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a b s t r a c t

We present two approaches for computing rational approximations to multivariate functions, moti-
vated by their effectiveness as surrogate models for high-energy physics (HEP) applications. Our first
approach builds on the Stieltjes process to efficiently and robustly compute the coefficients of the
rational approximation. Our second approach is based on an optimization formulation that allows us
to include structural constraints on the rational approximation (in particular, constraints demanding
the absence of singularities), resulting in a semi-infinite optimization problem that we solve using an
outer approximation approach. We present results for synthetic and real-life HEP data, and we compare
the approximation quality of our approaches with that of traditional polynomial approximations.

Published by Elsevier B.V.
f
p
o
r
f
g

m
t
a
s
t
t
p
p
t
t
w

1. Introduction

Optimization problems arising in complex science and engi-
eering applications often involve simulations that are computa-
ionally expensive to evaluate (several minutes to hours or more
er evaluation). The simulations are usually nonlinear and black
ox; we have no analytic description of the function f (·) that
aps the parameter inputs x ∈ D ⊂ Rn to simulation outputs. The
omputational expense limits the number of evaluations we can
o during the optimization. A widely used approach to mitigate
his difficulty is to use a fast-to-evaluate surrogate model, s(x),
s a proxy for the simulation [1]: f (x) = s(x) + e(x), where

e(x) denotes the difference between the true function and the
surrogate model. We fit a surrogate model based on a set of
pre-evaluated parameter–function value pairs and use it during
the optimization search, thus reducing the number of queries
to the expensive simulation. Types of surrogate models include
Gaussian process models [2], radial basis functions [3], multi-
variate adaptive regression splines [4], and polynomial regression
models [5].

Polynomial models have several advantages, such as a simple
representation and being easy to build and use; however, they
have poor extrapolation behavior and are severely limited in their
ability to cope with singularities. These drawbacks can reduce
their effectiveness at representing elements of the physics in

∗ Corresponding author.
E-mail address: mkrishnamoorthy@anl.gov (M. Krishnamoorthy).
ttps://doi.org/10.1016/j.cpc.2020.107663
010-4655/Published by Elsevier B.V.
many applications. Because of these drawbacks, one turns to
models based on rational functions (quotients of polynomials),
whose ability to capture singularities naturally via their poles can
make them considerably more powerful than polynomials [6,7].
Unfortunately, rational approximations can be numerically fragile
to compute and are prone to having spurious singularities. More-
over, how to select the appropriate combination of numerator
and denominator degree is not always clear.

In this article, we investigate the utility of rational approxi-
mations as surrogate models. We propose two methods for com-
puting multivariate rational approximations r(x) = p(x)/q(x). The
irst approach is based on the univariate methods of [8,9] and
rovides a robust and efficient way to compute the coefficients
f p(x) and q(x). Although it tries to reduce the propensity for the
esulting r(x) to contain unwanted singularities by using ideas
rom linear algebra to minimize the degree of q(x), it does not
uarantee that r(x) will be pole free in the parameter domain.
The second approach uses a constrained optimization for-

ulation that includes structural constraints on r(x) to enforce
he absence of poles in D. These constraints are motivated from
pplications that arise, for example, in high-energy physics (HEP)
imulations. Although it is computationally more expensive than
he first approach, the second approach allows us to guarantee
hat the computed approximation is free of poles for box-shaped
arameter domains, which can be crucial in the context of com-
uting surrogate models for use in optimization. In particular,
he guaranteed absence of poles ensures that subsequent op-
imization problems involving our rational approximations are
ell-defined.

https://doi.org/10.1016/j.cpc.2020.107663
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107663&domain=pdf
mailto:mkrishnamoorthy@anl.gov
https://doi.org/10.1016/j.cpc.2020.107663


A.P. Austin, M. Krishnamoorthy, S. Leyffer et al. Computer Physics Communications 261 (2021) 107663

c
a
b
m
e
a

c
s
f
p
p
a
a
T
r
l
t
c
r
t
m

a
b
o
f
u
o
t
d
I
i
a
w
p

o
b
2
r
a
a
s
t
H
o
i
d
d
p
d
s
p
n
t
r

1

p
t

m

t
r
t
a

m

1.1. Previous work on rational approximation

The literature on rational approximation is too vast to cover
omprehensively here; we refer the reader to standard texts such
s [10, Ch. V], [11, Ch. 5], and [12, Ch. 23–27] for the history and
asic concepts. In this article, we are concerned with multivariate
odels. Multivariate rational approximation has been studied
xtensively by Cuyt and co-authors [13,14]; in particular, Cuyt
nd Yang have recently developed practical error bounds [15].
Our rational approximations are least-squares models, which

