returns a real number while a boolean function returns a boolean value.

The real value functions include “average”, “minimum”, “maximum”, “arithmetic operators”, “lag”
and “norm”. “Minimum” returns the minimum of two real value parameters. “Maximum” returns the
maximum value of two real-valued parameters. The “arithmetic operators” perform their functions
(4, —,-+, %) on two real-valued parameters. “Lag” returns the price of the share n days prior, where n
is a natural number. “Average” returns the SMA for the n days prior. “Norm” returns the absolute value
between the difference of two real-valued parameters.

The boolean functions include “if-then-else”,“and”,“or”,“not”, “<” and “>". “If-then-else” re-
quires three boolean parameters, “and” requires two boolean parameters, “or” requires two boolean
parameters, and the logical comparison operators (“<” and “>") require two real-valued parameters.
Parameters are defined as the children of the node.

Terminal nodes are either the boolean constants true or false, “price”, a real number constant,
or a natural number constant. Real number and natural number constants are drawn from a uniform

distribution of numbers between a minimum and maximum configured value during initialisation of the
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< >
average price price maximum
50 30

Figure 4.2: Allen and Karjalainen [43, 44] decision trees. The left tree corresponds to a 50-day moving average,
returning a buy action if the closing price is greater than the 50-day SMA otherwise a sell action is returned. The
tree on the right depicts a break out rule, similar to BBs. If the day’s trading price is greater than the maximum

price over the last 30 days then a buy action is returned, otherwise a sell actions is returned.

GP. “Price” is the price on that day’s trade.

The trading rule returns a boolean value of true or false, which is transcoded to buy, sell or hold
depending on whether the trader has shares or not. The rule is described in Table 4.1. For the rule to be
grammatically correct, the root node must return a boolean value.

Examples of the Allen and Karjalainen [43, 44] decision trees are shown in Figure 4.2.

Table 4.1: Trading actions based on the result of a trading rule and shares on hand as defined by Allen
and Karjalainen [43, 44].

has shares | no shares
true hold buy
false sell hold

Allen and Karjalainen [43, 44] used a fitness measure based on the compounded excess returns over

the buy-and-hold strategy. The excess return is given by:
Ar=r—rp,

where the continuously compounded return of the trading rule is computed as

r 7 1—c
r= Zr,-[b(t)—i-erIs(t)—i-nlog -
=1 =1 I4c

and the return for the buy-and-hold strategy is calculated as

T *ir—f—nlo I-c
bh-ti1 t g 1+c
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In the above,

ri=logh —logh

and P is the daily close price for a given day 7, ¢ denotes the one-way transaction cost; ry is the risk
free cost when the trader is not trading, [,(¢) and I,(¢) are equal to one if a rule signals buy and sell,
respectively, and zero otherwise; n denotes the number of trades and ryh represents the returns of a
buy-and-hold, while r represents the returns of the trader.

A fixed trading cost of ¢ = 0.25% of the transaction [43, 44] was defined. The continuously com-
pounded return function rewards an individual when the share value is dropping and the individual is
out of the market. The continuously compounded return function penalises the individual when the
market is rising and the individual is out of the market.

The same crossover process defined in the Section 3.3 was used by Allen and Karjalainen. Muta-
tions are introduced by randomly generating a new tree in place of the second parent used in crossover
[43, 44]. This technique is known as headless-chicken [145].

Using data from the S&P 500 index and the NYSE Allen and Karjalainen [43, 44] showed that
evolved trading rules do not earn excess returns over a simple buy-and-hold strategy after transaction
costs. The trading rules enter the market when returns are positive and daily volatility is low and stay
out of the market when the returns are negative and volatility is high. The trading rules are sensitive to
trading costs, but showed robustness to the impact of the 1987 stock market crash [43, 44]. Lowering
the trading costs, increases the returns of the GP [43, 44]. The GP of Allen and Karjalainen was
reimplemented by Neely er al. [170], Telbany [102], Mahfoud and Mani [160, 161], Li and Tsang
[204, 205], and Potvina et al. [177] with varying degrees of success.

Neely et al. [170] implemented a similar GP as Allen and Karjalainen, and showed that consistent,
significant returns could be earned in currency markets against the USD over the period 1981-1995.

Telbany [102] experimented with a GP similar to Neely ef al. and Allen and Karjalainen, to trade
on the Egyptian Stock Market. The results of the GP were compared with the results of an ANN. The
results re-enforced the findings of Mahfoud and Mani [160, 161], and showed that a GP outperforms
an ANN when predicting stock market time series data. Iba and Sasaki [141] also compared a GP to an
ANN using a simulated stock market and came to the same conclusions. Telbany [102], Iba and Sasaki
[141], and Mahfoud and Mani [160, 161] showed mixed results in returns generated by the GP. They
showed that the GP performed marginally better than a buy-and-hold strategy [102, 141, 160, 161].
They also showed that some shares are easier to trade than others. Their results are consistent with
Neely et al. [170], and Allen and Karjalainen [43, 44].

Butler [205] implemented a GP to classify horses as winners or losers. Butler named his GP the
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evolutionary dynamic data investment evaluator (EDDIE). EDDIE was shown to be significantly better
at predicting the winners and losers of a race than two other horse classifying systems, SEAGUL de-
veloped by de la Maza [92] and HOBBES developed McNatton [166]. Butler showed that SEAGUL,
HOBBES and EDDIE are significantly better at predicting the outcome of a race than human experts
[205]. Li and Tsang [204, 205] later enhanced EDDIE and applied it to financial forecasting. Li
and Tsang changed the decision tree of EDDIE to use the grammar defined by Allen and Karjalainen
[204, 205]. Tsang showed mixed results using EDDIE to forecast the market [204, 205]: EDDIE is
successful at making high volume low margin trades. The downside is that high volume incur high
transaction costs. If forced to make high margin trades, EDDIE fails to capitalise on changes in the
market. The findings of Tsang were that transaction costs determine the success of a GP.

Potvina et al. [177] evolved trading rules using the GP structure defined by Allen and Karjalainen,
only to show that the algorithm over-fitted the training data. Potvina ef al. showed positive returns on
sample data, but not on the out-of-sample data.

Chen and Yeh [82, 188] also developed a GP for stock market forecasting, using an approach fun-
damentally different from the approaches described above. Until now, a GA or GP was used to find a
trading rule that outperformed the market. The fitness of an individual was determined by the return on
investment obtained at the end of trading. Chen and Yeh defined a GP to predict the next day’s share
price. The fitness of an individual is based on how well the individual predicts the future price, using

the mean absolute percentage error (MAPE). The MAPE is calculated as follows:

100 ¢
MAPE = —)_
no3

A —F
A

where A; is the actual share price for day ¢ and F; is the forecast share price for day ¢. The closer MAPE
is to zero, the better the individual performed.

An in-order traversal was used to extract the future price calculation. Terminal nodes are defined
as a natural number between 1 and a maximum, or real numbers between -1 and 1. A natural number
terminal node represents a day’s closing price. Therefore, a value of 10 represents the closing price 10
days ago. A real number is a node used as a parameter to a non-terminal node. The non-terminal nodes
use the mathematical operators 4, —, +, X, log, sin, and cos. The algorithm was evaluated on the S&P
index and TAIEX indexes. If the evolved solution predicted an increase in the future price, the shares
were bought. If the evolved solution predicted a decrease in the price the shares were sold. The main
findings were that the GP successfully evolved a function to map the sample data, but over-fitted and
therefore failed to produce positive returns on out-of-sample data [82].

Kaboudan [146], also developed a GP to predict the future share price using a GP and a grammar
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similar to that of Chen and Yeh. Non-terminal nodes comprised of mathematical operators (4, —, =, X),
sin, cos, exponent, square root, and the natural logarithm. Terminal nodes could be a random real
number constant, or a price n days in the past. The GP was evaluated on different share data (i.e.
Citigroup, Compaq, General Electric, Pepsi, Sears and Microsoft) and randomly generated share data.
The GP was used to predict the share’s high price, and to predict the share’s low price. The regression

sum of squared errors (ESS) was used to quantify fitness, calculated as follows:

100 &
ESS=—Y (A —F)’

=

Results showed that the GP could forecast the next day’s minimum and maximum share prices.
However, when presented with the randomly generated share data, the GP was unable to predict the
next day’s low and high share price. When presented with different shares it was evident that the GP
could forecast the next day’s minimum and maximum share prices with varying degrees of accuracy
[146].

Most EAs used the daily close, open, high, and low price to evolve the trading rules. Wilson and
Banzhaf [210] focused on forecasting the individual trades that occur throughout the day using the same
GP as Kaboudan [210]. Each daily transaction is known as a tick. Intra-day trading focuses on ticks
rather than the daily close, open, high or low price. Intra-day trading generates a large amount of data.
Filters were developed to reduce the dataset: a low frequency filter, which removes trades that do not
change the share price, and a high frequency filter, which calculates the moving average of the trade
and blocks trades that do not change the moving average.

It was shown that adding filters to high frequency trading results in more conservative investing.
The filtered system results in greater return on investment in some price trends, but overall does not
perform as well as filter-less systems. The filter-less system takes advantage of anomalies in the data
that the filtered system misses, resulting in greater return on investment. The low frequency filter had
no effect on trading performance. Wilson and Banzhaf concluded that agents should use all data and
not filter out data that may be deemed outlier data [210], because a GP may use the outlier data to detect
trend changes [210].

By 1999, fewer than fifty papers had been published on the topic of EAs in financial markets [146].
Researchers showed that EAs could capitalise on market bias and outperform a buy-and-hold strategy.
However, transaction costs determined the profitability of the trading rules.

Myszkowski et al. [169] compared three different GP approaches: A standard GP with one tree
structure that determines both the buy and sell action, an extended GP where the GP evolves two trees

(one for a buy action and the other for a sell action), and a co-operative co-evolved GP where one
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population evolves a buy action and the other the sell action. An in-order traversal was used to extract
the trading rule [169]. Terminal nodes contain a technical analysis function, closing price, volume, or
a real number. The technical analysis functions include SMA, MACD, ROC, and RSI. Non-terminal

nodes contained the functions >, <, AND, and OR. The fitness function is calculated as follows:

CASHg,p
CASHtart

where CASHy;,,; is the opening bank balance and CASH;,), is the bank balance at the end of trading.

fitness =

Tournament selection was used to select the individuals for the next generation. The co-evolved GP
used an average of the fitness function to find the best individuals from each population. An individual
is selected from the buy population and tested against all the individuals in the sell population. The
average fitness across all the tests is assigned to the individual from the buy population. The process is
repeated using the sell population.

It was shown that a GP can generate a trading rule that outperforms the standard buy-and-hold
strategy. However, not enough data was available to show which GP technique was better than the
another [169]. The co-evolved traders produced greater gains on upward markets while the standard
GP produced greater gains on downward markets.

Myszkowski and Rachwalski [169] noted that data used to evolve the GP is important as those indi-
viduals evolved on downward trending data produced higher returns in all market conditions compared
to individuals evolved on upward trending data [169].

Seshadri [193] compared the general algorithm on Allen and Karjalainen [43, 44] to two variations
of the same algorithm. The first variation extended an individual’s chromosome to two distinct branches
joined by a combination node. The combination node decided which of the two branches to execute.
The left branch determined when to buy shares and the right branch determined when to sell shares. The
second variation was a co-operative co-evolved GP. Seshadri [193] evolved two different populations.
The first population evolved a buy rule, and the second population a sell rule. Seshadri [193] showed
that a co-operative co-evolved GP performed better than a single population GP and could outperform
a buy-and-hold strategy when trading the S&P500.

