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Abstract

A semi-autogenous grinding mill is simulated with gradient and non-gradient based extremum seeking controllers to
maximize the mill performance using grind curves. Grind curves map the essential performance measures of a grinding
mill to the mill load and rotational speed. The curves vary with the changes in the feed ore characteristic but show generic
parabolic features with extremums. The extremum seeking controllers search along the unknown input-output map to
steer the process towards an unknown optimum. In this study, a classical perturbation-based method, a time-varying
parameter estimation-based method and the Nelder-Mead simplex method are employed as extremum seeking control
(ESC) methods to search along the grind curves to either optimize the mill throughput or grind by means of manipulating
the mill feed or rotational speed. The proposed extremum seeking controller could reduce the need for a plant operator
to manually select the optimal operating conditions that maximize the performance measures of a grinding mill. Since
the controller is agnostic to the process model, the grinding mill can be optimised without the need for a detailed process
model. The simulated results show that the extremum seeking controllers steer the mill operating conditions toward
the steady-state optimum and can be used to satisfy operational objectives. However, the slow grinding mill dynamics
result in a long convergence rate when the initial conditions are far from the optimal operating conditions.
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1. Introduction

Mineral processing consists of several operations to
liberate and concentrate the valuable minerals within ore
material for further metallurgical extraction processes to
produce a useable product. Comminution is the primary
stage within a mineral processing plant where the larger
run-of-mine ore material is reduced to fine particles
through crushing or grinding to liberate the valuable
minerals within the ore. The comminution stage plays
an important role as the product quality influences the
effectiveness of the subsequent downstream operations,
and hence the economic value of the concentrate product
that is sold to a smelter [1–3].

Consistent product quality from the grinding mill is
desired to achieve effective separation in downstream pro-
cesses to produce a high grade concentrate and minimize
the valuable minerals that are lost to the tailings. There-
fore, the ore material must be sufficiently ground to a spe-
cific particle size, while also maximizing the rate at which
the ore is processed. Over-grinding produces a product
that may be too fine for separation, a decrease in through-
put and an increase in energy consumption. However, the
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throughput can be increased at the expense of the product
quality due to the decreased ore breakage inside the mill.
Consequently, this results in a reduced recovery rate at
the separation processes. A poor recovery rate, increased
energy consumption or decreased throughput contribute
to diminishing economic gains [4]. An inverse relationship
exists between the throughput and the grind quality and a
trade-off has to be considered between the interrelated op-
erational objectives: improve the grind quality, maximize
the throughput, and decrease the power consumption to
maximize profit [5].

In run-of-mine mineral processing plants, the feed ore
composition is regularly changing and the feed ore char-
acteristics such as hardness of the ore and size distribu-
tion vary [6, 7]. For semi-autogenous grinding (SAG) mills
the grinding media is made up of feed ore and steel balls.
Changes in the feed ore characteristics affect the break-
age rate of the ore which influences the performance of
the grinding mill [8]. Grinding mill circuits are challeng-
ing to operate manually and to run at optimal operat-
ing conditions due to the complex process behaviour, vari-
ous unknown disturbances, and strongly-coupled variables
[9]. Therefore, manually ensuring that the process is op-
erating at suitable operating conditions to maximize the
economic gain would require extensive knowledge of pro-
cess behaviour and frequent monitoring to compensate for
disturbances. In mineral processing plants, a significant
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Fig. 1: Economic performance of a grinding mill as a function of
the operating conditions.

source of economic loss is typically attributed to poorly
chosen operating conditions and further losses are due to
the deviations from the chosen operating conditions [10].

In the absence of an optimising controller, the plant
operator is responsible for choosing suitable operating con-
ditions for the grinding mill. Insufficient knowledge of
the process behaviour in addition to the unknown time-
varying factors such as the feed ore variation can lead to
sub-optimal operation of the grinding mill.

Two surveys published in 2009 and 2017 [5, 11], high-
light the necessity to push for automation within the min-
eral processing industry. About 30% of the respondents
indicated that an operator action occurs at least every 10
minutes and about 20% indicated that the operators are
constantly busy ensuring a safely run and profitable opera-
tion [11]. The majority of the operator actions (∼50%) be-
ing made are changes in the process operating conditions.
Therefore, there is an incentive to employ an adaptive real-
time optimization controller. The controller would ensure
that the process is tracking the optimal operating condi-
tions while satisfying the operational objectives. The op-
timizer would ideally operate in a region nearer to the op-
timal operating region compared to the periodic setpoint
choices of a plant operator as illustrated in Fig. 1.

Adaptive control can be separated into model-based,
partially model-based or model-free methods and is use-
ful in applications where there are variations in process
dynamics, parameter uncertainties, disturbances or to im-
prove and optimize processes [12, 13]. The advantage of
adaptive control is that the controller is able to utilize
online measurements as feedback to directly manipulate
process variables to compensate for unknown parameters
or disturbances.

Model-based methods are efficient for optimization as
the information of the plant behaviour is exploited and
used to maximize the performance of the controller to
achieve good transient performance. However, developing
an accurate model for the complex, non-linear behaviour
of a grinding mill is difficult and time-consuming, and re-
quires plant data for validation. Furthermore, for model-

based optimization where plant-model mismatch exists,
the optimal inputs are only optimal for the model and
not necessarily the process itself.

In contrast, model-free adaptive control methods do
not use any explicit knowledge of the process dynamics.
The method is entirely data-driven based on online mea-
surements from the process. The process is governed by
an adaptive update control law that steers the process
to optimize an objective function. However, the lack of
knowledge of the process behaviour suggests that model-
free methods are perhaps better suited for use as optimiza-
tion controllers that compensate for slowly varying process
parameters.

In this paper, model-free adaptive control methods
are used to optimize grinding mill performance and are
referred to as extremum seeking methods. Extremum
seeking control (ESC) is a class of adaptive control tech-
niques used to search for the unknown optimal inputs of a
process to maximize (or minimize) an objective function
through available measurements. Many extremum seeking
methods have been proposed to optimize processes such as
perturbation-based ESC [14], sliding mode ESC [15–17],
Newton-based ESC [18, 19], numerical optimization ESC
[20], estimation-based ESC [21], proportional-integral
(PI) ESC [22] and least-squares ESC [23, 24] are just
some examples of the development of extremum seeking
techniques over the years. The advancement of the
ESC techniques aims to improve upon the challenges
associated with model-free methods such as the slow
convergence rate to the optimum. The application of
ESC has extended to various industrial fields such as
automotive applications, process control, controller design
and optimization, and energy conversion [20]. Examples
of extremum seeking applied to optimize grinding circuits
in the mineral processing industry are illustrated in
[25–27].

A perturbation-based ESC being used on an input-
constrained closed grinding mill circuit is illustrated in
[25]. The work considers both the problems associated
with regulation for setpoint tracking and throughput op-
timization by maximizing the feed rate of ore material,
and also proves the stability of multivariable ESC. Other
implementations of extremum seeking techniques, referred
to as peak seeking methods have also been employed to
optimize grinding circuit performance [26, 27]. The idea
is based on the assumption that the maximum through-
put of a grinding mill is achieved at maximum power con-
sumption [26]. Therefore, the throughput is maximized
with a peak-seeking optimizer to manipulate the mill load
filling up to the point where the grinding mill operates at
maximum power consumption. However, as later observed
in [27], the maximum throughput of the mill is generally
achieved below the peak power consumption. The authors
of [27] implemented an improved peak-seeking algorithm
on a grinding circuit which drives the mill load filling to
a point before the peak power consumption and the mill
operates closer to the throughput peak.
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Grind curves are useful for ESC as they establish the
relationships that are observed between the throughput,
grind, and power consumption of a mill to the mill filling
and rotational speed. Grind curves furthermore indicate
where the extremum exists for these performance variables
and are parabolic [28–30]. The significance of grind curves
is well understood in industry, but their use as part of
an ESC strategy is yet to be formalized. A suitable ESC
framework can be developed for a general grinding mill
circuit that can allow for the optimization of operational
objectives, such as maximizing the throughput or grind
quality. It would not be necessary to develop explicit grind
curves for the mill as the ESC strategy is model-free and
only relies on the fact that an extremum exists.

