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Abstract. The concept of balance between two state preserving quan-
tum Markov semigroups on von Neumann algebras is introduced and
studied as an extension of conditions appearing in the theory of quan-
tum detailed balance. This is partly motivated by the theory of joinings.
Balance is defined in terms of certain correlated states (couplings), with
entangled states as a specific case. Basic properties of balance are de-
rived and the connection to correspondences in the sense of Connes
is discussed. Some applications and possible applications, including to
non-equilibrium statistical mechanics, are briefly explored.
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1. Introduction

Motivated by quantum detailed balance, we define and study the notion of
balance between pairs of quantum Markov semigroups on von Neumann al-
gebras, where each semigroup preserves a faithful normal state. Ideas related
to quantum detailed balance continue to play an important role in studying
certain aspects of non-equilibrium statistical mechanics, in particular non-
equilibrium steady states. See for example [2], [3] and [5]. A theory of balance
as introduced here, is therefore potentially applicable to non-equilibrium sta-
tistical mechanics. In this paper, however, we just lay the foundations by
developing the basics of a theory of balance. Non-equilibrium is only touched
on.

The papers on quantum detailed balance that most directly lead to
the work presented in this paper are [28], [29], [30] and [25]. Of particu-
lar relevance are ideas connected to standard quantum detailed balance and
maximally entangled bipartite states. Standard quantum detailed balance
conditions were mentioned in [20], but discussed and developed in [30] and
[29]. Connections to maximally entangled states were discussed in [28], [29]
and [25]. However, a number of other papers develop ideas related to stan-
dard quantum detailed balance and dualities, of which [13], [14] and [50]
contributed to our line of investigation.

The theory of balance can be viewed as being parallel to the theory
joinings for W*-dynamical systems. The latter was developed in [22, 23, 24],
and studied further in [11], for the case where the dynamics are given by
∗-automorphism groups. Some aspects of noncommutative joinings also ap-
peared in [60] and [44] related to entropy, and in [33] related to certain ergodic
theorems. In [46] results closely related to joinings were presented regarding
a coupling method for quantum Markov chains and mixing times.

The theory of joinings is already a powerful tool in classical ergodic
theory (see the book [37] for an exposition), which is what motivated its
study in the noncommutative case. Analogously, we expect a theory of bal-
ance between quantum Markov semigroups to be of use in the study of such
semigroups.

The definition of balance is given in Section 2, along with relevant math-
ematical background, in particular regarding the definition of a dual of certain
positive maps. Couplings of states on two von Neumann algebras are also de-
fined there, essentially being states on compound systems reducing to the
states of the individual systems.

In Section 3 we show how couplings lead to unital completely positive
(u.c.p.) maps from one von Neumann algebra to another. Of central impor-
tance in this regard, is the diagonal coupling of two copies of the same state.
In certain standard special cases of states on the algebra B(H), with H a
finite dimensional or separable Hilbert space, the diagonal coupling is the
maximally entangled bipartite state compatible with the single system states
(see Subsection 7.2), indicating a close connection between these u.c.p. maps
and entanglement. These u.c.p. maps and diagonal couplings play a key role
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in developing the theory of balance. This is related to [11, Section 4], although
in the latter, certain assumptions involving modular groups are built into the
framework, while analogous assumptions are not made in the definition of
balance leading to the theory developed in this paper.

Section 4 gives a characterization of balance in terms of intertwinement
with the u.c.p. maps defined in Section 3. The role of KMS-duals and the
special case of KMS-symmetry are also briefly discussed in the context of
symmetry of balance. Two simple applications are then given to illustrate
the use of balance. One is to characterize an ergodicity condition in a way
analogous to the theory of joinings (Proposition 4.8). The other is on the
convergence of states to steady states in open quantum systems and non-
equilibrium statistical mechanics (Proposition 4.9).

The development of the theory of balance continues in Section 5, where
balance is shown to be transitive, using the composition of couplings. The
definition and properties of such compositions are treated in some detail. The
connection to correspondences in the sense of Connes is also discussed. The
connection of correspondences to joinings was already pointed out in [11] and
[44, Section 5].

Next, in Section 6, we discuss a quantum detailed balance condition
(namely standard quantum detailed balance with respect to a reversing op-
eration, from [30] and [29]) in terms of balance. Based on this, we briefly
speculate on non-equilibrium steady states in the context of balance.

We turn to a simple example to illustrate a number of the ideas from
this paper in Section 7.

In the final section, possible further directions of study are mentioned.

2. The definition of balance

This section gives the definition of balance, but for convenience and complete-
ness also collects some related known results that we need in the formulation
of this definition as well as later on in the paper. Some of the notation used
in the rest paper is also introduced.

In this paper we consider systems defined as follows:

Definition 2.1. A system A = (A,α, μ) consists of a faithful normal state μ
on a (necessarily σ-finite) von Neumann algebra A, and a unital completely
positive (u.c.p.) map α : A→ A, such that μ ◦ α = μ.

Remark 2.2. Note that we only consider a single u.c.p. map, since throughout
the paper we can develop the theory at a single point in time. This can then
be applied to a semigroup of u.c.p. maps by applying the definitions and
results to each element of the semigroup separately (also see Remarks 2.6,
2.11, 4.5 and 6.6, Proposition 4.9, and Section 7).

In the rest of the paper the symbols A, B and C will denote systems
(A,α, μ), (B, β, ν) and (C, γ, ξ) respectively. The unit of a von Neumann
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algebra will be denoted by 1. When we want to emphasize it is the unit of,
say, A, the notation 1A will be used.

Without loss of generality, in this paper we always assume that these
von Neumann algebras are in the cyclic representations associated with the
given states, i.e. the cyclic representation of (A, μ) is of the form (Gμ, idA,Λμ),
where Gμ is the Hilbert space, idA denotes the identity map of A into B(Gμ),
and Λμ is the cyclic and separating vector such that μ(a) = 〈Λμ, aΛμ〉.

The dynamics α of a system A is necessarily a contraction, since it is
positive and unital (see for example [12, Proposition II.6.9.4]). Furthermore,
α is automatically normal. This is due to the following result:

Theorem 2.3. LetM and N be von Neumann algebras on the Hilbert spaces H
and K respectively, and consider states on them respectively given by μ(a) =
〈Ω, aΩ〉 and ν(b) = 〈Λ, bΛ〉, with Ω ∈ H and Λ ∈ K cyclic vectors, i.e.
MΩ = H and NΛ = K. Assume that ν is faithful and consider a positive
linear (but not necessarily unital) η :M → N such that

ν(η(a)∗η(a)) ≤ μ(a∗a)

for all a ∈M . Then it follows that η is normal, i.e. σ-weakly continuous.

Results of this type appear to be well known, so we omit the proof. This
result applies to a system A, since from the Stinespring dilation theorem [62]
one obtains Kadison’s inequality α(a)∗α(a) ≤ α(a∗a) for all a ∈ A, i.e. α is
a Schwarz mapping; see for example [12, Proposition II.6.9.14].

A central notion in our work is the dual of a system, defined as follows:

Definition 2.4. The dual of the system A, is the system A′ = (A′, α′, μ′)
where A′ is the commutant of A (in B(Gμ)), μ

′ is the state on A′ given by
μ′(a′) = 〈Λμ, a′Λμ〉 for all a′ ∈ A′, and α′ : A′ → A′ is the unique map such
that

〈Λμ, aα′(a′)Λμ〉 = 〈Λμ, α(a)a′Λμ〉
for all a ∈ A and all a′ ∈ A′.

Note that in this definition we have

μ′ = μ ◦ jμ
where

jμ := Jμ(·)∗Jμ (1)

with Jμ the modular conjugation associated to μ.
The dual of a system is well-defined because of the following known

result:

Theorem 2.5. Let H and K be Hilbert spaces, M a (not necessarily unital) ∗-
subalgebra of B(H), and N a (not necessarily unital) C*-subalgebra of B(K).
Let Ω ∈ H with ‖Ω‖ = 1 be cyclic for M , i.e. MΩ is dense in H, and let
Λ ∈ K be any unit vector. Set

μ :M → C : a 
→ 〈Ω, aΩ〉
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and
ν : N → C : b 
→ 〈Λ, bΛ〉 .

Consider any positive linear η : M → N , i.e. for a positive operator a ∈ M ,
we have that η(a) is a positive operator. Assume furthermore that

ν ◦ η = μ.

Then there exists a unique map, called the dual of η,

η′ : N ′ →M ′

such that
〈Ω, aη′(b′)Ω〉 = 〈Λ, η(a)b′Λ〉

for all a ∈ M and b′ ∈ N ′. The map η′ is necessarily linear, positive and
unital, i.e. η′(1) = 1, and ‖η′‖ = 1. Furthermore the following two results
hold under two different sets of additional assumptions:

(a) If η is n-positive, then η′ is n-positive as well. In particular, if η is
completely positive, then η′ is as well.

(b) If M and N contain the identity operators on H and K respectively,
and η is unital (i.e. η(1) = 1), then it follows that

μ′ ◦ η′ = ν′,

where μ′(a′) := 〈Ω, a′Ω〉 and ν′(b′) := 〈Λ, b′Λ〉 for all a′ ∈M ′ and b′ ∈ N ′. If
in addition Λ is separating for N ′, then η′ is faithful in the sense that when
η′(b′∗b′) = 0, it follows that b′ = 0.

Proof. This is proven using [21, Lemma 1 on p. 53]. See [1, Proposition 3.1]
and [8, Theorem 2.1]. �

Strictly speaking one should say that η′ is the dual of η with respect to
μ and ν, but the states will always be implicitly clear.

In particular, with M = N = A and Ω = Λ = Λμ, we see from this
theorem that the dual of the system A is well-defined.

Remark 2.6. If instead of the single map α we have a semigroup of u.c.p.
maps (αt)t≥0 leaving μ invariant, then α′

t ≡ (αt)
′ also gives a semigroup of

u.c.p. maps leaving μ′ invariant. The continuity or measurability properties
of this dual semigroup (as function of t) will depend on those of αt. Consider
for example the standard assumption made for (continuous time) quantum
Markov semigroups, namely that t 
→ αt(a) is σ-weakly continuous for every
a ∈ A. Then it can be shown that t 
→ ϕ(α′

t(a
′)) is continuous for every

a′ ∈ A′ and every normal state ϕ on A′, so t 
→ α′
t(a

′) is σ-weakly continuous
for every a′ ∈ A′. I.e. (α′

t)t≥0 is also a quantum Markov semigroup (with the
same type of continuity property). If we were to include these assumptions in
our definition of a system, then the dual of such a system would therefore still
be a system. Our example in Section 7 will indeed be for semigroups indexed
by t ≥ 0, with even stronger continuity properties. Also, see for example the
dynamical flows considered in [8], where weaker assumptions are made.

It is helpful to keep the following fact about duals in mind:
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Corollary 2.7. If in addition to the assumptions in Theorem 2.5 (prior to
parts (a) and (b)), we have that M and N are von Neumann algebras, η is
unital and Λ is cyclic for N ′, then we have

η′′ = η.

Proof. This follows directly from the theorem itself, since η′′ : M → N is
then the unique map such that 〈Λ, b′η′′(a)Λ〉 = 〈Ω, η′(b′)aΩ〉 for all a ∈ M
and b′ ∈ N ′, while we know (again from the theorem) that 〈Λ, b′η(a)Λ〉 =
〈Ω, η′(b′)aΩ〉 for all a ∈M and b′ ∈ N ′. �

We also record the following simple result:

Proposition 2.8. If in Theorem 2.5 we assume in addition that μ and ν are
faithful normal states on von Neumann algebras M and N (so Ω and Λ are
the corresponding cyclic and separating vectors), then

(jν ◦ η ◦ jμ)′ = jμ ◦ η′ ◦ jν
for the map jν ◦ η ◦ jμ :M ′ → N ′ obtained in terms of Eq. (1).