Drezewski et al. [98] successfully implemented co-evolved GPs to generate buy and sell rules.
Drezewski et al. compared a simple GP to a co-operative co-evolved GP and found the co-evolved GP

approach to be more profitable.
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4.2 Summary

This chapter provides a review of previous research on EAs used to generate trading rules. The next
chapter builds on the work discussed in this chapter, and presents a GP and a competitively co-evolved

GP that are used in this study to evolve trading rules.



Chapter 5
Genetic Program For Trading Rules

Evolution continually innovates, but at each level it conserves the elements that are recom-
bined to yield the innovations.
- John Henry Holland (Scientist, Professor of Psychology, Electrical Engineering and Computer

Science.)
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The purpose of this chapter is to describe the GP implementation used in this study. This chapter
begins with Section 5.1 describing the GP implementation used in the empirical study with regards
to grammar, recombination, mutation, selection, and the fitness function. Section 5.2 introduces the
datasets used in this thesis. Section 5.3 empirically determines the most suited selection operator,
by presenting various selection operators, describing the empirical process and discussing the results.
Section 5.4 discusses the effect that three different fitness functions had on evolving trading rules. The
results of parameter sensitivity analysis are presented in Section 5.5. This chapter concludes with a

summary in Section 5.6.

5.1 Genetic Program for Stock Market Trading

A GP is a specialised GA where the individual’s chromosome is encoded as a decision tree. A tree
structure is able to encode logical formulae, arithmetic formulae, or computer programs. Each tree
represents a symbolic expression defined by a tree grammar.

A trading rule results in a buy, sell or hold action. A trading rule is represented as either a logical
formulae, arithmetic formulae, or a computer program. Therefore, a tree is a perfect encoding structure
for a trading rule.

A tree requires a grammar to correctly encode and read a logical formulae, arithmetic formulae, or
“a computer program”. The grammar used in this thesis is based on the tree structure implemented by
Allen and Karjalainen [43], Neely et al. [170], Telbany [102], and Li and Tsang [204, 205].

The basic tree structure defined by Allen and Karjalainen was introduced in Chapter 4. This thesis
extends the grammar of Allen and Karjalainen with the introduction of additional functional operators
and terminal constants. The additions make it possible for the GP to evolve trading rules similar to
technical analysis functions: CCI, MFI, OBV, and ADI.

CCI, MFI, OBV, and ADI require daily volume, high, and low price values. To make it possible for
evolution to evolve these technical analysis functions, the terminal set was expanded to include: “high”
and “low”, respectively returning the highest, and the lowest prices of the day. The functional set oper-
ators “minimum” and “maximum” were replaced by “minimum price”, “maximum price”, “minimum
volume”, and “maximum volume” over a period of n days, where n is a parameter to the operator. The
complete list of function set operators is presented in Table 5.1.

Each function within the function set had a set arity or number of parameters. A function with an
arity n had n branches associated to it. Each parameter within the function had a required type. Each

associated branch returned a value of the required parameter type.



Chapter 5. Genetic Program For Trading Rules 73

Three parameter types were defined to ensure that a function was passed the correct parameter type.
These types were: natural number, numeric, and boolean. A numeric could either be a natural number or
a real number. The boolean constants were either true or false, while the real number constants were
drawn from a uniform distribution between configured minimum and maximum values, and natural
numbers were drawn from a uniform distribution between configured minimum and maximum natural
numbers. Allen and Karjalainen [43] did not specify the configured minimum and maximum natural
numbers, except that they are parameters to the lag, and average functions. For this study, natural
numbers were drawn from a uniform distribution between 1 and 500. The reason for choosing 1 and
500 was that the dataset samples used did not exceed 500 days.

Allen and Karjalainen [43] specified the limits of the real numbers to be between 0.0 and 2.0,
without offering any explanation why. A positive real number limit between 0.0 and 2.0 in conjunction
with positive natural number limits does not allow the evolution of negative numbers. Some technical
analysis functions such as the oscillating indexes defined in Chapter 2 return values within limits such
as -100.0 and 100.0 or -1.0 and 1.0. Changing the real number limits from 0.0 and 2.0 to -1.0 and 1.0
allowed the GP to evolve a sub-tree that returned negative numbers such as -100.0 (—1.0 x 100).

The mathematical operator “=-” can invalidate a trading rule, as division by zero is undefined. The
second parameter of the “+” operator was therefore restricted to a non-zero numeric constant.

To simplify the tree structure, the tree generation algorithm automatically simplified nodes. For
example, if initialisation or mutation grew a sub-tree, (—1.0 x 100), the node x was automatically
simplified to a numeric constant -100. This ensured that the tree sizes remained small and decreased
the computation time when evaluating the decision trees. Only sub-trees that did not include a variable
such as opening price were simplified.

Each tree structure was subject to the evolutionary process defined by Holland [135, 137, 136] and
Koza [150]. The evolutionary process has four operations, namely competition, reproduction, mutation,
and selection [111].

Many variations of the evolutionary process exist, some of which have been described previously.
This thesis implements the same basic GP algorithm implemented by Allen and Karjalainen [43]. The
pseudo code listing presented in Algorithm 3 outlines Allen and Karjalainen’s evolutionary process.
The process is described later in more detail.

A GP is a specialised GA requiring evolutionary operators adapted to the tree encoded chromosome
structure. A GP has a set of meta-parameters that must be configured. The evolutionary operators
were selected through empirical analysis presented in Section 5.2.1, and the meta-parameters selected

through parameter sensitivity analysis described in Section 5.5.
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Table 5.1: GP Grammar - A list of possible nodes, their function, parameters and return types.

Name Placement Description Parameters Return
type
Boolean constant Terminal Node Returns either true or false Boolean
Real Number Terminal Node Returns a real number between -1.0 and 1.0 inclusive Numeric
constant
Natural Number Terminal Node Returns a natural number between 1 and 500 inclusive Numeric
constant
High Terminal Node Returns the highest price of the day Numeric
Low Terminal Node Returns the lowest price of the day Numeric
Price Terminal Node Returns the closing price of the day Numeric
Average Non-terminal Node Returns the SMA for the n days prior Natural number: n Numeric
Maximum Price Non-terminal Node Returns the maximum price for the n days prior Natural number: n Numeric
Minimum Price Non-terminal Node Returns the minimum price for the n days prior Natural number: n Numeric
Maximum Volume Non-terminal Node Returns the maximum volume for the n days prior Natural number: n Numeric
Minimum Volume Non-terminal Node Returns the minimum volume for the n days prior Natural number: n Numeric
Lag Non-terminal Node Returns the closing price n days prior Natural number: n Numeric
Norm Non-terminal Node Returns the absolute value of x Numeric: x Numeric
+ Non-terminal Node Returns the result of adding a and b Numeric: a, Numeric : b Numeric
- Non-terminal Node Returns the result of subtracting b from a Numeric: a, Numeric: b Numeric
= Non-terminal Node Returns the result of dividing b into a Numeric: a, non-zero nu- | Numeric
meric constant b
X Non-terminal Node Returns the result of multiplying @ and b Numeric: a, Numeric: b Numeric
Boolean if-then-else | Non-terminal Node if a is true return b else return ¢ Boolean: a, Boolean: b, | Boolean
Boolean: ¢
Numeric if-then-else | Non-terminal Node if a is true return b else return ¢ Boolean: a, Numeric: b, Nu- | Numeric
meric: ¢
And Non-terminal Node Returns the result of a logical AND between a and b Boolean: a, Boolean: b Boolean
Or Non-terminal Node Returns the result of a logical OR between a and b Boolean: a, Boolean: b Boolean
Not Non-terminal Node Returns the result of a logical negation of a Boolean: a Boolean
< Non-terminal Node Returns the result of a logical less than comparison between =~ Numeric: @, Numeric: b Boolean
a and b
> Non-terminal Node Returns the result of a logical greater than comparison be- Numeric: @, Numeric: b Boolean
tween a and b
Root Root Node Any function or constant that returns a boolean value Boolean
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Algorithm 3: Implemented GP algorithm as presented by Allen and Karjalainen [43].

g=0; > Generation counter
Set the maximum number of generations G;
Set the total number of individuals u;
Initialise the initial population C,;
Draw three continuous samples from the dataset > The dataset is the share data
Initialise the in sample dataset Sample;, > Defined in Section 5.2
Initialise the validation sample dataset Sample,,
Evaluate fitness ng,m Sample;, Of each individual C, , in population C, using Sample;,;
Set B = C, , where C, , has the largest Sample;, fitness;
Evaluate fitness fp sampie,,, Of B using Sampleg,;;
while ¢ <G do
g=g+1L;
Set number of offspring A = 0;
while A < u do
Set random number r ~ U (0, 1);
if r <P, then
> Sampling is performed using rank selection
Sample parent Py from C,_ with bias to worst fitness; \
Mutate P; to form Oy;
Evaluate the f of Oy using Sample;y, ;
Add 01 to Cy; >  Mutation
Sample Dy from C, with bias to worst fc, sampie;, ;
Remove D; from Cg;
A=A+1; )

else

> Sampling is performed using rank selection
Sample parents P and P, from Cg—; with bias to best fc, sample;,;
Offspring O; = Re-combination of P; and P;
Offspring O, = Re-combination of P, and P;
Evaluate the f of O; and O, using Sample;,;
Add O; and O; to Cy,;

Sample Dy and D; from Cg with bias to worst fc, sampie;,

> Crossover

Remove D; and D, from Cg;
A=A4+2; J
end if

end while

Set By = C,n Where Cg , has the largest fc, sampie;,
if fBgvsaml’l"in > fB‘Sample,-n then

Evaluate the f of Bg using Sampleg,;;

if fBg.Samplem > ﬁ?.Samplem then

B= Bg;

end if

end if
end while

return B as the solution;
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The initial population of the GP was created stochastically. The population consisted of y individ-
uals. An individual represented a trading rule encoded as a parse tree. The trading rule was initialised
stochastically to a maximum configured initialisation tree depth of three.

Three continuous samples were drawn from a dataset. The first sample represents the evolution
sample referred to as Sample;,. The fitness values of the individuals within the population were quan-
tified by a fitness function over Sample;,. The quantified fitness value was used by a selection operator
to determine which individuals were selected for crossover, mutation, and removal for the current gen-
eration. An empirical analysis of three different fitness functions showed that the Allen and Karjalainen
fitness function (AK) was the preferred fitness function for this study.

The second sample represents a selection validation sample and is referred to as Samplese;. As dis-
cussed in Chapter 3, GAs are prone to over-fitting the data. To minimise over-fitting, the best individual
within a generation (Bg) was compared to the global best individual (B). If the Sample;, fitness of B,
was greater than the Sample;), fitness of B and the Sampley,, fitness of B, was greater than the Sampley,,
of B, then B, became the new global best B.

The third sample represents an out-of-sample dataset and is referred to as Sample,,;. Sample,,;
was not used during the evolutionary process, but Sample,,; was used to test the generalisation of the
evolved solution on unseen data.

A steady state population model was implemented allowing for stronger individuals to survive many
generations. During a generation, a probability factor determined if mutation was performed. Parameter
sensitivity analysis determined that a static mutation probability factor of 35% was preferred for this
thesis. Allen and Karjalainen [43] used a static mutation probability and a low number of generations.
Further work is required to determine if a dynamic mutation probability that decreases over time results
in better trading rules than a static mutation probability.

Mutation used a rank selection biased towards the worst individuals within the population. An
empirical analysis of various selection operators showed that rank selection was the preferred selection
operator.

Allen and Karjalainen [43] used headless-chicken mutation [43, 145] to mutate an individual. Head-
less chicken, while very simple in concept, is computationally more expensive than updating a single
node. For example, suppose a terminal node is mutated, headless-chicken requires that an entire indi-
vidual is initialised and then crossed over with the selected parent. In this case only one node is altered.
It is computationally more efficient to alter the terminal node than growing an entire new tree to swap
one node. For this reason two types of mutation were implemented, namely grow mutation and prune

mutation.
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Each mutation type was executed with equal probability. Prune mutation replaced a randomly
selected node with a syntactically correct terminal node. Grow mutation replaced a randomly selected
node with a new stochastically generated syntactically correct sub-tree.