an be formulated in a nonlinear or linearized fashion as we de-
cribe below. Our first approach is an extension of the algorithms
or the linearized problem presented in [8,9,16]. The nonlinear
roblem is an example of a separable nonlinear least-squares
roblem, and algorithms for it often exploit this structure. Ex-
mples include the Gauss–Newton algorithm developed by Golub
nd Pereyra [17] and the full-Newton algorithm of Borges [18].
he so-called ‘‘AAA’’ algorithm of [19] is a particularly interesting
ecently developed alternative to traditional methods for rational
east-squares problems; however, as it currently only works in
he univariate context, we do not explore it further here. Of
ourse, least-squares approximations are not the only type of
ational model. Recent work of interest on rational models other
han simple least-squares approximations includes the rational
inimax approximation algorithm of [20].
One of the appeals of a least-squares approach to rational

pproximation is that it is naturally robust to noise in the data
eing fit. Cuyt, Salazar Celis, and co-authors [21–23] have devel-
ped an alternative approach to rational approximation in the
ace of noisy or uncertain data that takes as its input a set of
ncertainty intervals for each datum and then solves a linear
r quadratic programming problem to find a rational function
hat passes through all uncertainty intervals. Our method is both
ifferent from this approach and better-suited to our application.
n our context, it is not clear how to construct the uncertainty
ntervals this alternative method requires. Moreover, it expends
dditional effort (solving an optimization problem) compared
ith our approach based on linear algebra without delivering the
ole-free guarantee that our semi-infinite optimization provides.
Our semi-infinite optimization approach is a multivariate form

f constrained-denominator rational approximation, which has
een studied extensively in the univariate context; see, e.g., [24,
5]. In [25], the authors prove the existence of best (uniform)
ational approximations with a lower bound on the denominator
nd bounded denominator coefficients. The authors also present
restricted denominator differential correction algorithm and

hows that it converges under certain conditions. In [24], the au-
hor considers both lower and upper bounds on the denominator.
e shows these bounds to be equivalent to convex constraints
n the denominator coefficients, hence demonstrating the ex-
stence of a best solution. Our formulation of the constrained-
enominator problem using semi-infinite optimization offers a
ifferent perspective than this earlier work. In addition to being
ractical, it may yield theoretical insight as well, though we
o not explore this in detail here. For instance, by invoking
emi-infinite optimality conditions (see, e.g., [26]), we could, in
rinciple, obtain necessary conditions for optimal pole-free ratio-
al approximations. This would partially answer an open ques-
ion from [24] concerning characterizations of best constrained
ational approximations.

.2. High-energy physics motivation

Our work is motivated by simulations for studying complex
hysical phenomena, especially in high-energy physics. Simula-
ions are often used to guide real-world experiments in order to
2

find ‘‘interesting’’ physics or to verify that models derived from
physical understanding are in agreement with experiments [27].
However, these simulations (as well as physics experiments) are
generally resource intensive (computationally or otherwise) [28].
A single simulation may require many hours of compute time on
a modern supercomputer, thus limiting the number of simulation
runs that can realistically be done.

This severely limits applications that require extensive param-
eter space exploration. Our aim is to replace the costly simu-
lations with rational approximations that are much cheaper to
evaluate. In particular, we want to construct and numerically
optimize an objective function over a space of model parameters
that is defined as the mismatch between experimental data and
simulation predictions.

1.3. Outline of the paper

In Section 2, we establish our notation and describe the types
of models that we will generate. In Section 3, we devise a method
for constructing rational models based on linear algebra. This
approach is flexible and easy to implement, but it has the draw-
back that singularities may be present. Although singularities
are acceptable in some contexts, we generally have to prevent
singularities in particular regions of the parameter space because
they may cause an unbounded objective function in our opti-
mization procedure, which is not acceptable. In Section 4, we
describe a separate approach based on semi-infinite optimization
that allows us to achieve this goal. In Section 5, we present some
numerical results, and in Section 6 we describe our high-energy
physics application and show the superior performance of our
pole-free rational approximations over polynomial approxima-
tions and rational approximations with poles. In Section 7, we
summarize our key findings and discuss potential avenues for
further research.

2. Notation and setup

We denote by n the number of parameters in our model,
and our generic variables are x1, . . . , xn. By the degree of an n-
variate monomial xi11 · · · x

in
n , we mean its total degree, in other

words, the sum i1 + · · · + in, as distinguished from its maximal
degree max(i1, . . . , in). The degree of an n-variate polynomial is
the maximum of the degrees of its constituent monomials. We
write Pn

d for the space of all n-variate polynomials of degree at
ost d; this is a real vector space of dimension α(d) =

(n+d
d

)
.

Let x(0), . . . , x(K−1) be K points in Rn, and let f0, . . . , fK−1 be
he corresponding real data values. Our aim is to find an n-variate
ational function r(x) = p(x)/q(x) with p ∈ Pn

M and q ∈ Pn
N such

hat r(x(k)) ≈ fk for each k. One natural approach is to choose p
nd q to solve the discrete least-squares problem

inimize
p,q

K−1∑
k=0

(
p(x(k))
q(x(k))

− fk

)2

subject to p ∈ Pn
M , q ∈ Pn

N ,

(1)

but the nonlinearity in q makes this problem challenging. It is
usually easier to work with the linearized problem

minimize
p,q

K−1∑
k=0

(
p
(
x(k)

)
− fkq

(
x(k)

))2
subject to p ∈ Pn

M ,

q ∈ Pn
N , (2)

which is the formulation we will use in the following. Note that
the solutions to Eqs. (1) and (2) do not generally coincide.
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As written, Eqs. (1) and (2) are incompletely specified. The
bjective in Eq. (1) depends only on the ratio of p to q, and addi-
ional normalization conditions must be imposed to pin down the
olution. Likewise, a normalization condition is needed in Eq. (2)
o exclude the trivial solution p = q = 0. We will address these
ssues in detail in later sections.