Proof. It is a straightforward calculation to show that

〈Ω, a′jμ ◦ η′ ◦ jν(b)Ω〉 = 〈Λ, jν ◦ η ◦ jμ(a′)bΛ〉
for all a′ ∈M ′ and b ∈ N . �

This proposition is related to KMS-duals and KMS-symmetry which
appear in Sections 4 and 6 via the following definition:

Definition 2.9. The map ησ := jμ ◦ η′ ◦ jν : N → M in Proposition 2.8 will
be referred to as the KMS-dual of the positive linear map η :M → N .

Combining Corollary 2.7 and Proposition 2.8, we see that

(ησ)σ = η. (2)

Further remarks and references on the origins of KMS-duals can be found in
Section 4.

Let us now finally turn to our main concern in this paper:

Definition 2.10. Let μ and ν be faithful normal states on the von Neumann
algebras A and B respectively. A coupling of (A, μ) and (B, ν), is a state ω
on the algebraic tensor product A
B′ such that

ω(a⊗ 1) = μ(a) and ω(1⊗ b′) = ν′(b′)

for all a ∈ A and b ∈ B′. We also call such an ω a coupling of μ and ν. Let A
and B be systems. We say that A and B (in this order) are in balance with
respect to a coupling ω of μ and ν, expressed in symbols as

AωB,

if

ω(α(a)⊗ b′) = ω(a⊗ β′(b′))
for all a ∈ A and b′ ∈ B′.
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Notice that this definition is in terms of the dual B′ rather than in
terms of B itself. To define balance in terms of ω(α(a)⊗ b) = ω(a⊗β(b)), for
a ∈ A and b ∈ B, turns out to be a less natural convention, in particular with
regards to transitivity (see Section 5). Also, strictly speaking, saying that A
and B are in balance, implies a direction, say from A to B. These points
will become more apparent in subsequent sections. For example, symmetry
of balance will be explored in Section 4 in terms of KMS-symmetry of the
dynamics α and β.

Remark 2.11. For systems given by quantum Markov semigroups (αt)t≥0

and (βt)t≥0, instead of a single map for each system, we note that balance is
defined by requiring ω(αt(a)⊗ b′) = ω(a⊗ β′

t(b
′)) at every t ≥ 0.

Remark 2.12. For comparison to the theory of joinings [22, 23, 24], note that
a joining of systems A and B, with α and β ∗-automorphisms, is a state ω
on A 
 B such that ω(a ⊗ 1) = μ(a), ω(1 ⊗ b) = ν(b) and ω ◦ (α 
 β) = ω.
In addition [11] also assumes that ω ◦ (σμt 
 σνt ) = ω, where σμt and σνt are
the modular groups associated to μ and ν. In [11], however, it is formulated
in terms of the opposite algebra of B, which is in that sense somewhat closer
to the conventions used above for balance.

3. Couplings and u.c.p. maps

Here we define and study a map Eω associated to a coupling ω. This map is
of fundamental importance in the theory of balance, as will be seen in the
next two sections. We do not consider systems in this section, only couplings.
At the end of Section 5 we discuss how Eω appears in the theory of corre-
spondences. Some aspects of this section and the next are closely related to
[11, Section 4] regarding joinings (see Remark 2.12).

Let ω be a coupling of (A, μ) and (B, ν) as in Definition 2.10. To clarify
certain points later on in this and subsequent sections, we consider multiple
(but necessarily unitarily equivalent) cyclic representations of a given von
Neumann algebra and state. This requires us to have corresponding notations.
We assume without loss of generality that (B, ν) is in its cyclic representation,
denoted here by (Gν , idB ,Λν), which means that (Gν , idB′ ,Λν) is a cyclic
representation of (B′, ν′). Similarly, we assume that (A, μ) is in the cyclic
representation (Gμ, idA,Λμ).

Denoting the cyclic representation of (A 
 B′, ω) by (Hω, πω,Ωω), we
obtain a second cyclic representation (Hμ, πμ,Ωμ) of (A, μ) by setting

Hμ := πω(A⊗ 1)Ωω, πμ(a) := πω(a⊗ 1)|Hμ
and Ωμ := Ωω (3)

for all a ∈ A, since

〈Ωμ, πμ(a)Ωμ〉 = 〈Ωω, πω(a⊗ 1)Ωω〉 = ω(a⊗ 1) = μ(a).

Similarly

Hν := πω(1⊗B′)Ωω, πν′(b′) := πω(1⊗ b′)|Hν
and Ων := Ωω (4)
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for all b′ ∈ B′, gives a second cyclic representation (Hν , πν′ ,Ων) of (B′, ν′).
In particular Hμ and Hν are subspaces of Hω.

We can define a unitary equivalence

uν : Gν → Hν (5)

from (Gν ,idB′ ,Λν) to (Hν , πν′ ,Ων) by

uνb
′Λν := πν′(b′)Ων

for all b′ ∈ B′. Then
πν′(b′) = uνb

′u∗ν (6)

for all b′ ∈ B′. By setting

πν(b) := uνbu
∗
ν (7)

for all b ∈ B, we also obtain a second cyclic representation (Hν , πν ,Ων) of
(B, ν), which has the property

πν(B)′ = πν′(B′)

as is easily verified.
Let

Pν ∈ B(Hω)

be the projection of Hω onto Hν .

Proposition 3.1. In terms of the notation above, we have

u∗νι
∗
Hν
πω(a⊗ 1)ιHνuν = u∗νPνπω(a⊗ 1)uν ∈ B

for all a ∈ A, where ιHν : Hν → Hω is the inclusion map, and ι∗Hν
: Hω → Hν

its adjoint.

Proof. Note that Pν = ι∗Hν
, so indeed u∗νι

∗
Hν
πω(a ⊗ 1)ιHν

uν = u∗νPνπω(a ⊗
1)uν . We now show that this is in B.

For any b′ ∈ B′ we have πω(1⊗b′)H⊥
ν ⊂ H⊥

ν , since πω(1⊗b′∗)Hν ⊂ Hν .
It follows that Pνπω(1⊗ b′) = πω(1⊗ b′)Pν . Therefore

Pνπω(a⊗ 1)|Hν
πν′(b′) = Pνπω(a⊗ 1)πω(1⊗ b′)|Hν

= Pνπω(1⊗ b′)πω(a⊗ 1)|Hν

= πω(1⊗ b′)Pνπω(a⊗ 1)|Hν

= πν′(b′)Pνπω(a⊗ 1)|Hν

for all a ∈ A and b′ ∈ B′. So Pνπω(a ⊗ 1)|Hν ∈ πν′(B′)′ = πν(B). Hence
u∗νPνπω(a⊗ 1)uν ∈ B by Eq. (7). �

This proposition proves part of the following result, which defines the
central object of this section, namely the map Eω : A→ B.

Theorem 3.2. In terms of the notation above we have the following well-
defined linear map

Eω : A→ B : a 
→ u∗νι
∗
Hν
πω(a⊗ 1)ιHν

uν (8)
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which is normal and completely positive. It has the following properties:

Eω(1) = 1

‖Eω‖ = 1

ν ◦ Eω = μ (9)

Proof. The map a 
→ πω(a⊗1) is completely positive, since it is a ∗-homomorphism.
Therefore Eω is completely positive, as it is the composition of the completely
positive maps a 
→ πω(a⊗ 1), ι∗Hν

(·)ιHν and u∗ν(·)uν .
From Eq. (8) we have Eω(1) = u∗νι

∗
Hν
ιHν

uν = 1 as well as ‖Eω‖ ≤ 1,
thus it follows that ‖Eω‖ = 1. Furthermore,

ν ◦ Eω(a) = 〈Λν , Eω(a)Λν〉 = 〈Ωω, πω(a⊗ 1)Ωω〉 = ω(a⊗ 1) = μ(a)

for all a ∈ A.
Lastly, Kadison’s inequality, Eω(a)

∗Eω(a) ≤ Eω(a
∗a), holds, since Eω

is a completely positive contraction, so ν(Eω(a)
∗Eω(a)) ≤ ν(Eω(a

∗a)) =
μ(a∗a), for all a ∈ A. Hence, Eω is normal, due to Theorem 2.3. �

Remark 3.3. The map a 
→ πω(a⊗ 1) itself can also be shown to be normal
(see for example the proof of [11, Theorem 3.3]).

We proceed by discussing some further general properties of Eω which
will be useful for us later.

The map Eω is closely related to the diagonal coupling of ν with itself,
which we now define: Let


B : B 
B′ → B(Gν)

be the unital ∗-homomorphism defined by extending 
B(b ⊗ b′) = bb′ via
the universal property of tensor products. Here B(Gν) is the von Neumann
algebra of all bounded linear operators Gν → Gν . Now set

δν(d) = 〈Λν , 
B(d)Λν〉 (10)

for all d ∈ B 
 B′. Then δν is a coupling of ν with itself, which we call
the diagonal coupling for ν. In terms of this coupling we have the following
characterization of Eω which will often be used:

Proposition 3.4. The map Eω is the unique function from A to B such that

ω(a⊗ b′) = δν(Eω(a)⊗ b′)

for all a ∈ A and b′ ∈ B′.

Proof. We simply calculate:

δν(Eω(a)⊗ b′) = 〈Λν , Eω(a)b′Λν〉 = 〈Λν , u∗νPνπω(a⊗ 1)uνb
′Λν〉

= 〈PνΩν , πω(a⊗ 1)πν′(b′)Ων〉
= 〈Ων , πω(a⊗ b′)Ων〉 = ω(a⊗ b′)

for all a ∈ A and b′ ∈ B′. Secondly, suppose that for some b1, b2 ∈ B we have
δν(b1⊗b′) = δν(b2⊗b′) for all b′ ∈ B′. Then 〈b∗1Λν , b′Λν〉 = 〈b∗2Λν , b′Λν〉 for all
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b′ ∈ B′, so b∗1Λν = b∗2Λν , since B
′Λν is dense in Gν . But Λν is separating for

B, hence b1 = b2. Therefore Eω is indeed the unique function as stated. �

This has four simple corollaries:

Corollary 3.5. If ω1 and ω2 are both couplings of μ and ν, then ω1 = ω2 if
and only if Eω1

= Eω2
.

Corollary 3.6. The map Eω is faithful in the sense that if Eω(a
∗a) = 0, then

a = 0.

Proof. If Eω(a
∗a) = 0, then μ(a∗a) = ω((a∗a) ⊗ 1) = δν(Eω(a

∗a) ⊗ 1) = 0,
but μ is faithful, hence a = 0. �

The latter also follows from Theorem 2.5(b) and E′′
ω = Eω.

The next corollary is relevant when we consider cases of trivial balance,
i.e. balance with respect to μ
 ν′, and will be applied toward the end of the
next section, in relation to ergodicity:

Corollary 3.7. Let ω be a coupling of (A, μ) and (B, ν). If ω = μ 
 ν′, then
Eω(a) = μ(a)1B for all a ∈ A. Conversely, if Eω(A) = C1B, then ω = μ
ν′.