Following the control framework for a grinding circuit
presented in [4], a typical process control system would
consist of an economic optimizer operating at the highest
level, followed by a supervisory control layer and lastly, a
regulatory control layer. The need for developing the opti-
mization control layer is indicated by the lack of advanced
control technologies implemented in industry [11]. Most
processing plants primarily use proportional-integral-
derivative (PID) control (∼90%) and less than 40% of
the plants have expanded to implementing advanced
control methods, such as model predictive control (MPC)
[11]. A significant amount of research for controlling
grinding circuits is specifically focused on using MPC
as a supervisory controller [31–35]. There is however
limited research that addresses the development of the
optimization control layer [9]. An ESC could operate
at the optimization layer and steer the process variables
such as the mill filling or speed towards a neighbourhood
of the steady-state optimum. These operating conditions
are currently mostly set manually.

The contribution of this paper is to demonstrate the
value of grind curves combined with ESC as a means to
optimize the performance of a grinding mill. For min-
eral processing plants that do not use a relatively consis-
tent stockpile of ore material, the optimum is time-varying
due to feed ore variation. Continuously optimizing the
throughput, grind or both can be achieved with ESC by
directly using the manipulated variables related to the per-
formance indicators of grind curves.

This paper differs from the optimization strategy de-
scribed in [26] and [27] where the optimizer uses the power
consumption measurements and manipulation of mill load
to indirectly maximize throughput. However, this strat-
egy does not guarantee that the optimal throughput is
achieved when the mill speed varies. For different mill
speeds, the difference between the peak power consump-
tion and throughput does not vary linearly with the mill
load [30]. Therefore, tracking the maximum throughput
based on power consumption measurements can result in
sub-optimal operating conditions if both the mill load and
speed is manipulated as is done in this paper. In contrast,
[25–27] only use the mill load as a manipulated variable to
optimize the mill performance.

Grinding
mill

Mill inlet water
(uw)

Mill feed ore
(uo)

Mill feed balls
(ub)

Mill rotational speed
(uφ)

Mill power (PM )

Mill filling (JT )

Throughput (Qs)

Grind (ψ)

Fig. 2: A semi-autogenous (SAG) mill.

The paper explores several ESC optimization strate-
gies using either the mill load, mill rotational speed
or both, as single-input and multiple-input cases, to
maximize the throughput, grind or a combination of the
two with a weighted objective function. Three extremum
seeking optimization methods are considered: a classical
perturbation-based method and a time-varying parameter
estimation method, which are gradient-based, and a
non-gradient based Nelder-Mead simplex method.

The paper is structured as follows. The grinding pro-
cess is described in Section 2, grind curves are discussed
in Section 3, and the process model used to simulate the
plant is shown in Section 4. The extremum seeking meth-
ods are presented in Section 5. Section 6 demonstrates the
application of ESC with simulated results of several opti-
mization scenarios. The paper is concluded in Section 7.

2. Process description

A SAG mill is illustrated in Fig. 2. The nomencla-
ture is shown in Table 1. The mill receives three streams:
mined ore (uo), water (uw), and steel balls (ub). The mill
charge is a mixture of grinding media and slurry. Grinding
media refers to the steel balls and rocks which break the
ore and slurry refers to the mixture of solids and water.
The fraction of the mill filled with charge is denoted by
JT .

Table 1: Description of comminution circuit variables.

Variable Unit Description

JT [-] Fraction of mill volume filled with charge
PM [kW] Mill power draw
Qw [m3/h] Water discharge flow rate
Qs [m3/h] Solids discharge flow rate
Qf [m3/h] Fines discharge flow rate
ρo [t/m3] Ore density
ψ [-] Grind (volume fraction of particles in dis-

charge < 150 µm)
ub [t/h] Feed rate of steel balls
uo [t/h] Feed rate of ore
uw [m3/h] Flow rate of feed water
uφ [-] Fraction of critical mill speed
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Grinding mills rotate along their longitudinal axis and
the rotational speed is expressed as a fraction of the crit-
ical mill speed (uφ). The critical mill speed is defined as
the rotational speed where the centrifugal forces acting
on the mill charge particles is equal to the gravitational
force. Therefore, at the critical mill speed the mill charge
travels along the mill shell, instead of cascading inside the
mill. At sub-critical mill speeds, the rotating shell of the
mill creates a cascading motion of charge inside the mill
which causes the ore to break through impact breakage,
abrasion, and attrition. The ground ore in the mill mixes
with water to create a slurry which discharges through an
end-discharge grate. Ore too large to pass through the
end-discharge grate are referred to as rocks and must be
broken further. All ore small enough to pass through the
end-discharge grate are referred to as solids. The flow rate
of solids and water discharging from the mill is given by
Qs and Qw respectively. Qs is the volumetric throughput
of solids through the mill and is equal to uo/ρo at steady-
state where ρo is the ore density.

The aim of the grinding mill is to grind the ore to
below a specification size, e.g., 150 µm. The mill grind
(ψ) is the volume fraction of material in the discharge of
the mill below the specification size. The broken ore below
the specification size is referred to as fines. Note, whereas
solids refer to all ore small enough to discharge from the
mill, fines refer to the portion of solids smaller than the
specification size. The discharge flow rate of fines from the
mill is given by Qf .

Grinding mills are typically operated to maximize Qs
while keeping the grind particle size within an accept-
able range. The net revenue generated from an increased
throughput is often perceived to exceed the economic value
that could be generated from the losses incurred in the sep-
aration process due to the decreased grind quality. How-
ever, depending on the market and ore availability it could
be beneficial to maintain a set throughput and minimize
the product particle size variation to increase recovery
rates [4, 36, 37]. The mill charge is primarily controlled
to achieve the desired throughput by manipulating uo and
uw. However, in situations where the feed ore hardness or
size varies and the mill charge cannot be effectively con-
trolled to compensate for the disturbances, manipulating
uφ adds an additional degree of freedom to control Qs or
ψ [34, 38].

3. Grind curves

The performance indicators of a grinding mill are
throughput (Qs), grind (ψ) and power consumption (PM ).
Grind curves describe the relationships between these
performance indicators as a function of the mill filling
(JT ) and mill speed (uφ) [29]. A notable characteristic
of grind curves is that they are parabolic and indicate
the peaks of the performance indicators as the mill load
is varied for different constant mill speeds. Importantly,
as the feed ore characteristics such as hardness vary,

the peaks of the performance indicators shift while the
parabolic trend is preserved for different ore types [28, 39].
Grind curves can be used to [29]:

� act as reference for operating the grinding circuit
when the feed ore characteristics vary,

� identify the optimum mill filling for a given mill ro-
tational speed to meet the operational objectives for
throughput or grind, and

� operate the mill at a stable region.

The issue with using grind curves as a reference for
operating the mill are twofold. Firstly, manually oper-
ating the grinding mill based on grind curves would re-
quire that for each ore type there is already a set of grind
curves that have been established. The grind curves are
obtained by progressively stepping through a range of op-
erating conditions and allowing the mill to reach steady-
state for each step. This is a costly and time-consuming
task [30]. Secondly, if the feed ore characteristic varies, the
operator would have to be aware of the change and make
the necessary changes to ensure that the mill is operat-
ing at the new optimum. Therefore, it can be beneficial if
an adaptive control system is implemented that searches
along the grind curves in real-time to locate the unknown
peak. Therefore, such a control system would implicitly
use the knowledge that grind curves are parabolic to steer
the grinding mill toward an optimum.

Grind curve data from an industrial mill is presented
in [29]. The peaks of the grind curves in [29] are provided
in Table 2 and are used to fit the performance indica-
tors as quadratic polynomials in terms of JT for each uφ.
Subsequently, the performance indicators are fit as cubic
polynomials in terms of uφ [34].

Fig. 3 illustrates the grind curves of [29] and indicates
where the curves are extrapolated outside the measured
range of the industrial mill. The 3-D surface maps of the
grind curves in Fig. 3 are shown Fig. 4. Interestingly, the
optimum Qs and ψ occur at similar values of JT when
uφ = 0.75. However, this is not the case for lower val-
ues of uφ. The surface maps of the grind curves clearly
indicates the trade-off that has to be made when optimiz-
ing either Qs or ψ. Assuming that JT is kept constant,
an increase in Qs can be achieved by increasing uφ at the
cost of a decrease in ψ, and vice-versa. Alternatively, by
maintaining uφ constant, Qs is maximized by increasing
JT up to an extreme after which Qs begins to decrease. If

Table 2: Performance indicator peaks from [29] as illustrated in
Fig. 3.

