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Abstract

South Sudan accounts for a large proportion of all annual malaria cases in Africa. In re-
cent years, the country has witnessed an unprecedented number of people on the move,
refugees, internally displaced people, people who have returned to their countries or
areas of origin, stateless people and other populations of concern, posing challenges to
malaria control. Thus, one can claim that human mobility is one of the contributing
factors to the resurgence of malaria. The aim of this paper is to assess the impact of
human mobility on the burden of malaria disease in South Sudan. For this, we formu-
late an SIR-type model that describes the transmission dynamics of malaria disease
between multiple patches. The proposed model is a system of stochastic differential
equations consisting of ordinary differential equations perturbed by a stochastic Wiener
process. For the deterministic part of the model, we calculate the basic reproduction
number. Concerning the whole stochastic model, we use the maximum likelihood ap-
proach to fit the model to weekly malaria data of 2011 from Central Equatoria State,
Western Bahr El Ghazal State and Warrap State. Using the parameters estimated on
the fitted model, we simulate the future observation of the disease pattern. The disease
was found to persist in the low transmission patches when there is human inflow in
these patches and although the intervention coverage reaches 75%.
Keywords: Malaria, Movement, Stochastic model, Maximum likelihood, Basic repro-
duction number.
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1 Introduction

Malaria is a vector-borne disease that causes a lot of distress to people on a global
scale. In spite of recent achievements in the fight against malaria, which has led to a
significant reduction in the burden, the disease still counts amongst the top ten deadly
diseases in the world with an estimate of 400 000 deaths each year [42].

Malaria is transmitted more robustly and incessantly in Africa than it is elsewhere.
Further constraints regarding malaria dynamics complexity, are the recurring outbreaks
of conflicts on the continent which contribute to a large number of people’s displacement
and migration, increasing their vulnerability to infectious diseases [15, 19].

In this paper we focus mainly on South Sudan, the youngest country in Africa
which has just emerged from two decades of civil war and sporadic violence. This has
steered to a deteriorating socioeconomic situation, collapsed health systems and dis-
ruption of disease control programs. For instance, in the rural areas, the disease exerts
an enormous toll due to poor health services and lack of sufficient transport whereby
people travel long hours to reach the nearest health facility. The political unrest has
further led to substantial population mobility including mass population displacements
[15]. There are an estimated 1.61 million Internally Displaced People (IDPs), and over
975,801 refugees in neighboring countries [34]. It was reported that in 2013 almost all
states were affected directly or indirectly by conflict-induced displacement, as shown in
Figure 1. The fluidity of displacement in the country makes it difficult for health care
providers to reach all conflict-affected populations. Moreover, the displaced people are
associated with poor-quality housing that makes them more vulnerable to mosquito
bites and thus increases the risk factor for malaria. If displaced people are not immu-
nized, they may move to malarious regions and acquire the infection, and if they are
infectious, they may disseminate the infection to other areas. Consequently, vector-
borne diseases in particular malaria, across many areas of the country have worsened.
With this backdrop, it is more difficult to comprehend how the epidemic is circulating
among the population.

Mathematical models for malaria transmission can help better understand the oc-
currence of the disease in the community and investigate how certain factors such as
migrations affect the course of the epidemic. In this regards, several mathematical mod-
els have been developed by researchers starting from the basic malaria model of Ross
[37] and Macdonald [23] to more complex models considering different factors relating
to malaria transmission dynamics and control [12, 13, 18, 3, 10, 26, 19, 24, 29, 33, 41].

In a review article, Cosner et al.[9] explored optimal disease control in spatial envi-
ronment using models that account human mobility between patches. In a recent study,
Cosner et al. [8] showed, using empirical data combined with mathematical analyses,
a significant effect of host and vector movement patterns on the disease burden. Kim
et al. [21] pointed up the importance of border screening in the presence of human
migration in Africa during an outbreak. Acevedo et al.[1] explored analytically and
via numerical simulations how human mobility and spatial variation in transmission
influence malaria long-term persistence determined by the basic reproduction number
R0, and prevalence. They show that movement can reduce heterogeneity in exposure to
mosquito biting. When local transmission rates are highly heterogeneous, R0 declines
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asymptotically as human mobility increases.
Using a two-patch model, Gao and Ruan [14] demonstrated that human movement

can aid malaria to turn from disease-free to endemic equilibria in both patches, even
though malaria could be eradicated in each patch when isolated. Their study points out
that R0 varies monotonously with the movement of exposed, infectious and recovered
humans and hence human movement is a critical factor in the spatial spread of malaria
around the world.

Malaria occurrence may be accentuated critically by factors such as environmental
change, socioeconomic situation, and human mobility. For this reason, improving our
perception of host-parasite interactions that attests to the seriousness of these factors
is crucial. In our previous study [27], we focused on understanding the significant
role that temperature and rainfall play in the dynamics of the mosquito populations
in the study of malaria transmission in South Sudan. More precisely the study helps
understand the course of malaria epidemic in two different climatic regions experiencing
climate change, also gain insight into the abundance of mosquitoes with changes in
rainfall and temperature patterns within the region that alter the volatility of malaria
cases throughout the year. Consequently, the study proposed and analyzed a human-
mosquito disease-based model that includes temperature and rainfall on the mosquito
component. The results reflect that disease is more effective and severe in the tropical
region than in a hot semi-arid region of South Sudan. Note this study focused more
on mosquito population and how this is impacted by climate factor. This explain why

Figure 1: Source: [34], IDPs camp and movement patterns
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asymptomatic infection class for human was not included in the study.
In a different study [28], the focus of the study shifted to humans where intervention

variables were incorporated to contract the spread of malaria. Thus we added the
asymptomatic malarial infections compartment in this case. In both of the above-
mentioned works, human mobility is not taken into consideration in the transmission
of malaria. Hence, this study seeks to assess whether human mobility may have an
impact on the malaria epidemic in South Sudan. The model generalizes the mosquito
biting rate for each patch so that it applies to wider ranges of populations. We consider
that the total number of mosquito bites on humans depends only on the number of
mosquitoes, similar to that model of [28, 30].

The deterministic modeling based on ordinary differential equations (ODEs) is the
most widely used approach. The inclusion of stochasticity in a mathematical model
may be motivated by demographic fluctuations resulting from the stochastic nature of
the epidemic, randomization in the environment or observed stochasticity that include
diagnostic errors, incomplete reporting of cases or fluctuations of the reporting rate.
These sources have the ability to make stochastic model behaviour quite different from
that of a deterministic performance, such as in [20, 22, 25, 43, 40] for example.

In this study, we thought to include stochastic scenarios to the model due to the
important properties such as the probability of an outbreak, final size distribution of
an epidemic and the expected duration of an epidemic that depends on the stochastic
nature of the process related to the randomness scenarios of human mobility.