Proof. If ω = μ 
 ν′, then Eω(a) = μ(a)1B follows from Proposition 3.4.
Conversely, again using Proposition 3.4, if Eω(A) = C1B , then ω(a⊗ b′)1B =
δν(Eω(a) ⊗ b′)1B = Eω(a)δν(1 ⊗ b′) = Eω(a)ν

′(b′). In particular, setting
b′ = 1, Eω(a) = μ(a)1B , so ω = μ
 ν′. �

Corollary 3.8. We have ω = δν if and only if Eω = idB.

Next we point out that u.c.p. maps from A to B with specific additional
properties can be used to define couplings:

Proposition 3.9. Let μ and ν be faithful normal states on the von Neumann
algebras A and B respectively. Consider a linear map E : A→ B and define
a linear functional ωE : A
B′ → C by

ωE := δν ◦ (E 
 idB′),

i.e.

ωE(a⊗ b′) = δν(E(a)⊗ b′)

for all a ∈ A and b ∈ B′. Then ωE is a coupling of μ and ν if and only if E
is completely positive, unital and ν ◦ E = μ. In this case E = EωE

.

Proof. Consider a completely positive linear map E : A→ B. Then E
 idB′

is positive, so ωE is positive, since δν is. If we furthermore assume that E
is unital, then ωE(1 ⊗ 1) = 1, so ωE is a state. Assuming in addition that
ν ◦ E = μ, we conclude that ωE(a ⊗ 1) = ν(E(a)) = μ(a) and ωE(1 ⊗ b′) =
ν′(b′), so ωE is indeed a coupling of μ and ν. Because of Proposition 3.4
we necessarily have E = EωE

. The converse is covered by Theorem 3.2 and
Proposition 3.4. �
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So in effect we can define couplings as maps E of the form described in
this proposition.

Lastly we study the dual E′
ω of Eω, given by Theorem 2.5. Given a

coupling ω of μ and ν, we define

ω′ := δμ′ ◦ (E′
ω 
 idA) : B

′ 
A→ C

where δμ′(d′) := 〈Λμ, 
A′(d′)Λμ〉 for all d′ ∈ A′ 
 A, i.e. δμ′(a′ ⊗ a) =
〈Λμ, a′aΛμ〉. Since E′

ω is a u.c.p. map, it then follows, using Theorem 2.5,
Proposition 3.9 and Proposition 3.4, that ω′ is a coupling of ν′ and μ′ such
that

ω′(b′ ⊗ a) = ω(a⊗ b′) (11)

for all a ∈ A and b′ ∈ B′.

Proposition 3.10. In terms of the above notation we have

E′
ω = Eω′ : B′ → A′

and

Eω′(b′) = u∗μι
∗
Hμ
πω(1⊗ b′)ιHμ

uμ

for all b′ ∈ B′, where uμ : Gμ → Hμ is the unitary operator defined by

uμaΛμ := πμ(a)Ωμ

for all a ∈ A, ιHμ : Hμ → Hω is the inclusion map, and ι∗Hμ
: Hω → Hμ its

adjoint.

Proof. That E′
ω = Eω′ , follows from the definition of ω′ and Proposition 3.4

applied to ω′ and δμ′ instead of ω and δν .

Note that uμ is defined in perfect analogy to uν in Eq. (5): As the cyclic
representation of (B′ 
A,ω′) we can use (Hω, πω′ ,Ωω) with πω′ defined via

πω′(b′ ⊗ a) := πω(a⊗ b′)

(and the universal property of tensor products) for all b′ ∈ B′ and a ∈ A.
Then, referring to the form of Eq. (4), we see that in the place of (Hν , πν′ ,Ων)

we have (Hμ, πμ,Ωμ), as we would expect, since πω′(1⊗A)Ωω = πω(A⊗ 1)Ωω =
Hμ, πω′(1⊗ a)|Hμ = πω(a⊗ 1)|Hμ = πμ(a) and Ωμ = Ωω for all a ∈ A.

So uμ plays the same role for Eω′ as uν does for Eω, i.e. by definition
(see Theorem 3.2)

Eω′(b′) = u∗μι
∗
Hμ
πω′(b′ ⊗ 1)ιHμ

uμ = u∗μι
∗
Hμ
πω(1⊗ b′)ιHμ

uμ

for all b′ ∈ B′. �

We are now in a position to apply Eω to balance in subsequent sections.
Also see Section 8 for brief remarks on how Eω may be related to ideas from
quantum information.
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4. A characterization of balance

In this section we derive a characterization of balance in terms of the map Eω
from the previous section, and consider some of its consequences, including
a condition for symmetry of balance in terms of KMS-symmetry. This gives
insight into the meaning and possible applications of balance. We continue
with the notation from Section 3.

The dynamics α of a system A can be represented by a contraction U
on Hμ defined as the unique extension of

Uπμ(a)Ωμ := πμ(α(a))Ωμ (12)

for a ∈ A. Note that U is indeed a contraction, since from Kadison’s inequality
mentioned in Section 2, we have μ(α(a)∗α(a)) ≤ μ(a∗a). (It is also simple
to check from the definition of the dual system that U∗ is the corresponding
representation of α′ on Hμ.) Similarly

V πν(b)Ων := πν(β(b))Ων

for all b ∈ B, to represent β on Hν by the contraction V .

Also set

Pω := Pν |Hμ
: Hμ → Hν , (13)

where Pν is again the projection of Hω onto Hν . Note that from Eqs. (8) and
(7) it follows that

Pωπμ(a)Ωμ = πν(Eω(a))Ων (14)

for all a ∈ A, so Pω is a Hilbert space representation of Eω.

The characterization of balance in terms of Eω is the following:

Theorem 4.1. For systems A and B, let ω be a coupling of μ and ν. Then
AωB, i.e. A and B are in balance with respect to ω, if and only if

Eω ◦ α = β ◦ Eω
holds, or equivalently, if and only if PωU = V Pω.

Proof. We prove it on Hilbert space level. Note that Pω as defined in Eq. (13)
is the unique function Hμ → Hν such that 〈Pωx, y〉 = 〈x, y〉 for all x ∈ Hμ

and y ∈ Hν . (This is a Hilbert space version of Proposition 3.4, but it follows
directly from the definition of Pω.)

Assume that A and B are in balance with respect to ω. Then, for
x = πμ(a)Ωω ∈ Hμ and y = πν′(b′)Ωω ∈ Hν , where a ∈ A and b′ ∈ B′,

〈PωUx, y〉 = 〈Ux, y〉 = 〈πω(α(a)⊗ 1)Ωω, πω(1⊗ b′)Ωω〉
= 〈Ωω, πω(α(a∗)⊗ b′)Ωω〉 = ω(α(a∗)⊗ b′)

= ω(a∗ ⊗ β′(b′)) = 〈πω(a⊗ 1)Ωω, πω(1⊗ β′(b′))Ωω〉
= 〈x, V ∗y〉 = 〈Pωx, V ∗y〉 = 〈V Pωx, y〉
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which implies that PωU = V Pω. Therefore, using Eqs. (8), (3) and (7), and
since uνΛν = Ωω,

Eω ◦ α(a)Λν = u∗νPωπμ(α(a))Ωω = u∗νPωUπμ(a)Ωω
= u∗νV Pωπμ(a)Ωω = u∗νV uνEω(a)u

∗
νΩω

= u∗νV πν(Eω(a))Ωω = u∗νπν(β ◦ Eω(a))Ωω
= β ◦ Eω(a)Λν

but since Λν is separating for B, this means that Eω ◦ α(a) = β ◦ Eω(a).
Conversely, if Eω ◦ α = β ◦ Eω, then by Eq. (14),

PωUπμ(a)Ωμ = Pωπμ(α(a))Ωω = πν(Eω(α(a)))Ωω

= πν(β ◦ Eω(a))Ωω = V πν(Eω(a))Ωω

= V Pωπμ(a)Ωμ

so PωU = V Pω. Therefore, similar to the beginning of this proof,

ω(α(a∗)⊗ b′) = 〈PωUx, y〉 = 〈V Pωx, y〉 = ω(a∗ ⊗ β′(b′))

for all a ∈ A and b′ ∈ B′, as required. �

Remark 4.2. This theorem can be compared to the case of joinings in [11,
Theorems 4.1 and 4.3]. Keep in mind that in [11] the dynamics of systems are
given by ∗-automorphisms, and secondly an additional assumption is made
involving the modular groups (see Remark 2.12). The u.c.p. map obtained
in [11] from a joining then also intertwines the modular groups, not just the
dynamics. See [10] for closely related results.

Remark 4.3. From Theorem 4.1 one starts to see some aspects of the meaning
of balance. In particular it can be seen from Eω ◦α = β ◦Eω that part of the
dynamics of B, more precisely the restriction β|Eω(A) : Eω(A) → Eω(A) to
the space Eω(A), is given by the dynamics of A, via Eω.

Furthermore, regarding the condition PωU = V Pω, we can point the
reader to the papers [52, 26, 54], which show how the asymptotic proper-
ties of contractions on Hilbert spaces (one of the most well-studied topics
in operator theory) could be used to obtain mixing and ergodic properties
of the completely positive maps that these contractions implement spatially.
This hints at the importance of balance in ergodic theory, in particular with
regards to ergodic properties which are at least partially shared by two semi-
groups that are in balance.

A natural question is whether or not balance is symmetric. I.e., are A
and B in balance with respect to ω if and only if B and A are in balance
with respect to some coupling (related in some way to ω)? Below we derive
balance conditions equivalent to AωB, but where (duals of) the systems A
and B appear in the opposite order. This is then used to find conditions
under which balance is symmetric.

As before, let

jμ : B(Gμ) → B(Gμ) : a 
→ Jμa
∗Jμ,
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where as in the previous section we assume that (A, μ) is in the cyclic rep-
resentation (Gμ, idA,Λμ) and Jμ is the corresponding modular conjugation.
Similarly for jν .

Given a coupling ω of μ and ν, this allows us to define

ωσ := δμ ◦ (Eσω 
 idA′) : B 
A′ → C,

where
Eσω := jμ ◦ E′

ω ◦ jν : B → A

is the KMS-dual of Eω as in Definition 2.9, and δμ(d) := 〈Λμ, 
A(d)Λμ〉 for
all d ∈ A
A′, i.e. δμ(a⊗a′) = 〈Λμ, aa′Λμ〉. Since jμ is a anti-∗-automorphism,
the conjugate linear map j∗μ : B(Gμ) → B(Gμ) obtained by composing jμ
with the involution, i.e.

j∗μ(a) := jμ(a
∗)

for all a ∈ B(Gμ), is completely positive in the sense that if it is applied
entry-wise to elements of the matrix algebra Mn(A), then it maps positive
elements to positive elements for every n, just like complete positivity of
linear maps. It follows that Eσω = j∗μ ◦ E′

ω ◦ j∗ν is a u.c.p. map, since E′
ω is.

Consequently, since μ ◦ Eσω = μ′ ◦ E′
ω ◦ jν = ν′ ◦ jν = ν, it follows from

Proposition 3.9 that ωσ is a coupling of ν and μ. It is then also clear that

Eωσ = Eσω (15)

by applying Proposition 3.4.
The KMS-dual of α is given by

ασ = jμ ◦ α′ ◦ jμ (16)

and similarly for β. This means that

〈Λμ, a1jμ(ασ(a2))Λμ〉 = 〈Λμ, α(a1)jμ(a2)Λμ〉
for all a1, a2 ∈ A, which corresponds to the definition of the KMS-dual given
in [29, Section 2], in connection with quantum detailed balance. (In [29],
however, the KMS-dual is indicated by a prime rather than the symbol σ.)
Also see [56] and [53, Proposition 8.3]. In the latter the KMS-dual is defined
in terms of the modular conjugation as well, as is done above, rather than
just in terms of an analytic continuation of the modular group, as is often
done in other sources (including [29]).