Mill speed Throughput Grind Power

uφ[-] JT [-] Qs [m3/h] JT [-] ψ [-] JT [-] PM [kW]

0.75 0.35 157.0 0.33 0.56 0.39 4037
0.70 0.31 120.7 0.37 0.69 0.47 4028
0.65 0.23 93.3 0.58 0.94 0.55 3931
0.60 0.18 96.7 0.63 1.00 0.54 3603
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the mill charge begins to accumulate, less breakage occurs
and Qs is reduced. Maximizing ψ is usually not as benefi-
cial as there is a maximum acceptable grind quality after
which the product is too fine for the separation process to
perform optimally [4]. In addition, because over-grinding
wastes energy, it is common for the operational objectives
of a grinding mill circuit to maximize Qs until the mini-
mum acceptable ψ is achieved. The acceptable grind size
is usually chosen based on the grain size of the valuable
minerals which minimizes the grinding effort required to
liberate the minerals from the gangue [1].

4. Grinding mill

The SAG mill in Fig. 2 is described with a dynamic
non-linear model [40]. The model is fit to the grind curve
data from [29] using the step-wise procedure described in
[41]. The model produces a realistic dynamic and steady-
state response over a wide range of operating conditions
which is suitable for testing an extremum seeking con-
troller in search of an unknown optimum. In other words,
ESC is agnostic to the simulation model of the plant. A
brief overview of the simulation model in [41] is presented
here.

4.1. Model description

The state-space description of the model is,

ẋ = f(t,x,u), (1a)

y = h(t,x,u), (1b)

where the state vector is x = [xw, xs, xr, xf ]T , the input
vector is u = [uw, uo, uφ]T , and the output vector is y =
[JT , PM , Qs, ψ, βws]

T . The state equations are,

ẋw = uw −Qw, (2a)

ẋs = (1− αr)
uo
ρo
−Qs +Qrc, (2b)

ẋr = αr
uo
ρo
−Qrc, (2c)

ẋf = αf
uo
ρo
−Qf +Qfp, (2d)

where xw, xs, xr and xf represent the volume of water,
solids, rocks, and fines in the grinding mill respectively, αf
is the fraction of fines in uo, and αr is the fraction of rocks
in uo. Qrc is the rock consumption and Qfp is the fines
produced which is defined in (11a) and (11b) respectively.
The grinding mill discharge flow rates are defined as,

Qw = dqxwϕ

(
xw

xs + xw

)
, (3a)

Qs = dqxwϕ

(
xs

xs + xw

)
, (3b)

Qf = dqxwϕ

(
xf

xs + xw

)
, (3c)

where dq is the discharge rate constant. The volume of the
water to solids ratio in the discharged slurry is denoted by
βws. It is used in [41] in a feedback loop to maintain a con-
stant slurry density and from (3a) and (3b) it is equivalent
to,

βws =
Qw
Qs

. (4)

A ratio equal to βws = 1.5 indicates that the slurry consists
only of water and if βws = 0, the slurry is a non-flowing
mud. The grind of the mill is defined as a ratio of the
discharged flow rate of the fines to the solids,

ψ =
Qf
Qs

. (5)

The fraction of the total mill filled with charge is,

JT =
xw + xs + xr + xb

Vmill
, (6)

where xb is the volume of steels balls in the mill and Vmill
is the total internal volume of the mill. The mill power
consumption is modelled as a function of JT and uφ,

PM (JT , uφ) =Pmax(uφ)

(
1− δs

(
ϕ

ϕN
− 1

)
2

)
−Pmax(uφ)

(
δv

(
JT

JT,Pmax(uφ)
− 1

)
2

) (7)

where δv and δs is the power change parameter for the
volume of mill filled and for the volume fraction of solids
in the slurry respectively, ϕ is the rheology factor, and ϕN
is the normalization factor. JT,Pmax(uφ) is a parameterized
function of the fraction of the mill filled at maximum power
draw given by,

JT,Pmax(uφ) = −7.52u2φ + 9.06uφ − 2.18, (8)

and Pmax(uφ) [kW] is a parameterized function of the
maximum mill power consumption given by,

Pmax(uφ) =
(
−2.70u2φ + 3.92uφ − 1.02

)
× 104. (9)

The empirical rheology factor (ϕ) is given by,

ϕ =


√

1− xs
xw

(
ε−10 − 1

)
, if

xs
xw
≤
(
ε−10 − 1

)−1
0 , if

xs
xw

>
(
ε−10 − 1

)−1 (10)

where ε0 is the maximum fraction of solids by volume of
slurry at zero slurry flow.

The grinding operation consumes grinding media, re-
sulting in the production of fine and solid particles. The
ball filling (xb) is assumed to be kept constant during the
grinding operation. The rock consumption (Qrc) and fines
produced (Qfp) functions are defined as,

Qrc =
PM (JT , uφ)

ρoKrc(JT , uφ)× 106
, (11a)
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Qfp =
PM (JT , uφ)

ρoKfp(JT , uφ)× 106
, (11b)

where the factorsKrc andKfp are functions which indicate
the energy required per tonne of rocks consumed and fines
produced respectively,

Krc(JT , uφ) =
(−0.478u3φ − 3.06u2φ + 1.55uφ − 0.183)J3

T

+(2.68u3φ + 5.13u2φ − 2.92uφ + 0.355)J2
T

+(−3.15u3φ − 2.61u2φ + 1.78uφ − 0.226)JT
+(1.05u3φ + 0.361u2φ − 0.352uφ + 0.047),

(12a)

Kfp(JT , uφ) =
(−3.73u3φ + 0.602u2φ + 0.301uφ − 0.049)J3

T

+(8.76u3φ − 1.97u2φ − 0.453uφ + 0.088)J2
T

+(−6.82u3φ + 1.91u2φ + 0.180uφ − 0.05)JT
+(1.77u3φ − 0.581u2φ − 0.007uφ + 0.009).

(12b)

4.2. Model simulation

4.2.1. Dynamics response

A step response of the plant (Fig. 5) is shown in Fig. 6
to demonstrate the plant dynamics and the interactions
between the performance indicators, throughput (Qs) and
grind (ψ), and the manipulated variables, mill load set-
point (JT,sp) and mill speed (uφ). The mill load (JT ) is
controlled to setpoint (JT,sp) with a PI controller by ma-
nipulating the feed ore (uo). Another PI-controller is used

to regulate the water to solids ratio at βws,sp = 0.9 by
manipulating the inlet water (uw) to ensure a constant
slurry density so that the discharge slurry from the mill is
a flowing mixture. The dynamics associated with Qs and
ψ are relatively slow, the process reaches steady-state after
approximately 2 hours when JT,sp or uφ is stepped. An in-
crease in JT increases both Qs and ψ, whereas decreasing
uφ shows a decrease in Qs and an increase in ψ.

4.2.2. Steady-state response

The steady-state step response of the model is shown
in Fig. 7. The 3-D surface maps of Qs, ψ and PM
are obtained by sweeping the model over the range
JT ∈ [0.20, 0.45] and uφ ∈ [0.60, 0.75] starting from
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PI

Qs

ψ

βws

JT

uφ

JT,sp

βws,sp

uo

uw

PM

-
+

-
+

Fig. 5: Block diagram of the feedback control loops of the grinding
mill.
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Fig. 7: 3-D surface map of the steady-state plant model response.

(JT , uφ) = (0.20, 0.75).
The grind curves in Fig. 4 measured at the industrial

circuit compare well to the simulated grind curves in Fig. 7.
There is a good correlation in the maps for Qs and PM .
However, because the model extrapolates the peak posi-
tions for ψ at low uφ past the observed industrial grind
curve data, the surface map of the modelled ψ in Fig. 7
differs slightly from the surface map for ψ in Fig. 4.

5. Extremum seeking control (ESC)

Extremum seeking control (ESC) is an optimization
technique that maximizes an objective function by explor-
ing an unknown static map and steering the system to-

wards the optimal operating condition. The motive be-
hind choosing an extremum seeking method is based on
either the ease of tuning or the desired optimization per-
formance. A controller with more tuning parameters can
be more difficult to tune, but it is more likely to achieve
the desired performance. The performance indicators of
an extremum-seeking controller to consider are [42],

� Speed of convergence: the convergence rate at
which the optimization method evolves toward an
extremum.

� Domain of convergence: the region of attraction
toward an extremum. A larger domain of conver-
gence is likely to converge toward a global extremum,
whereas a smaller domain of convergence is likely to
converge toward a local extremum.

� Accuracy: the size of the neighbourhood to which
the optimized variable converges to.