There are three types of stochastic processes namely the discrete-time Markov chain
(DTMC) model, a continuous-time Markov chain (CTMC) model and a stochastic
differential equation (SDE) model where their simulation results are similar in a short
time [2]. We consider SDE processes to be formulated for the well-known SEIAR
epidemic model where its sample paths remain continuous.

The fact that most of the stochastic systems run scenarios several thousand times
stochastically can better explain the variability of the observed time-series. This pro-
cess provides a way of interpreting results using confidence bands.

The present study considers demographic stochasticity based on the variability
of the epidemical process by using a stochastic model based on a diffusion process,
so as to minimize uncertainty in the modeling process to give realistic measures of
confidence around predictions with reliable population projections. To accommodate
such stochasticity, we extend a classical deterministic SIR-type epidemic model with
migration flows by adding a stochastic noise term in the form of a Wiener process to
the human component of our basic model 2.1. This strategy makes sense because the
mobility of mosquito is negligible as compared to the distance between study patches.
To estimate the model’s parameter we use maximum likelihood to fit it to weekly
malaria data of 2011 from Central Equatoria State, Western Bahr El Ghazal State and
Warrap State.
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2 Model formulation

In this section, we begin with the formulation of a deterministic metapopulation malaria
epidemic model which we further extend by adding a white noise perturbation. The
deterministic part of the model is based on the SEIAR-SEI model of [28], in which
we incorporate human migration factors similar to that considered [21]. The human
components in the model are utilized to capture disease dynamics and population’s
movement. Conflicts force individual irrespective of their health status to flee to safer
zones. For the purpose of our study, the migration factors considered in our model
formulation account for movement of people between n different regions. We assume
that disease transmission conditions are homogeneous within each of these regions.
Subsequently, we divide the human population in each patch i, Ni (with i = 1, . . . , n)
into susceptible individuals Si, pre-infectious individuals with malaria parasite Ei,
individuals with malaria symptoms Ii, asymptomatic infectious individuals Ai and
recovered individuals Ri, so that

Ni(t) = Si(t) + Ei(t) + Ii(t) +Ai(t) +Ri(t).

Accordingly, we assume that individuals of all disease classes are subject to migration
flows between patches. Although some individuals, during their travel, may change
their disease status (for instance from susceptible to latently infected or symptomatic
disease), we assume, for simplicity, that individuals keep their disease status as they
move between patches. Subsequently, for each disease state Q = S,E, I, A,R, individu-
als are assumed to immigrate from patch j to patch i at rate ψQ

i,j without changing their
states. The disease transmission dynamics and population’s migration are considered
to have both deterministic and stochastic components that operate simultaneously.
This provides an additional degree of realism compared to deterministic models. In or-
der to account for stochasticity, we introduce white noise stochastic perturbations onto
deterministic model, and formulate the necessary assumptions hitherto. Additionally,
the mosquito components in the model are represented to capture the effects of vec-
tor control in preventing transmission. We consider Anopheles Gambiae mosquitoes
which are the main anopheles species that transmit Plasmodium Falciparum in South
Sudan. The total mosquito population Mi is divided into susceptible mosquitoes Xi,
mosquitoes exposed to the malaria parasite Yi, and infectious mosquitoes Zi, that is

Mi(t) = Xi(t) + Yi(t) + Zi(t).

The population dynamics and infection processes of human and anopheles Gambiae
mosquitoes are given by the following set of ordinary differential equations:
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Figure 2: Model flow diagram for human and mosquito populations in State i, where
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. (2.1)

where Si > 0, Ei ≥ 0, Ii ≥ 0, Ai ≥ 0, Ri ≥ 0, Xi ≥ 0, Yi ≥ 0, Zi ≥ 0, the terms Λi

and βi are the forces of infection that we follow the approach in [30, 27] to model:

• Λi(Zi, Ni) =
ǫibiZi

Ni
, represents the force of infection on humans defined as the
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product of;
ǫiShMi/Ni, the average number of bites given to susceptible humans by each
mosquito per unit time to be measured at study settings level i;
bi, the probability of an infected mosquito bite causes infection in a susceptible
human;
Zi/Mi, the proportion of the total number of bites that are potentially infectious
to humans.

• βi(Ai, Ii, Ni) =
ǫi (κiAi + νiIi)

Ni
, represents the force of infection on mosquitoes

which is defined similarly as on humans, assuming that the reservoir of possi-
ble infections from humans includes νi and κi defined as the probability that a
susceptible mosquitoes bite on an infected human to transfer the infection to the
mosquito from a clinical infectious and an asymptomatic infectious human respec-
tively, excluding a recovery stage to be releasing merozoites into the bloodstream.

Table 1: Model Variables

Si Susceptible individuals
Ei Pre-infectious individuals with malaria parasite
Ii Individuals with malaria symptoms
Ai Asymptomatic infectious individuals
Ri Recoved individuals
Xi Susceptible mosquitoes
Yi Mosquitoes exposed to the malaria parasite
Zi Infectious mosquitoes

The susceptible individuals is recruited by birth at a rate Γi = µ × Ni where Ni

is the total human population size for patch i. We assume that transmission occurs
solely between humans and mosquiotes from the same state; subsquently susceptible
human (Si) in patch i acquire malaria and become pre-infectious and move to class
Ei at a rate Λi when they are bitten by infectious mosquitoes from the same patch
i. Thereafter, according to the clinical studies [11, 18], individuals either develop
clinical infection and progress to the infectious compartment Ii at the rate λi (that is
the inverse of the duration of the latent period of 12 days on average) or progress to
the asymptomatic class Ai at the rate ζi after an average period of 20 days. In this
study, the parameters ζ and λ are estimated during the data fitting process for each
patch using the durations above as prior knowledge. Those that develop disease are
successfully treated at rate αi and subsequently enter a period of prophylaxis (recovery
compartment Ri). The disease-induced mortality rate is denoted by δi. Individuals
with asymptomatic infection are assumed to recover naturally with a constant per
capita recovery rate πi and enter Ri compartment. Depending on the type of treatment
that may be used to recover from infection, individuals from recovery class move to the

7



susceptible compartment at rate ρi when they lose their temporary immunity. This is
validated with data from a long-term trial in [18, 31].

Some studies have indicated that super-infection (that is infectious individuals being
inoculated with more parasite in addition to the original infection) is possible to occur
in both clinical and asymptomatic classes [7, 18, 31]. However, since other studies have
shown that the occurrence of super-infection can be regarded as a rare event [31, 32],
we chose to ignore it in this model.