Proposition 4.4. In terms of the notation above,

Aσ := (A,ασ, μ)

is a system, called the KMS-dual of A.

Proof. Simply note that ασ is indeed a u.c.p. map (by the same argument as
for Eσω above) such that μ ◦ ασ = μ′ ◦ α′ ◦ jμ = μ′ ◦ jμ = μ. �

Remark 4.5. For a QMS (αt)t≥0 with the σ-weak continuity property as in
Remark 2.6, we again have that the same σ-weak continuity property holds
for (ασt )t≥0 as well, where ασt := (αt)

σ for every t. This follows from the
corresponding property of (α′

t)t≥0.
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In terms of this notation, we have the following consequence of Theorem
4.1:

Corollary 4.6. For systems A and B, let ω be a coupling of μ and ν. Then

AωB ⇔ B′ω′A′ ⇔ BσωσAσ.

Proof. By the definition of the dual of a map in Theorem 2.5 (which tells us
that (Eω ◦α)′ = α′ ◦E′

ω, etc.), as well as Proposition 3.10 and Eqs. (15) and
(16), we have

Eω ◦ α = β ◦ Eω ⇔ Eω′ ◦ β′ = α′ ◦ Eω′ ⇔ Eωσ ◦ βσ = ασ ◦ Eωσ

which completes the proof by Theorem 4.1. �
This is not quite symmetry of balance. However, we say that the system

A (and also α itself) is KMS-symmetric when

ασ = α (17)

holds. If both α and β are KMS-symmetric, then we see that

AωB ⇔ BωσA,

which expresses symmetry of balance in this special case.
KMS-symmetry was studied in [38], [39] and [17], and in [30] it was

considered in the context of the structure of generators of norm-continuous
quantum Markov semigroups on B(H) and standard quantum detailed bal-
ance conditions.

We have however not excluded the possibility that there is some coupling
other than ωσ that could be used to show symmetry of balance more generally.
This possibility seems unlikely, given how natural the foregoing arguments
and constructions are.

We end this section by studying some simple applications of balance
that follow from Theorem 4.1 and the facts derived in the previous section.

First we consider ergodicity of a system B, which we define to mean

Bβ := {b ∈ B : β(b) = b} = C1B (18)

in analogy to the case for ∗-automorphisms instead of u.c.p. maps. This is
certainly not the only notion of ergodicity available; see for example [8] for an
alternative definition which implies Eq. (18), because of [8, Lemma 2.1]. The
definition we give here is however convenient to illustrate how balance can
be applied: this form of ergodicity can be characterized in terms of balance,
similar to how it is done in the theory of joinings (see [22, Theorem 3.3], [23,
Theorem 2.1] and [11, Theorem 6.2]), as we now explain.

Definition 4.7. A system B is said to be disjoint from a system A if the only
coupling ω with respect to which A and B (in this order) are in balance, is
the trivial coupling ω = μ
 ν′.

In the next result, an identity system is a system A with α = idA.

Proposition 4.8. A system is ergodic if and only if it is disjoint from all
identity systems.
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Proof. Suppose B is ergodic and A an identity system. If AωB for some
coupling ω, then β ◦ Eω = Eω by Theorem 4.1. So Eω(A) = C1B , since B is
ergodic. By Corollary 3.7 we conclude that ω = μ
 ν′.

Conversely, suppose that B is disjoint from all identity systems. Recall
that A := Bβ is a von Neumann algebra (see for example [11, Lemma 6.4] for
a proof). Therefore A := (A, idA, μ) is an identity system, where μ := ν|A.
Define a coupling of μ and ν by ω := δν |A�B′ (see Eq. (10)), then from
Proposition 3.4 we have Eω = idA. So Eω ◦ α = idA = β ◦Eω, implying that
A and B are in balance with respect to ω by Theorem 4.1. Hence, by our
supposition and Corollary 3.7, Bβ = Eω(A) = C1B , which means that B is
ergodic. �

It seems plausible that some other ergodic properties can be similarly
characterized in terms of balance, but that will not be pursued further in this
paper.

Our second application is connected to non-equilibrium statistical me-
chanics, in particular the convergence of states to steady states. See for ex-
ample the early papers [61], [35] and [49] on the topic, as well as more recent
papers like [51], [32] and [27]. To clarify the connection between these results
(which are expressed in terms of continuous time t ≥ 0) and the result below,
we formulate the latter in terms of continuous time as well. Compare it in
particular to results in [35, Section 3]. It is an example of how properties of
one system can be partially carried over to other systems via balance.

Proposition 4.9. Assume that A and B are in balance with respect to ω.
Suppose that

lim
t→∞κ(αt(a)) = μ(a)

for all normal states κ on A, and all a ∈ A. Then

lim
t→∞λ(βt(b)) = ν(b)

for all normal states λ on B, and all b ∈ Eω(A).

Proof. Applying Theorem 4.1 and setting κ := λ ◦ Eω, we have

lim
t→∞λ(βt(Eω(a))) = lim

t→∞κ(αt(a)) = μ(a) = ν(Eω(a))

for all a ∈ A, by Theorem 3.2. �

We expect various results of this sort to be possible, namely where two
systems are in balance, and properties of the one then necessarily hold in a
weaker form for the other.

Conversely, one can in principle use balance as a way to impose less
stringent alternative versions of a given property, by requiring a system to be
in balance with another system having the property in question. We expect
that such conditions need not be directly comparable (and strictly weaker)
than the property in question. This idea will be discussed further in relation
to detailed balance in Section 6.
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5. Composition of couplings and transitivity of balance

Here we show transitivity of balance: ifA andB are in balance with respect to
ω, and B andC are in balance with respect to ψ, thenA andC are in balance
with respect to a certain coupling obtained from ω and ψ, and denoted by
ω ◦ ψ. The coupling ω ◦ ψ is the composition of ω and ψ, as defined and
discussed in detail below. Furthermore, we discuss the connection between
couplings and correspondences in the sense of Connes.

Let ω be a coupling of (A, μ) and (B, ν), and let ψ be a coupling of
(B, ν) and (C, ξ). Note that Eψ ◦ Eω : A → C is a u.c.p. map such that
ξ ◦ Eψ ◦ Eω = μ by Theorem 3.2. Therefore, by Proposition 3.9, setting

ω ◦ ψ := δξ ◦ ((Eψ ◦ Eω)
 idC′), (19)

i.e.

ω ◦ ψ(a⊗ c′) = δξ(Eψ(Eω(a))⊗ c′)

for all a ∈ A and c ∈ C ′, we obtain a coupling ω ◦ ψ of μ and ξ such that

Eω◦ψ = Eψ ◦ Eω. (20)

This construction forms the foundation for the rest of this section.
We call the coupling ω ◦ ψ the composition of the couplings ω and ψ.

We can view it as an analogue of a construction appearing in the theory of
joinings in classical ergodic theory; see for example [37, Definition 6.9].

We can immediately give the main result of this section, namely that
we have transitivity of balance in the following sense:

Theorem 5.1. If AωB and BψC, then A(ω ◦ ψ)C.

Proof. By Theorem 4.1 we have Eω ◦ α = β ◦ Eω and Eψ ◦ β = γ ◦ Eψ, so
Eω◦ψ ◦ α = Eψ ◦ β ◦ Eω = γ ◦ Eω◦ψ,

which again by Theorem 4.1 means that A(ω ◦ ψ)C. �

In order to gain a deeper understanding of the transitivity of balance,
we now study properties of the composition of couplings.

Proposition 5.2. The diagonal coupling δν in Eq. (10) is the identity for
composition of couplings in the sense that δν ◦ ψ = ψ and ω ◦ δν = ω.

Proof. By Corollary 3.8, Eδν = idB . Hence, from Eq. (20), we obtain Eδν◦ψ =
Eψ ◦ Eδν = Eψ and Eω◦δν = Eδν ◦ Eω = Eω, which concludes the proof by
Corollary 3.5. �

In order to treat further properties of ω ◦ψ and the connection with the
theory of correspondences, we need to set up the relevant notation:

Continuing with the notation in the previous two sections, also assuming
(C, ξ) to be in its cyclic representation (Gξ, idC ,Λξ), and denoting the cyclic
representation of (B 
 C ′, ψ) by (Kψ, ϕψ,Ψψ), it follows that

Kν := πψ(B ⊗ 1)Ψψ, ϕν(b) := ϕψ(b⊗ 1)|Kν
and Ψν := Ψψ
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gives a third cyclic representation (Kν , ϕν ,Λν) of (B, ν), and that

Kξ := πψ(1⊗ C ′)Ψψ, ϕξ′(c′) := ϕψ(1⊗ c′)|Kξ
and Ψξ := Ψψ (21)

gives a cyclic representation (Kξ, ϕξ′ ,Ψξ) of (C
′, ξ′). Note that to help keep

track of where we are, we use the symbol K instead of H for the Hilbert
spaces originating from ψ (as opposed to ω), and similarly we use ϕ instead
of π, and Ψ instead of Ω.

We can define a unitary equivalence

vν : Gν → Kν (22)

from (Gν , idB ,Λν) to (Kν , ϕν ,Ψν) by

vνbΛν := ϕν(b)Ψν

for all b ∈ B. Then

ϕν(b) := vνbv
∗
ν

for all b ∈ B.
By Theorem 3.2 we can then define the normal u.c.p. map Eψ′ : C ′ →

B′. By Proposition 3.10 this map is the dual E′
ψ of Eψ, and we can write it

as

E′
ψ : C ′ → B′ : c′ 
→ v∗νι

∗
Kν
ϕψ(1⊗ c′)ιKν

vν = v∗νQνϕψ(1⊗ c′)vν (23)

whereQν is the projection ofKψ ontoKν , andQν = ι∗Kν
with ιKν

: Kν → Kψ

the inclusion map, in analogy to Pν = ι∗Hν
in Proposition 3.1.

The coupling ω ◦ ψ can now be expressed in various ways:

Proposition 5.3. The coupling ω ◦ ψ is given by the following formulas:

ω ◦ ψ = δν ◦ (Eω 
 E′
ψ) (24)

and

ω ◦ ψ = δμ ◦ (idA
(E′
ω ◦ E′

ψ))

in terms of Eq. (10), as well as

ω ◦ ψ(a⊗ c′) = ψ(Eω(a)⊗ c′) = ω(a⊗ E′
ψ(c

′)) (25)

and

ω ◦ ψ(a⊗ c′) = 〈u∗νPνπμ(a∗)Ωω, v∗νQνϕξ′(c′)Ψψ〉 (26)

(in the inner product of the Hilbert space Gν) for all a ∈ A and c′ ∈ C ′.

Proof. From Eqs. (19) and (10), and Theorem 2.5, we have

ω ◦ ψ(a⊗ c′) = 〈Λξ, Eψ(Eω(a))c′Λξ〉
=

〈
Λν , Eω(a)E

′
ψ(c

′)Λν
〉

(27)

from which Eq. (24) follows. Continuing with the last expression above, we
respectively have by Theorem 2.5 that

ω ◦ ψ(a⊗ c′) =
〈
Λμ, aE

′
ω(E

′
ψ(c

′))Λμ
〉

= δμ ◦ (idA
(E′
ω ◦ E′

ψ))(a⊗ c′),



Balance between quantum Markov semigroups 19

by Proposition 3.4 that

ω ◦ ψ(a⊗ c′) = ω(a⊗ E′
ψ(c

′))

and by Proposition 3.10 that

ω ◦ ψ(a⊗ c′) = 〈Λν , Eψ′(c′)Eω(a)Λν〉
= ψ′(c′ ⊗ Eω(a))

= ψ(Eω(a)⊗ c′),

where in the second line we again applied Proposition 3.4, while the last line
follows from the definition of ψ′, as in Eq. (11).