Once mutation was completed, the new offspring was evaluated using a fitness function across the
Sample;, dataset. The new mutated individual was added to the population. An individual was then
removed from the population using rank selection biased towards the worst individual. The offspring
count A was incremented by 1.

If mutation did not occur, two individuals were selected as parents and underwent crossover to form
two new offspring. Rank selection biased towards the best individuals within the population selected
two parents from the population to undergo crossover. Crossover randomly selected a node within the
first parent, and randomly selected a node from the second parent where the selected node was gram-
matically valid. If no grammatically correct node was found, a node within the second parent was
randomly selected and matched to a grammatically correct node in the first parent. If no grammati-
cally valid nodes were found, the parents were discarded and two new parents were sampled from the
population.

If a node from the first parent was a grammatically valid replacement for a node within the second
parent, the nodes were swapped to form two new offspring. The new offspring were quantified using a
fitness function over the Sample;, dataset. The new offspring were added to the population. Rank se-
lection sampled two individuals from the population with a bias towards the worst individuals. The two
selected individuals were then removed from the population. The offspring count A was incremented
by 2.

The processes of crossover and mutation were repeated until the total number of generated offspring
A was equal to or greater than the configured population size p. Because individuals were removed
during crossover and mutation, the size of the population remained constant.

Once crossover and mutation have completed, the global best individual (B) was compared to the
current generation’s best (B,) to determine a new global best individual. The fitness values obtained by
the trading rules over both the Sample;, and Sample,.; datasets were compared. The current genera-
tion’s best individual would only become the global best if its fitness was greater than the global best
over both the samples. The generation counter was incremented and the process was repeated until the
maximum number of generations had elapsed.

At the end of evolution the global best individual was returned as the evolved trading rule.
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5.2 Datasets

The datasets used in this thesis were sourced from Sharenet. Sharenet is a market statistics company
based in Cape Town, South Africa. The data contained eleven shares from a variety of market sectors;
including mining, resources, consumer goods and services, industrials, banking, and insurance. The
stocks are listed in Table 5.2 and cover the period April 2003 to June 2008. The start date is referred to
as day 0. Trading days exclude weekends and public holidays. Simulations reference the share code,
which is the code used by the JSE.

The stock market dataset spans 1350 days. In addition to company shares, the data includes the
All Share Index 40 (ALSI40) market index. The ALSI40 index constitutes the 40 largest companies by
market capitalisation across all sectors listed on the JSE. In addition to the datasets listed in Table 5.2,
fictitious datasets known as inverted shares were created by reversing the share price of Nedbank,
Remgro and Standard Bank. To reverse the dataset, a new list of inverted prices were generated where
the inverted price on day 0 corresponded to the original price data on day 1350. The inverted price on
day 1 corresponded to the original price on day 1249. The inverted price on day 2 equalled the original
price on day 1248, and so on.

Each share dataset was divided into three continuous samples. The first sample, Sample;,, was used
to drive the rule generation process. Sample;, spans 2 years of trading days from day O to day 500. The
selection validation sample Sample,,;, was used compare the performance of the best individual within
a generation to the global best individual to determine the new global best. Sample,, spans a year
of trading days from day 500 to 750. The out-of-sample, Sample,,,, dataset is used to determine the
performance of the trading rule against unseen data. Sample,,; spans 2 years of trading days from day
750 to 1250. Figure 5.1 plots the daily closing price of each share presented in Table 5.2 as well as the
market trend across the three samples.

Appendix A provides a market overview covering each of the shares presented in Table 5.2.

Table 5.2: The share data used in simulations.

Code Short Name Long Name JSE Sector (Sector Code) Start End
AGL  Anglo Anglo American Plc Metals & Minerals (1775) 2003-04-03 | 2008-06-18
ALSI  All Share Index JSE All Share Index (Top 40) Exchange Traded Fund 2003-04-04 | 2008-06-19
BIL  Billiton Bhp Billiton Plc Metals & Minerals (1775) 2003-04-05 | 2008-06-20
GFI  Gfields Gold Fields Limited Gold Mining (1777) 2003-04-06 | 2008-06-21
IMP  Implats Impala Platinum Holdings Limited Platinum (1779) 2003-04-07 | 2008-06-22
LON Lonmin Lonmin Plc Platinum (1779) 2003-04-08 | 2008-06-23
NED  Nedcor Nedbank Group Ltd Banks (8355) 2003-04-09 | 2008-06-24
RCH Richemont Richemont Securities AG Clothing & Footware (3763) 2003-04-10 | 2008-06-25
REM Remgro Remgro Limited Diversified Industrials (2727) 2003-04-11 | 2008-06-26
SAB  Sabmiller Sabmiller Plc Beverages - Brewers (3533) 2003-04-12 | 2008-06-27
SBK  Stanbank Standard Bank Group Limited Banks (8355) 2003-04-13 | 2008-06-28
SOL  Sasol Sasol Limited Oil - Integrated (0537) 2003-04-14 | 2008-06-29
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Figure 5.1: Share data used for the trading rule evaluation. Each graph shows the opening share price in cents,

the average trend line per data sample, and the sample composition.
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Figure 5.1: Share data used for the trading rule evaluation. Each graph shows the opening share price in cents,

the average trend line per data sample, and the sample composition (cont.).
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5.2.1 Empirical Process

A GP is stochastic, meaning that each sequential run of a GP yields a random result from a probable
distribution of results. To compare the performance of one GP configuration to another, an empirical
process is required. An empirical process is a stochastic process based on the central limit theorem
[70]. The central limit theorem states that, as the sample size increases without limit, the shape of the
distribution of the sample means approaches a normal distribution. This is generally true regardless of
whether the source results are normally distributed or skewed, provided that the sample is sufficiently
large [40].

The evolutionary process drives a GP towards an optimal solution. Therefore, GP results are not
normally distributed within the solution space, but rather skewed towards a set of solutions within the
solution space. To ensure that the central limit theorem holds, a sufficiently large sample, usually greater
or equal to 30, is required [70]. A large data sample ensures that there is enough data to distinguish
the normal distribution from the outliers, providing a reasonable degree of confidence that the data are
consistent with the distribution.

A sample was the result of a simulation run. A simulation was a fixed configuration of a GP. A
simulation was repeated 30 times, from different initial conditions, recording the results as individual
samples. The simulation was repeated for all share datasets independently.

Each configuration of a simulation was intended to test the effect the configuration had on the
outcome of the simulation. However, each run of the simulation requires an initial set of randomly
generated individuals. Naturally, if two GPs are initialised with two different populations of individuals,
the outcome could be different. Furthermore, each decision such as whether to implement mutation or
crossover depends on a random probability that affects the outcome of the simulation. To minimise the
effect randomness had in comparing various simulations a fixed set of random seeds were used.

The random seed ensures that the GP returns the same result no matter how may times it is run. The
random seed ensures that the GP is initialised with the same initial population. This means that if two
GPs are run with the same random seed but a different configuration, then the result of the run is due
to the configuration change and not the initial population. Thirty random seeds were generated, one for
each simulation run and used across all simulations.

To compare the results of two or more different simulations the null-hypothesis was assumed [70].
The null-hypothesis assumes that the results of various simulations are the same, and that no further
investigation is required unless the results are significantly different. A statistical test was performed
on the results to determine if two of more simulation results rejected the null-hypothesis.

The most common statistical tests used to test the validity of the null-hypothesis are t-tests and
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Wilcoxon signed rank tests [70, 96, 122]. These tests are not adequate when comparing more than
two different result sets due to the multiplicity effect [128, 186]. Experiments in EAs have shown that
the results do not fulfil the requirements for parametric testing such as t-tests [128, 195]. Therefore, a
common non-parametric statistical test known as a Krushkal-Wallis test is used to test the validity of
the null-hypothesis across more than two result sets.

The Krushkal-Wallis test is a non-parametric method based on a one-way analysis of variance
(ANOVA) between the sample ranks. The Krushkal-Wallis test indicates if at least one sample is
stochastically different from the other samples. The Krushkal-Wallis test does not show which samples
are different [128]. If the Krushkal-Wallis test rejects the null-hypothesis, a post-hoc test is required to
determine which result set fails the null-hypothesis [96, 128].

Post-hoc analysis performs a pairwise comparison of sample results to determine which sample
results are different from one another. Traditionally, Wilcoxon signed rank tests are used for post-hoc
analysis [70, 96, 122, 128].

The statistical tests return a value known as a p-value. The p-value is a number between 0 and 1
denoting the probability that the null-hypothesis is valid. A p-value of less than 0.05 indicates a strong
possibility that the null-hypothesis is incorrect and that the samples are not the same.

Demsar [96] noted that ANOVA is based on assumptions which are most probably violated when
testing the results of EAs. ANOVA assumes the samples are drawn from normal distributions. DemSar
pointed out that there is no guarantee for normality of accuracy across a set of algorithms or various
configurations of algorithms. The second more important assumption of ANOVA is that the random
variables such as parameters and the initialised population have equal variance, which, as DemS3ar noted,
can not be taken for granted [96].

DemsSar [96] proposed that the Friedman test be used for pairwise comparison, and that the Iman
and Davenport extension [142] to the Friedman statistical test be used for multiple results comparison
in place of a one-way ANOVA.

If the null-hypothesis is rejected, DemSar proposed the Nemenyi test as a post-hoc pairwise test [96].
The Nemenyi test produces a critical difference value which is easily displayed graphically as a critical
difference plot. An example of a critical difference plot is presented in Figure 5.2. The top line in the
figure represents the average ranks. The lowest or best ranks are on the right. The critical difference is
displayed above the graph. Algorithms similar to the control are within the critical difference marking.
Similar algorithms are plotted to the left and the right of the control. Groups that are not significantly
different are connected by a line. If there is no control sample, the sample with the highest mean is used

as a control.
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Competitive ——— CoOperative

Standard

Figure 5.2: Critical difference plot illustration.

Figure 5.2 shows no significant difference was found between Competitive and Standard and that
CoOperative is significantly different from both Competitive and Standard.

Garcia et al. [122, 123, 124] discussed the advances in non-parametric testing and present correc-
tions and extensions that improve the results obtained by the Friedman test when comparing multiple
results. Garcia et al. proposed that the Iman and Davenport extension is used instead of the standard
Friedman test [122, 123, 124] for multiple comparisons.

The probability of rejecting the null-hypothesis increases as more samples are compared. The p-
value is adjusted to compensate for this probability. A number of correction procedures exist including
Holm [140], Holland [134], Hochberg [133], Rom [183], and Bonferroni-Dunn [99] to name a few
[122, 123, 124]. Garcia et al. recommended that Finner’s [108] correction is performed on the result of
Iman and Davenport test [142].

The empirical study conducted in this thesis used the Iman and Davenport test [142] with Finner’s
correction [108] to determine if the null-hypothesis was rejected. The null-hypothesis assumed that
all the sample results are the same. A confidence level of 95% was used to reject the null-hypothesis.
If the null-hypothesis was rejected post-hoc analysis was performed to find which samples failed the
null-hypothesis.

Two kinds of post-hoc analysis were performed. The first was a Friedman test as suggested by
Demsar [96] and Garcia et al. [122, 123, 124], and the second was the Nemenyi test to generate critical
difference plots. The Friedman test returns a p-value indicating the probability of the null-hypothesis
being valid, while the critical difference plot provides a visual representation of result groups.

The empirical analysis was performed using the statistical comparison of multiple algorithms in
multiple problems [78] library for R (a statistical programming language).