5.1. Perturbation-based extremum seeking (PESC)

Perturbation-based extremum seeking (PESC) is a
gradient-search method that is dependent on a mea-
surable, convex objective function and does not rely on
the explicit knowledge of the process behaviour. PESC
employs a periodic excitation or dither signal added to the
input of the system, which is used to obtain the gradient
information of the objective function. The PESC scheme
is shown in Fig. 8 and the closed-loop system dynamics
with ESC are described by [14],

ẋ = f(t, x, θ), (13a)

y = h(t, x, θ), (13b)

˙̂
θ = kξ, (13c)

ξ̇ = −ωlξ + ωl(y − η)a sin(ωt), (13d)

η̇ = −ωhη + ωhy, (13e)

where the unknown process dynamics are described by ẋ,
y is the measurable output, and, ωl and ωh are the cut-
off frequencies for the low-pass and high-pass filters re-
spectively. The state of the high-pass filter is indicated

×

Unknown process

y

y − ηξθ̂

Integrator Low-pass filter High-pass filter

Dither signalDither amplitude

k

s

ωl

s+ ωl

s

s+ ωh

sin(ωt)a

θ ẋ = f(t, x, θ)

y = h(t, x, θ)

+
+

Fig. 8: Perturbation-based extremum seeking scheme [14].
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by η which removes the DC component or average value
from the perturbed output, resulting in the filtered out-
put, y − η. A low-pass filter is used to reduce the effects
of high-frequency noise and the estimated gradient (ξ) is
driven to zero by an integrator with gain, k. The best
estimate of the optimal input (θ̂) converges towards the
unknown optimal input. The input (θ) to the process con-

sists of the best estimate of the optimal input (θ̂) and the
periodic dither signal,

θ = θ̂ + a sin(ωt), (14)

where a and ω is the dither amplitude and frequency re-
spectively.

Applying extremum seeking to a dynamic process re-
quires a sufficient time-scale separation between the per-
turbation frequency and the process dynamics to enable
the optimizer to search through an unknown static map
[14]. Therefore, it is required that a suitable perturbation
frequency is chosen such that the process dynamics oper-
ate at the fastest time-scale, followed by the medium time-
scale dynamics of the perturbation signal, and finally the
slowest time-scale for the optimization. A slow perturba-
tion signal is necessary to avoid the process dynamics from
interfering with the estimation of the gradient. Therefore,
the input-output relationship of the process can be viewed
as a static plant. For the case of multiple-input, single-
output systems, additional time scale separations are re-
quired to separate the effects of each input. Consequently,
the range of ω for each input is further limited. Further,
the cut-off frequency of the high-pass and low-pass filter
should be lower than the chosen perturbation frequency,
and k needs to be chosen to be sufficiently small. The am-
plitude for the dither signal should be chosen to be larger
than the expected noise, but small enough to minimize
the perturbations that propagate to the output, such that
ESC converges to a sufficiently small neighbourhood of the
optimum. Due to the required time-scale separations nec-
essary for convergence, PESC has transient performance
limitations that are related to the dynamics of the process.

5.2. Time-varying parameter estimation extremum seek-
ing (TESC)

The time-varying parameter estimation extremum
seeking control (TESC) method proposed in [21] is based
on estimating the gradient as a time-varying parameter.
The method optimizes an objective function by estimating
the unknown time-varying parameter θ̂, which minimizes
the objective function. Similar to the perturbation-based
method, a dither signal is required to excite the system
and extract gradient information. However, the advantage
of TESC is that it provides additional freedom in tuning
the controller, which can achieve improved transient
performance. As opposed to PESC, the tuning of the con-
troller is not primarily limited to the tuning parameters
of the dither signal. The TESC scheme is shown in Fig. 9

ẋ = f(t, x, θ)

y = h(t, x, θ)

Σ̇, ċ, ˙̂y, ˙̂
θ

k
1

s

a sin(ωt)

e−Ktη̂(0)

Dither signal

Prediction model

Integrator

Unknown process

Gain

y

e

u

u̇

θ̂

η̂

d

+
+

-
+

Fig. 9: Time-varying parameter estimation extremum seeking
scheme (adapted from [43]).

and the closed-loop system dynamics are given by,

ẋ = f(t, x, u), (15a)

y = h(t, x, u), (15b)

K = kη1 + kη2c
T c, (15c)

u̇ = −kθ̂ + d, (15d)

˙̂
θ = Proj

{
Σ−1(c(e− η̂)− σθ̂), θ̂

}
, (15e)

˙̂y = u̇T θ̂ +Ke+ cT
˙̂
θ, (15f)

ċ = −Kc+ u̇, (15g)

˙̂η = −Kη̂, (15h)

Σ̇−1 = −Σ−1ccTΣ−1 + kTΣ−1 − 2σΣ−2, (15i)

where e = y − ŷ, is the error between the measured and
predicted output, d = α sin(ωt) is the dither signal, K is
a time-varying gain, and η̂ is the estimation error. The
combination of ŷ, c, η̂ and Σ form the prediction model
for estimating the unknown time-varying parameter. The

projection operator, Proj
{
φ, θ̂
}

is defined as,

˙̂
θ =

φ, if P(θ̂) > 0 or ∇θ̂P(θ̂)φ ≤ 0(
I − ∇θ̂P(θ̂)

T∇θ̂P(θ̂)
‖∇θ̂P(θ̂)‖2

)
φ, otherwise,

(16)

where φ = Σ−1(c(e − η̂) − σθ̂) and the function P(θ̂) is
defined as,

P(θ̂) = ||θ̂||2 − z2
θ̂
, (17)

where zθ̂ is the radius of the uncertainty set. The gradient

of P(θ̂) is given by,

∇θ̂P(θ̂) = 2θ̂T . (18)

The projection operator is used to limit the transients
of the parameter estimate within defined bounds and it
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guarantees that the unknown parameter is within the un-
certainty set θ̂ ∈ Π, ∀t > 0, providing robustness to
the prediction model. Therefore, the unknown parame-
ter converges towards its true estimate value within the
set boundary. K and kT are the optimization estimation
gains, and, kη1 and kη2 are positive constants to be as-
signed [21]. The optimization gain affects the speed of the
optimization, but it cannot be arbitrarily increased. An in-
creased gain reduces the effects of the dither signal, which
in turn affects the estimation routine. If k is chosen too
large, it can result in an oscillatory behaviour as the speed
of the process dynamics become negligible relative to the
ESC dynamics. The tuning parameter, σ, should be cho-
sen as small as possible to guarantee that the parameter
estimation routine can effectively track the time-varying
gradient. The purpose of σ is to ensure that Σ does not
become too small which would impede the estimation rou-
tine. Finally, zθ has to increase for smaller choices of σ
[43].

5.3. Simplex extremum seeking (SESC)

Simplex extremum seeking control (SESC) is based on
the Nelder-Mead simplex algorithm. It is an optimization
method that minimizes an objective function without uti-
lizing gradient information [44]. Instead, it is an iterative
direct search method that evaluates the function values of
an objective function at a set of points to form a simplex.
In each iteration the simplex is transformed by means of
either four operations: reflection, expansion, contraction
about the simplexes centroid or the simplex is shrunk. The
coefficients used to influence the effect of each operation
should satisfy,

ρ > 0, χ > 1, 0 < γ < 1, 0 < σ < 1, (19)

where ρ, χ, γ and σ are the coefficients of reflection, expan-
sion, contraction and shrinkage, respectively. The Nelder-
Mead simplex method is described in Algorithm 1. At each
step of the iteration a new vertex is computed and the ob-
jective function corresponding to the vertex is evaluated
and ranked. An operation that produces a lower objective
function value is accepted and the new point replaces the
worst performing vertex at the end of the iteration. These
operations lead to the vertices of the simplex to converge
toward a solution that minimizes the objective function.

The simplex method is applied to optimize a dynamic
process by assigning the values of the simplex vertices to
the inputs of the process and allowing a sufficient period
(Ts) for the process to reach steady-state before manipu-
lating the inputs again. However, depending on the coef-
ficients chosen, this can lead to undesired plant behaviour
such as overshooting if a step-size is too large. This is
especially important in the case of the grinding mill con-
sidered in this paper as it is sensitive to step changes in
the mill load or rotational speed [34]. The manipulated
variables transition from the previous iteration operating
point to the new operating point by interpolating between

Algorithm 1 Nelder-Mead simplex method adapted from [45].

Setup:

θ(0) ← [θ1, ..., θn] (Initial conditions)
ρ > 0, χ > 1, 0 < γ < 1, 0 < σ < 1

Initialization:
Form the initial simplex around θ(0)

v
(0)
m = θ(0) + hjm, m = 1, ..., n+ 1

where vm is a vertex of the simplex, h is a step size and j is a
unit vector in the m-th dimension.