On Hilbert space level we again have from Eq. (27) that

ω ◦ ψ(a⊗ c′) =
〈
Eω(a

∗)Λν , E′
ψ(c

′)Λν
〉

= 〈u∗νPνπω(a∗ ⊗ 1)uνΛν , v
∗
νQνϕψ(1⊗ c′)vνΛν〉

= 〈u∗νPνπμ(a∗)Ωω, v∗νQνϕξ′(c′)Ψψ〉

for all a ∈ A and c′ ∈ C ′, using Theorem 3.2 (and Proposition 3.1) as well as
Eqs. (23), (3) and (21). �

At the end of this section ω ◦ ψ will also be expressed in terms of the
theory of relative tensor products of bimodules; see Corollary 5.7.

Next we consider triviality of transitivity, namely when ω◦ψ = μ
ξ′, in
which case we also say that the couplings ω and ψ are orthogonal, in analogy
to the case of classical joinings [37, Definition 6.9]. We first note the following:

Proposition 5.4. If either ω = μ
 ν′ or ψ = ν 
 ξ′, then ω ◦ ψ = μ
 ξ′.

Proof. By Proposition 3.4, Eμ�ν′ = μ(·)1B and Eν�ξ′ = ν(·)1C , so (μ 

ν′) ◦ ψ(a ⊗ c′) = δξ(μ(a)1C ⊗ c′) = μ(a)ξ′(c′) and ω ◦ (ν 
 ξ′)(a ⊗ c′) =
δξ(ν(Eω(a))1C ⊗ c′) = μ(a)ξ′(c′) according to Eq. (19) and Theorem 3.2. �

However, as will be seen by example in Subsection 7.3, in general it is
possible that ω ◦ ψ = μ
 ξ′ even when ω �= μ
 ν′ and ψ �= ν 
 ξ′. In order
for ω ◦ψ �= μ
 ξ′ to hold, there has to be sufficient “overlap” between ω and
ψ. The following makes this precise on Hilbert space level and also explains
the use of the term “orthogonal” above:

Proposition 5.5. We have ω ◦ ψ = μ
 ξ′ if and only if

u∗ν [PνHμ � CΩω] ⊥ v∗ν [QνKξ � CΨψ]

in the Hilbert space Gν (see Section 3), where Pν and Qν are the projections
of Hω onto Hν and Kψ onto Kν respectively, and uν and vν are the unitaries
defined above (see Eqs. (5) and (22)).
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Proof. In terms of the projections PΩω
and QΨψ

of Hω and Kψ onto CΩω
and CΨψ respectively, we have

〈
u∗νPΩωπμ(a

∗)Ωω, v∗νQΨψ
ϕξ′(c

′)Ψψ
〉

= 〈〈Ωω, πμ(a∗)Ωω〉u∗νΩω, 〈Ψψ, ϕξ′(c′)Ψψ〉 v∗νΨψ〉
= μ(a)ξ′(c′) 〈Λν ,Λν〉
= μ
 ξ′(a⊗ c′)

for all a ∈ A and c′ ∈ C ′. In terms of P := Pν − PΩω
and Q := Qν −QΨψ

, it
then follows from Eq. (26) that

ω ◦ ψ(a⊗ c′)− μ
 ξ′(a⊗ c′)

= 〈u∗νPπμ(a∗)Ωω, v∗νQϕξ′(c′)Ψψ〉
+
〈
u∗νPπμ(a

∗)Ωω, v∗νQΨψ
ϕξ′(c

′)Ψψ
〉
+ 〈u∗νPΩωπμ(a

∗)Ωω, v∗νQϕξ′(c
′)Ψψ〉

= 〈u∗νPπμ(a∗)Ωω, v∗νQϕξ′(c′)Ψψ〉 .

For the last line we used u∗νPHω = Gν�CΛν and v
∗
νQΨψ

Kψ = CΛν to obtain
the one term as zero, while the other term is zero, since v∗νQKψ = Gν �CΛν
and u∗νPΩω

Hω = CΛν . Therefore ω ◦ ψ(a⊗ c′)− μ
 ξ′(a⊗ c′) is zero for all
a ∈ A and c′ ∈ C ′ if and only if u∗ν [PνHμ � CΩω] ⊥ v∗ν [QνKξ � CΨψ]. �

To conclude this section, we discuss bimodules and correspondences, the
main goal being to show how ω ◦ ψ can be expressed in terms of the relative
tensor product of bimodules obtained from ω and ψ. Along the way we get
an indication of the connection between couplings and correspondences. Also
see [11] for a related discussion of correspondences in the context of joinings.

The theory of correspondences was originally developed by Connes, but
never published in full, although it is discussed briefly in his book [18, Ap-
pendix V.B]. In short, a correspondence from one von Neumann algebra, M ,
to another, N , is an M -N -bimodule (where the direction from M to N , is
the convention used in this paper).

For details on the relative tensor product, see for example [63, Section
IX.3] and [31], but also [59] for some of the early work on this topic. We
only outline the most pertinent aspects of relative tensor products, and the
reader is referred to these sources, in particular [63, Section IX.3], for a more
systematic exposition.

As before, let

jν(b) := Jνb
∗Jν

for all b ∈ B(Gν), with Jν : Gν → Gν the modular conjugation associated
with (B,Λν). Similarly, with (C, ξ) in its cyclic representation (Gξ,idC ,Λξ),
let

jξ(c) := Jξc
∗Jξ

for all c ∈ B(Gξ), with Jξ : Gξ → Gξ the modular conjugation associated
with (C,Λξ).
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Given a coupling ω of (A, μ) and (B, ν) as at the beginning of this
section, we can view H = Hω as an A-B-bimodule by setting

πH(a) := πω(a⊗ 1)

and

π′
H(b) := πω(1⊗ jν(b)),

and writing

axb := πH(a)π′
H(b)x

for all a ∈ A, b ∈ B, and x ∈ H. As already mentioned in Remark 3.3, πH is
normal, as required for it to give a left A-module, and similarly π′

H gives a
normal right action of B on H; again see [11, Theorem 3.3]. When viewing H
as the A -B-bimodule thus defined, we also denote it by AHB . This module
is therefore an example of a correspondence from A to B.

With ψ a coupling of (B, ν) and (C, ξ) as at the beginning of this section,
and (Kψ, ϕψ,Ψψ) the corresponding cyclic representation as before, but now
using the notation K = Kψ, we analogously obtain the B-C-bimodule BKC

via πK and π′
K given by

πK(b) := ϕψ(b⊗ 1)

and

π′
K(c) := ϕψ(1⊗ jξ(c))

which enables us to write

byc := πK(b)π′
K(c)y

for all b ∈ B, c ∈ C, and y ∈ K.
Now we form the relative tensor product (see [63, Definition IX.3.16])

AXC := H ⊗ν K
with respect to the faithful normal state ν. This is also a Hilbert space (its
inner product will be discussed below) and, as the notation on the left sug-
gests, the relative tensor product is itself a A-C-bimodule. This is a special
case of [63, Corollary IX.3.18]. The reason it works is that since H is a A-
B-bimodule, any element of πH(A) can be viewed as an element of L(HB),
the space of all bounded (in the usual sense of linear operators on Hilbert
spaces) right B-module maps. Similarly for the right action of C. So AXC is
a correspondence from A to C, which can be viewed as the composition of
the correspondences AHB and BKC .

As one may expect, the actions of A and C on H ⊗ν K are given by

a(x⊗ν y)c = (ax)⊗ν (yc)
for all a ∈ A and c ∈ C. However, in general this does not hold for all x ∈ H
and y ∈ K. In fact the elementary tensor x⊗ν y does not exist for all x ∈ H
and y ∈ K. However, it does work if we restrict either x or y to a certain dense
subspace, say x ∈ D(H, ν) ⊂ H and y ∈ K. (See below for further details on
the space D(H, ν).) We correspondingly use x ∈ H and y ∈ D′(K, ν) ⊂ K if
we rather want to restrict y to a dense subspace of K.
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In particular we have Ωω ∈ D(H, ν) and Ψψ ∈ D′(K, ν), so we set

Ω := Ωω ⊗ν Ψψ ∈ H ⊗ν K,

which we use to define a state, denoted by ω � ψ, on A
 C ′ as follows:

ω � ψ(d) := 〈Ω, πX(d)Ω〉 (28)

for all d ∈ A 
 C ′, where πX is the representation of A 
 C ′ on AXC given
in terms of its bimodule structure by

πX(a⊗ c′)x := axjξ(c
′)

for all x ∈ AXC . Below we show that ω�ψ = ω◦ψ, so we have the composition
of couplings expressed in terms of the relative tensor product of bimodules,
i.e. in terms of the composition of correspondences.

We first review the inner product of the relative tensor product in more
detail, in order to clarify its use below. Write

η′ν(b) := jν(b)Λν = Jνb
∗Λν (29)

for all b ∈ B.

For every x ∈ D(H, ν), define the bounded linear operator Lν(x) : Gν →
H by setting

Lν(x)η
′
ν(b) = xb ≡ π′

H(b)x

for all b ∈ B, and uniquely extending to Gν . We note that the space D(H, ν)
is defined to ensure that Lν(x) is indeed bounded:

D(H, ν) = {x ∈ H : ‖xb‖ ≤ kx ‖η′ν(b)‖ for all b ∈ B, for some kx ≥ 0}

It then follows that Lν(x1)
∗Lν(x2) ∈ B for all x1, x2 ∈ D(H, ν). The space

H ⊗ν K and its inner product is obtained from a quotient construction such
that we have

〈x1 ⊗ν y1, x2 ⊗ν y2〉 = 〈y1, πK(Lν(x1)
∗Lν(x2))y2〉K (30)

for x1, x2 ∈ D(H, ν) and y1, y2 ∈ K, where for emphasis we have denoted
the inner product of K by 〈·, ·〉K . This is the “left” version, but there is
also a corresponding “right” version of this formula for the inner product
(see [63, Section IX.3]). It can be shown from the definition of D(H, ν), that
πH(a)πν(b)Ωω ∈ D(H, ν) for all a ∈ A and b ∈ B, from which in turn
it follows that D(H, ν) is dense in H, and that Ωω ∈ D(H, ν). Similarly
D′(K, ν), which is defined analogously, is dense in K.

From this short review of the inner product, we can show that it has
the following property:

Proposition 5.6. In H ⊗ν K,

〈a1Ωc1, a2Ωc2〉 = ψ(Eω(a
∗
1a2)⊗ jξ(c2c

∗
1)) (31)

for a1, a2 ∈ A and c1, c2 ∈ C.
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Proof. Firstly, we obtain a formula for Lν(x) for elements of the form x =
πH(a)πν(b)Ωω ∈ D(H, ν), where a ∈ A and b. For all b1 ∈ B we have

Lν(x)η
′
ν(b1) = π′

H(b1)πH(a)πν(b)Ωω

= πH(a)πν(b)πν′(jν(b1))Ωω

= πH(a)πν(b)uνη
′
ν(b1),

by Eqs. (6) and (29), which means that

Lν(πH(a)πν(b)Ωω) = πH(a)πν(b)uν . (32)

Applying the special case Lν(πH(a)Ωω) = πH(a)uν of this formula, for
a1, a2 ∈ A we have

Lν(πH(a1)Ωω)
∗Lν(πH(a2)Ωω) = u∗νPνπH(a∗1a2)uν

= Eω(a
∗
1a2).

by Theorem 3.2 and Proposition 3.1. From Eq. (30) we therefore have

〈a1Ωc1, a2Ωc2〉 = 〈π′
K(c1)Ψψ, πK(Eω(a

∗
1a2))π

′
K(c2)Ψψ〉K

= 〈Ψψ, πK(Eω(a
∗
1a2))π

′
K(c2c

∗
1)Ψψ〉K

= 〈Ψψ, ϕψ(Eω(a∗1a2)⊗ jξ(c2c
∗
1))Ψψ〉K

= ψ(Eω(a
∗
1a2)⊗ jξ(c2c

∗
1)).