Experiments ran different simulations that were configured to use different fitness functions. To

ensure that experiments were compared fairly, the profit returned at the end of trading was used to
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quantify the performance of a simulation. Profit was calculated as:

T
Z Price; +bc) X Ip(1)

T
Profit = Z Price; — sc) X L(t ]

where I,(¢) and I(r) are equal to one if a trading rule signals a buy and sell, respectively, and zero
otherwise; sc represents the selling cost and bc the buying cost.

Chatper 4 discussed the effects that transactional costs have on trading. The greater the costs, the
less profitable the trader’s are. Because costs are generally proportional to the volume traded, trading
costs were ignored for optimisation.

The final set of simulations were performed with cost and the trade of 1000 shares. The mean profit
was calculated as the mean of the profit returned by the best individual from each run of the simulation.

The mean standard deviation of profit (¢) was calculated as:

6= \/ﬁ ¥ (i —x)?

where x1,x2,...,xy are the observed values of the sample items (i.e. profit with or without cost), X is

the mean value of these observations, and N is the number of observations in the sample. The lower the

o the similar the trading rules.

5.3 Selection Strategy Sensitivity Analysis

Various selection strategies have been presented. Allen and Karjalainen [43] used rank selection to sam-
ple individuals for mutation, parental selection, and survivor selection. The empirical results discussed
in Subsection 5.3.2 confirmed that rank selection was the preferred selection strategy.

Various selection strategies were compared using the empirical process defined in Section 5.2.1 to
determine the most adequate selection strategy. The selection strategies compared were tournament
selection, roulette wheel selection, elitist selection, and SUS [103].

Tournament selection requires a sample size. The smaller the sample the size, the more random the
sampling, while the greater the sample size, the more biased the sampling is towards the best performing
individuals within the population. A set of simulations were run comparing the results returned by
the trading rules evolved using various tournament selection sample sizes, to determine the preferred
sample size of 20%. The results are discussed in Subsection 5.3.1.

The results of trading rules evolved using tournament selection with a sample size of 20% was then
compared to the other the results of trading rules evolved using other selection strategies to confirm

that rank selection was the preferred selection operator. To compare the various selection strategies a
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base GP configuration was required. The GP parameters of Allen and Karjalainen [43] were used as
presented in Table 5.3. No transaction fees were used, and the number of shares bought and sold were

limited to one.

Table 5.3: GP parameter configuration for selection strategy evaluation, based on the parameters used
by Allen and Karjalainen [43].

Parameter Value
Number of individuals 500
Number of generations 50
Maximum tree depth 10
Maximum number of tree nodes | 100
Mutation probability 30%
Fitness Function Allen and Karjalainen

5.3.1 Tournament Selection

Tournament selection requires a sample size as a parameter. The sample size can be a fixed value
or a percentage of the population size. To determine the preferred sample size, a percentage of the
population was used. Ten different GP simulations were run each with a different sample size. All the
simulations were configured using the same configuration presented in Table 5.3.

An initial sample size of 10% was used, incrementing it by 10 to 100% for a total of ten simulations.
The simulations are named Tour10, Tour20, Tour30, ..., Tour100, where the number refers to the
percentage of the population used for tournament sampling.

Each simulation recorded the best individual’s Sample,,, profit. The mean of the 30 runs for each
simulation across each share dataset is presented in Table 5.4. The bold values represent the highest
mean profit, while the italic values represent the lowest mean profit. Profit after trading is presented in
cents.

At first glance, it appears that a tournament sample size of 50% or 90% is preferred as they resulted
in the best Sample,,; mean profit.

Table 5.5 compares the Sample,,; mean profit deviation. The deviation (o) represents the level
of convergence between the individuals. The lower ¢, the more the individuals have converged on a
solution that returns a similar profit. The o for Tour50 and Tour90 was too large, therefore not robust.
Because Tour20 had the next best mean profit and a low o, a tournament selection sample size of 20%
was preferred.

To determine if Tour20 results were significantly different from the other tournament selection

results, the null-hypothesis was assumed, declaring that all the results were not significantly different.
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To test if the null-hypothesis was valid, the Iman and Davenport extension of the Friedman test with
Finner’s [108] correction was run [142] across the sample results. The p-values of the statistical test are
presented in Table 5.6

The statistical results show that, after correction, none of the Sample,,, results were found to be sig-
nificantly different. A significant difference was found in the Sample,; results when trading Richmond
Securities AG (RCH) and SABMiller Plc (SAB).

Based on the Sample,,, results, it is not feasible to continue with a post-hoc analysis. However,
because the p-values calculated from the Nedcor Ltd (NED) simulations show a significant difference
before correction on the Sample,,, dataset, and the p-values of the RCH and SAB simulations show a
significant difference before correction on the Sampleg,; dataset, post-hoc analysis was performed.

The Friedman [96] pairwise test was preformed on the significantly different results and is presented
in Figure 5.3. The p-values for the RCH results indicate a significant difference between a Tour100 and
the rest of the sample sizes. A significant difference was found between Tour80 SAB Sample,,; results
and Tour40 SAB Sample,,; results. In most cases, the null-hypothesis was valid, and any tournament
sample size would have been sufficient. However, a sample size still needed to be selected.

A win-loss ranking (win-loss) was performed to determine the overall performance of the individu-
als within a population. The profit from each best individual across each simulation run was compared
to the profit of all the best individuals from all the other simulations. A simulation was awarded a point
for each individual that returned a greater profit than another individual from a different simulation with
the same share dataset. A simulation was deducted a point each time an individual had a profit less than
an individual from another simulation with the same share dataset. For each share that the total wins
were greater than the losses for a specific share, the rank was incremented.

The win-loss table shows the number of times that the best individuals outperformed the best indi-
viduals from another simulation. The win-loss table also shows in brackets the number of times the win
count was greater than the loss count for a specific share and simulation run.

A win-loss ranking presented in Table 5.7 shows that tournament sample sizes of 10% and 20%
resulted in trading rules that out-performed all the other trading rules across all three Samples, and
that a sample size of 20% evolved better performing trading rules than trading rules evolved using a
tournament selection sample size of 10%. It is for this reason that a tournament sample size of 20%

was used during the selection strategy comparison that follows.
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Table 5.4: Mean Sample,,, profit per share analysis.

Share Code  Tourl0 Tour20 Tour30 Tour40 Tour50 Tour60  Tour70 Tour80 Tour90  Tour100
agl 25438.23 | 25768.77 | 26249.50 25991.00 | 24864.17 | 25991.00 | 25745.90 | 25246.70 25219.47 | 25855.07
alsi 9301.07 | 9272.70 | 9361.70  9357.37 | 9232.77 | 9403.10 | 9238.70 | 9278.37  9452.93 | 9287.17
bil 13728.30 | 14491.07 | 12507.50 13329.13 | 15280.87 | 13929.90 | 14987.33 | 13481.30 14583.57 | 14500.23
gfi -253.13 144.50 -1074.10  216.10 -1776.40 | -749.57 -313.93 -543.57 223.97 -708.97
imp 16612.00 | 16612.00 | 16612.00 16612.00 | 16612.00 | 16612.00 | 16612.00 | /6601.23 16612.00 | 16609.67
inv-ned 12233.53 | 11996.37 | 11938.90 171589.93 | 12249.00 | 12025.03 | 11817.83 | 11962.83 11869.37 | 11890.20
inv-rem 3461.60 4247.60 3465.47 4521.40 3318.33 3706.43 3768.40 3141.20 3413.10 3465.77
inv-sbk 5093.07 | 4767.13 | 5268.83 5018.37 | 5085.00 | 5203.30 | 5041.00 | 4833.00 5594.97 | 5418.10
lon 20239.87 | 19221.90 | 16209.37 20225.73 | 20227.17 | 19067.87 | 16698.50 | 16506.40 22319.00 | 19320.93
ned -1892.90 | -1104.80 | -961.03 -2313.00 | -661.27 -2015.07 | -2281.00 | -1880.97 -2285.73 | -1790.40
rch 2190.60 | 2161.60 | 2208.57 2192.00 | 2183.57 2236.03 | 2156.80 | 2164.80  2176.17 | 2024.87
rem 9819.00 | 9832.40 | 9835.10 983220 | 9846.27 | 9843.57 | 9774.50 | 9802.77  9798.63 | 9595.00
sab 5365.33 | 5439.07 | 5314.60 5088.80 | 5422.43 5241.53 | 5698.17 | 5112.23  5607.97 | 5461.37
sbk 1623.17 1606.17 1653.27 1548.20 | 1544.60 | 1663.37 1549.03 1556.97 1618.97 1597.13
sol 14849.53 | 12926.00 | 13500.70 14614.67 | 14004.13 | 12133.67 | 12459.73 | 12970.87 13849.60 | 12082.00
Note: bold represents the highest value, and ifalic the lowest value.
Table 5.5: Mean Sample,,, profit o analysis.
Share Code Tourl0 Tour20 Tour30 Tour40) Tour50 Tour60 Tour70 Tour80 Tour90 Tourl00
agl 104291 429.65 | 499.77 | 0.00 2103.42 | 0.00 865.32 | 1438.98 | 1491.63 | 262.80
alsi 677.78 49223 | 32577 | 381.79 35595 | 31647 | 552.60 | 450.75 | 282.84 | 354.84
bil 3444.07 2250.78 | 3775.63 | 3361.45 1549.90 | 2970.73 | 2286.38 | 3080.06 | 2585.24 | 2213.34
efi 2194.79 2203.90 | 2525.96 | 2299.78 2083.65 | 1855.00 | 2395.67 | 1664.90 | 2755.69 | 2171.03
imp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.82 0.00 4.51
inv-ned 695.01  1082.50 | 1059.09 | 1348.23 894.13 | 925.82 | 1187.79 | 1282.58 | 1113.47 | 1075.25
inv-rem 2427.25 2060.71 | 2453.10 | 1074.36 2266.36 | 2164.28 | 2074.47 | 2384.79 | 2117.34 | 2458.88
inv-sbk 1145.44 1371.16 | 600.78 | 1212.38 1187.73 | 1006.47 | 1085.00 | 1266.07 | 615.98 | 610.13
lon 4251.12 5621.37 | 7294.49 | 5784.84 4900.71 | 6189.79 | 7733.17 | 7420.85 | 5083.07 | 5746.61
ned 2260.85 1662.28 | 2290.90 | 2279.00 1982.10 | 2177.60 | 1767.67 | 1735.63 | 2298.33 | 1922.40
rch 202.67 21431 162.66 | 182.60  182.10 | 19248 | 196.72 | 190.15 | 200.38 | 259.01
rem 0.00 2591 31.13 25.92 55.36 47.50 87.70 147.44 | 214.28 | 396.40
sab 758.11  754.10 | 57835 | 832.25 42937 | 530.32 | 313.13 | 729.56 | 77222 | 424.55
sbk 22790 178.84 | 224.82 | 22557 211.68 | 175.51 | 238.05 176.88 | 151.82 | 277.85
sol 335424 5961.40 | 5454.83 | 3013.07 4403.26 | 6244.76 | 6849.46 | 5399.15 | 3498.16 | 6086.60

Note: bold represents the lowest value or more preferred o, and italic the highest or least preferred o.
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Table 5.6: p-value results using Iman and Davenport test with Finner’s correction.