All compartments are stratified in patch i by a level where individuals are bit-
ten by mosquitoes and population are declining with a natural mortality rate of

µhi
=

1

q × 360
day−1 where q is the human life expectancy in years. Susceptible female

mosquitoes in patch i are recruited at the birth rate Ψi. We assume that reduction
in the susceptible mosquitoes occurs through natural death at rate µvi

, or through
infection at rate βi. At this rate βi susceptible mosquitoes move to the pre-infectious
class Yi (pass through a latent period of fixed length) from the same patch i. Latently

Table 2: Model parameters
Symbols Description

Γ Per ca-pita birth rate of Humans. Humans/Day−1

ψ Immigration rate of humans. Day−1

µh Natural mortality rate of humans. Day−1

δ Mortality rate of humans due to malaria. Day−1

ǫ The average number of bites given to humans by each mosquito per unit time.
b Probability of transmitting malaria to susceptible humans from an infectious mosquito

provided that contact occurs between the two.
ν Probability of transmitting malaria to susceptible mosquitoes from a clinical infectious

human-provided that contact occurs between the two.
κ Probability of transmitting malaria to susceptible mosquitoes from an asymptomatic

infectious human-provided that contact occurs between the two.
λ Progression rate of humans from pre-infectious state to a clinical infectious state, that

is the reciprocal of the duration of the latent period. Day−1

ζ Progression rate of humans from pre-infectious state to asymptomatic infectious state,
that is the reciprocal of the duration of the patent infection. Day−1

α Per ca-pita recovery rate for humans from clinical infectious state to the recovered
state, that is the reciprocal duration of the infectious period. Day−1

π Per ca-pita recovery rate for humans from asymptomatic infectious state to the recov-
ered state, that is the reciprocal duration of the sub-patent infection period. Day−1

ρi Per ca-pita rate of loss of immunity, that is the reciprocal duration of the immune
(Prophylaxis following treatment) period. Day−1

η Progression rate of mosquitoes from pre-infectious state to infectious state.
µv Daily mosquito mortality.
Ψ Per ca-pita birth rate of mosquitoes.
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infected mosquitoes move at rate ηi to infectious mosquitoes class and remain in that
class until they die at rate µvi

. We note here that we made all mosquito parameters
depend on the patch they live in to reflect dependency on some internal factors such
as temperature and rainfall.

The population dynamics for these patches is considered to have both deterministic
and stochastic components that operate simultaneously. Of course, the dynamics of
stochastic models for an epidemic population provide an additional degree of realism
compared to their deterministic counterparts. Fluctuations in demographic stochastic-
ity conditions are some of the most important factors affecting real world systems. A
large part of natural phenomena do not follow deterministic laws exactly, but rather
oscillate randomly around some average values [20, 25]. We introduce white noise
stochastic perturbations on the deterministic model equations of human component
and we formulate the necessary assumptions hitherto. We assume that movements of
individuals in and out of a particular patch are independent and fluctuations in popu-
lation size due to random demographic events do not necessarily lead to extinction.

We ignore randomness in mosquito equations since we excluded in this study the
environmental (external) factors that act on the epidemiological processes. Hence,
the resulting model consists of a system of stochastic differential equations (SDEs)
comprising of deterministic terms which are perturbed by a white noise. Therefore,
in this paper we propose to examine the effects of the introduction of demographic
stochasticity noise on the positivity and boundedness of the stochastic process solution
of the mathematical model proposed in 2.1.

Model (2.1) based on our previous work of [28] has the disease-free equilibrium

E0 = (S∗, E∗, I∗, A∗, R∗, X∗, Y ∗, Z∗) = (
Γ

µ
, 0, 0, 0, 0,

Ψ

µv
, 0, 0)

and an endemic equilibrium if R0 > 1. The disease-free equilibrium is globally asymp-
totically stable if R0 < 1 and unstable if R0 > 1. These results of model (2.1) were
studied when ΘQ

i = 0 where Q ∈ {S,E, I, A,R}. If we add ΘQ
i + σQ(dWQ/dt) on hu-

man component of the model, where (dWQ/dt) is a white noise (i.e., W(t) is a Brownian
motion), model (2.1) becomes
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dSi =
[

Γi − ΛiSi − µhi
Si + ρiRi +

∑n
j 6=i=1 ψ

S
j,iSj −

∑n
j 6=i=1 ψ

S
i,jSi

]

dt+ σSSidWS(t)

dEi =
[

ΛiSi − (λi + ζi + µhi
)Ei +

∑n
j 6=i=1 ψ

E
j,iEj −

∑n
j 6=i=1 ψ

E
i,jEi

]

dt+ σEEidWE(t)

dIi =
[

λiEi − (αi + δi + µhi
)Ii +

∑n
j 6=i=1 ψ

I
j,iIj −

∑n
j 6=i=1 ψ

I
i,jIi

]

dt+ σIIidWI(t)

dAi =
[

ζiEi − (πi + µhi
)Ai +

∑n
j 6=i=1 ψ

A
j,iAj −

∑n
j 6=i=1 ψ

A
i,jAi

]

dt+ σAAidWA(t)

dRi =
[

αiIi + πiAi − (ρi + µhi
)Ri +

∑n
j 6=i=1 ψ

R
j,iRj −

∑n
j 6=i=1 ψ

R
i,jRi

]

dt+ σRRidWR(t)

dXi = [Ψi − βiXi − µvi
Xi] dt

dYi = [βiXi − (ηi + µvi
)Yi] dt

dZi = [ηiYi − µvi
Zi] dt

(2.2)
Since it is a population system, it is important that we do not obtain negative

values. In order to find conditions of existence of unique positive global solution
of the stochastic epidemic model, we use the method of Lyapunov functions. Let
(Ω,F , {Ft}t≥t0

, P ) be a probability space which is right continuous with a filtration

{Ft}t≥t0
. Let C2,1(R5 × [0,∞);R+) be the family of all nonnegative functions V (x, t)

defined on R
5 × [0,∞) which are continuously twice differentiable in x and once in t.

Let W (t) = (WS(t),WE(t),WI(t),WA(t),WR(t)) a 5-dimensional Wiener process de-
fined on this probability space. The non-negative constants σS , σE , σI , σA and σR

denote the intensities of the stochastic perturbations. We shall assume that the com-
ponents of the 1-dimensional Wiener process Wi are mutually independent. It is im-
portant to show that the SDE model (2.2) has at least a unique global solution in order
for the model to have meaning and also that the solution will remain positive whenever
the initial conditions are positive. Thus, the following theorem:

Theorem 1. For model (2.2) and any initial value in R
8n
+ , there is a unique solution

L = (Si(t), Ei(t), Ii(t), Ai(t), Ri(t), Xi(t), Yi(t), Zi(t))i=1,··· ,n , of the system (2.2) for

t ≥ 0 which will remains in R
8n
+ with probability one.

Proof. The total human population in system (2.2) verifies the equation (2.3) with the
initial value Ni(0) = Si(0) + Ei(0) + Ii(0) +Ai(0) +Ri(0),
if (Si(s), Ei(s), Ii(s), Ai(s), Ri(s), )i=1,··· ,n ∈R5n

+ for all 0≤ s ≤ t almost surely (a.s)

dNi(t) < [Γi − ϕNi] a.s (2.3)

where
{

Γi =
∑n

j 6=i=1 ψ
Q
i,jNj + Γi for Q = S,R and j = 1, · · · , n, j 6= i

ϕ = µhi
+
∑n

j 6=i=1 ψ
Q
i,j .
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Hence, by integration we check

Ni(s) <
Γi

ϕ
+ (Ni(0) −

Γi

ϕ
) exp(−ϕs) for all s ∈ [0, t] a.s .