Repeat:

Begin iteration, i
Rank the performance at each vertex such that,

J(v
(i)
1 ) < ... < J(v

(i)
n ) < J(v

(i)
n+1)

where v
(i)
1 is the best point and v

(i)
n+1 is the worst point in

the set of vertices for the current iteration.

Compute the centroid of the vertices

v̄ =

∑n
k=1 v

(i)
k

n

vr = v̄ + ρ(v̄ − v
(i)
n+1) (reflection)

if J(vr) < J(v
(i)
1 ) then

ve = vr + χ(vr − v̄ (expansion)
if J(ve < J(vr) then

v
(i+1)
n+1 = ve (accept expansion point)

else
v
(i+1)
n+1 = vr (accept reflection point)

end if
else

if J(vr) < J(v
(i)
n ) then

v
(i+1)
n+1 = vr (accept reflection point)

else
if J(vr) < J(v

(i+1)
n+1 ) then

vco = v̄ + γ(vr − v̄ (outside contraction)
if J(vco) ≤ J(vr) then

v
(i+1)
n+1 = vco (accept outside contraction point)

else
v(i+1) = v

(i)
1 + σ(v

(i)
j − v

(i)
1 ), j = 2, ..., n+ 1

(shrink)
end if

else
vci = v̄(i) − γ(v̄ − v

(i)
n+1) (inside contraction)

if J(vci) < J(v
(i+1)
n+1 ) then

v
(i+1)
n+1 = vci (accept inside contraction point)

else
v(i+1) = v

(i)
1 + σ(v

(i)
j − v

(i)
1 ), j = 2, ..., n+ 1

(shrink)
end if

end if
end if

end if
Terminate iteration

the points through a straight line function that is described
by,

x(t) =

(
xn − xp
tn − tp

)
(t− tp) + xp, (20)

where x(t) is the value of the operating point at time t,
xn and xp are the new and previous operating points re-
spectively, and tn and tp are the start time and end time
respectively, for which the ramp transition occurs. This re-
duces the aggressive plant behaviour during the transient
response between steps and produces a response without
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Table 3: Model parameter values.

Variable Value Description

αf 0.1 [-] Fraction of fines in uo
αr 0.5 [-] Fraction of rocks in uo
ρo 2.7 [t/m3] Ore density
dq 36.4 [1/h] Discharge rate constant
xb 16.4 [m3] Volumetric filling of balls in mill
Vmill 208 [m3] Total mill volume
δv 0.923 [-] Power change parameter for the volume of

mill filled
δs 0.923 [-] Power change parameter for volume frac-

tion of solids in the slurry
ϕN 0.509 [-] Rheology normalization factor
ε0 0.6 [-] Maximum fraction of solids by volume of

slurry at zero slurry flow

excessive overshoot.
The simplex method only evaluates the objective func-

tion itself and not the gradient of the function. There-
fore, SESC is robust to the presence of noise or small
variations in the objective function. The disadvantage of
SESC is that as the method converges toward the optimum
the size of the simplex decreases, effectively reducing the
magnitude of the perturbations. As the simplex size de-
creases, the method maintains the operating points at the
same conditions. If the optimum then changes the method
is unable to react accordingly and adjust the simplex to
track the new optimum. Therefore, the method has to
be reinitialized to begin tracking the new optimum. The
challenge is to identify how often this occurs, while re-
ducing the number of disturbances that occur due to the
method attempting to find the new optimum. Therefore,
the method is primarily suitable for optimizing a static
objective function. Although, it is not considered in this
paper, the method can be adapted to implement a fixed
or variable simplex size to track a time-varying optimum,
referred to as the dynamic simplex method [46]. This is
achieved by enforcing a minimum simplex size to ensure
that during run time the step size is always sufficiently
large to disturb the process and track the optimum.

An additional aspect to consider for SESC is the tuning
parameters of the simplex algorithm. For example, if the
step size for the mill load is large and the settling time (Ts)
is chosen to be sufficiently long, the mill could be uninten-
tionally driven towards an unstable operating condition.
For example, if a high mill load setpoint is assigned by the
SESC, the mill will begin to overfill and require interven-
tion to be emptied manually to resume operation.

6. Results and discussion

In this section, several strategies demonstrate the ap-
plication of the ESCs for optimizing grinding mill perfor-
mance. The parameters used to simulate the model de-
scribed in (1) to (12) are provided in Table 3. The aim
is not to determine the best extremum-seeking method,
but rather to evaluate the application of the ESCs for a

Grinding
mill

Plant

PI

PI

J(Qs, ψ)

ESC
Objective
function

Qs

ψ

βws

JT

uφ

JT,sp

βws,sp

BA

uo

uw

-
+

-
+

Fig. 10: Block diagram of the grinding mill controlled with ESC.

grinding mill and their ability to converge toward an ex-
tremum. To illustrate how the ESC steers the process
along the grind curves, the results of the ESC trajecto-
ries are projected onto the 3-D surface map of the model
response (Fig. 7) for the chosen optimized output.

The configuration of the plant with ESC is illustrated
by the block diagram in Fig. 10. The purpose of the ESC
objective function is to maximize the measured through-
put or grind of the mill,

J(Qs, ψ) = Qs (throughput optimization), (21a)

J(Qs, ψ) = ψ (grind optimization). (21b)

The ESC optimizes the mill performance by manipulating
JT,sp or uφ. If the mill load is used, the ESC perturbations
are added to JT,sp and the PI-controller aims to track the
perturbed setpoint. In comparison, the ESC can directly
perturb uφ. The configuration in Fig. 10 illustrates that
either JT,sp or uφ can be separately manipulated while the
other variable is kept constant, or both can be simultane-
ously manipulated by the ESC to steer the grinding mill. If
either of the manipulated variables are disconnected from
the ESC by opening switch A or B in Fig. 10, they are set
to a constant value.

There is no formal or systematic approach followed
to tune the ESCs to achieve a desired performance cri-
teria. Each of the ESCs were tuned through trial and
error to achieve a reasonable balance between the ESC
performance indicators discussed in Section 5. Specific at-
tention was paid to achieving good transient performance
and convergence speed, taking into consideration the pro-
cess dynamics.

The performance of the various ESC algorithms is eval-
uated and compared according to their rate of convergence.
The ESC criteria for convergence is chosen as the time it
takes for the ESC to reach and settle within a 2% threshold
of the final mean value of the objective function. The sim-
ulated results are post-processed with a moving average
filter with a window size of 10 samples so that the noise
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Table 4: SISO throughput (Qs) ESC tuning parameters.

Method Manipulated
variable

Tuning parameter values Results

PESC JT,sp k = 25, a = 0.002, ωh = 1.8 rad/h, ω = 2 rad/h, ωl = 0.1 rad/h Fig. 11
uφ k = 25, a = 0.002, ωh = 1.8 rad/h, ω = 2 rad/h, ωl = 0.1 rad/h

TESC JT,sp kT = 2, kη1 = 0.25, kη2 = 0.25, σ = 0.001, zθ = 1, a = 0.0005, ω = 0.5 rad/h, k = 0.01 Fig. 11
uφ kT = 2, kη1 = 0.25, kη2 = 0.25, σ = 0.001, zθ = 1, a = 0.0005, ω = 0.5 rad/h, k = 0.01

SESC JT,sp ρ = 0.75, χ = 2, γ = 0.6, σ = 0.6, Ts = 2 h Fig. 11
uφ ρ = 0.75, χ = 2, γ = 0.6, σ = 0.6, Ts = 2 h

does not cause the convergence criteria to be exceeded.
The final mean value is determined by averaging the ob-
jective function over the last 5-hour period of the scenario.
The earliest instance for which J remains within the 2%
threshold is used as the time taken for convergence.

6.1. Simulation environment

A sampling period of 60 seconds is used to ensure suffi-
cient representation of the dynamics of the system. White
Gaussian noise with a noise level of −10 dB is added to
Qs, and −50 dB is added to JT and ψ to evaluate the per-
formance of the ESCs subject to measurement noise. Fur-
thermore, for all the simulations the ESCs are restricted
to explore in a region that is defined by the grind curves,
JT ∈ [0.20, 0.45] and uφ ∈ [0.60, 0.75] by enforcing hard
constraints on both JT and uφ.

6.2. Single plant output optimization

In single output optimization, only one plant output is
optimized by the ESC and the other output is left uncon-
trolled. The results are shown in Figs. 11–14. The conver-
gence results and tuning parameters used are summarized
in Tables 4–11.