Sample;, Sampleg,; Sampley
Share Code | P-Value | Corrected | P-Value | Corrected | P-Value | Corrected
P-Value P-Value P-Value

agl | 0.995212 | 0.997181 0.977789 | 0.987635 | 0.999948 | 0.999974

alsi | 0.958453 | 0.995016 | 0.165154 | 0.594462 | 0.323347 | 0.858150

bil | 0.552850 | 0.993638 | 0.466016 | 0.847741 0.503300 | 0.858150

gfi [ 0.904743 | 0.993638 | 0.208242 | 0.594462 | 0.365972 | 0.858150

imp | 1.000000 | 1.000000 1.000000 | 1.000000 [ 1.000000 | 1.000000
inv-ned | 0.631749 | 0.993638 | 0.871336 | 0.956562 | 0.801395 | 0.946880
inv-rem | 0.722276 | 0.993638 | 0.755475 | 0.928697 [ 0.791003 | 0.946880
inv-sbk | 0.973805 | 0.995703 [ 0.847693 | 0.956562 | 0.398486 | 0.858150
lon | 0.851801 | 0.993638 | 0.506021 | 0.847741 0.075282 | 0.457946

ned | 0.693556 | 0.993638 | 0.670151 | 0.907142 | 0.040004 | 0.457946
rch | 0.490500 | 0.993638 | 0.000001 | 0.000012 | 0.840278 | 0.946880
rem | 0.985376 | 0.995703 | 0.968617 | 0.986791 0.991544 | 0.995942
sab | 0.281567 | 0.992989 | 0.044250 | 0.287833 [ 0.707602 | 0.928277
sbk | 0.973569 | 0.995703 [ 0.998751 | 0.999225 | 0.985131 | 0.994808

sol | 0.993833 | 0.997181 0.863695 | 0.956562 [ 0.924223 | 0.970345

Note: bold values represent a significant difference.

Table 5.7: Win-loss ranking.

Simulation  Sample;, Sampleg;  Sample,y, Average
Tour10 4701(66) 4417(67) 2048(69) 3722(67.333)
Tour20 1084(71) 1501(79) 4851(66) 2478.667(72)

Tour30 3066(64) -2285091) | -1072(74) | -97(76.333)
Tour70 1280(69) -1117(79) | -1180(83) | -339(77)

Tour90 -987(86)  1601(78) | 5001(67) | 1871.667(77)
Tour50 999(82)  -755(81) | 2829(69) | 358.333(77.333)
Tour60 -1637(95)  -535(78) | 1207(63) | -321.667(78.667)
Tour40 -5208(111) 7072(65) | 53(80) 639(85.333)

Tour100 -2655(80)  -4681(75) | -4985(101) | -4107(85.333)
Tour80 1355(71) -5218(102) | -8752(124) | -4205(99)
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Figure 5.3: Friedman pairwise comparison of p-values.

5.3.2 Selection Strategy Comparison

A number of selection strategies exist. Four of the most popular selection strategies were compared
to determine if the rank selection used by Allen and Karjalainen [43] was preferred. The selection
strategies compared were tournament selection with a 20% sample size, roulette wheel selection, elitist
selection, and SUS [103].

A simulation was setup for each of the selection strategies. Each simulation was run independently
for each share presented in Table 5.2. The average profit obtained by the best trading rules from each
simulation was recorded and is presented in Table 5.8. The mean profit results show that Tour20 ob-
tained the highest mean profit in 6 of the 15 shares, followed by roulette wheel selection and SUS

obtaining the highest mean profits across 4 of the shares traded. The worst performing simulations
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returning the lowest profit were configured with elitism selection.

The results of the simulations were compared using the empirical process described in Section 5.2.1
to determine which of the selection strategies was best suited for this study. The Iman and Davenport
[142] statistical test was applied to the simulation results to determine if the results were significantly
different. Table 5.10 shows the p-values returned by the Iman and Davenport. The p-values show a high
confidence that a significant difference exists between the Sample,,,; results returned by the trading rules
evolved using the BHP Billiton Plc (BIL), Inverted Remgro Ltd (INVREM), and NED datasets.

Post-hoc analysis was done comparing the significantly different results. The Friedman pairwise
results presented in Figure 5.4 show a significant difference between the results returned by the trading
rules evolved using elitism selection and the trading rules of the rest of the selection operators. The crit-
ical difference plots presented in Figure 5.5 show that the results returned by the trading rules evolved
using elitism selection were critically different from the results returned by the other selection strate-
gies. Based on the poor performance of the trading rules evolved with elitism selection as presented in
Table 5.8 and the post-hoc results, elitism selection was excluded from any further analysis.

The Friedman p-values failed to find a significant difference between the results returned by traders
evolved with tournament selection, rank selection, roulette wheel selection and SUS. The critical differ-
ence plot in Figure 5.5g shows that the trading rules evolved using Tour20 for the BIL dataset produced
critically different Sample,,, results compared to the trading rules evolved using SUS and roulette
wheel selection. Table 5.8 shows that the trading rules evolved using Tour20 resulted in a greater av-
erage Sample,,, profit than those trading rules using SUS and roulette wheel selection. Because no
significant difference and no critical difference was found between the results returned by the trading
rules evolved using Tour20, and the results returned by the trading rules evolved using rank selection,
both rank selection and Tour20 are the preferred selection strategies when evolving trading rules for the
BIL dataset.

Figure 5.5i shows that a critical difference exists between the results returned by that trading rules
evolved using SUS and the results of the trading rules for the rest of the selection operators for the NED
dataset. Because trading rules evolved with SUS returned the lowest average Sample,,; NED profit as
presented in Table 5.8, SUS is the least preferred selection strategy when evolving trading rules for the
NED dataset.

The results presented show that Tour20 and rank selection are the most preferred selection strategies,
because no significant difference or critical difference was found between the results returned by the
trading rules evolved using Tour20 and rank selection. Tour20 and rank selection simulations together

resulted in the highest mean Sample,,; profit as shown in Table 5.8.
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The win-loss results presented in Table 5.9 show that rank selection evolved trading rules that
out-performed other trading rules consistently across all the Samples. The win-loss results also show
that rank selection resulted in trading rules that on average out-performed trading rules evolved us-
ing Tour20. Therefore, based on these observations, and that Allen and Karjalainen [43] used rank

selection, rank selection remains the preferred selection strategy for the purposes of this study.

Table 5.8: Mean Sample,,, profit per share analysis.

Share Code  Tour20 Elitism Rank Roulette SUS

agl 25768.77 | 25991.00 | 25258.77 | 25246.70 | 25901.27
alsi 9272.70 | 9376.33 | 9400.57 | 9263.63 | 9097.17
bil 14491.07 | 13703.50 | 14327.53 | 10601.17 | 11655.03
gfi 144.50 -1246.73 | -1260.00 | 79.67 -432.90
imp 16612.00 | 16612.00 | 16612.00 | 16612.00 | 16612.00
inv-ned 11996.37 | 11646.50 | 12891.57 | 12414.73 | 12015.13
inv-rem 4247.60 | 3252.00 | 531540 | 5588.80 | 5817.63
inv-sbk 4767.13 | 5097.23 | 5465.23 | 5590.57 | 5454.63
lon 19221.90 | 18639.13 | 18202.93 | 19158.03 | 18539.13
ned -1104.80 | -1889.40 | -2399.90 | -1802.83 | -3155.03
rch 2161.60 | 2089.63 | 2188.17 | 222533 | 2261.57
rem 9832.40 | 9819.00 | 9819.00 | 9848.50 | 9838.50
sab 5439.07 | 5308.10 | 5160.70 | 5456.87 | 5516.80
sbk 1606.17 | 1533.23 | 1555.27 | 1382.17 | 1439.73
sol 12926.00 | 10300.30 | 14196.20 | 14772.27 | 14290.93

Note: bold represents the highest value, and italic the lowest value.

Table 5.9: Win-loss ranking.

Simulation Sample;, Samples; Sample,y,; Average

Roulette -825(46) | 6007(28) | 516(38) 1899.333(37.333)
SUS -633(44) | 4082(34) | 384(37) 1277.667(38.333)
Rank 1416(36) | 2548(35) | 907(50) 1623.667(40.333)
Tour20 2811(35) | -2965(55) | 1914(36) | 586.667(42)

Elitism -2769(52) | -9672(61) | -3721(53) | -5387.333(55.333)
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Table 5.10: P-value results using Iman and Davenport test with Finner’s correction.

Sample;, Samplege Sample,,;
Share Code | P-Value | Corrected | P-Value | Corrected | P-Value Corrected
P-Value P-Value P-Value
agl | 0.996869 | 0.997926 | 0.968058 | 0.986496 | 0.996869 0.997926
alsi | 0.273701 | 0.558096 | 0.013071 | 0.063669 | 0.816455 0.900914
bil | 0.260592 | 0.558096 | 0.137509 | 0.271664 | 0.001424 0.010631
gfi | 0.061243 | 0.331357 | 0.043859 | 0.125890 | 0.261235 0.433174
imp | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 1.000000
inv-ned | 0.180946 | 0.526934 [ 0.062665 | 0.149377 | 0.114719 0.306185
inv-rem | 0.000613 | 0.009157 | 0.005069 | 0.037397 | 0.000664 0.009917
inv-sbk | 0.838586 | 0.916839 | 0.533236 | 0.681106 [ 0.298664 0.446383
lon | 0.386357 | 0.599740 | 0.826999 | 0.908594 | 0.986727 0.995495
ned | 0.577753 | 0.762347 | 0.297231 | 0.444495 | 0.009361 0.045937
rch | 0.052253 | 0.331357 | 0.000000 | 0.000000 | 0.136042 0.306204
rem | 0.993990 | 0.997264 [ 0.993990 | 0.995829 | 0.993655 0.997087
sab | 0.972063 | 0.988579 | 0.991079 | 0.995684 | 0.479425 0.624401
sbk | 0.597220 | 0.762347 | 0.029020 | 0.104557 | 0.179075 0.344813
sol | 0.238314 | 0.558096 | 0.241309 | 0.404171 | 0.057819 0.200159

Note: bold values represent a significant difference.
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Table 5.11: Standard deviation of Sample,,, profit per share analysis.

Share Code Tour20 Elitism Rank Roulette SUS
agl 429.65 | 0.00 1366.84 | 1438.98 | 173.48
alsi 492.23 | 243.64 587.77 | 352.31 709.92
bil 2250.78 | 3313.30 2434.89 | 4563.56 | 3132.42
efi 2203.90 | 2178.27 2440.20 | 2381.93 | 1479.91
imp 0.00 0.00 0.00 0.00 0.00
inv-ned 1082.50 | 1520.60 614.99 | 717.24 1137.67
inv-rem 2060.71 | 2352.13 2083.13 | 1420.25 | 2125.70
inv-sbk 1371.16 | 1071.26 978.17 | 823.36 855.74
lon 5621.37 | 4301.88 5970.22 | 6287.76 | 5761.31
ned 1662.28 | 2220.73 2235.23 | 2398.69 | 1933.17
rch 214.31 | 190.31 163.68 | 170.82 138.16
rem 2591 0.00 0.00 55.07 37.70
sab 754.10 | 558.17 63553 | 339.99 447.05
sbk 178.84 | 23341  205.99 | 355.38 489.47
sol 5961.40 | 7137.87 3791.01 | 4456.72 | 3689.58

Note: bold represents the lowest value or more preferred ¢, and italic the highest or least preferred o.

5.4 Fitness Function Analysis

A fitness function quantifies the performance of a solution. Each individual within the population

represents a solution, in this case a trading rule.

A trading rule’s primary objective is to determine when to buy, sell or hold a position to maximise
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profit. This simple objective can be quantified by the total gain or loss when trading a given share.
Return on investment (ROI) is a measure of return. ROI was used by Lam [154] as a fitness function
and presented here as the profit fitness function. The ROI rewards a trading rule when it is profitable at
the end of trading.

The second objective of a trading rule is profit consistency. A trading rule should at any point within
the trading period be profitable. The ROI measures the difference between the initial investment and the
final asset value at the end of the trading period. ROI does not measure the average investment return
obtained during trading. Schoreels et al. [190] introduced accumulated (average) asset value (AAV) as
the average daily ROIL. The AAV is the second fitness function presented here as avgProfit. The AAV
rewards a trading rule when it is consistently profitable over the course of trading.