�

Now we can confirm that Eq. (28) is indeed equivalent to the original
definition Eq. (19):

Corollary 5.7. We have

ω � ψ = ω ◦ ψ
in terms of the definitions Eq. (28) and Eq. (19).

Proof. From Eq. (28)

ω � ψ(a⊗ c′) = 〈Ω, πX(a⊗ c′)Ω〉 = 〈Ω, aΩjξ(c′)〉
= ψ(Eω(a)⊗ c′))

by Eq. (31), for all a ∈ A and c′ ∈ C ′. By Eq. (25), ω � ψ = ω ◦ ψ. �

So we have ω ◦ ψ expressed in terms of the vector Ω ∈ H ⊗ν K. Note,
however, that in general H ⊗ν K is not the GNS Hilbert space for the state
ω ◦ ψ, although the former contains the latter. Consider for example the
simple case where ω = μ 
 ν′ and ψ = ν 
 ξ′. Then, by Proposition 5.4,
ω◦ψ = μ
ξ′, and the GNS Hilbert space obtained from this state is Gμ⊗Gξ,
whereas H ⊗ν K = Gμ ⊗Gν ⊗Gξ.

When (A, μ) = (B, ν) and ω is the diagonal coupling δν in Eq. (10),
then by [63, Proposition IX.3.19], AXC is isomorphic to BKC , so in this case
the correspondence AHB acts as an identity from the left. Similarly from the
right when ψ is the diagonal coupling. This is the correspondence version of
Proposition 5.2.
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Lastly, by Eq. (32) we have Lν(Ωω) = ιHν
uν , therefore Lν(Ωω)

∗ = u∗νPν ,
which by Theorem 3.2 means that

Eω(a) = Lν(Ωω)
∗πH(a)Lν(Ωω)

for all a ∈ A. This is the form in which Eω has appeared in the theory of
correspondences, as a special case of maps of the form a 
→ Lν(x)

∗πH(a)Lν(x)
for arbitrary x ∈ D(H, ν); see for example [57, Section 1.2].

6. Balance, detailed balance and non-equilibrium

Our main goal in this section is to suggest how balance can be used to de-
fine conditions that generalize detailed balance. We then speculate on how
this may be of value in studying non-equilibrium steady states. In order to
motivate these generalized conditions, we present a specific instance of how
detailed balance can be expressed in terms of balance. We focus on only one
form of detailed balance, namely standard quantum detailed balance with
respect to a reversing operation, as defined in [30, Definition 3 and Lemma
1] and [29, Definition 1]. This form of detailed balance has only appeared in
the literature relatively recently. The origins of quantum detailed balance, on
the other hand, can be found in the papers [6], [7], [15], [45] and [48].

The basic idea of this section should also apply to properties other than
detailed balance conditions, as will be explained.

We begin by noting the following simple fact in terms of the diagonal
coupling δμ (see Eq. (10)):

Proposition 6.1. A system A is in balance with itself with respect to the
diagonal coupling δμ, i.e. δμ(α(a) ⊗ a′) = δμ(a ⊗ α′(a′)) for all a ∈ A and
a′ ∈ A′. Conversely, if two systems A and B, with (A, μ) = (B, ν), are in
balance with respect to the diagonal coupling δμ, then A = B, i.e. α = β.

Proof. The first part is simply the definition of the dual (see Definition 2.4
and Theorem 2.5). The second part follows from the uniqueness of the dual,
given by Theorem 2.5; alternatively use Theorem 4.1 and Corollary 3.8. �

So, if A and B are in balance with respect to the diagonal coupling and
one of the systems has some property, then the other system has it as well,
since the systems are necessarily the same.

One avenue of investigation is therefore to define generalized versions
of a given property by demanding only that a system is in balance with
another system with the given property, with respect to a coupling (or set
of couplings) other than the diagonal coupling. In particular we then do not
need to assume that the two systems have the same algebra and state.

We demonstrate this idea below for a specific property, namely standard
quantum detailed balance with respect to a reversing operation. In order to
do so, we discuss this form of detailed balance along with Θ-KMS-duals:
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Definition 6.2. Consider a system A. A reversing operation for A (or for
(A, μ)), is a ∗-antihomorphism Θ : A → A (i.e. Θ is linear, Θ(a∗) = Θ(a)∗,
and Θ(a1a2) = Θ(a2)Θ(a1)) such that Θ2 = idA and μ ◦Θ = μ. Furthermore
we define the Θ-KMS-dual

αΘ := Θ ◦ ασ ◦Θ
of α in terms of the KMS-dual ασ = jμ ◦ α′ ◦ jμ in Eq. (16).

The Θ-KMS-dual was introduced in [14] in the context of systems on
B(H), with H a separable Hilbert space. There may be a scarcity of examples
of reversing operations for general von Neumann algebras, but a standard
example for B(H) is mentioned in Subsection 7.4.

Using the Θ-KMS-dual, we can define the above mentioned form of
detailed balance:

Definition 6.3. A system A satisfies standard quantum detailed balance with
respect to the reversing operation Θ for (A, μ), or Θ-sqdb,when αΘ = α.

To complete the picture, we state some straightforward properties re-
lated to reversing operations Θ and the Θ-KMS-dual:

Proposition 6.4. Given a reversing operation Θ for A as in Definition 6.2,
we define an anti-unitary operator θ : Gμ → Gμ by extending

θaΛμ := Θ(a∗)Λμ

which in particular gives θ2 = 1 and θΛμ = Λμ. Then

Θ(a) = θa∗θ

for all a ∈ A, and consequently Θ is normal. This allows us to define

Θ′ : A′ → A′ : a′ 
→ θa′∗θ

which is the dual of Θ in the sense that

〈Λμ, aΘ′(a′)Λμ〉 = 〈Λμ,Θ(a)a′Λμ〉
for all a ∈ A and a′ ∈ A′. We also have

θJμ = Jμθ

from which

αΘ = (Θ ◦ α ◦Θ)σ

and

(αΘ)Θ = α

follow.

Proof. The first sentence is simple. From the definition of θ and the properties
of Θ, θΛμ = Λμ it follows that

θa∗θbΛμ = Θ((a∗Θ(b∗))∗)Λμ = Θ(a)bΛμ

for all a, b ∈ A, so Θ(a) = θa∗θ. Normality (i.e. σ-weak continuity) follows
from this and the definition of the σ-weak topology. For a ∈ A and a′ ∈ A′
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we now have aθa′θ = θΘ(a∗)a′θ = θa′Θ(a∗)θ = θa′θa, hence θa′θ ∈ A′. So
Θ′ is well-defined, and that it is the dual of Θ follows easily.

Denoting the closure of the operator

AΛμ → AΛμ : aΛμ 
→ a∗Λμ

by Sμ = JμΔ
1/2
μ , as usual in Tomita-Takesaki theory, we obtain Sμ = θSμθ =

θJμθθΔ
1/2
μ θ, hence θJμθ = Jμ by the uniqueness of polar decomposition,

proving θJμ = Jμθ.
Then by definition

αΘ = Θ ◦ jμ ◦ α′ ◦ jμ ◦Θ = jμ ◦Θ′ ◦ α′ ◦Θ′ ◦ jμ = jμ ◦ (Θ ◦ α ◦Θ)′ ◦ jμ
= (Θ ◦ α ◦Θ)σ

follows. So (αΘ)Θ = Θ ◦Θ ◦ α ◦Θ ◦Θ = α by Eq. (2). �
Returning now to the main goal of this section, it will be convenient for

us to express the Θ-KMS dual as a system:

Proposition 6.5. For a reversing operation Θ as in Definition 6.2,

AΘ := (A,αΘ, μ)

is a system, called the Θ-KMS-dual of A.

Proof. Recall from Proposition 4.4 that Aσ is a system. Since ασ is u.c.p.,
it can be checked as in Proposition 4.4 from αΘ = Θ∗ ◦ ασ ◦ Θ∗, where
Θ∗(a) := Θ(a∗) for all a ∈ A, that αΘ is u.c.p. as well. From μ ◦ Θ = μ, we
obtain μ ◦ αΘ = μ. �
Remark 6.6. Similar to before, for a QMS (αt)t≥0 with the σ-weak continuity
property as in Remark 2.6, we have that this continuity property also holds
for (αΘ

t )t≥0, where α
Θ
t := (αt)

Θ for every t. This follows from the continuity
of (ασt )t≥0 in Remark 4.5, and the fact that Θ is normal (Proposition 6.4).

As a simple corollary of Proposition 6.1 we have:

Corollary 6.7. Let A be a system and let Θ be a reversing operation for A.
Then the following are equivalent:

(a) A satisfies Θ-sqdb.
(b) A and AΘ are in balance with respect to δμ.
(c) AΘ and A are in balance with respect to δμ.

When two systems are in balance, we expect the one system to partially
inherit properties of the other. We saw an example of this in Proposition 4.9.
As mentioned there, this suggests that for any given property that a system
may have, we can in principle consider generalized forms of the property via
balance. In particular for Θ-sqdb:

• We can consider systems A and B which are in balance with respect to
a coupling ω (or a set of couplings) other than μ
ν′, but not necessarily
with respect to δμ. Assuming that either A or B satisfies Θ-sqdb, for
some reversing operation Θ for A or B respectively, the other system
can then be viewed as satisfying a generalized version of Θ-sqdb.
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A second possible way of obtaining conditions generalizing Θ-sqdb for
a system A, is simply to adapt Corollary 6.7 more directly:

• We can requireA andAΘ to be in balance with respect to some coupling
ω (or a set of couplings) other than μ 
 μ′, but not necessarily with
respect to δμ. Or AΘ and A to be in balance with respect to some
coupling ω (or a set of couplings) other than μ
μ′, but not necessarily
with respect to δμ.

Under KMS-symmetry (see Eq. (17)), the two options in the second
condition, namely A and AΘ in balance, versus AΘ and A in balance, are
equivalent:

Proposition 6.8. If the system A is KMS-symmetric, then AωAΘ if and only
if AΘωEA, where E := Θ ◦ Eω ◦Θ. (See Proposition 3.9 for ωE.)

Proof. By KMS-symmetry αΘ = Θ ◦ α ◦Θ. Note that for any coupling ω we
have that E = Θ∗ ◦Eω ◦Θ∗ is u.c.p. like αΘ in the proof of Proposition 6.5,
and μ ◦ E = μ by Theorem 3.2 and μ ◦ Θ = μ. Then ωE is a coupling by
Proposition 3.9. From Theorem 4.1 we have

AωAΘ ⇔ Eω ◦ α = Θ ◦ α ◦Θ ◦ Eω ⇔ E ◦ αΘ = α ◦ E ⇔ AΘωEA.

�

The two types of conditions suggested above will be illustrated by a
simple example in the next section, where the conditions obtained will in
fact be weaker than Θ-sqdb.