6.2.1. ESC perturbing a single variable (SISO)

In this section, either JT,sp or uφ is individually manip-
ulated to optimize Qs or ψ. It is assumed that switch A
or B, as shown in Fig. 10, is closed by an operator for the
purposes of this section. This configuration is referred to
as single-input-single-output (SISO) optimization in this
paper. Switch A is closed initially up until such time as
JT,sp does not change anymore, after which B is closed

Table 5: SISO throughput (Qs) optimization results. Qs1 indicates

the average peak reached with JT and Qs2 indicates the average
peak reached with uφ.

Method Average value Convergence
time

Results

PESC Qs1 = 120.3 m3/h

Qs2 = 155.9 m3/h

15.9 h
14.0 h

Fig. 11

TESC Qs1 = 120.5 m3/h

Qs2 = 154.3 m3/h

18.5 h
13.3 h

Fig. 11

SESC Qs1 = 120.3 m3/h

Qs2 = 154.8 m3/h

27.7 h
3.9 h

Fig. 11

with A open. For throughput optimization (Fig. 11) the
switchover from A to B happens at t = 50 hours, and
for grind optimization (Fig. 12) at t = 100 hours. Since
JT,sp and uφ are not simultaneously perturbed, the ESCs
do not need distinct tuning parameters between JT,sp or
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Fig. 11: Comparison of SISO throughput (Qs) optimization with
JT for t ≤ 50 hours and with uφ for t > 50 hours. The initial
conditions are indicated by #, the switchover occurring at t = 50 h
is indicated by �, and the final time conditions are indicated by ♦.
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Table 6: SISO grind (ψ) ESC tuning parameters.

Method Manipulated
variable

Tuning parameter values Results

PESC JT,sp k = 4000, a = 0.002, ωh = 1.8 rad/h, ω = 2 rad/h, ωl = 0.1 rad/h Fig. 12
uφ k = 4000, a = 0.001, ωh = 1.6 rad/h, ω = 2 rad/h, ωl = 0.05 rad/h

TESC JT,sp kT = 3, kη1 = 0.25, kη2 = 0.25, σ = 1e− 05, zθ = 1, a = 0.001, ω = 1 rad/h, k = 0.01 Fig. 12
uφ kT = 3, kη1 = 0.25, kη2 = 0.25, σ = 1e− 05, zθ = 1, a = 0.001, ω = 1 rad/h, k = 0.01

SESC JT,sp ρ = 0.6, χ = 2, γ = 0.4, σ = 0.6, Ts = 2 h Fig. 12
uφ ρ = 0.6, χ = 2, γ = 0.4, σ = 0.6, Ts = 2 h

uφ to distinguish their effects on the direction of the ob-
jective function. The results comparing the ESC methods
are shown in Figs. 11–12.

For throughput (Qs) optimization (Fig. 11), for t <=
50 hours the ESCs steer the process toward the optimum
by manipulating JT,sp. The ESCs then switch to manip-
ulate uφ for t > 50 hours and JT,sp is maintained at the
current best operating point obtained by the ESCs. The
final value reached for Qs for each method varies based on
the final value of JT,sp reached before switching from ma-
nipulating JT,sp to uφ. Therefore, each method may reach
different values of Qs at the final conditions. All three
ESC methods tend to follow the same trajectory in track-
ing the extremum for Qs along JT and then uφ. SESC
makes relatively large steps in comparison to PESC and
TESC. However, the large steps cause the method to tem-
porarily oscillate around the neighbourhood of the optimal
JT . TESC initially has a delay before it begins to converge
and manipulate JT,sp or uφ as seen in Fig. 11.

For grind (ψ) optimisation (Fig. 12), for t <= 100
hours the ESCs steer the process toward the optimum by
manipulating JT,sp. The ESCs then manipulate uφ for
t > 100 hours and JT,sp is maintained at the current best
operating point obtained by the ESCs. The final value
reached for ψ for each method varies based on the final
value of JT,sp reached. The ESCs have a longer conver-
gence time when optimizing ψ compared to Qs when per-
turbing uφ. Furthermore, as the grind approaches ψ → 0.8
when the mill speed approaches uφ → 0.6, the relationship
between uφ and ψ is relatively flat and the extracted gradi-
ent information is primarily due to the measurement noise.
SESC converges relatively quickly to the ψ peak as it is

Table 7: SISO grind (ψ) optimization results. ψ1 indicates the
average peak reached with JT and ψ2 indicates the average peak

reached with uφ.

Method Average value Convergence
time

Results

PESC ψ1 = 0.56

ψ2 = 0.77

11.1 h
150.1 h

Fig. 12

TESC ψ1 = 0.56

ψ2 = 0.79

21.9 h
97.1 h

Fig. 12

SESC ψ1 = 0.56

ψ2 = 0.81

5.5 h
14.2 h

Fig. 12

robust to measurement noise. However, PESC and TESC
take longer to converge, which can be attributed to the
effects of noise as there is an insignificant gradient change
between ψ and uφ.

If uφ is fixed, each ESC method converges to relatively
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Fig. 12: Comparison of SISO grind (ψ) optimization with JT for
t ≤ 100 hours and with uφ for t > 100 hours. The initial conditions
are indicated by #, the switchover occurring at t = 100 h is
indicated by �, and the final time conditions are indicated by ♦.
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Table 8: MISO throughput (Qs) ESC tuning parameters.

Method Manipulated
variable

Tuning parameter values Results

PESC JT,sp k = 20, a = 0.002, ωh = 1.5 rad/h, ω = 1.6 rad/h, ωl = 0.05 rad/h Fig. 13
uφ k = 20, a = 0.002, ωh = 1.8 rad/h, ω = 2 rad/h, ωl = 0.05 rad/h

TESC JT,sp kT = 1, kη1 = 0.25, kη2 = 0.25, σ = 0.001, zθ = 1, a = 0.0001, ω = 0.5 rad/h, k = 0.01 Fig. 13
uφ kT = 2, kη1 = 0.5, kη2 = 0.5, σ = 0.001, zθ = 1, a = 0.0001, ω = 0.5 rad/h, k = 0.02

SESC JT,sp ρ = 0.75, χ = 2, γ = 0.6, σ = 0.1, Ts = 2 h Fig. 13
uφ ρ = 0.75, χ = 2, γ = 0.6, σ = 0.1, Ts = 2 h

similar operating conditions to optimize Qs or ψ as shown
in Tables 5 and 7.

6.2.2. ESC with perturbing multiple variables (MISO)

In this section, JT,sp and uφ are manipulated together
(both switches A and B are closed in Fig. 10) to opti-
mize either Qs or ψ. This configuration is referred to as
multiple-input-single-output (MISO) optimization in this
paper.

For throughput (Qs) optimization (Fig. 13), all three
ESCs behave relatively similarly and uφ quickly converges
to the maximum mill speed compared to JT . There is a
strong positive correlation between Qs and uφ, where the
throughput increases as the mill speed increases. However,
the optimal JT lies between JT ∈ [0.20, 0.45] for different
values of uφ. Therefore, JT takes longer to settle within
the neighbourhood of its optimal value.

For grind (ψ) optimization (Fig. 14), PESC converges
to a different operating condition as compared to TESC
and PESC. This is due to the difference in the optimiza-
tion gains chosen for the tuning parameters for PESC (Ta-
ble 10). Due to the faster adaptation of uφ with TESC and
SESC, both of these ESC methods reach the limit of uφ
and search along JT to find the ψ peak. As the ESCs
converge to uφ → 0.60, the model response of ψ at higher
values of JT begins to flatten. The influence of noise is
sufficient to prevent the ESCs from exploring further due
to the insignificant increase in the measured ψ along the
JT axis. However, with PESC, the ESC adapts JT toward
its upper limit compared to TESC and SESC, which both
adapted uφ toward the lower limit. Therefore, uφ is used
to steer the plant toward the ψ peak once JT reached its
upper limit. In all cases, the ESCs steered the process to-
ward a higher JT and lower uφ, where the ψ peak is likely
to be located.

Careful consideration has to be given to the parame-
ters associated with the optimization speed used for each

Table 9: MISO throughput (Qs) optimization results.

Method Average value Convergence
time

Results

PESC Qs = 153.0 m3/h 85.6 h Fig. 13

TESC Qs = 153.1 m3/h 58.6 h Fig. 13

SESC Qs = 153.2 m3/h 100 h Fig. 13

perturbed input. If the tuning parameters are poorly cho-
sen for either of the inputs, the effects of the perturbed
input will be negligible on the output relative to the other
perturbed input. As a result, the ESC is likely to adapt
one of the inputs over the other. For example, similar
optimization gain values are used for PESC in the results
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Fig. 13: Comparison of MISO throughput (Qs) optimization with
both JT and uφ. The initial conditions are indicated by # and the
final time conditions are indicated by ♦.
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Table 10: MISO grind (ψ) ESC tuning parameters.