The third objective of a trading rule is to be in the market when the market is trending up, and out
of the market when the market is trending down. Furthermore, buying shares early on and returning
a profit result in compounded capital gains, while buying shares and returning a loss result in com-
pounded capital losses. Allen and Karjalainen [43] implemented a fitness function (AK) that measures
the compounded excess return over the buy-and-hold strategy presented here as ak. AK rewards a trad-
ing rule when the rule has stock and the shares are moving up, or if the trading rule does not have stock
and the shares are moving down.

Three simulations were run to determine which of the three fitness functions was preferred. The
empirical process described in Section 5.2.1 was followed. The configuration presented in Table 5.3
was used with the selection strategy set to rank selection, and the fitness function defined as one of the
three fitness functions: ak, avgProfit, or profit. The simulations were run independently across the share
data defined in Table 5.2

Table 5.12 shows that the profit fitness function evolved trading rules that resulted in the highest
mean profit in 8 of the 15 shares. The ak fitness function evolved trading rules that returned the highest
mean profit for 6 of the 15 shares. The mean profit results clearly show that avgProfit evolved the worst
performing trading rules.

A statistical comparison of the results presented in Table 5.14 found a significant difference between
the Sample,,, results obtained for the BIL, INVREM, and NED datasets.

A post-hoc analysis was performed for those Samples that showed a significant difference. The
p-value results are presented in Figure 5.6. A significant difference between ak and profit results was
found when trading Gold Fields Ltd (GFI). A significant difference between avgProfit and profit results
was found when trading BIL and Lonmin (LON).

Figure 5.7 confirms the significant difference between the results obtained by the trading rules
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evolved using the ak and profit fitness functions when trading GFI. The critical difference plots also
show that the results from the avgProfit simulation was significantly different from the results returned
in the profit and ak simulations when trading Inverted Nedcor Ltd (INVNED) and LON.

The win-loss results presented in Table 5.13 show that the trading rules evolved using the ak fitness
function performed consistently better than the trading rules evolved using avgProfit and profit when
trading shares using the Sample;, and Sample,,, datasets. Although ak resulted in the least Sample,;
win-loss score, its overall average was still greater than avgProfit and profit. It is for these reasons that

ak was used for the purposes of this study.

Table 5.12: Mean Sample,,, profit per share without fees.

Share Code AK AvgProfit Profit
agl 25258.77 | 23849.50 | 25294.30
alsi 9400.57 | 9120.37 | 9301.53
bil 14327.53 | 14028.07 | 12058.30
gfi -1260.00 | -1905.53 | -2696.00
imp 16612.00 | 16168.43 | 16612.00
inv-ned 12891.57 | 11694.53 | 12705.50
inv-rem 531540 | 4206.37 | 5027.93
inv-sbk 5465.23 | 4810.83 5514.00
lon 18202.93 | 10723.07 | 21960.50
ned -2399.90 | -1588.63 | -1584.57
rch 2188.17 | 2159.83 2227.77
rem 9819.00 | 9618.50 9820.17
sab 5160.70 | 5571.83 5412.37
sbk 1555.27 | 1355.80 1613.17
sol 14196.20 | 16937.10 | 13690.60

Note: bold represents the highest value, and italic the lowest value.

Table 5.13: Win-loss ranking.

Simulation Sample;, Samples,; Sample,, Average
Profit 437(27) 957(27) 74(28) 489.333(27.333)
AK 1288(31) | -1330(31) | 2083(24) | 680.333(28.667)
AvgProfit | -1725(31) | 373(31) -2157(36) | -1169.667(32.667)
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Table 5.14: p-value results using Iman and Davenport test with Finner’s correction.
Sample;, Samplege; Sampley,;
Share Code | P-Value | Corrected | P-Value | Corrected | P-Value | Corrected

P-Value P-Value P-Value

agl | 0.976113 | 0.976113 | 0.803868 | 0.847346 | 0.976113 | 0.976113

alsi | 0.024323 | 0.088205 | 0.023022 | 0.083635 | 0.655771 | 0.798037

bil | 0.594406 | 0.707867 | 0.003966 | 0.019673 | 0.103354 | 0.266339

gfi | 0.000000 | 0.000000 | 0.000001 | 0.000011 | 0.007935 | 0.039049

imp | 0.413409 | 0.573048 | 0.677553 | 0.757019 | 0.543053 | 0.769724

inv-ned | 0.017460 | 0.084303 | 0.103354 | 0.238706 | 0.000140 | 0.002098

inv-rem | 0.361860 | 0.569258 | 0.594406 | 0.707867 | 0.552059 | 0.769724

inv-sbk | 0.907712 | 0.922156 | 0.475932 | 0.621544 | 0.098086 | 0.266339

lon | 0.057826 | 0.138356 | 0.000178 | 0.001334 | 0.002153 | 0.016037

ned | 0.399894 | 0.573048 | 0.023022 | 0.083635 | 0.878819 | 0.928502

rch | 0.741116 | 0.804603 | 0.929981 | 0.929981 | 0.778175 | 0.871709

rem | 0.729146 | 0.804603 | 0.843950 | 0.863341 | 0.929981 | 0.942093

sab | 0.046682 | 0.133609 | 0.138774 | 0.273951 | 0.016515 | 0.060538

sbk | 0.004457 | 0.032948 | 0.209314 | 0.356189 | 0.900404 | 0.930157

sol | 0.276732 | 0.500542 | 0.441775 | 0.621544 [ 0.106089 | 0.266339

Note: bold values represent a significant difference.
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Figure 5.6: Friedman pairwise comparison of p-values for results.
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Figure 5.6: Friedman pairwise comparison of p-values for results (Cont.).
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Figure 5.7: Critical difference plots for results.

5.5 Control Parameter Sensitivity Analysis

EAs and most machine learning algorithms require the setting of control parameter values. For GAs
and GPs, these values include the probability of crossover, probability of mutation, the number of
individuals within a population, and the number of generations.

There are two main approaches to parameter setting: parameter tuning and parameter control. The
main difference is that parameter control is done as part of the EA’s execution and parameter tuning is
done before the EA is executed. An example of parameter control is a dynamic mutation probability
control parameter. Initially, the probability of mutation can be high to promote exploration. Each subse-
quent generation decreases the mutation probability, reducing exploration and increasing optimisation.
Parameter tuning relies on an appropriate parameter value set before execution.

Parameter tuning is a hard problem because there are a great number of possible parameter com-
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binations [93]. Most EAs use parameters based on basic rules, for example, mutation should be low
and crossover high. Allen and Karjalainen [43] admitted in their paper that they did not optimise the
parameters chosen [211]. This thesis uses parameter tuning.

To select the most appropriate parameters, the response surface methodology (RSM) was used [93].
RSM is a collection of statistical techniques useful for modelling and analysis of problems in which
responses are affected by several variables [194]. The relationship between parameters of a GP are not
definite and must be estimated. RSM uses a sequence of experiments to obtain the relationship between
parameters and their optimal values.

Box and Wilson [73] suggested using a second-degree polynomial model for the RSM. A second-
degree polynomial model is complex, and should be performed on those parameters that have the largest
impact on the results. To determine which parameters impact the results the most, a first-degree poly-
nomial model is used.

The simplest first-degree polynomial is a fractional factorial design [175]. A factorial design is
used to determine the relationship between the parameters and the effect that the parameters have on
the results, i.e. if the factor is increased or decreased does the result of the simulation change, and is
that change significant. A factorial design obtains the most appropriate information about the factors
with the least amount of experimentation. With reference to GP, a factor refers to a control parameter.
The control parameter tuning methodology proposed by Lima et al. [93] was used. Their methodology
is based on 2* factorial design to estimate the influence that a GP control parameter has on the results
returned by evolved trading rules. Once the parameters with the largest impact were identified, they
were fine-tuned using the empirical process described in Section 5.2.1.

Consider that an evolved trading rule is required to return a profit. The profit is the response variable.
Factors are variables that affect the outcome of the response variable. Each factor can have several
alternative values which Lima et al. refer to as levels [93]. The combination of factors and levels is
large. Computing each alternative variation of factors and levels might not be the best possible use of
computing resources. Therefore, it is important to reduce the number of factors and to consider only
those that have a significant impact on the GP’s performance.

2% factorial design focuses on the minimum and maximum factor levels for each factor k. This is
based on the assumption that the effect of the factor is unidirectional [93]. The intent is to determine if
the difference in response variables of two levels of a factor warrants further investigation. Furthermore,
2% factorial design also analyses the interaction of the factors to determine if the change in one factor
affects another factor. 2% factorial design requires one simulation run per factor. However, GPs are

stochastic and one run is not sufficient to determine the effect of a factor. Lima ez al. altered 2* factorial
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design to include r, where r denotes the number of runs.

The empirical process presented in Section 5.2.1 assumed the normal distribution and showed that
the results of EAs are generally skewed. Therefore, a comparison of the results of EAs requires non-
parametric statistical tests as opposed to standard parametric statistical tests. To ensure that results
generated by the GPs were caused by a factor and not the naturally skewed results a multiplicative
factorial model was used as proposed by Lima et al. [93].

2%r factorial design is performed in four steps: compute the effect each factor has on the outcome
of the simulation, allocate the response variable variation explained by each factor, determine the confi-
dence interval of the effects to determine which are significant, and verify if the technique’s assumptions
are not violated. Each step is discussed in more detail in the paragraphs that follow.

Computation of the effects of each factor or factor interaction has on the change in the response
variables requires a list of factors. For this thesis four factors were identified, namely the number of in-
dividuals within a population (factor A), the maximum number of generations (factor B), the maximum
tree size quantified as two values, i.e. tree depth and number of nodes (factor C), and the probability of
mutation (factor D). Each factor is required to have an upper and lower bound. The factor boundaries
are defined as a factor configuration set. One upper and lower value per factor.

Deciding on the upper and lower bounds is one of the most difficult tasks when building a 27
factorial design [93]. For example, should the mutation probability boundaries be set at [0%, 100%], or
[10%, 50%]? No mutation takes place when the probability of mutation is set at 0%, while no crossover
takes place when the probability of mutation is set at 100%. Therefore, one set of simulations could
test the effect that two different degrees of mutation probability have on the response variable, while
another simulation could test if no probability of mutation or a low mutation probability effects the
change in the response variable. For this reason, two different factor configuration sets were defined as

presented in Table 5.15.

Table 5.15: Factor boundary values for 2% factorial design.

Parameter Config. 1 Config. 2
Lower bound Upper bound Lower bound Upper bound
Population Size (A) 20 1000 100 500
Number of Generations (B) 5 500 20 50
Tree Size [Depth, Nodes] (C) | 3, 30 20, 300 3,20 20, 200

Mutation Probability (D) 0.1 04 0 0.5
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To compute the effect that each factor has on the response variable, each factor must be evaluated
r times. A simulation was run 30 times (r is 30) for each share dataset and each control parameter
combination. Each control parameter combination is a distinct combination of factors and levels defined
by the factor configuration set. The combinations of factors and response variable results are recorded
in a 2*30 sign matrix as defined by Lima et al. [93]. To illustrate how the effects are computed consider
the 23 signed matrix is presented in Table5.16.

The 223 (2 factors of 2 levels each with 3 repetitions) signed matrix defines two factors namely, A
and B. The first column I of the matrix always consists of 1’s. The second and third columns A and B
contain every possible combination of -1 and 1. Column AB is the product of the entries in columns
A and B. Each line of the matrix represents a simulation. Each simulation is configured with control
parameters represented by the factors A and B. If the column contains a -1, then the lower factor bound
is set as the control parameter for that factor. The simulation is repeated three times. The response
variable is the result of a simulation run. The response variables of twelve simulation runs (2 factors x
2 levels x 3 repetitions) are presented in column y. The average of the results is recorded in column ¥.