Then

Ni(s) <
Γi

ϕ
if assumed Ni(0) <

Γi

ϕ
so

(Si(s), Ei(s), Ii(s), Ai(s), Ri(s), )i=1,··· ,n ∈ (0,
Γi

ϕ
) for all s ∈ [0, t] a.s . (2.4)

Note that the coefficients of the system (2.2) are locally Lipschitz continuous, for any
given initial value, there is a unique maximal local solution
(Si(t), Ei(t), Ii(t), Ai(t), Ri(t), Xi(t), Yi(t), Zi(t))i=1,··· ,n on t ∈ [0, τe), where τe is the
explosion time (see e.g., [4, 17]).

To show this solution is global, we need to show that τe = ∞ almost surely (a.s).
Letm0 > 0 such that (Si(0), Ei(0), Ii(0), Ai(0), Ri(0), Xi(0), Yi(0), Zi(0))i=1,··· ,n ∈ [ 1

m0
,m0].

For each integer m ≥ m0, define a sequence of stopping times by

τm = inf

{

t ∈ [0, τe) : S(t), E(t), I(t), A(t), R(t), X(t), Y (t) or Z(t) /∈

(
1

m
,m

)}

where we set inf∅ = ∞. Now since τm is nondecreasing, the following limit exists:
τ∞ = limm→∞ τm, and τ∞ ≤ τe (a.s.). We need to show that τ∞ = ∞ a.s.
If this statement is violated, then there exists T > 0 and ǫ ∈ (0, 1) such that

P{τ∞ ≤ T} > ǫ. (2.5)

Thus, there is an integer m1 ≥ m0 such that

P {τm ≤ T} ≥ ǫ, for all m ≥ m1.

Define a C2-function V : R8n
+ → R+ by

V (L) =
∑n

i=1

[

(Si − 1 − lnSi) + (Ei − 1 − lnEi) + (Ii − 1 − ln Ii) + (Ai − 1 − lnAi)

+ (Ri − 1 − lnRi) + (Xi − 1 − lnXi) + (Yi − 1 − lnYi) + (Zi − 1 − lnZi)
]

By applying Itô’s formula we get,

dV (L) =
∑n

i=1

[ (

1 − 1
Si

)

dSi + 1
2S2

i

dSidSi +
(

1 − 1
Ei

)

dEi + 1
2E2

i

dEidEi

+
(

1 − 1
Ii

)

dIi + 1
2I2

i

dIidIi +
(

1 − 1
Ai

)

dAi + 1
2A2

i

dAidAi

+
(

1 − 1
Ri

)

dRi + 1
2R2

i

dRidRi +
(

1 − 1
Xi

)

dXi + 1
2X2

i

dXidXi

+
(

1 − 1
Yi

)

dYi + 1
2Y 2

i

dYidYi +
(

1 − 1
Zi

)

dZi + 1
2Z2

i

dZidZi,
]

and using (2.2) we obtain

dV (L) = LV dt+
(

1 − 1
Si

)

σSSidWS(t) +
(

1 − 1
Ei

)

σEEidWE(t) +
(

1 − 1
Ii

)

σIIidWI(t)

+
(

1 − 1
Ai

)

σAAidWA(t) +
(

1 − 1
Ri

)

σRRidWR(t)
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where

LV =
∑n

i=1

ǫibiZi

Ni
−
ǫibiSiZi

NiEi
+ µhi

Ni + ζi + λi + ρi + αi + δi + πi

+
∑n

i=1

ǫiκiAi

Ni
−
ǫiκiAiXi

NiYi
− ρiRi

Si
− πiAi

Ri
− αiIi

Ri
−

µhi
Ni

Si

+
∑n

i=1

ǫiνiIi

Ni
−
ǫiνiIiXi

NiYi
− Ψi

Xi
− ηiYi

Zi
− λiEi

Ii
− ζiEi

Ai

+
∑n

i=1 5µhi
+ Ψi + ηi + 3µvi

− µvi
Xi − µvi

Yi − µvi
Zi

+1
2

(
σ2

S + σ2
E + σ2

I + σ2
A + σ2

R

)

By (2.4) we assert that (Si(s), Ei(s), Ii(s), Ai(s), Ri(s), )i=1,··· ,n ∈ (0, Γi

ϕ
) for all s ∈

[0, t ∧ τm] a.s . Hence
∑n

i=1

ǫibiZi

Ni
< Γi

ϕ
,
∑n

i=1

ǫiκiAi

Ni
< Γi

ϕ
and

∑n
i=1

ǫiκiIi

Ni
< Γi

ϕ
,

therefore

LV ≤
∑n

i=1
3Γi

ϕ
+ µhi

Ni + ζi + λi + ρi + αi + δi + πi + 5µhi
+ Ψi + ηi + 3µvi

+1
2

(
σ2

S + σ2
E + σ2

I + σ2
A + σ2

R

)
=: D

Denote by ξ = min (τm, T ) , then
∫ ξ

0
dV (Si(s), Ei(s), Ii(s), Ri(s), Ai(s), Xi(s), Yi(s)) ≤

∫ ξ

0
Dds+H (ξ) ,

where

H(s) =
∫ s

0 (S(u) − 1)σSdWS(u) +
∫ s

0 (E(u) − 1)σEdWE(u) +
∫ s

0 (I(u) − 1)σIdWI(u)
+
∫ s

0 (A(u) − 1)σAdWA(u) +
∫ s

0 (R(u) − 1)σRdWR(u).

Taking expectation, yields

E [V (Si(ξ), Ei(ξ), Ii(ξ), Ai(ξ), Ri(ξ), Xi(ξ), Yi(ξ), Zi(ξ))]

≤ V (Si(0), Ei(0), Ii(0), Ai(0), Ri(0), Xi(s), Yi(s)) + E
∫ ξ

0 Dds
≤ V (Si(0), Ei(0), Ii(0), Ai(0), Ri(0), Xi(s), Yi(s)) +DT.

Set Ωm = {ω ∈ Ω : τm < T} for each m ≥ m1 and from equation (2.5), we have
P(Ωm) ≥ ǫ. Note that for every ν ∈ Ωm, with these two bounds yield we get

{Si (τm, ν) , Ei (τm, ν) , Ii (τm, ν) , Ai (τm, ν) , Ri (τm, ν)} ∩ [m,
1

m
] 6= ∅.