. Multivariate rational models via linear algebra

Our first approach to constructing rational models is based
n ideas from linear algebra following [8,9]; see also [29] and
12, Ch. 26]. We extend the method of these references to the
ultivariate case. One such extension has been proposed in [16];
ur method may be viewed as a generalization of that extension
o handle situations in which the data used to construct the
odel come from arbitrary sample points in the parameter space

nstead of from a tensor product grid.

.1. Basic algorithm

The basic idea is as follows. Let L = max(M,N). Given a basis
0, . . . , ϕα(L)−1 for Pn

L , consider the Vandermonde-like matrices
M ∈ RK×α(M) and VN ∈ RK×α(N) whose (k, j) entries are ϕj(x(k)).
xpress p and q as

(x) =
α(M)−1∑

j=0

ajϕj(x), q(x) =
α(N)−1∑
j=0

bjϕj(x),

nd gather the coefficients aj, bj into vectors a ∈ Rα(M) and
∈ Rα(N), respectively. Let F = diag(f0, . . . , fK−1). Then, since

he kth entries of VMa and VNb are p(x(k)) and q(x(k)), respectively,
the linearized problem Eq. (2) may be rewritten as the following
linear least-squares problem to find coefficients, a, b, that

minimize
a,b

∥VMa− FVNb∥22. (3)

Just as Eq. (2) has the trivial solution p = q = 0, Eq. (3) has the
trivial solution a = 0, b = 0. To forbid this solution, we impose
the normalization condition ∥b∥2 = 1. If the choice of b needed
to solve Eq. (3) is known, then the corresponding choice of a is
given by a = Zb, where Z = V+M FVN and V+M is the Moore–Penrose
pseudoinverse of VM . Substituting this relationship into Eq. (3),
we are left with the problem to find the coefficients, b, of the
denominator that

minimize
b

∥(VMZ − FVN )b∥22 subject to ∥b∥2 = 1, (4)

and this may be solved by taking b to be the right singular vector
corresponding to the smallest singular value of W = VMZ − FVN .

If K = α(M) + α(N) − 1, then the number of data points
matches the number of degrees of freedom in p and q, less 1
for the normalization condition. In this case, we expect that the
objective in Eq. (4) can be driven to zero, yielding a linearized
rational interpolant to the data, sometimes called a multipoint
Padé approximation. We write W = (VMV+M − I)FVN , where I is
the identity matrix. Since VMV+M − I is (−1 times) the orthogonal
projector onto Ran(VM )⊥, it has rank at most K−α(M) = α(N)−1.
Since W is of size K×α(N), this implies that W is rank deficient –
t has at least one zero singular value – so b can indeed be chosen
o satisfy Eq. (4) with an objective value of zero, as expected.

.2. Discrete multivariate orthogonal polynomials

While in principle one can use any basis ϕ0, . . . , ϕα(L)−1 for Pn
L ,

some bases are better suited to numerical computation than are
others. In particular, it is important that the basis be chosen so
 i

3

that the Vandermonde-like matrices VM and VN are well condi-
tioned. We would ideally choose the basis so that VM and VN have
orthonormal columns; in addition to ensuring that operations
involving these matrices are robust to rounding error, this would
make working with the pseudoinverse of VM trivial, because we
would have V+M = V ∗M , where V ∗M is the Hermitian adjoint of VM .
We can accomplish this by choosing ϕ0, . . . , ϕα(L)−1 so that they
are orthogonal with respect to the discrete inner product1

⟨h, g⟩ =
K−1∑
k=0

h(x(k))g(x(k)) (5)

on Pn
L associated with the sample points x(k). The orthogonal-

ity condition
⟨
ϕi, ϕj

⟩
= δij, where δij is the Kronecker delta,

is precisely the statement that VM and VN have orthonormal
columns.

One way to construct such a basis is via a multivariate version
of the familiar Stieltjes process [30] from the theory of (univariate)
orthogonal polynomials. Discussions may be found elsewhere in
the literature – see, for example, [31,32] – but to keep this paper
self-contained, we describe the process in the form in which we
use it here.