Next, the sum of the products of the entries in column I and the mean results in column y is recorded
under column I (i.e., I X 15+ 1 x24+1x48+ 1 x 77 = 164). The process is repeated for columns A,
B, and AB. The sums are then divided by 22 to give the effect each factor has on the result recorded in
column y. Once the effects have been calculated, the factorial model is used to estimate the response
variable returned by a given combination of factors. The estimated response variable is compared to
the actual response variable recorded in column y to estimate the variance of the error. The sum of the
squared errors is referred to as the experimental error. The experimental error is a result of experimental
factors such as the value of the random seed used to generate random numbers and not the control
parameters. The total factor effect less the experimental error is referred to as the explained effect.
A factor’s importance is measured by the proportion of the total variation in the response variable
it explains. A factor or combination of factors with the higher response variation is deemed more

influential in the outcome of the response variable.
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Table 5.16: Example of a sign matrix for a 223 factorial design.

I A B AB y Mean j

1| -1 | -1 | 1 [(1518,12) 15

1| -1 | 1| -1 (528,19 24

1 1| -1 | -1 | (45,48,51) 48

1 1 1| 1 |(75,75,81) 77
164 | 86 | 38 | 20 Total
41 | 21595 5 Total /2°

Table 5.17 and Table 5.18 report the importance of each factor and factor interaction as a contribu-
tion percentage, calculated as its coefficient in the 2*30 sign matrix model. The results in Table 5.17 and
Table 5.18 were calculated using simulations run with the factor configuration set 1 and configuration
set 2, respectively. Both results show that the simulations run using the INVNED, Inverted Standard
Bank Group Ltd (INVSBK), and RCH datasets have the largest explained variation percentages.

The results presented in Table 5.17 show that the factors with the largest influence on the GP’s
performance when run using the INVNED, INVSBK, and RCH datasets were A, B, D, AB, and AD.
The individual factors A, B, and D had a larger influence on the response variable than the combinations
of AB and AD. The overall influencers were therefore, population size, number of generations and
mutation probability.

The results presented in Table 5.18 show that factor A, D, and AD had the greatest influence on
the response variable returned by the simulations using the INVNED, INVSBK, and RCH datasets.
Factors A and D represent the population size and the mutation probability respectively. The population
size factor was configured with a lower bound population size of 100 individuals and an upper bound
population size of 500 individuals. The mutation probability was configured with a lower bound value
of 0% and an upper bound value of 50%. These configured factors meant one quarter of the simulations
ran with a population size of 100 individuals and no mutation.

Mutation drives exploration, without mutation a population will rapidly converge. Simulations that
use mutation have a greater probability of evolving better solutions than those simulations that do not
use mutation. Without mutation constantly introducing new genetic material, an alternative source of
genetic diversity is required. Increasing the number of individuals within the population increases the
genetic diversity. Therefore, without mutation, larger populations have a greater probability of con-

verging on a better solution than smaller populations. The upper and lower bounds set for factor con-
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figuration set 2 resulted in at least one quarter of the simulations converging much faster than the other
simulations, resulting in larger influence percentages of factor A, D and AD presented in Table 5.18
than the results presented in Table 5.17.

The 2430 factorial design results showed that the individual factors population size, mutation prob-
ability and the number of generations influenced the response variable the most. The empirical process
described in Section 5.2.1 was used to determine the most appropriate control parameter values for the
three identified factors.

The results of the empirical process is presented in the subsections that follow. Subsection 5.5.1
explores the impact that the mutation probability had on the result. Subsection 5.5.2 explores the impact
that the population size had on the result. Subsection 5.5.3 investigates the effect the maximum number

of generations had on the result.

5.5.1 Mutation Probability Sensitivity Analysis

Allen and Karjalainen [43] used a mutation probability of 30%. The simulations performed found that
a mutation probability of between 30% and 40% was adequate.

Ten simulations were run, each with a different probability of mutation. Each simulation imple-
mented the same configuration presented in Table 5.3. Rank selection was used as the selection strat-
egy. The first simulation used a mutation probability of 0% implying that no mutation took place. The
second simulation used a mutation probability of 10%, the next 20%, with each subsequent simulation
increasing the mutation probability by 10 until 90%.

The best profit was recorded for each of the simulation runs, and the mean profits are summarised
in Table 5.19. The mean profit results did not show a clear preferred simulation. Table 5.20 presents
the p-values from the Iman Davenport test [142]. The statistical test applied to the results reject the
null-hypothesis for a majority of the share datasets. The only Sample,, shares where no significant
difference was found between the mean profit results were Anglo American Plc (AGL), GFI, Impala
Platinum (IMP), Remgro Ltd (REM), SAB, SBK, and Sasol Ltd (SOL).

The results of a post-hoc analysis using the Friedman aligned ranks test are presented in Figure 5.8.
The pairwise results found a significant difference between a mutation probability of less than 10% and
a mutation probability greater than 20%.

A comparison of the mean deviation (o) values presented in Table 5.21 confirms the significant
differences between a mutation probability of less than 10% and a mutation probability greater than
20%. The o values for a mutation probability of 0% is zero. No exploration occurs when mutation

is zero, and all the individuals tend to converge on the same Sample,, solution. Each significantly
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different result set was analysed in detail to find the most adequate mutation probability for this thesis.

Table 5.19: Mean Sample,,, profit per share.

Share Code 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
agl 25991.00 | 25991.00 25981.73 | 25258.77 | 26369.63 | 25991.00 | 25430.80 | 26007.33 | 24533.67 | 25383.70
alsi 9234.00 | 9265.23  9390.07 | 9400.57 | 9413.50 | 9261.17 | 9449.50 | 9097.87 | 8936.23 | 9059.63
bil 16559.00 | 16194.20 13301.83 | 14327.53 | 12275.53 | 12254.70 | 12997.63 | 11134.63 | 12831.83 | 13125.20
gfi 0.00 -170.80  -369.00 | -1260.00 | -784.33 -760.17 -519.90 | -292.17 60.43 983.73
imp 16612.00 | 16612.00 16711.40 | 16612.00 | 16612.00 | 16711.40 | 16612.00 | 16612.00 | 16215.50 | 16210.90
inv-ned 7878.00 | 10156.00 12391.57 | 12891.57 | 12642.10 | 12615.23 | 12843.53 | 13365.70 | 13281.00 | 12839.27
inv-rem 2037.00 | 3623.37  4928.70 | 5315.40 | 4451.57 | 477447 | 5941.67 | 5442.23 | 6484.17 | 5711.57
inv-sbk 1703.00 | 4662.43  5153.70 | 5465.23 | 5326.30 | 5895.87 | 6016.97 | 5876.40 | 5947.90 | 5908.63
lon 17517.00 | 19475.97 19543.53 | 18202.93 | 18408.33 | 19099.03 | 18917.67 | 17854.13 | 12252.50 | 11824.10
ned 0.00 -1649.77  -2141.17 | -2399.90 | -1372.43 | -3137.40 | -2350.50 | -3555.03 | -2784.33 | -2237.77
rch 1977.00 | 2193.23  2213.03 | 2188.17 | 2161.23 | 2213.40 | 2197.40 | 2187.53 | 2274.23 | 2205.80
rem 9819.00 | 9819.00  9854.60 | 9819.00 | 9819.00 | 9821.77 | 9838.50 | 9861.83 | 9601.53 | 9836.53
sab 5500.00 | 5481.57  5536.77 | 5160.70 | 5337.63 | 5107.20 | 4758.10 | 4941.17 | 5221.93 | 5318.30
sbk 1538.00 | 1657.90  1562.47 | 155527 | 1644.30 | 1502.67 | 1673.83 | 1477.23 | 1677.50 | 1641.13
sol 16459.00 | 16363.27 16453.27 | 14196.20 | 15614.47 | 12682.87 | 13190.80 | 14258.40 | 13477.30 | 10050.43

Note: bold represents the highest value, and italic the lowest value.

Table 5.20: p-value results using Iman and Davenport test with Finner’s correction.

Sample;, Sampleg,; Sampley
Share Code | P-Value | Corrected | P-Value | Corrected | P-Value | Corrected
P-Value P-Value P-Value
agl | 0.999064 | 0.999431 0.999669 | 0.999813 | 0.999539 | 0.999851
alsi | 0.004895 | 0.006669 | 0.000000 | 0.000000 | 0.010590 | 0.022556
bil | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
gfi | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.522826 | 0.635387
imp | 0.999988 | 0.999988 | 0.999956 | 0.999956 | 0.999993 | 0.999993
inv-ned | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
inv-rem | 0.000000 | 0.000000 | 0.000000 | 0.000000 [ 0.000000 | 0.000000
inv-sbk | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
lon | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.012128 | 0.022619
ned | 0.000000 | 0.000000 | 0.000000 | 0.000000 [ 0.000000 | 0.000000
rch | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.001752 | 0.004374
rem | 0.692617 | 0.743633 [ 0.947281 | 0.966477 | 0.999517 | 0.999851
sab | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.146689 | 0.232322
sbk [ 0.054678 | 0.067874 | 0.514034 | 0.594251 0.834941 | 0.894792
sol | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.429543 | 0.569142

Note: bold values represent a significant difference.
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Table 5.21: Standard deviation of Sample,,, profit per share analysis.
Share Code 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
agl 0.00 | 0.00 110.78 | 1366.84 706.78 | 0.00 1078.37 | 31.58 2753.02 1174.11
alsi 0.00 | 238.42 | 272.67 | 587.77 42590 | 171.87 | 344.50 | 526.40 | 551.96 549.98
bil 0.00 | 608.00 | 3126.13 | 2434.89 3223.83 | 3791.31 | 3237.02 | 3108.51 | 2683.76 1950.33
gfi 0.00 | 1806.91 | 2130.13 | 2440.20 2866.33 | 2790.36 | 2781.47 | 2015.67 | 2317.50 2241.45
imp 0.00 | 0.00 192.17 | 0.00 0.00 192.17 | 0.00 0.00 766.57  775.46
inv-ned 0.00 | 2381.33 | 1115.73 | 61499 646.78 | 661.89 | 617.48 1015.71 | 1088.93 741.37
inv-rem 0.00 | 1951.02 | 1699.41 | 2083.13 2206.62 | 2212.24 | 2236.51 | 1996.56 | 1966.99 2243.00
inv-sbk 0.00 | 1495.13 | 1530.09 | 978.17  825.03 | 486.81 894.35 | 350.68 | 519.86 584.34
lon 0.00 | 3918.96 | 4418.50 | 5970.22 5030.53 | 7017.43 | 7841.58 | 8660.73 | 8668.00 8899.77
ned 0.00 | 2189.47 | 2204.63 | 2235.23 1864.80 | 1544.16 | 1902.43 | 1873.44 | 2688.11 2215.90
rch 0.00 | 160.64 173.35 163.68  207.42 158.29 166.05 191.88 147.84  159.44
rem 0.00 | 0.00 66.45 0.00 0.00 10.68 37.70 11530 | 501.24  120.12
sab 0.00 | 166.61 | 41645 | 63553  653.17 | 812.44 | 1263.59 | 856.37 | 861.96  668.01
sbk 0.00 | 228.53 | 229.99 | 20599 234.44 198.31 | 310.56 | 316.04 | 558.77 318.48
sol 0.00 | 395.02 | 366.17 | 3791.01 3661.59 | 6572.80 | 6796.61 | 6097.17 | 6834.80 8376.04
Note: bold represents the lowest value or more preferred o, and italic the highest or least preferred .
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Figure 5.8: Friedman pairwise comparison of p-values for results.
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Figure 5.8: Friedman pairwise comparison of p-values for results (Cont.).
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A comparison of the Sample,,, results returned by the trading rules evolved using the ALSI40
dataset is presented as a critical difference graph in Figure 5.9. The critical difference graph shows no
significant difference between the Sample,,; results for the various simulations. This is consistent with
the p-value results that show only one significant difference between the Sample,,, results obtained by
the trading rules evolved using a mutation probability of 60% and the results of the rules evolved with

a mutation probability of 0%.