Method Manipulated
variable

Tuning parameter values Results

PESC JT,sp k = 2000, a = 0.002, ωh = 1.5 rad/h, ω = 1.6 rad/h, ωl = 0.05 rad/h Fig. 14
uφ k = 500, a = 0.002, ωh = 1.8 rad/h, ω = 2 rad/h, ωl = 0.05 rad/h

TESC JT,sp kT = 0.75, kη1 = 0.75, kη2 = 0.75, σ = 1e− 05, zθ = 1, a = 0.001, ω = 0.5 rad/h,
k = 0.01

Fig. 14

uφ kT = 1, kη1 = 0.25, kη2 = 0.25, σ = 1e− 05, zθ = 1, a = 0.001, ω = 1 rad/h, k = 0.01

SESC JT,sp ρ = 0.9, χ = 2, γ = 0.5, σ = 0.5, Ts = 4 h Fig. 14
uφ ρ = 0.9, χ = 2, γ = 0.5, σ = 0.5, Ts = 4 h

shown in Fig. 13. However, PESC tends to adapt uφ faster
compared to JT . The effects of this are not crucial for op-
timizing the process if there is only a global extremum, but
if there are multiple extremums the process could converge
toward a local extremum and operate at sub-optimal oper-
ating conditions. The results in Figs. 13 and 14 emphasize
that the ESCs do converge toward the neighbourhood of
an unknown peak. However, the initial conditions and
the tuning parameters are important to consider when ap-
plying ESC to optimize the grinding mill performance as
both these factors influence the convergence trajectory of
the ESC.

6.3. Multiple plant output optimization

The strategies mentioned thus far demonstrate that ex-
tremum seeking can operate the grinding mill at an ex-
tremum for either Qs or ψ. However, optimizing for one
of the outputs leaves the other output at a suboptimum
operating point.

From a practical perspective, optimizing ψ at the cost
of significantly reducing Qs or vice-versa may not be ideal
in meeting operational objectives. Depending on the mar-
ket value of the valuable minerals produced, it could also
be beneficial to maximize ψ while processing a sufficient
amount of ore material (Qs). The inverse relationship that
exists between Qs and ψ indicates that a balance between
both outputs has to be considered to maximize profits [47].
This section addresses the ways in which ESC can be ap-
plied to avoid the observed decreased performance shown
in the single output optimization cases. In multiple output
optimization, both outputs are considered when optimiz-
ing the mill performance with ESC. The results are shown
in Figs. 16–20. The convergence results and tuning pa-
rameters used are summarized in Tables 12–17.

Table 11: MISO grind (ψ) optimization results.

Method Average value Convergence
time

Results

PESC ψ = 0.84 137.87 h Fig. 14

TESC ψ = 0.80 82.9 h Fig. 14

SESC ψ = 0.81 106.9 h Fig. 14

6.3.1. ESC with a weighted objective function

In this section, an optimization strategy is proposed to
optimize the mill performance with the use of a weighted
objective function using the control configuration shown
in Fig. 10 with switches A and B closed. Both Qs and
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Fig. 14: Comparison of MISO grind (ψ) optimization with both JT
and uφ. The initial conditions are indicated by # and the final
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Table 12: Single input, weighted objective PESC tuning parameters.

Method Manipulated
variable

Tuning parameter values Results

PESC JT,sp k = 2000, a = 0.001, ωh = 1.2 rad/h, ω = 1.4 rad/h, ωl = 0.05 rad/h Fig. 16
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Fig. 15: Contribution of JQs and Jψ to J with λ = 0.5.

ψ are scaled using min-max normalization to ensure that
both outputs contribute relatively equally in magnitude
across the range of JT and uφ. The objective function is
formulated as,

J(Qs, ψ) = λJQs + (1− λ)Jψ, (22a)

JQs =
Qs −Qs,min

Qs,max −Qs,min
, (22b)

Jψ =
ψ − ψmin

ψmax − ψmin
, (22c)

where Qs,min = 0 m3/h, Qs,max = 158 m3/h, ψmin = 0.5,
and ψmax = 0.93, which are chosen based on the the-
oretically smallest and largest values obtained from the
grind curves (Fig. 4). These values could also be chosen
based on the design specifications of the grinding mill. The
weighting factor is denoted by λ and is used to adjust the
contribution of Qs or ψ to the objective function, J . To
illustrate the contribution of JQs or Jψ for an equal weight-

Table 13: Single input, weighted objective PESC optimization
results.

λ Average value Convergence
time

Results

0.4 Qs = 57.09 m3/h

ψ = 0.83

J = 0.60

112.6 h Fig. 16

0.5 Qs = 75.92 m3/h

ψ = 0.78

J = 0.57

68.4 h Fig. 16

0.6 Qs = 85.3 m3/h

ψ = 0.75

J = 0.56

55.0 h Fig. 16

ing of λ = 0.5, the 3-D surface of the objective function is
shown in Fig. 15.

The results of the weighted objective function opti-
mization strategy are shown only for PESC in Fig. 16,
where the ESC perturbs only a single variable, JT,sp, to
maximize the weighted objective function. The advantage
of employing a weighted objective function is that only a
single variable is necessary for the ESC to achieve a bal-
ance between Qs and ψ and meet operational objectives.
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Fig. 16: Single input, weighted objective PESC optimization. The
3-D surface maps of J vary as the value of λ is adjusted. The initial
conditions are indicated by # and the final time conditions are
indicated by ♦.
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Table 14: MIMO throughput (Qs) ESC tuning parameters.

Method Manipulated
variable

Tuning parameter values Results

PESC JT,sp k = 20, a = 0.002, ωh = 1.8 rad/h, ω = 2 rad/h, ωl = 0.1 rad/h Fig. 18

TESC JT,sp kT = 2, kη1 = 0.25, kη2 = 0.25, σ = 0.001, zθ = 1, a = 0.0005, ω = 0.5 rad/h, k = 0.01 Fig. 18

SESC JT,sp ρ = 0.8, χ = 2, γ = 0.5, σ = 0.5, Ts = 2 h Fig. 18

Grinding
mill

Plant

PI

PI

J(Qs, ψ)

ESC
Objective
function

Qs

ψ

βws

JT
JT,sp

βws,sp

PIψsp

+
−

+
−

+
−

Fig. 17: Block diagram of the grinding mill with the throughput
(Qs) optimized with ESC and the grind (ψ) is regulated at setpoint.

Using the weighted objective function to optimize a pro-
cess with multiple outputs would be beneficial if there are
fewer inputs than there are outputs. This would be the
case if, for example, the grinding mill is not equipped with
a variable speed drive to vary uφ. In this case, JT is used
to optimize for both Qs and ψ, but with the inverse re-
lationship between the outputs, the plant operator would
have to consider a trade-off between Qs and ψ.

Employing the weighted objective function would mean
that the performance of Qs or ψ does not drastically de-
crease as is seen in the single output optimization results.
Instead, λ is used as a parameter to reach an acceptable
Qs or ψ, and the ESC would track the extremum of the ob-
jective function. However, in order to effectively balance
between Qs and ψ, some prior knowledge of the unknown
grind curves would be necessary to choose a suitable value
for λ. For example, the plant operator cannot explicitly

Table 15: MIMO throughput (Qs) optimization results.

Method Average value Convergence
time

Results

PESC Qs = 113.7 m3/h

ψ = 0.70

41.9 h Fig. 18

TESC Qs = 115.0 m3/h

ψ = 0.70

52.3 h Fig. 18

SESC Qs = 114.7 m3/h

ψ = 0.70

39.7 h Fig. 18

choose the value of Qs or ψ that the grinding mill will op-
erate at by choosing λ. It is also not a linear relationship
as can be seen in Fig. 16 and Table 13. The measured
Qs and ψ do not scale proportionally with λ. Further,
the grind curves are time-varying due to varying feed ore
characteristics, which could affect the contribution of JQs
and Jψ over time.
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Fig. 18: Comparison of MIMO throughput (Qs) optimization with
JT and ψ is controlled at setpoint with uφ. The black dashed line
on the 3-D surface maps indicates the operating conditions
(JT and uφ) where ψsp = 0.7. The initial conditions are indicated
by # and the final time conditions are indicated by ♦.
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Table 16: MIMO grind (ψ) ESC tuning parameters.