The Stieltjes process may be viewed as a variant of the Gram–
Schmidt process that orthogonalizes the columns of a Vander-
monde matrix without performing the numerically unsavory
operation of evaluating high-order monomials, that is, without
explicitly forming the matrix itself. In a single variable, it works
as follows. We begin by assigning ϕ0(x) = 1/⟨1, 1⟩. Then, hav-
ing constructed ϕ0, . . . , ϕj−1, we construct ϕj by orthogonalizing
xϕj−1(x) against ϕ0, . . . , ϕj−1,

ϕ̂j(x) = xϕj−1(x)−
j−1∑
i=0

⟨
xϕj−1, ϕi

⟩
ϕi(x), (6)

and normalizing,

ϕj(x) =
ϕ̂j(x)√⟨
ϕ̂j, ϕ̂j

⟩ . (7)

Since the operation of multiplication by x is self-adjoint (i.e.,
⟨xϕ,ψ⟩ = ⟨ϕ, xψ⟩ for all ϕ,ψ), the orthogonality condition can be
used to show that only the i = j−1 and i = j−2 terms in the sum
for ϕ̂j are nonzero, leading to a three-term recurrence relation for
ϕj. This recurrence can be used to evaluate polynomials that are
expressed as linear combinations of the ϕj at arbitrary points.

The multivariate case works similarly. The key difference is
that since there is no canonical ordering of the monomials in
several variables – no agreed-upon order in which to list the
columns of a multivariate Vandermonde matrix – we must first
select one and then develop a version of the Stieltjes process
tailored to that ordering. The ordering we use is as follows. We
say that xi11 · · · x

in
n < xj11 · · · x

jn
n if i1 + · · · + in < j1 + · · · + jn or if

i1 + · · · + in = j1 + · · · + jn and ik > jk, where k is the smallest
index such that ik ̸= jk. For instance, in n = 3 variables x1 = x,
x2 = y, and x3 = z, this ordering lists the monomials of degree 3
or less in the following sequence:

1, x, y, z, x2, xy, xz, y2, yz, z2, x3, x2y, x2z, xy2, xyz, xz2, y3, y2z,

yz2, z3.

This order is related to the popular ‘‘grevlex’’ order [33, Sec. 2.2]
and has two features that make it convenient. One is that the
monomials are ordered by degree. The other is that it yields a

1 This will be an inner product only if the x(k) constitute a set of linear
ndependence for P . We assume throughout this article that this is true.
L
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simple inductive process for listing the monomials in sequence.
This is most easily described by example. To construct the three-
variable sequence above, we begin with the constant monomial
1. We then multiply 1 by each of the variables in order to obtain
the three linear monomials x, y, and z. To produce the quadratic
monomials, we first multiply each of the linear monomials by x,
retaining the order, to produce x2, xy, and xz. We then multiply
by y the linear monomials that do not contain x, giving y2 and yz.
Finally, we multiply the linear monomials that contain neither
x nor y – in other words, z – by z, giving z2. The cubic mono-
mials are constructed similarly. We multiply all of the quadratic
monomials by x to obtain x3 through xz2. Then, we multiply by y
the quadratic monomials that do not contain x, giving y3 through
yz2. Finally, we multiply by z the lone quadratic monomial that
contains neither x nor y to produce z3.

The multivariate Stieltjes process that we use is a straightfor-
ward outgrowth of this construction. We associate each orthog-
onal polynomial ϕj with its corresponding term in the monomial
sequence, beginning with the association ϕ0 ↔ 1. Having con-
structed ϕ0, . . . , ϕj, we construct ϕj+1 by multiplying the appro-
priate previously constructed polynomial by the appropriate vari-
able and orthogonalizing. For instance, taking the three-variable
case as an example once more, to produce ϕ12, which is associated
with the monomial x2z, we multiply ϕ6, which is associated with
the monomial xz, by x and then orthogonalize the result against
ϕ0, . . . , ϕ11.

This process can be easily adapted to compute the
Vandermonde-like matrix VL corresponding to ϕ0, . . . , ϕα(L)−1,
which is what we really want, rather than the polynomials them-
selves. Such a version of the process is given in Algorithm 3.1.
In implementing this procedure in finite-precision arithmetic,
all of the standard caveats about the numerical stability of the
Gram–Schmidt processes apply. In particular, some form of re-
orthogonalization is mandatory to ensure that the columns of
the computed VL are orthogonal to working precision. In our
implementation, we use the standard technique of performing
the orthogonalization twice, which is usually sufficient [34,35],
[36, §6.9].

Like the univariate Stieltjes process, the multivariate process
produces a recurrence relation that can be used to evaluate poly-
nomials expressed in the generated orthogonal basis at arbitrary
points. Unlike the univariate recurrence, the multivariate recur-
rence cannot be reduced to three terms, but it may possess
other structure depending on the monomial ordering that is
used. The recurrence generated by Algorithm 3.1 is presented in
Algorithm 3.2.

3.3. Spurious poles and degree reduction

Rational approximations are powerful because of their abil-
ity to capture singularities in the function being approximated
with singularities of their own; however, if the approximations
are computed naively, one often finds that they possess sin-
gularities that bear little resemblance to those of the function
under consideration. This can happen even when approximating
well-behaved functions of a single variable, where the unwanted
singularities in the approximation are known as spurious poles
or Froissart doublets. This is a serious problem: in our context,
an unwanted singularity in the surrogate model leads to an un-
bounded objective for our optimization procedure, which can be
problematic.