CD
4 5 6 7
Rate_60 Rate_50
Rate"40 — Rate”90
Rate 20 —— Rate”_10
Rate” 70 —M8M8M8M8M8M™M™— Rate”80
Rate_30 —M8M8M8@™M8¥ Rate_0

Figure 5.9: Critical difference plot of ALSI Sample,,, results using various mutation probabilities.

A mutation probability is required, and while the Sample,,, results are similar, the graph presented
in Figure 5.10 shows that mutation probability does impact population diversity. The graph plots the
mean deviation (&) of the Sample;, profit returned by all the individuals within the population over each
generation per configured mutation probability. The graph shows that o is large for all simulations at
generation zero, and the lower the mutation probability the faster the o drops to zero as the populations
evolve.

The average Sample;, profit returned by the trading rules evolved using different mutation prob-
abilities is presented in Figure 5.11. The figure shows that simulations configured with a mutation
probability larger than 20% evolved trading rules that returned larger profits than trading rules evolved
with lower mutation probabilities.

The scatter plot in Figure 5.14 shows that the impact of the mutation probability on evolving prof-
itable solutions by plotting the average generation profit per simulation as a dot and the average best
Sample;,, Sample,,;, and Sample,,; profit as lines.

The scatter plots in Figure 5.14 shows that the trading rules evolved with a mutation probability
between 10% and 40% reached a Sample;, trading profit of around 5000 at generation 15. Figure 5.14
shows that the trading rules evolved using a mutation probability greater than 40% reached a Sample;,
profit of 5000 much later at around 25 to 30 generations. The only simulations to reach a Sample;, profit
greater than 6000 within 50 generations were those trading rules that were evolved with a mutation
probability of 10% and 50%. A mutation probability of 0% resulted in profit stagnation, where none of
the generations shows any increase in profit. A similar result was seen when mutation probability was
90%.



Chapter 5. Genetic Program For Trading Rules 114

2000

2000 Vi mma
“"//"’Illlllf/'ll il
Vel
1187820 Mayraian

|

Y 7 I'4
A

1800

\, I '. 1600

{sue0) 0 Wod

1400

1200

N
o

Mutation Probability

N
o

1000

40

o

Generatiop, 50

Figure 5.10: 3D Perspective plot of the mean deviation of ALSI Sample;, profit results using various mutation
probabilities.
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Figure 5.11: 3D Perspective plot of the mean ALSI Sample;, profit results using various mutation probabilities.
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The observed profit stagnation is expected, because, when the mutation probability is set at 0%,
no new individuals are introduced. Selection pressure results in premature convergence, due to no
exploration, resulting in profit stagnation. Premature convergence also results in fewer nodes per tree
as observed in Figure 5.13. When the mutation probability is 90%, each generation undergoes mutation
with little to no crossover. Each generation is compared to the global best solution, and because more
mutation becomes more of a random search, it becomes less likely that a better global best solution
will be found, resulting in the observed global best profit stagnation. The continuous reintroduction of
new individuals through exploration reduces the effect that crossover had on evolution and manifests as
fewer nodes within a tree as observed in Figure 5.13. Except for the results returned by the trading rules
evolved from the LON dataset, a similar pattern was found across all the share code samples examined
in this section.

Figure 5.12 compares the average best Sample,,, profit returned by each simulation per generation.
The figure shows that a mutation probability of 40% resulted in the highest Sample,,, profit, followed
by 60% and 30%. Analysis of the ALSI40 results shows that a mutation probability between 30% and
40% resulted in the best combination of mutation and crossover, driving the population towards the best

solution across all the dataset samples.
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Figure 5.12: Average Sample,,; profit returned by the best individual within a simulation evolved using the

ALSI40 dataset and various mutation probabilities.
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Figure 5.13: Average node count of an individual evolved using the ALSI40 dataset and various mutation prob-

abilities.
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Figure 5.14: Scatter plot plotting returned profit using ALSI40 dataset and various mutation probabilities.
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Figure 5.14: Scatter plot plotting returned profit using ALSI40 dataset and various mutation probabilities (Cont.).
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Figure 5.14: Scatter plot plotting returned profit using the ALSI40 dataset and various mutation probabilities
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The Sample;, profit results returned by the trading rules evolved using the BIL dataset are presented
in Figure 5.19 and Figure 5.17. The figures show that a mutation probability of between 40% and 50%
evolved trading rules that reached the greatest profit in the shortest number of generations. The second
best performing trading rules were evolved with a mutation probability of 30% and 60%. However,
the Sample,,, profit presented in Figure 5.19 and Figure 5.17 shows that the average Sample,,, profit
decreased with increase in the mutation probability. The best Sample,, profit was obtained by the
trading rules evolved with a mutation probability of 0%, 10%, and 30%. No mutation occurred at a
0% probability, and the critical difference plot in Figure 5.15 shows no critical difference between the
results obtained by the trading rules evolved using a mutation probability of 0% or 10%. Based on the

BIL results, a mutation probability of 30% is preferred.
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Figure 5.15: Critical difference plot of BIL Sample,,, results using various mutation probabilities.
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Figure 5.16: Average node count of an individual evolved using the BIL dataset and various mutation probabili-
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Figure 5.19: Scatter plot plotting returned profit using BIL dataset and various mutation probabilities.
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Figure 5.19: Scatter plot plotting returned profit using BIL dataset and various mutation probabilities (Cont.).
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Figure 5.19: Scatter plot plotting returned profit using BIL dataset and various mutation probabilities (Cont.).

Figure 5.24 and Figure 5.23 show that only those trading rules evolved with a mutation probability
between 30% and 90% reached an average best Sample;, profit greater than 35000. Further examination
of the graphs shows that the average Sample;, population profit was much lower than the average best
individual’s Sample;, profit when the trading rules were evolved using a mutation probability between
60% and 90%. The difference between the average best individual Sample;, profit and the average
population Sample;, profit observed in Figure 5.24 continues in the Sample,,, results as presented
by the high ¢ value recorded in Table 5.21. Therefore, the trading rules evolved with a mutation
between 30% and 50% produced more consistent results than the trading rules evolved with a mutation
probability between 60% and 90%.

Figure 5.21 shows that the trading rules evolved with a mutation probability of 40%, 70%, and
50% returned the largest average Sample,,; profit. The critical difference plot in Figure 5.20 shows no

critical difference between the Sample,,, results obtained by the trading rules evolved with a mutation
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probability between 30% and 50%. The p-values presented previously in Figure 5.8c found no signif-
icant difference between the Sample,,, results obtained by the trading rules evolved with a mutation
probability between 30% and 50%. Based on the results presented for the INVNED dataset, a mutation
probability between 30% and 50% is preferred.
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Figure 5.20: Critical difference plot of INVNED Sample,,, results using various mutation probabilities.
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Figure 5.21: Average Sample,, profit returned by the best individual within a simulation evolved using the

INVNED dataset and various mutation probabilities.
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Figure 5.22: Average node count of an individual evolved using the INVNED dataset and various mutation
probabilities.

PO
35006 1l =i

T
e iy
==+ | — -

SEING

30006

1504 abe

25009

uaol woid
47

sy

i
20/
7 Ya
i,

Zv
—1/
/=
-----4"

7,

i

%
27

7

‘|Ll-'-”ﬂlﬂ‘

35000

30000

25000

20000

15000

Figure 5.23: 3D Perspective plot of the mean INVNED Sample;, profit results using various mutation probabil-
ities.
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Figure 5.24: Scatter plot plotting returned profit using INVNED dataset and various mutation probabilities.
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Figure 5.24: Scatter plot plotting returned profit using INVNED dataset and various mutation probabilities
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Figure 5.24: Scatter plot plotting returned profit using INVNED dataset and various mutation probabilities
(Cont.).

The results of the trading rules evolved using the INVREM dataset are presented in Figure 5.27. The
trading rules evolved for the INVREM dataset performed similar to the rules evolved for the INVNED
dataset. Figure 5.27 shows that only those trading rules evolved with a mutation probability between
30% and 90% reached an average best Sample;, profit greater than 30000. Like INVNED, the trading
rules evolved using a mutation probability between 30% and 50% produced more consistent Sample;,
results than the trading rules evolved using a mutation probability between 60% and 90%.

Figure 5.28 shows that the best Sample,,, performing trading rules were evolved using a mutation
probability of 20% followed by 30%, 40%, 50% and 60%. Although the average best individual trading
rules evolved with a mutation probability of 20% did not exceed a Sample;, profit of 30000, the aver-
age Sample;, population profit did. Furthermore, a mutation probability of 20% resulted in a smaller

Sample,,; o as presented in Table 5.21. Based on the observed results of the trading rules evolved for
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the INVREM dataset, a mutation probability between 20% and 50% is preferred.
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Figure 5.25: Critical difference plot of INVREM Sample,,, results using various mutation probabilities
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Figure 5.26: 3D Perspective plot of the mean INVREM Sample;, profit results using various mutation probabil-
ities.
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Figure 5.27: Scatter plot plotting returned profit using INVREM dataset and various mutation probabilities.



Chapter 5.

Genetic Program For Trading Rules

131

Average Profit [cents] Average Profit [cents] Average Profit [cents]

Average Profit [cents]

30000

20000

10000

30000

20000

10000

30000

20000

10000

30000

20000

10000

40 %

20 .30 40
Generation

(e) Mutation probability set at 40%
50 %

50

10 20 30 40 50
Generation
(f) Mutation probability set at 50%
60 %
10 20 30 40 50
Generation
(g) Mutation probability set at 60%
70 %
10 20 .30 40 50
Generation

(h) Mutation probability set at 70%

Population

In Sample
Best Individual
- In Sample

- Selectign Sample
Out of Sample

Population

In Sample
Best Individual
- In Sample

- Selectign Sample
Out of Sample

Population

In Sample
Best Individual
- In Sample

- Selectiopn Sample
- Out of Sample

Population

In Sample
Best Individual
- In Sample

- Selectign Sample
- Out of Sample

Figure 5.27: Scatter plot plotting returned profit using INVREM dataset and various mutation probabilities
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Figure 5.27: Scatter plot plotting returned profit using INVREM dataset and various mutation probabilities
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Figure 5.28: Average Sample,,; profit returned by the best individual within a simulation evolved using the

INVREM dataset and various mutation probabilities.
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Figure 5.29: Average node count of an individual evolved using the INVREM dataset and various mutation

probabilities.

The results of the trading rules evolved using the INVSBK dataset are presented in Figure 5.31. The
figure shows that the best Sample,,; profit was returned by the trading rules evolved using a mutation
probability of 60%. The critical difference graph in Figure 5.30 found no critical difference between
the Sample,,; results returned by the trading rules evolved using a mutation probability between 20%
and 90%. The p-values presented in Figure 5.8e found no significant difference between the results
obtained by the trading rules evolved using a mutation probability between 20% and 90%. The Sample;,
results presented in Figure 5.33 and Figure 5.32 show that a mutation probability of 30% generated the
best performing Sample;, trading rules. Only the trading rules evolved with a mutation probability of
10%, 20%, and 30% produced an average population Sample;, profit greater than 25000. A mutation
probability between 30% and 90% evolved the trading rules with an average best individual Sample;,
profit greater than 25000. The difference between the average best individual Sample;, profit and

the average population Sample;, profit is the smallest for the trading rules evolved using a mutation

probability between 10% and 40%.
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Figure 5.30: Critical difference plot of INVSBK Sample,,, results using various mutation probabilities.
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