Method Manipulated
variable

Tuning parameter values Results

PESC JT,sp k = 4000, a = 0.002, ωh = 1.8 rad/h, ω = 2 rad/h, ωl = 0.1 rad/h Fig. 20

TESC JT,sp kT = 3, kη1 = 0.25, kη2 = 0.25, σ = 1e− 05, zθ = 1, a = 0.0001, ω = 1 rad/h, k = 0.01 Fig. 20

SESC JT,sp ρ = 0.6, χ = 2, γ = 0.5, σ = 0.5, Ts = 2 h Fig. 20
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Fig. 19: Block diagram of the grinding mill with the grind (ψ)
optimized with ESC and the throughput (Qs) is regulated at
setpoint.

6.3.2. ESC with paired control

Paired multi-input-multi-output (MIMO) control en-
sures that the operational objectives are satisfied while
optimizing the process by utilizing the mill variables JT
and uφ to optimize Qs or ψ. The strategy pairs an output
to be optimized (Qs or ψ) with one of the manipulated
variables (JT,sp or uφ) to the ESC, while the other output
is paired to the remaining manipulated variable and con-
trolled to setpoint by a regulatory controller as shown in
Figs. 17 and 19. This strategy is useful when considering
the environmental issues associated with the comminution
stage. From an environmental perspective, there is a sig-
nificant amount of valuable minerals that could be lost to
the tailings in the separation process if the grind quality
is poor. Most commonly, the mill is operated to maximize
Qs while achieving the minimum acceptable ψ. Therefore,

Table 17: MIMO grind (ψ) optimization results.

Method Average value Convergence
time

Results

PESC ψ = 0.74

Qs = 99.88 m3/h

54.2 h Fig. 20

TESC ψ = 0.75

Qs = 99.97 m3/h

31.8 h Fig. 20

SESC ψ = 0.75

Qs = 99.94 m3/h

16.6 h Fig. 20

to reduce the waste of valuable minerals lost to waste or
if the market demand leans toward a high-grade concen-
trate, it would be beneficial to achieve an increased ψ as
opposed to maximizing Qs. The paired control strategy
enables the processing plant to satisfy operational objec-
tives for either Qs or ψ while maximizing the net economic
benefit.
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Fig. 20: Comparison of MIMO grind (ψ) optimization with JT and
Qs is controlled at setpoint with uφ. The black dashed line on the
3-D surface maps indicates the operating conditions (JT and uφ)
where Qs,sp = 100 m3/h. The initial conditions are indicated by #
and the final time conditions are indicated by ♦.
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The results for both scenarios where ψ or Qs is regu-
lated at setpoint is shown in Figs. 18 and 20, respectively.
In both cases, the regulatory controllers and the ESCs op-
erate together without significantly hindering each other’s
performance. The regulatory controllers are able to drive
the outputs to their setpoints, while the ESCs track the
extremum along the operating conditions given by the set-
points.

6.4. Choosing an ESC

Choosing an ESC to optimize the grinding mill perfor-
mance is based on several factors such as speed of conver-
gence, accuracy, and ease of tuning. PESC is simple to
tune. However, the convergence performance of PESC is
limited to the dynamics of the plant. Furthermore, the
dither signal amplitude should be large enough to over-
power the effects of noise, but it should also not be too
large such that it causes excessive variations in the mea-
sured output.

TESC is favourable as a dither-based extremum seek-
ing method due to the smaller dither signal that can be
used. For most of the simulated results, the amplitude of
the dither signal used for TESC was an order of magni-
tude smaller than the amplitude for the dither signal used
in PESC. Furthermore, TESC does not have tuning pa-
rameters that are necessarily limited to the dynamics of
the process, but it does have the most tuning parameters
(8) when compared to PESC (5) and SESC (4). The TESC
method can be more difficult to tune as it has more pa-
rameters and requires a better fundamental understanding
of the ESC method than the PESC and SESC methods.

SESC is favourable as a dither-free extremum seeking
method due to the lack of perturbations. However, the
lack of gradient information indicates that the controller
will not continue to operate near optimal conditions if the
extremum is time-varying. The SESC method does also
require basic knowledge of the plant dynamics to ensure
a sufficient amount of time for the plant to settle. If the
settling time chosen is too long, the plant will unnecessar-
ily operate sub-optimally until it reaches the extremum.
However, if the settling time is too short, the method will
not be able to effectively steer the plant toward the ex-
tremum. Furthermore, SESC is robust to measurement
noise since the method operates on the functional value
of the objective function rather than the gradient infor-
mation. Additionally, if the SESC tuning parameters are
not conservatively chosen, it can cause the ESC to require
large step changes that push the system close to or beyond
the acceptable operating boundaries.

7. Conclusion

This paper investigates several optimization strategies
to improve grinding mill performance by manipulating the
mill load or speed. The single output optimization results
show that ESC is useful in steering the process towards

an extremum for a single output. However, this results
in poor performance for the other outputs that are not
optimized. The weighted objective function and the paired
control strategies show that ESC can be useful to not only
steer the process toward an optimum, but also satisfy the
operational objectives for a grinding mill.

Although the grind curves are not time-varying in the
simulated results, they are time-varying in practice due to
feed ore variations. ESCs are beneficial as they can au-
tomatically and continuously track extremums and main-
tain process performance near optimal operating condi-
tions. However, this is only achieved through gradient-
based methods (PESC and TESC) that can adapt based
on the changes measured in the objective function. SESC
is only able to track an extremum for the initial period
until it converges, after which the method maintains its
current operating conditions and does not adjust them ac-
cordingly in the event of disturbances. In that case, the
operating conditions are no longer optimal and the SESC
needs to be reinitialized by an operator.

The simulation results given in this paper show that
the ESCs have relatively long convergence times. This is
acceptable if the feed ore characteristics do not frequently
change. The convergence times depend on a number of
factors, including the initial conditions chosen and the dy-
namics of the process in question. A plant operator can
reduce the convergence time by choosing a good initial set
of operating conditions based on prior knowledge. The
focus of this paper was however not on the convergence
times of the ESCs, but rather on their ability to steer the
process toward an unknown optimum from different initial
conditions.
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[14] M. Krstić, H. Wang, Design and stability analysis of extremum
seeking feedback for general nonlinear systems, Proceedings of
the 36th IEEE Conference on Decision and Control 2 (1997)
1743–1748.

[15] S. Korovin, V. Utkin, Using sliding modes in static optimization
and nonlinear programming, Automatica 10 (5) (1974) 525–532.
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[17] L. Fu, Ümit Özgüner, Extremum seeking with sliding mode gra-
dient estimation and asymptotic regulation for a class of non-
linear systems, Automatica 47 (12) (2011) 2595–2603.

[18] W. H. Moase, C. Manzie, M. J. Brear, Newton-like extremum-
seeking part I: Theory, Proceedings of the 48th IEEE Confer-
ence on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference (2009) 3839–3844.
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[25] X. Lu, M. Krstić, T. Chai, J. Fu, Hardware-in-the-loop multi-
objective extremum-seeking control of mineral grinding, IEEE
Transactions on Control Systems Technology 29 (2021) 961–971.

[26] O. G. Pauw, R. P. King, K. C. Garner, P. C. van Aswegen, The
control of pebble mills at Buffelsfontein Gold Mine by use of a
multivariable peak-seeking controller, Journal of the Southern
African Institute of Mining and Metallurgy (1985) 89–96.

[27] I. K. Craig, D. G. Hulbert, G. Metzner, S. P. Moult, Optimized
multivariable control of an industrial run-of-mine milling cir-
cuit, Journal of the Southern African Institute of Mining and
Metallurgy 92 (1992) 169–176.

[28] M. S. Powell, S. Morrell, S. Latchireddi, Developments in the
understanding of South African style SAG mills, Minerals En-
gineering 14 (2001) 1143–1153.

[29] A. P. van der Westhuizen, M. S. Powell, Milling curves as a tool

for characterising SAG mill performance, in: Proceedings of the
International Conference on Autogenous and Semi-Autogenous
Grinding Technology, Vancouver, B.C., Canada, 2006, pp. 217–
232.

[30] M. S. Powell, A. P. van der Westhuizen, A. N. Mainza, Ap-
plying grindcurves to mill operation and optimisation, Minerals
Engineering 22 (2009) 625–632.

[31] C. Steyn, C. Sandrock, Benefits of optimisation and model pre-
dictive control on a fully autogenous mill with variable speed,
Minerals Engineering 53 (2013) 113–123.
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