Unwanted singularities can be broadly classified into two
types: those that arise in the mathematics and those that arise
from noise and numerical artifacts. It seems that little can be done
about the former; sometimes the solution to the least-squares
problem Eq. (4) really does have a singularity in an undesirable
4

Algorithm 3.1: Multivariate Stieltjes Process for
Vandermonde-like Matrix

Input : Points x(0), . . . , x(K−1) ∈ Rn that are a set of linear
independence for Pn

L .
Output: Vandermonde-like matrix VL corresponding to a

basis ϕ0, . . . , ϕα(L)−1 for Pn
L , orthonormal with

respect to Eq. (5), and coefficients ri,j for use in the
recurrence of Algorithm 3.2.

1 i← 1
2 for j = 1 to n+ 1 do
3 ij ← 0 /* ij marks start of sequence last

multiplied by xj. */

4 v0 =
[
1 · · · 1

]T
/
√
K /* Begin with constant

polynomial. */
5 for d = 1 to L do
6 for j = 1 to n do
7 i∗ ← i
8 for k = ij to in+1 do
9 v̂i ← diag(x(0,j), . . . , x(K−1,j))vk /* Multiply by

xj. */
10 for ℓ = 0 to i− 1 do /* Orthogonalize

(Gram-Schmidt) Eq. (6). */
11 rℓ,i ← v∗ℓ v̂i
12 v̂i ← v̂i − rℓ,ivℓ
13 ri,i ←

√
v̂∗i v̂i /* Normalize Eq. (7) */

14 vi ← v̂i/ri,i
15 i← i+ 1
16 ij ← i∗ /* Update bookkeeping information.

*/
17 in+1 ← i− 1

18 VL ←
[
v0 · · · vα(L)−1

]

location that does not clearly correspond to a singularity of the
function being approximated. Unwanted singularities of the latter
type usually emerge when the approximation has more degrees
of freedom than are necessary to fit the given data. One advantage
of the construction just described is that it affords a natural
way to handle this situation. This technique was first described
in [8] for univariate approximation; we extend this idea to the
multivariate case.

Our construction calls for computing b in Eq. (4) as the right
singular vector of W = VMZ − FVN corresponding to the smallest
singular value. If this singular value is nearly zero, then our ratio-
nal approximation will fit the data nearly exactly. If W has many
singular values that are nearly zero, then there are many possible
choices for b – and thus many possible rational approximations –
that will have this property. The key idea is this: If there are many
approximations that will work, one should use the approximation
with the lowest-degree denominator. In one dimension, reducing
the degree of the denominator by 1 reduces the number of
poles of the approximation by 1. If the approximation is already
fitting the data well, it is highly likely that the pole that will be
eliminated is a spurious one.

Multivariate rational approximations are more complicated
than univariate ones: their singularities may not be isolated, and
even if we eliminate unnecessary degrees of freedom, they will
still, in general, have uncountably many singular points. As such,
it is too much to hope that the degree-reduction approach to
eliminating unwanted singularities will work as well as it does
in the univariate case, especially with noisy input data. We will
see this in some of our later experiments. Nevertheless, it can still

be highly effective.
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Algorithm 3.2: Recurrence for Evaluating Multivariate Or-
thogonal Polynomial Series

Input : Evaluation point x ∈ Rn, expansion coefficients c0,
. . . , cα(L)−1, recurrence coefficients ri,j from
Algorithm 3.1.

Output: s = c0ϕ0(x)+ · · · + cα(L)−1ϕα(L)−1(x), where the
ϕi ∈ Pn

L are the orthogonal polynomials associated
with the Vandermonde matrix constructed by
Algorithm 3.1.

1 i← 1
2 for j = 1 to n+ 1 do
3 ij ← 0 /* ij marks start of sequence last

multiplied by xj. */

4 y0 ← 1/
√
⟨1, 1⟩ /* Begin with y0 = ϕ0(x) (constant).

*/
5 for d = 1 to L do
6 for j = 1 to n do
7 i∗ ← i
8 for k = ij to in+1 do /* Recurrence for yi = ϕi(x).

*/
9 ŷi ← xjyk

10 for ℓ = 0 to i− 1 do
11 ŷi ← ŷi − rℓ,iyℓ
12 yi ← ŷi/ri,i
13 i← i+ 1
14 ij ← i∗ /* Update bookkeeping information.