A basic question we now have is the following: can generalized conditions
like these be applied to characterize certain non-equilibrium steady states μ
which have enough structure that one can successfully analyse them mathe-
matically, while also having physical relevance? This seems plausible, given
that these conditions are structurally so closely related to detailed balance
itself. We briefly return to this in Section 8.

7. An example

In this section we use a very simple example based on the examples in [2,
Section 6], [13], [28, Section 5] and [29, Subsection 7.1] to illustrate some
of the ideas discussed in this paper. Our main reason for considering this
example is that it is comparatively easy to manipulate mathematically. We
leave a more in depth study of relevant examples for future work.

Let H be a separable Hilbert space with total orthonormal set e1, e2, e3, ....
We are going to consider systems on the von Neumann algebra B(H). These
systems will all have the same faithful normal state ζ on B(H) given by the
diagonal (in the mentioned basis) density matrix

ρ =

⎡
⎢⎣
ρ1

ρ2
. . .

⎤
⎥⎦
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where ρ1, ρ2, ρ3, ... > 0 satisfy
∑∞
n=1 ρn = 1. I.e.

ζ(a) = Tr(ρa)

for all a ∈ B(H).

We now briefly explain what the cyclic representation and modular con-
jugation look like for the state ζ:

The (faithful) cyclic representation of (B(H), ζ) can be written as (H,π,Ω)
where H = H⊗ H,

π(a) = a⊗ 1

for all a ∈ B(H), and the maximally entangled state (reducing to ρ)

Ω =
∞∑
n=1

√
ρnen ⊗ en

is the cyclic vector. Our von Neumann algebra is therefore represented as

A = π(B(H)),

and the state ζ is represented by the state μ on A given by

μ(π(a)) = ζ(a)

for all a ∈ A. However, we also consider a second representation π′ given by

π′(a) = 1⊗ a

for all a ∈ B(H), so A′ = π′(B(H)). The state μ′ on A′ is then given by

μ′(π′(a)) = 〈Ω, π′(a)Ω〉 = ζ(a)

for all a ∈ A.

The modular conjugation J associated to μ (and to ζ) is then obtained
as the conjugate linear operator J : H → H given by

J(ep ⊗ eq) = eq ⊗ ep

for all p, q = 1, 2, 3, .... Furthermore,

j(π(a)) := Jπ(a)∗J = π′(aT ) (33)

for all a ∈ B(H), where aT denotes the transpose of a in the basis e1, e2, e3, ....

This allows us to apply the general notions from the earlier sections
explicitly to this specific case.

Regarding notation: Instead of the notation |x〉 〈y| for x, y ∈ H, we use
x �� y, i.e.

(x �� y)z := x 〈y, z〉
for all z ∈ H.
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7.1. The couplings

We consider couplings of ζ with itself. A coupling of ζ with itself corresponds
to a coupling of μ with itself in the cyclic representation, which is a state ω
on A
A′ = π(B(H))
 π′(B(H)) ∼= B(H)
B(H) such that

ω(π(a)⊗ 1) = μ(π(a)) and ω(1⊗ π′(a)) = μ′(π′(a))

for all a ∈ B(H). However, in this concrete example it is clearly equivalent,
and simpler in terms of notation, to view ω directly as a state on B(H)
B(H)
such that

ω(a⊗ 1) = ζ(a) and ω(1⊗ a) = ζ(a) (34)

for all a ∈ B(H), rather than to work via the cyclic representation.
Consider any disjoint subsets Y1, Y2, Y3, ... of N+ := {1, 2, 3, 4, ...} such

that ∪∞
n=1Yn = N+. We construct a coupling ω which is given by a density

matrix κ ∈ B(H⊗ H), i.e.

ω(c) = Tr(κc)

for all c ∈ B(H)
 B(H). Therefore we may as well allow c ∈ B(H⊗ H), and
define ω on the latter algebra, even though our theory only needs it to be
defined on the algebraic tensor product B(H)
B(H).

We begin by obtaining a positive trace-class operator κn corresponding
to the set Yn for every n. Each κn will be one of three types, namely a
(maximally) entangled type, a mixed type, or a product type, each of which
we now discuss in turn for any n.

First, the entangled type (corresponding to an entangled pure state): We
set

Ωn =
∑
q∈Yn

√
ρqeq ⊗ eq

and

κn = Ωn �� Ωn =
∑
p∈Yn

∑
q∈Yn

√
ρpρq(ep �� eq)⊗ (ep �� eq)

for all n. It is straightforward to verify that

Tr(κn) =
∑
q∈Yn

ρq (35)

and

ωn(a⊗ 1) = ωn(1⊗ a) =
∑
q∈Yn

ρq 〈eq, aeq〉 (36)

for all a ∈ B(H).
Secondly, the mixed type (corresponding to a mixture of pure states):

Setting

κn =
∑
q∈Yn

ρq(eq ⊗ eq) �� (eq ⊗ eq) =
∑
q∈Yn

ρq(eq �� eq)⊗ (eq �� eq)

we again obtain Eqs. (35) and (36).
Thirdly, the product type: Setting

κn = dn ⊗ dn
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where

dn :=

⎛
⎝∑
p∈Yn

ρp

⎞
⎠

−1/2 ∑
q∈Yn

ρq(eq �� eq)

we yet again obtain Eqs. (35) and (36).

For each type we take

κn = 0

if Yn is empty (this allows for a partition of N+ into a finite number of
non-empty subsets).

For each n, let κn be any of the three types above. Then κn is indeed
trace-class and positive, so setting

ωn(c) = Tr(κnc) (37)

for all c ∈ B(H ⊗ H), we obtain a well-defined positive linear functional ωn
on B(H⊗ H). Then

ω :=
∞∑
n=1

ωn

converges in the norm of B(H ⊗ H)∗, since ‖ωn‖ = ωn(1) = Tr(κn), so∑∞
n=1 ‖ωn‖ = 1. Correspondingly,

κ :=

∞∑
n=1

κn (38)

converges in the trace-class norm ‖·‖1, since
∑∞
n=1 ‖κn‖1 =

∑∞
n=1 Tr(κn) =

1. Then it indeed follows that

ω(c) =
∞∑
n=1

Tr(κnc) = Tr(κc),

since |∑m
n=1 Tr(κnc)− Tr(κc)| ≤ ‖∑m

n=1 κn − κ‖
1
‖c‖.

Furthermore ω(1) =
∑∞
n=1 ωn(1) =

∑∞
n=1 ρn = 1, and from Eq. (36) it

follows that the conditions in Eq. (34) hold. So ω is a coupling of ζ with itself
as required.

For Y1 = N+, i.e. κ = κ1, we can get two extremes, namely the diagonal
coupling ω if κ1 is of the entangled type, and the product state ω = ζ ⊗ ζ on
B(H⊗ H) when κ1 is of the product type. But the construction above gives
many cases other than these two extremes. Then balance with respect to ω is
non-trivial, but does not necessarily force two systems A and B on the same
algebra A to have the same dynamics as in Proposition 6.1.

7.2. The dynamics

We now construct dynamics in order to obtain examples of systems on the von
Neumann algebra B(H). Let rj ∈ {3, 4, 5, ...} and 0 < kj < 1 for j = 1, 2, 3, ...,
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and write k = (k1, k2, k3, ...). In terms of the n× n matrix

On =

⎡
⎢⎢⎢⎣

0 · · · 0 1
1 0

. . .
...

1 0

⎤
⎥⎥⎥⎦ ,

with the blank spaces all being zero, we then define Rk ∈ B(H) by the infinite
matrix

Rk =

⎡
⎢⎢⎣
k
1/2
1 Or1

k
1/2
2 Or2

. . .

⎤
⎥⎥⎦

in the basis e1, e2, e3, ..., where again the blank spaces are zero. In other

words, Rke1 = k
1/2
1 e2 etc. So Rk consists of a infinite direct sum of finite

cycles, each cycle including its own factor k
1/2
n . Replacing k by 1 − k :=

(1 − k1, 1 − k2, 1 − k3, ...), we similarly obtain R1−k. In the same basis we
consider a self-adjoint operator g ∈ B(H) defined by the diagonal matrix

g =

⎡
⎢⎣
g1

g2
. . .

⎤
⎥⎦ ,

with g1, g2, g3, ... a bounded sequence in R. Note that R∗
kRk+R1−kR∗

1−k = 1.
So we can define the generator K of a uniformly continuous semigroup S =
(St)t≥0 in B(H) by

K(a) = R∗
kaRk +R1−kaR∗

1−k − a+ i[g, a]

for all a ∈ B(H). See for example [55, Corollary 30.13]; the original papers
on generators for uniformly continuous semigroups are [40] and [47].

In the same way and still using the same basis, for l = (l1, l2, l3, ...)
with 0 < lj < 1 we define the generator L of a second uniformly continuous
semigroup T = (Tt)t≥0 in H by

L(b) = R∗
l bRl +R1−lbR∗

1−l − b+ i[h, b]

for all b ∈ B(H), where the diagonal matrix

h =

⎡
⎢⎣
h1

h2
. . .

⎤
⎥⎦ ,

with h1, h2, h3, ... a bounded sequence in R, defines a self-adjoint operator
h ∈ B(H).
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In the rest of Section 7, we assume the following:

ρ1 = ... = ρr1
ρr1+1 = ... = ρr1+r2

ρr1+r2+1 = ... = ρr1+r2+r3

...

Then the state ζ is seen to be invariant under both S and T by checking that
ζ ◦ K = 0 and ζ ◦ L = 0.

It is going to be simpler (but equivalent) to work directly in terms of
B(H), rather than its cyclic representation. Nevertheless, since much of the
theory of this paper is expressed in the cyclic representation, it is worth
expressing the various objects in this representation as well. In particular we
can then see how to obtain duals directly in terms of B(H).

Our two systems A and B, viewed in the cyclic representation, are in
terms of A = B = π(B(H)), with the dynamics given by

αt(π(a)) = π(St(a))
and

βt(π(b)) = π(Tt(b))
and the states μ and ν both given by

μ(π(a)) = ν(π(a)) = ζ(a) = Tr(ρa)

for all a, b ∈ B(H). The diagonal coupling for μ

δμ : π(B(H))
 π′(B(H)) → C

is given by

δμ(π(a)
 π′(b)) = 〈Ω, π(a)π′(b)Ω〉 = 〈Ω, (a⊗ b)Ω〉

=
∞∑
p=1

∞∑
q=1

〈
ep, ρ

1/2aeq

〉〈
eq, ρ

1/2bT ep

〉

= Tr(ρ1/2aρ1/2bT )

where bT ∈ B(H) is obtained as the transpose of the matrix representation
of b in terms of the basis e1, e2, e3, .... In effect δμ is the maximally entangled
state 〈Ω, (·)Ω〉 on B(H)
B(H), reducing to Tr(ρ(·)) on B(H).

The dual β′
t : π

′(B(H)) → π′(B(H)) of βt is given by

〈Ω, π(b)β′
t(π

′(b′))Ωζ〉 = 〈Ω, βt(π(b))π′(b′)Ω〉
for all b, b′ ∈ B(H).

We therefore define the dual L′ of L via the representations by requiring

〈Ω, π(b)π′(L′(b′))Ω〉 = 〈Ω, π(L(b))π′(b′)Ω〉
for all b, b′ ∈ B(H), i.e.