Consequently,

V
(

(Si(ξ), Ei(ξ), Ii(ξ), Ai(ξ), Ri(ξ))i=1,··· ,n

)

≥ Um

where

Um = min
u∈{1,a0}

{

m− u− u ln
m

u
,

1

m
− u− u ln

1

um

}

.

choose a0 > 0 sufficiently small. Then we obtain

V
(

(Si(0), Ei(0), Ii(0), Ai(0), Ri(0), Xi(s), Yi(s))i=1,··· ,n

)

+DT

≥ E(1Ωm
V
(

(Si(ξ), Ei(ξ), Ii(ξ), Ai(ξ), Ri(ξ))i=1,··· ,n

)

≥ ǫUm.

Lettingm → ∞ leads to the contradiction ∞ = V
(

(Si(0), Ei(0), Ii(0), Ai(0), Ri(0))i=1,··· ,n

)

+

DT < ∞. Thus, as τm ≥ τ∞, then τm = τ∞ = ∞ a.s. This completes the proof.
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3 Basic Reproduction Number

The basic reproduction number, denoted by R0, is defined as the average number
of secondary infections that occur when one infective is introduced into a completely
susceptible host population (see [38] for instance).

To evaluate R0, we need to determine the model’s disease free equilibrium points
which are given by the solutions of the following system







Γi −
(

µhi
+
∑n

j 6=i=1 ψ
S
i,j

)

Si +
∑n

j 6=i=1 ψ
S
j,iSj = 0,

−(ρi + µhi
)Ri +

∑n
j 6=i=1 ψ

R
j,iRj −

(
∑n

j 6=i=1 ψ
R
i,j

)

Ri = 0,

Ψi − µvi
Xi = 0,

We obtain Xi = Ψi

µvi

, and
{ ∑n

j=1 ϕ
S
i,jSj = Γi

∑n
j=1 ϕ

R
i,jRj = 0,

(3.6)

where
{

ϕQ
i,j = −ψQ

i,j for Q = S,R and j = 1, · · · , n, j 6= i

ϕS
i,j = µhi

+
∑n

j 6=i=1 ψ
S
i,j and ϕR

i,j = ρi + µhi
+
∑n

j 6=i=1 ψ
R
i,j for j = i.

Using matricial form, equation (3.6) reads as

{

ϕSS = Γ
ϕRR = 0

(3.7)

where ϕQ =
(

ϕQ
i,j

)

1≤i,j≤1
, S = (S1, · · ·Sn)⊤ , R = (R1, · · ·Rn)⊤ and Γ = (Γ1, · · · Γn)⊤ .

It can be shown that the matrix ϕQ is an invertible Z-matrix in which the off-diagonal
entries are nonzero,implying that system (3.7) has a unique solution R = 0 and S =

S0 =
(

ϕS
)−1

Γ.

Thus, model (2.2) has a unique disease free equilibrium point

E0 =

((

S0
i

)

i=1,··· ,n
,0,0,0,0,

(

X0
i

)

i=1,··· ,n
,0,0

)

where 0 = (0, · · · , 0
︸ ︷︷ ︸

n times

),
(
X0

i

)

i=1,··· ,n
=
(

Ψi

µvi

)

i=1,··· ,n
and

(
S0

i

)

i=1,··· ,n
=
(

ϕS
)−1

Γ.

We are now in a position to compute R0 for the deterministic counterpart of the
stochastic model2.2 by following the approach of Van den Driessche and Watmough
since the model satisfies the hypotheses as set out in [38]. The model’s disease com-
partments are Ei, Ii, Ai, Yi and Zi.
First we rewrite the equations for the model’s infected classes

(E1, · · · , En, I1, · · · , In, A1, · · · , An, Y1, · · · , Yn, Z1, · · · , Zn)
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as 





dEi

dt
= ΛiSi −

∑n
j=1 ϕ

E
i,jEj

dIi

dt
= λiEi −

∑n
j=1 ϕ

I
i,jIj

dAi

dt
= ζiEi −

∑n
j=1 ϕ

A
i,jAj

dYi

dt
= βiXi − (ηi + µvi

)Yi

dZi

dt
= ηiYi − µvi

Zi

where 





ϕQ
i,j = −ψQ

i,j for Q = E, I or A and j = 1, · · · , n j 6= i

ϕE
i,i = λi + ζi + µhi

+
∑n

j 6=i=1 ψ
E
i,j ,

ϕI
i,i = αi + δi + µhi

+
∑n

j 6=i=1 ψ
I
i,j ,

ϕA
i,i = πi + µhi

+
∑n

j 6=i=1 ψ
A
i,j

.

With these notations the vector of the rates of new infections and the vector of the
ratres of other transfers between disease states are respectively given by

F(x) =














[
ǫibiZiSi

Si + Ei + Ii +Ai +Ri

]

i=1,··· ,n

0n

0n[
ǫiκiAiXi + ǫiνiIiXi

Si + Ei + Ii +Ai +Ri

]

i=1,··· ,n

0n














, and V(x) =














[
∑n

j=1 ϕ
E
i,jEj

]

i=1,··· ,n[

−λiEi +
∑n

j=1 ϕ
I
i,jIj

]

i=1,··· ,n[

−ζiEi +
∑n

j=1 ϕ
A
i,jAj

]

i=1,··· ,n

[(ηi + µvi
)Yi]i=1,··· ,n

[−ηiYi + µvi
Zi]i=1,··· ,n














.

The Jacobian matrices of F and V with respect to infected classes (Ei, Ii, Ai , Yi, and
Zi) evaluated at the disease free equilibrium point E0 are respectively given by

F =










O O O O F1,5

O O O O O

O O O O O

O F4,2 F4,3 O O

O O O O O










and V =










V1,1 O O O O

V2,1 V2,2 O O O

V3,1 O V3,3 O O

O O O V4,4 O

O O O V5,4 V5,5










where 





F1,4 = diag {ǫ1b1, ǫ2b2, · · · , ǫnbn}

F4,2 = diag

{

ǫ1ν1
X0

1

S0
1

, ǫ2ν2
X0

2

S0
2

, · · · , ǫnκn
X0

n

S0
n

}

F4,3 = diag

{

ǫ1κ1
X0

1

S0
1

, ǫ2κ2
X0

2

S0
2

, · · · , ǫnκn
X0

n

S0
n

}
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and 





V1,1 =
(

ϕE
i,j

)

1≤i,j≤n

V2,1 = diag (−λ1, · · · ,− λn)

V2,2 =
(

ϕI
i,j

)

1≤i,j≤n

V3,1 = diag (−ζ1, · · · ,−ζn)

V3,3 =
(

ϕA
i,j

)

1≤i,j≤n

V4,4 = diag (η1+µv1
, · · · , ηn+µvn

)
V5,4 = diag (−η1, · · · ,−ηn)
V5,5 = diag (µv1

, · · · , µvn
)

and O is the n by n matrix with all entries being equal to 0.
The matrix F is a non-negative matrix of rank one and can be written as the product
of vectors. Matrices V1,1, V2,2, V3,3, V4,4 and V5,5 are irreducible non-singular M-matrix
and thus their inverses are

V −1 =











V −1
1,1 O O O O

−V −1
2,2 V2,1V

−1
1,1 V −1

2,2 O O O

−V −1
3,3 V3,1V

−1
1,1 O V −1

3,3 O O

O O O V −1
4,4 O

O O O −V −1
5,5 V5,4V

−1
4,4 V −1

5,5











The Next Generation Matrix is given by:

M = FV −1 =










O O O M1,4 M1,5

O O O O O

O O O O O

M4,1 M4,2 M4,3 O O

O O O O O










where 





M1,4 := F1,4V
−1

4,4 V5,4V
−1

5,5 ,

M1,5 := F1,4V
−1

5,5 ,

M4,1 := F4,2V
−1

1,1 V2,1V
−1

2,2 + F4,3V
−1

1,1 V3,1V
−1

3,3

M4,2 := F4.2V
−1

2.2

M4,3 := F4.3V
−1

3.3 .