*/
15 in+1 ← i− 1
16 s← c0y0 + · · · + cα(L)−1yα(L)−1 /* Evaluate

s = c0ϕ0(x)+ · · · + cα(L)−1ϕα(L)−1(x). */

The procedure we recommend is summarized in Algorithm
.3. The algorithm attempts to reduce the denominator degree
y 1, checking to see whether this is possible by examining
he smallest singular value of the W matrix associated with the
educed degree. If this singular value is smaller than a chosen
hreshold η, it deems the reduction successful and then tries
o reduce the degree by 1 again. It continues until the smallest
ingular value of W is too large for the reduction to be considered
iable. It then repeats the process to reduce the degree of the nu-
erator by considering the problem of fitting an approximation

o the reciprocal data.
By considering the nullity of W , we can reduce the degree

in steps greater than 1: if W has many singular values that
lie below the threshold, we could eliminate many degrees of
freedom simultaneously. Nevertheless, we have found that the
stated approach is more robust, especially in the presence of
noise. For this procedure to succeed, the approximation must be
expressed in a well-behaved basis such as the discrete orthogonal
polynomial basis described in the preceding section. With a badly
behaved basis, the singular values of W may not decay as rapidly,
resulting in opportunities for degree reduction (and thus for
singularity reduction) being missed.

How should we choose the threshold η? With noiseless input
data, a singular value of W will be negligible if its size relative to
the largest singular value is on the order of the rounding error
incurred during the computation. In this case, an appropriate
choice for η is a small power of 10 times the machine epsilon;
for double-precision arithmetic, values such as η = 10−12 or
η = 10−14 work well. If the input data are noisy, the threshold
should be increased so that any singular value below the noise
level is regarded as negligible. For instance, if all but the 6 leading
5

digits of the data are noisy, then setting η = 10−5 (a factor of 10
larger than the relative noise level of 10−6) may be appropriate.

Algorithm 3.3: Degree Reduction
Input : Vandermonde-like matrix VL computed with

Algorithm 3.1, diagonal matrix F of sample values,
maximum numerator and denominator degrees M
and N , threshold η.

Output: Reduced degrees M and N .
/* Reduce the denominator degree. */

1 while true do
2 Z ← V ∗M−1FVN

3 σmin, σmax ← smallest, largest singular values of Z
4 if σmin < ησmax then
5 M ← M − 1
6 else
7 break

/* Reduce the numerator degree. */
8 while true do
9 Z ← V ∗N−1F

−1VM

10 σmin, σmax ← smallest, largest singular values of Z
11 if σmin < ησmax then
12 N ← N − 1
13 else
14 break

To illustrate the effectiveness of this general procedure, we
consider the problem of computing a rational approximation to
the bivariate function f (x, y) = exp(xy)/

(
(x2 − 1.44)(y2 − 1.44)

)
.

We sample this function in 1000 uniformly randomly distributed
points in [−1, 1] × [−1, 1] and attempt to fit a rational approx-
imation with numerator and denominator degrees M,N = 20.
Fig. 1 displays a contour plot of the denominator of the computed
approximation. Without degree reduction, we obtain the picture
in Fig. 1a. In addition to the singularity curves at x = ±1.2 and
y = ±1.2 that reflect the true singularities of f , the approxi-
mation possesses a pair of spurious singularity curves that wind
their way through the middle of the square. Applying Algorithm
3.3 with η = 10−12 reduces the numerator degree to M = 12
and the denominator degree to N = 9 and produces a rational
approximation with a denominator that generates the contour
plot of Fig. 1b. The spurious singularity curves have disappeared.

4. Multidimensional rational approximation with constraints

The algorithm just described is simple and powerful; how-
ever, even with degree reduction, it does not guarantee that the
computed approximation is free of singularities in the domain
of interest. In this section, we add constraints to the rational
approximation problem Eq. (2) that enforce this requirement. We
show that these constraints lead to a semi-infinite optimization
problem (see, e.g., [26,37,38]), which we solve using an outer
approximation approach due to Polyak [39]. We are motivated
by a class of structural constraints that arise in HEP data analysis,
for which it is known that the underlying function has no poles
in a certain domain D (but may have them outside of D), and we
exploit this information by enforcing the same condition for our
rational approximation.

Formally, we can write the constraint that ‘‘r(x) has no poles
in D’’ as the condition that

q(x) ̸= 0, ∀ x ∈ D.
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Fig. 1. Contour plots of the denominators of the rational approximations computed in the example of Section 3.3. Red lines denote zero-level curves (and hence
urves of singularities present in the approximation). The dashed black line outlines the unit square [−1, 1] × [−1, 1]. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)
owever, this condition is not a convenient constraint to add
o Eq. (2) because it describes an open set. Instead, we use the
quivalent condition that ‘‘q(x) does not change sign in D’’, which

can be written without loss of generality as

q(x) ≥ τ > 0, ∀x ∈ D, (8)

where τ > 0 is an arbitrary positive constant. (We use τ = 1
in our experiments.) In most cases, D will be a simple set such
as bounded hyper-rectangle D =

∏n
i=1[Li,Ui]. We then formulate

the multivariate constrained rational approximation problem as
the following constrained least-squares problem:

minimize
p,q

K−1∑
k=0

(
p(x(k))− fkq(x(k))

)2
subject to q(x) ≥ τ ,

∀x ∈ D and p ∈ Pn
M , q ∈ Pn

N . (9)

This is a linear least-squares problem in the coefficients of the
polynomials p(x) and q(x) with a linear semi-infinite constraint;
see, for example, the monographs and surveys by [26,37,38].