Tr(ρ1/2aρ1/2(L′(b))T ) = Tr(ρ1/2L(a)ρ1/2bT )
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for all a, b ∈ B(H). Note that L′ is indeed the dual (with respect to ζ) of
L in the sense of Theorem 2.5, but represented on H instead of on the GNS
Hilbert space. It is then straightforward to verify that

L′(b) = R∗
1−lbR1−l +RlbR

∗
l − b+ i[h, b] (39)

for all b ∈ B(H). From this one can see that L′ is also the generator of
a uniformly continuous semigroup T ′ = (T ′

t )t≥0 in H, which in addition
satisfies

〈Ω, π(b)π′(T ′
t (b

′))Ω〉 = 〈Ω, π(Tt(b))π′(b′)Ω〉
and therefore

π′(T ′
t (b

′)) = β′
t(π

′(b′))
for all b, b′ ∈ B(H). As with L′ above, T ′

t is the dual of Tt in the sense of Def-
inition 2.4, but represented on H. So we correspondingly call the semigroup
T ′ the dual of the semigroup T .

We now have a complete description of the systems, as well as their
duals.

7.3. Balance

We now show examples of balance between

A : = (B(H),S, ζ) and B : = (B(H), T , ζ)
and illustrate a number of points made in this paper. Remember that since
we now have a continuous time parameter t ≥ 0, the balance condition in
Definition 2.10 is required to hold at every t. However, it then follows that
A and B are in balance with respect to ω if and only if

Tr(κ(K(a)⊗ b)) = Tr(κ(a⊗ L′(b))

for all a, b ∈ B(H). From this one can easily check that A and B are in
balance with respect to ω if and only if

(Rk ⊗ 1)κ(Rk ⊗ 1)∗ + (R1−k ⊗ 1)∗κ(R1−k ⊗ 1)− i[g ⊗ 1, κ]

= (1⊗R1−l)κ(1⊗R1−l)∗ + (1⊗Rl)
∗κ(1⊗Rl)− i[1⊗ h, κ]

holds. However, equating the real and imaginary parts respectively (keeping
in mind that κ as given in Subsection 7.1 is a real infinite matrix in the basis
ep ⊗ eq), we see that this is equivalent to

(Rk ⊗ 1)κ(Rk ⊗ 1)∗ + (R1−k ⊗ 1)∗κ(R1−k ⊗ 1)

= (1⊗R1−l)κ(1⊗R1−l)∗ + (1⊗Rl)
∗κ(1⊗Rl) (40)

and

[g ⊗ 1, κ] = [1⊗ h, κ] (41)

both being true.
To proceed, we refine the construction of κ in Subsection 7.1, by only

allowing

Yn =
⋃
p∈In

Zp
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where Z1 = {1, 2, ..., r1}, Z2 = {r1 + 1, r1 + 2, ..., r1 + r2}, etc., and where
I1, I2, I3, ... is any sequence of disjoint subsets of N+ such that ∪n∈N+In = N+.
Note that an In is allowed to be empty (then Yn is empty), and it is also
allowed to be infinite.

It then follows that A and B are in balance with respect to ω if and
only if

(Rk ⊗ 1)κn(Rk ⊗ 1)∗ + (R1−k ⊗ 1)∗κn(R1−k ⊗ 1)

= (1⊗R1−l)κn(1⊗R1−l)∗ + (1⊗Rl)
∗κn(1⊗Rl) (42)

and
[g ⊗ 1, κn] = [1⊗ h, κn] (43)

both hold for every n. To see that Eq. (42) and Eq. (43) follow from Eq.
(40) and Eq. (41) respectively, place the latter into 〈ep ⊗ eq, (·)ep′ ⊗ eq′〉 for
p, q, p′, q′ ∈ Yn. The converse holds, since Eq. (38) is convergent in the trace-
class norm.

To evaluate these conditions in detail is somewhat tedious, so we just
describe it in outline below.

Note that, roughly speaking, in a term like (Rk ⊗ 1)κn(Rk ⊗ 1)∗, for κn
of the entangled or mixed type, the first slot in the tensor product structure
of κn is advanced by one step in each cycle appearing in Rk. In a term like
(1⊗Rl)

∗κn(1⊗Rl), on the other hand, the second slot is rolled back by one
step in each cycle, which is equivalent to the first slot being advanced by one
step. So, if κn is of the entangled or mixed type, and

kp = lp (44)

for each p ∈ In, then Eq. (42) holds.
Conversely, for p ∈ In, note from the definitions of the entangled and

mixed type κn that since rp > 2, the terms (Rk ⊗ 1)κn(Rk ⊗ 1)∗ and (1 ⊗
Rl)

∗κn(1 ⊗ Rl) have to be equal (hence kp = lp), for Eq. (42) to hold; the
terms (R1−k ⊗ 1)∗κn(R1−k ⊗ 1) and (1 ⊗ R1−l)κn(1 ⊗ R1−l)∗ involve other
basis elements of H ⊗ H and therefore can not ensure Eq. (42) when (Rk ⊗
1)κn(Rk ⊗ 1)∗ �= (1⊗Rl)

∗κn(1⊗Rl).
For the product type κn, Eq. (42) always holds, since κn then commutes

with Rk ⊗ 1 and 1⊗Rl.
When κn is of the entangled type, one can verify by direct calculation

that Eq. (43) holds if and only if

gp − gq = hp − hq (45)

for all p, q ∈ Yn. For the other two types of κn, Eq. (43) always holds, since
then κn, g ⊗ 1 and 1⊗ h are diagonal, so the commutators are zero.

We conclude that A and B are in balance with respect to ω if and only
if the following is true: Eq. (44) holds for all p ∈ In for every n for which κn
is either of the entangled or mixed type, and Eq. (45) holds for all p ∈ In for
every n for which κn is of the entangled type.

We now also have an example where the transitivity in Theorem 5.1 is
trivial, meaning that ω ◦ψ = μ
 ξ′ despite having ω �= μ
ν′ and ψ �= ν
 ξ′.
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To see this, let C be a system constructed in the same way as A and B
above, so it has the same von Neumann algebra and state, but the generator
giving its dynamics can use different choices in place of k, g and l, h. As above,
construct two couplings ω and ψ (giving balance of A and B with respect to
ω, and of B and C with respect to ψ), but with entangled and mixed types
not in overlapping parts of the two couplings respectively (i.e. the respective
Yn sets corresponding to these two types in the respective couplings should
be disjoint), while the rest of each coupling is a κn of the product type. Then
it can be verified using Proposition 5.5 that we indeed obtain ω ◦ψ = μ
 ξ′,
despite having ω �= μ 
 ν′ and ψ �= ν 
 ξ′. This illustrates that to have
ω ◦ ψ �= μ 
 ξ′, we need sufficient “overlap” between ω and ψ, where this
overlap condition has been made precise in Hilbert space terms (in the cyclic
representations) by Proposition 5.5.

7.4. A reversing operation

Here we consider Θ-sqdb in Definition 6.3 and Corollary 6.7, as well as the
two generalized detailed balance conditions suggested at the end of Section
6. Take Θ to be transposition in the basis e1, e2, e3, ..., i.e.

Θ(a) := aT

for all a ∈ B(H). This is the standard choice of a reversing operation for
(B(H), ζ), used for example in [29, Section 2]. In the cyclic representation, Θ
would be given by π(a) 
→ π(aT ). It is readily confirmed from Eq. (33) that
in this case the Θ-KMS dual of B is BΘ = (B(H), T ′, ζ), i.e. in the cyclic
representation we would have αΘ

t = α′
t for all t.

For the diagonal coupling δ, obtained when κ1 is of the entangled type
with Y1 = N+, then from Eqs. (44) and (39) we see that B and BΘ are in
balance with respect to δ, i.e. B satisfies Θ-sqdb (Corollary 6.7), if and only
if lp = 1− lp, i.e. lp = 1/2, for all p.

More generally, consider the situation where B satisfies Θ-sqdb, and A
and B are in balance with respect to ω. It then follows from Eq. (44) that
kp = 1/2 for all p in every In such that κn is of the entangled or mixed
type, but we need not have kp = 1/2 for other values of p. This is therefore
a strictly weaker condition on A than Θ-sqdb, as long as not all the κn are
of the entangled or mixed type.

Next consider the situation where A and AΘ are in balance with respect
to ω, where again not all the κn are of the entangled or mixed type. Then in
a similar way we again see that kp = 1/2 for all p in every In such that κn
is of the entangled or mixed type, but we need not have kp = 1/2 for other
values of p. So again this is a strictly weaker condition than Θ-sqdb.

This illustrates the two conditions suggested at the end of Section 6,
albeit in a very simple situation. Here the two conditions are essentially
equivalent when applied to A, but we expect this not to be the case in
general.
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8. Further work

From Subsection 7.4 we see, in a specific example, that a system A in balance
with its Θ-KMS dual AΘ, where Θ is a reversing operation, can possibly be
heuristically interpreted as satisfying Θ-sqdb in some respects, since we had
kp = 1/2 for some values of p, but not necessarily all. However, this special
case does not give a physical interpretation of balance in general.

Theorem 4.1 gives a hint toward a general interpretation, namely that
if A and B are in balance with respect to ω, then the dynamics of system A
is partially carried over to system B. However, a physical interpretation of
balance in general can possibly be made more precise.

Now, as seen in particular from Theorem 4.1, balance seems to indicate
some common structure in the two involved systems. However, this is a subtle
issue. Already in the classical case, in the context of joinings, it has been
shown that (translating into our context) two systems can be nontrivially in
balance (i.e. the coupling is not the product state), while the two systems
have no “factor” (roughly speaking a subsystem) in common. This was a
difficult problem in classical ergodic theory posed by Furstenberg in [36] in
1967, and was only solved a decade later by Rudolph in [58]. Therefore we
suspect that balance between two systems is more general than the existence
of some form of common system inside the two systems. This issue has not
been pursued in this paper, but appears worth investigating.

It also seems natural to study joinings directly for systems as defined in
Definition 2.1. The idea would be to replace the balance conditions in Def-
inition 2.10, by the joining conditions (possibly adapted slightly) described
in Remark 2.12.

In principle we can view Eω as a quantum channel. It could be of interest
to see what the physical significance of this map is, considering the well-
known correspondence between completely positive maps and bipartite states
in finite dimensions (see [16], but also [19] and [42] for earlier related work)
which is of some importance in quantum information theory. See for example
[64], [9] and [43]. Some related work has appeared in infinite dimensions for
B(H) and B(H1, H2) as well [14], [41]. Also see [11, Section 1] for further
remarks.

Transitivity, via Eψ ◦Eω, appears to be a basic ingredient of the theory
of balance, but we have not explored its consequences in this paper. What
are the physical implications or applications of transitivity?

In Section 6 we only considered standard quantum detailed balance with
respect to a reversing operation. It certainly seems relevant to investigate if
balance can be successfully used to give generalized forms of other conditions.

Furthermore, if balance can indeed be used to formulate certain types
of non-equilibrium steady states, as asked in Section 6, then it seems natural
to connect this to entanglement and correlated states more generally. Can
results on entangled states be applied to a coupling ω of μ and ν to study or
classify certain classes of non-equilibrium steady states μ (or ν) of quantum
systems? Note that the two extremes are the product state ω = μ
ν′, which
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is the bipartite state with no correlations, and the diagonal coupling δμ of
μ with itself, which can be viewed as the bipartite state which is maximally
entangled while having μ and μ′ as its reduced states, at least in the situation
in Section 7.

We have only studied one example in this paper (in Section 7). To gain a
better understanding of balance, it is important to explore further examples,
especially physical examples, in particular in relation to non-equilibrium.

Lastly we mention the dynamical, weighted and generalized detailed
balance conditions studied in [5], [2] and [3] respectively, along with a local
KMS-condition, which was explored further in [4] and [34]. We suspect that
it would be of interest to explore if there are any connections between these,
and balance as studied in this paper.
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