Hence, the basic reproduction number R0 given by the spectral radius of FV −1, is

R0 = ρ (B)

where B is the n× n positive matrix given by

B = M1,4M4,1 = F1,4V
−1

4,4 V5,4V
−1

5,5

(

F4,2V
−1

1,1 V2,1V
−1

2,2 + F4,3V
−1

1,1 V3,1V
−1

3,3

)

.

F1,4V
−1

4,4 V5,4V
−1

5,5 = diag

(

−ǫ1b1η
1

µv1
(η1+µv1

)
, · · · , −ǫnbnηn

µvn (ηn+µvn )

)

F4,2V
−1

1,1 V2,1V
−1

2,2 = diag

{

ǫ1ν1
X0

1

S0
1

, · · · , ǫnκn
X0

n

S0
n

}
(

ϕE
)−1

diag (−λ1, · · · ,− λn)
(

ϕI
)−1

F4,3V
−1

1,1 V3,1V
−1

3,3 = diag

{

ǫ1κ1
X0

1

S0
1

, · · · , ǫnκn
X0

n

S0
n

}
(

ϕE
)−1

diag (−ζ1, · · · ,−ζn)
(

ϕA
)−1
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Clearly, the calculation of ρ (B) involves the inversion of n by n matrices which can
lead to some tedious calculations when n is large. We discuss the following particular
cases:

• Case 1: No movement between patches, if we ignore population movement be-
tween patches, that is ψQ

i,j = ψQ
j,i = 0 for j = 1, · · · , n j 6= i and Q = E, I or A,

we have
{

ϕQ
i,j = 0 for j = 1, · · · , n j 6= i and Q = E, I or A

ϕE
i,i = λi + ζi + µhi

, ϕI
i,i = αi + δi + µhi

, ϕA
i,i = πi + µhi

.

Then

F1,4V
−1

4,4 V5,4V
−1

5,5 = diag

(

−ǫ1b1η
1

µv1
(η1+µv1

)
, · · · , −ǫnbnηn

µvn (ηn+µvn )

)

F4,2V
−1

1,1 V2,1V
−1

2,2 = diag

{

−λ1ǫ1ν1
X0

1

S0
1ϕ

E
11ϕ

I
11

, · · · ,−λnǫnνn
X0

n

S0
nϕ

E
nnϕ

I
nn

}

F4,3V
−1

1,1 V3,1V
−1

3,3 = diag

{

−ζ1ǫ1κ1
X0

1

S0
1ϕ

E
11ϕ

A
11

, · · · ,−ζnǫnκn
X0

n

S0
nϕ

E
nnϕ

A
nn

}

Therefore

B = diag

{

ǫ21b1η1X
0
1

µv1
(η1+µv1

)S0
1ϕ

E
11

(

λ1ν1

ϕI
11

+
ζ1κ1

ϕA
11

)

, · · · ,
ǫ2nbnηnX

0
n

µvn
(ηn+µvn

)S0
nϕ

E
nn

(
λnνn

ϕI
nn

+
ζnκn

ϕA
nn

)}

.

Hence
R0 = max R0i

where

R0i =
ǫ2i biηi

X0
i

µvi
(ηi+µvi

) (λi + ζi + µhi
)S0

i

(
λiνi

αi + δi + µhi

+
ζiκi

πi + µhi

)

.

Thus if R0i > 1 for all i, then the disease-free equilibrium (DFE) is unstable
leading and the disease may invade the population, but if R0i < 1 for all i, then
DFE is locally asymptotically stable and the disease may be eliminated.
Thus, it is important to reduce R0i in every patch i for the disease to be controlled.

• Case 2: Two-patch model with movement, in the case of nonzero rates of popu-
lation’s movement, we consider a situation where the whole population is divided
in two (large) patches only, that is n = 2, then we have







F1,4 = diag {ǫ1b1, ǫ2b2}

F4,2 = diag

{

ǫ1ν1
X0

1

S0
1

, ǫ2ν2
X0

2

S0
2

}

F4,3 = diag

{

ǫ1κ1
X0

1

S0
1

, ǫ2κ2
X0

2

S0
2

}
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and 





V1,1 =
(

ϕE
i,j

)

1≤i,j≤2

V2,1 = diag (−λ1,− λ2)

V2,2 =
(

ϕI
i,j

)

1≤i,j≤2

V3,1 = diag (−ζ1,−ζ2)

V3,3 =
(

ϕA
i,j

)

1≤i,j≤2

V4,4 = diag (η1+µv1
, η2+µv2

)
V5,4 = diag (−η1,−η2)
V5,5 = diag (µv1

, µv2
)

Then

B = F1,4V
−1

4,4 V5,4V
−1

5,5

(

F4,2V
−1

1,1 V2,1V
−1

2,2 + F4,3V
−1

1,1 V3,1V
−1

3,3

)

=

[

B11 B12

B21 B22

]

where






B11 = −ǫ1b1η
1

µv1
(η1+µv1

)
(

(ϕE

12)
2
+ϕE

11
ϕE

22

)

(
ν1ǫ1(λ2ϕE

12
ϕI

12
−λ1ϕE

11
ϕI

11)
(ϕI

12)
2
+ϕI

11
ϕI

22

+
κ1ǫ1(ζ2ϕE

12
ϕA

12
−ζ1ϕE

11
ϕA

11)
(ϕA

12)
2
+ϕA

11
ϕA

22

)

B12 = ǫ1b1η
1

µv1
(η1+µv1

)
(

(ϕE

12)
2
+ϕE

11
ϕE

22

)

(
ν1ǫ1(λ1ϕE

11
ϕI

12
+λ2ϕE

12
ϕI

22)
(ϕI

12)
2
+ϕI

11
ϕI

22

+
κ1ǫ1(ζ1ϕE

11
ϕA

12
+ζ2ϕE

12
ϕA

22)
(ϕA

12)
2
+ϕA

11
ϕA

22

)

B21 = −ǫ2b2η2

µv2
(η2+µv2)

(

(ϕE

12)
2
+ϕE

11
ϕE

22

)