If q(x) = bT x + b0 and D is affine, then we can use linear
programming duality to replace the semi-infinite constraint by
a set of equivalent finite-dimensional affine constraints; see, for
example, [38]. In general, however, this transformation does not
exist unless we also assume that q(x) is convex, which would
add a semi-definite constraint in the quadratic case and more
complex conic constraints in general. Hence, we will instead
consider an outer approximation approach to solving Eq. (9).

4.1. A practical algorithm for general rational approximation

For general denominators, we apply a method due to Polyak.
The algorithm maintains a finite set U of points x(k) ∈ D at which
the semi-infinite constraint is enforced. It then alternates be-
tween solving the finite-dimensional relaxation of Eq. (9), which
at iteration l is given by

minimize
p,q

K−1∑
k=0

(
p(x(k))− fkq(x(k))

)2
subject to q(x(k)) ≥ τ ,

∀k = 0, . . . , K − 1+ l, (10)

and an optimization problem to check Eq. (8). We let the solution
of this problem be pl(x), ql(x), and then solve the following min-
imization problem to global optimality to check whether Eq. (8)
holds:

minimize ql(x). (11)

x∈D

6

Either we obtain a new point x̂ ∈ D that violates ql(x̂) ≥ τ or
we show that ql(x) > 0 for all x ∈ D. Formally, this procedure is
defined in Algorithm 4.1.

Algorithm 4.1: Alternating Algorithm for Pole-Free Rational
Approximation.

Input : {x(0), . . . , x(K−1)}
Output: Pole-free rational approximation pl(x)/ql(x)

1 Set l← 0, done← false
2 repeat
3 Let pl(x), ql(x) be a solution of the relaxation Eq. (10).
4 Let x̂ be a (global) minimizer of Eq. (11).
5 if ql(x̂) ≥ τ then
6 Set done← true
7 else
8 Add a new point: {x(K+l) := x̂} and set l← l+ 1

9 until done is false

We note that we can stop the algorithm as soon as ql(x̂) > 0,
which indicates that q(x) has no poles in D. The final pl(x)/ql(x)
is the best (least-squares) interpolant that has no poles in D.
Unfortunately, the algorithm requires the global minimization of
the polynomial ql(x) over D. We can either resort to multistarts
(multiple local optimizations starting from different points), or
compute an underestimator of ql(x) on D using the reformulation-
linearization-technique of [40]. We discuss a practical way of
solving the global optimization problem using multistarts in
Appendix B.

An alternative approach that avoids the global optimization
in Step 4 of Algorithm 4.1 is based on sampling. In particu-
lar, [22, Theorem 1], which generalizes an earlier result due to
Pomentale [41] to the multivariate setting, provides a criterion
guaranteeing that the denominator does not vanish over the
approximation domain. Using this criterion, one could verify that
ql(x) > 0 on D without having to resort to global optimiza-
tion. Unfortunately, the criterion is difficult to check in practice,
and may require a prohibitively large number of samples as the
dimension of the rational approximation grows.

5. Numerical experiments

In this section, we compare the approximation quality and
computation times of the rational and polynomial approximation
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approaches. We also study the effects of using different strategies
for sampling the interpolation points from the domain and the
effects of constraints on the rational approximation.

5.1. Experimental setup

Our numerical experiments are conducted on a server with
4 Intel Xeon Gold CPU cores running at 2.30 GHz. There are
wo threads per core, but each approximation is run on a single
hread. The operating system is Linux Ubuntu 16.04. Additionally,
he server is equipped with 1.5TB DDR4 2666 MHz of memory.
he code is written in Python v3.7.2 where the optimization func-
ions and constraints are compiled with the Numba JIT compiler
0.42.
The experiments are conducted on fast-to-compute analytic

est problems whose functional forms are summarized in
able A.5. The use of these analytic test problems enables us to
ssess the performance of our algorithms efficiently. We show
etailed results for five typical test functions that span the range
f the functions of interest in this section, and we summarize the
emaining results for the other functions, which are included in
he electronic supplement sections SM1 and SM2. In the following
e show the results for Function A.5.4 whose approximation
sing Taylor series expansions is a polynomial function; Function
.5.7, which is a rational function; Function A.5.15, which is used
o describe a resonant particle of mass M and width Γ as a
unction of the particle’s energy E in high-energy physics [42,43];
and Functions A.5.16 and A.5.17, whose approximation using
Taylor series expansions is a rational function. Note that the
domain of Function A.5.16 is close to the true pole.

We sample the interpolation points {x(0), . . . , x(K−1)} using
sparse grids (SGs) [44] and Latin hypercube sampling (LHS) [45],
and we propose a new hybrid strategy called decoupled Latin
hypercube design (d-LHD) where the interpolation points are
sampled on the faces and inside the domain. A plot of the in-
terpolation points sampled by using the three different strategies
is shown in Fig. 2. The approximation results change for inter-
polation points that are sampled by using the LHS and d-LHD
strategies because they have randomness. To account for these
changes, each experiment is repeated five times using differ-
ent random number seeds, and we report the mean and other
statistics of the performance metrics for these strategies. We also
experimented with uniform randomly sampled points, but we
found the results to be inferior and therefore do not include them
here.