(
ν2ǫ2(λ1ϕE

12
ϕI

11
+λ2ϕE

22
ϕI

12)
(ϕI

12)
2
+ϕI

11
ϕI

22

+
κ2ǫ2(ζ1ϕE

12
ϕA

11
+ζ2ϕE

22
ϕA

12)
(ϕA

12)
2
+ϕA

11
ϕA

22

)

B22 = −ǫ2b2η2

µv2
(η2+µv2)

(

(ϕE

12)
2
+ϕE

11
ϕE

22

)

(
ν2ǫ2(λ1ϕE

12
ϕI

12
−λ2ϕE

22
ϕI

22)
(ϕI

12)
2
+ϕI

11
ϕI

22

+
κ2ǫ2(ζ1ϕE

12
ϕA

12
−ζ2ϕE

22
ϕA

22)
(ϕA

12)
2
+ϕA

11
ϕA

22

)

Hence

R0 =
1

2

(

B11 +B22 +
√

(B11 −B22)2 + 4B12B21

)

To understand the effects of people’s movement on R0, one can investigate the vari-
ation of R0 with respect to the immigration parameters ϕE

12, ϕ
A
12 and ϕI

12. However,
even in this simple case of two patches the derivatives of R0 with respect to these
parameters are too complex to explore analytically.

One of the interventioins that are aimed at reducing R0i is the Long-lasting in-
secticide treated nets (LLINs) which mainly reduce the contact between humans and
mosquitoes. Implementing this intervenuion in our model can be expressed by (1−χV )ǫ
where χ is the proportion of LLINs coverage and V is the effectiveness of vector con-
trol. These two parameters are estimated using the data fitting process. It is worth
noting that the basic reproduction number of the deterministic model is closely related
to that of the stochastic model which is dependent on the initial number of infectious
individuals for each patch i.
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4 Model fitting and simulations

We restrict our model simulations and data fitting to the three safest zones of Equa-
torial region: Central Equatoria State(CES), Bahr El Ghazal region: Western Bahr El
Ghazal State(WBGZ)) and Upper Nile region : Warrap State(WRP). By doing so, we
are assuming that movements from and into other regions are negligible compared to
those from these three main regions. Basically, this turns out to considering the three
regions together as a closed system, whereby only movements within and between these
three regions are considered. Our stochastic model is fitted to weekly malaria data of
2011 from these three regions (shown in Figure 3) using the maximum likelihood ap-
proach. The model is run deterministically from the year 2000 to reach a steady state
before being fitted to data from the year 2011. We assume that weekly malaria data
were reported according to a Poisson process with reporting rate γ. Since the reporting
rate is incomplete we assume it to be no more than 85%. Data are cases of malaria
from the National Malaria Indicator Survey (MIS) of South Sudan, see S1 Dataset.
Estimates of the population in each selected State in the year 2009 was based on the
pre-independence national census of 2008 [34].
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Figure 3: Illustration of the model fitting: the model assessment (line) run against data
(dots) of CES (a), WBGZ (b) and WRP (c) for 2011, attached with the parameters estimated
during fitting process in Table 3, along with the time-series of the extinction probability (i.e.
the proportion of faded out simulations).
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We describe the stochastic SEIAR model with Poisson observation and constant
population size. We simulate and fit the model to data using the “fitR” package
which takes the “fitmodel” object as a list that stores variables and functions. These
arguments are model name, character vector of state variables, character vector of
parameters, R-function to simulate forward the model, R-function that evaluates the
likelihood of the provided data, R-function to generate observation from a model sim-
ulation and ssa.adaptivetau function which takes a vector of initial conditions, the list
of transitions and rate function, a named vector of parameters, and the final time.

According to continuous Markov processes theory, a Langevin equation can be de-
scribed in the white-noise form [16]. The proposed SDE is considered to be a Langevin
equation that is driven by zero-mean Gaussian noise and hence describes the tau-
leaping. We compute a Monte-Carlo estimate of the log-likelihood of parameters for
a stochastic model defined in a fitmodel object that takes values of the parameters,
initial values of the state variables, observation times and observed data and number
of particles.

We add a new stage variable (Inc) onto the model to track the daily number of
new cases, assuming that these new cases are reported when they become symptomatic
or infectious. In order for the model to predict incidence of malaria cases, we use the
simulation function of the model with the initial state and given parameters calibrated
with xi,j , (i = 1, ..., n; j = 1, ...,m) as the observed weekly malaria cases for state j
during week i. Calculating the likelihood of each data point xi,j taking its observed
cases and evaluating it with respect to a Poisson distribution centred around the model
point. We assume that the Poisson probability of observing xi IID (Independent and
Identically Distributed) counts with unknow parameter θ. A description of the method
of data-fitting is provided in S2 Appendix.

X|θ ∼ Poisson(θ)

The likelihood function is:

L (θ|x1, x2, · · · , xn) = p (X = x1|θ) p (X = x2|θ) · · · p (X = xn|θ)

=
e−θθx1x2···xn

x1!x2! · · ·xn!
=
∏n

i=1
e−θθxi

xi!

and the log likelihood function becomes

ln (L (θ|x1, x2, · · · , xn)) = −nθ +

(
n∑

i=1

xi

)

ln θ − ln(
n∏

i=1

xi!)

The model is fitted to three patch dataset. Considering an IID sample xi,j for patch j
from a Poisson variable the log likelihood to be maximised as

ln (L (θj |xi,j)) =
n∑

i=1

3∑

j=1

(xiθj − θj)

We visually assess a model run against data using a stochastic simulation algorithm,
which generates an observation trajectory from the model, parameters and initial state
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plots it (lines) against the data (points) of each patch using 1000 replicates simulation
with 95% Confidence Interval (CI) constructed for each of the experiments.

Several model parameters (i.e, ǫ, b, ν, λ, ζ, α, ρ) are estimated during this fitting

Table 3: Model parameters estimated duraing the fitting process

Symbols CES estimates WBGZ estimates WRP estimates References
Γ 0.0000514∗N1 0.0000514∗N2 0.0000514∗N3 Estimated
Ni N1 =7983420 N2 =9967450 N3 =7826740 [34]
µh 0.0000514 0.0000514 0.0000514 Estimated
δ 0.00004 0.00004 0.00004 [6]
ǫ 36.6 (25.24, 50.4) 29.7 (20.2, 40.4) 32.5 (20.7, 45.31) Estimated
b 0.84 (0.72, 0.94) 0.84 (0.72, 0.94) 0.84 (0.72, 0.94) Estimated
ν 0.48 0.48 0.48 Estimated
κ 0.4 0.4 0.4 [39]
λ 0.2 (0.083, 0.25); 0.167 (0.083, 0.25) 0.167 (0.083, 0.25) Estimated
ζ 0.0525 0.0525 0.0525 Estimated
α 1/16, 1/20, 1/18 Estimated
π 1/150 1/190 1/220 Estimated
ρ 1/25 1/20 1/37 Estimated
η 1/12 1/12 1/12 [6]
µv 0.04 0.04 0.04 [6]
Ψ 0.13 0.13 0.13 [28]

Figure 4: Simulation trajectory for the fitted model of human in thousands expressed in
disease classification (S,E, I, A,R) for Patch 1 (CES), with σS = 0.1, σE = 0.35, σI =
0.065, σA = 0.23 and σR = 0.45.
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process and those which are not estimated were collected from literature and are listed
in Table 3. These parameters were assumed to be constant and were jointly estimated
by utilizing fitR (version 0.1 [5]) and by plotting the mean and the median as well as the
95th and 50th percentiles of several replicated simulations. We assume an underlying
Poisson distribution with a canonical vectors’ parameter (representing a set of model
parameters), θ, to be estimated. The resulting model fit of the observed measurement

Figure 5: Simulation trajectory for the fitted model of human in thousands expressed in
disease classification (S,E, I, A,R) for Patch 2 (WBGZ) with σS = 0.1, σE = 0.35, σI =
0.065, σA = 0.23 and σR = 0.45.

Figure 6: Simulation trajectory for the fitted model of human in thousands expressed in
disease classification (S,E, I, A,R) for Patch 3 (WRP) with σS = 0.1, σE = 0.35, σI =
0.065, σA = 0.23 and σR = 0.45.
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(the annual cases recorded) is shown in Figure 3.
Mobility rates are often difficult to estimate. However, obtaining information on

the relative sizes of the migration parameters (ΘQ
i =

∑n
j 6=i=1 ψ

Q
j,iQ(j)−

∑n
j 6=i=1 ψ

Q
i,jQ(i)

with Q = S,E, I, A and R and ) may be appropriate to provide insight into where con-
trol measures should be applied. We assumed that the net inflow of migrants is greater
than the net outflow (

∑n
j 6=i=1 ψ

Q
j,i >

∑n
j 6=i=1 ψ

Q
i,j). Migration parameters ψQ

ij and ψQ
ji

were estimated as inverse of proportion of time for human moving to spend on patch
j from patch i or on patch i from patch j. Subsequently, we use the estimated param-
eters along with some migration parameter values to simulate the model’s projections
for different values of the migration. We present the resulting graphs and their cor-
responding parameters in figures 7 and 8. The proposed metapopulation stochastic
model accounts for random movement of people between patches and allows for the
usage of bednets in n different patches. This provides us with some useful control
strategies to regulate disease dynamics. Unlike determinstic models, the stochastic
nature of this model allowed us to capture disease extinction in finite time, especially
when the noise intensity is high.

5 Concluding remarks

In this paper we investigated the role of human mobility on malaria severity in South
Sudan. We used a modified model of Mukhtar et al. [28] to carry out our investiga-
tion. The model is a metapopulation deterministic model consisting of three patches
in three different regions of South Sudan. We incorporate a white noise in determin-
istic model to account for unpredictable population. The basic reproduction number
R0, for metapopulation deterministic model, was calculated using the next generation
matrix method. The threshold parameter, R0, is the expected number of humans and
mosquitoes that would be infected with malaria by a single infected human/mosquito
who had been introduced into disease-free population. A precise usage of R0, is to ad-
vise on the disease steady state of the considered patches. Another task in this study
was to perform the model calibration. To this end, model parameter value estimates
are determined to provide incidence case data (weekly cases data for the patches) for
2011.

We used a statistical approach, namely the maximum likelihood of Poisson distri-
bution. Figure 3 illustrates the infectious class of the model fitted into data of three
patches using the package fitR (version 0.1 [5]) and this include the mean, the median
as well as the 95th and 50th percentiles of multiple replicated simulations.

We used simulation to generate an observation trajectory for the fitted model and
also to demonstrate the population dynamics of humans (see Figures 4- 6). The pre-
dicted pattern of observation for a stochastic model with a variety of migration pattern
was carried out, as shown in Figure 7 and 8. It turns out that malaria persists in the
patches when there is human inflow in the patches although intervention coverage is
as high as 75% (can be seen in the accompanying Table 4). However, the course of the
disease in a low transmission area such as WRP (Patch 3 b) seems to go extinct. This
implies that with an unprecedented number of people who are on the move (one out
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a b

Figure 7: Projected cases of malaria (represented by the infectious class of the model) using
parameter values in Table 3 assess the impact of movement between patches: migration rate:
ΘCES = (0.05, 0.0015, 0.0051, 0.061, 0.009)Q, ΘW BGZ = (0.036, 0.0021, 0.008, 0.008, 0.056)Q

& ΘW RP = (0.068, 0.0051, 0.0054, 0.02, 0.0053)Q, with no interventions of LLINs (a), with
interventions of LLINs (b).

a b

Figure 8: Features high migration rate at ΘCES = (0.25, 0.035, 0.0415, 0.061, 0.0256)Q,
ΘW BGZ = (0.25, 0.051, 0.0215, 0.01, 0.056)Q & ΘW RP = (0.18, 0.012, 0.0185, 0.02, 0.046)Q,
with no interventions of LLINs (a), with interventions of LLINs (b) for projected malaria
cases.
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of every five people in South Sudan have been forcibly displaced) can pose challenges
to malaria control and elimination. Figure 9 demonstrates the correlation pattern of
malaria disease with intervention coverage and intervention involving mobility. With
the usage of threshold R0, the result indicated migration of a large number of people
(the case of the conflict that leads to population pressure) and their circulation can
favor malaria transmission (increase of R0) compared to less or no migration (see Fig-
ure 9). This confirms that human movement is one of the contributing factors to the
resurgence of malaria, which can be explained by when infected individual move from
areas where malaria was still endemic to malaria-free areas and also could happen when
susceptible people move to malarious regions, they can increase their risk of acquiring
the disease. It can be seen also from the result that human mobility is sufficient to
preserve malaria disease firmness in the patches. We concluded that the responsiveness
of malaria to the human mobility is high that can cause the implications on malaria
control in South Sudan, and efforts to ameliorate health and monitoring of migrants
and collect disaggregated data on malaria and population movements must, therefore,
be strengthened.
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Figure 9: Basic reproduction number and mosquito bitting rate against LLINs Coverage
with various migration rate

Table 4: Summaries of expected malaria cases in thousands for the year 2021

(a) (b)
without LLINs coverage 75% LLINs coverage

Patches mean 95CI- 95%CI+ mean 95%CI- 95%CI+
Less CES 82.4961 61.3250 103.6673 21.9561 13.2877 30.6245

Mobility WBGZ 68.3529 50.1935 86.5124 34.7679 22.8655 46.0030
WRP 44.4699 31.1922 57.7475 3.5465 0.5448 6.5482

High CES 92.5283 69.2978 115.7589 24.2979 15.13518 33.4606
mobiity WBGZ 74.3085 54.7829 93.8341 52.0955 37.0842 67.1069

WRP 61.7781 44.8534 78.7029 5.7164 0.4322 11.0007
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