Each functional value fk is obtained by evaluating f at x(k).
The number of interpolation points K is set as twice the sum
of the number of degrees of freedom of the polynomials in each
approximation given by α(M) + α(N) for numerator of degree M
and denominator of degree N . We consider both noise-free and
noisy data in the experiments. For noisy data, each functional
value fk is multiplied by a fraction ϵ of the random value φ(k)

sampled from a standard normal distribution N (0, 1) as follows:

fk = fk
(
1+ ϵφ(k)) , ∀k = 0, . . . , K − 1. (12)

The approximation r(x) is computed in four ways: (1) p(x) is the
polynomial approximation that is computed by a NumPy imple-
mentation of finding the linear least-squares solution using sin-
gular value decomposition within the driver routine DGELSD [46],
(2) r1(x) is the rational approximation using Algorithm 3.1 with-
out degree reduction, (3) r2(x) is the rational approximation using
Algorithm 3.1 with the degree reduction described in Algorithm
3.3, and (4) r3(x) is the rational approximation using Algorithm
4.1.
7

To assess the quality of our approximations, we use a second
set of testing points {x(K ), . . . , x(L−1)} on the faces and inside of
the domain, and we compute their function values {fK , . . . , fL−1}.
No noise is added to the testing data. We use the l2-norm error
as a test metric to compare the quality of the approximation r(x):

∆r = ||r − f ||D,2 =
(∫

D
(r(x)− f (x))2 dx

)1/2

≈

{
L−1∑
k=K

[
r
(
x(k)

)
− fk

]2}1/2

. (13)

We consider a solution to be better if it has smaller ∆r . We
assume that the degrees of the numerator and the denominator
polynomials of the approximations each are 5. This choice allows
us to approximate test functions in which the polynomials are
up to degree 4. Choosing the optimal degree of polynomials is a
question that is beyond the scope of this paper.

5.2. Effects of interpolation point selection method

In this section we discuss the choice of the interpolation
points using SGs [44], LHS [45] and d-LHD strategies. SGs, first
proposed by Smolyak, are sparse tensor product spaces. We also
experimented with a uniform random set of points but observed
uncompetitive results. With SGs, the grid points are obtained
by combining, up to a certain level, the tensor product grid
corresponding to the total degree multi-index set. Here, the SG
level is chosen such that the number of points in the grid is at
least twice the total degrees of freedom of the polynomials in
each approximation. Fig. 2a shows a 2D SG. We observe that many
points of the SG are collinear, violating the linear independence
assumption from Section 3. Hence, for the chosen SG levels, the
Hessian matrix of the fitting problem in Eq. (10) is singular.
Because of the null space, there are multiple minimizers that
result in unbounded values for p and q. We overcome this issue
by adding a regularization term with weight σ > 0 to Eq. (10)
and bounding the eigenvalues > σ . The updated fitting problem
in iteration l of Algorithm 4.1 is

minimize
p,q

K−1∑
k=0

(
fkq(x(k))− p(x(k))

)2
+ σ

⎛⎝α(M)−1∑
j=0

â2j +
α(N)−1∑
j=0

b̂2j

⎞⎠
subject to q(x(k)) ≥ 1, ∀k = 0, . . . , K − 1+ l,

(14)

where â and b̂ are the coefficients of the monomial basis expan-
sion of p(x) and q(x), respectively. To choose σ , we ran Algorithm
4.1 with Eq. (14) to approximate the data sampled with SG.
We found σ to be in the vicinity of 10−1 for all test functions
using the L-curve method. An example plot of the L-curve for
Function A.5.16 interpolation data is shown in Fig. 3.

When using the SG interpolation points, we observe that Al-
gorithm 4.1 takes only one iteration to converge to a pole-free
rational approximation. This is shown in the top plot of Fig. 4.
However, penalizing the coefficients of the monomial basis ex-
pansions of p(x) and q(x) results in a high testing error thereby
deteriorating the approximation quality, as shown in the bottom
plot of Fig. 4, which is undesirable.

When using LHS, each independent dimension is sampled by
using an even sampling method, and then these samples are
randomly combined to obtain the sample data. Fig. 2b shows one
such 2D LHS sample. The advantage of LHS is that the interpo-
lation points are not collinear. This results in a Hessian matrix
of full rank for the fitting problem in Eq. (10) and hence does
not require the regularization term to be added. However, the
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Fig. 2. Location of interpolation points using different sampling strategies for a rational approximation of M = 5, N = 5 and α(M)+ α(N) = 42.
Fig. 3. L-curve method to choose σ . Function A.5.16 interpolation data is sampled by using SG. The approximations are performed by using Algorithm 4.1 with
Eq. (14) instead of Eq. (10) for different values of σ . The degrees of the numerator and denominator polynomials are M = 5 and N = 5, respectively. The corner of
he L is found at σ = 10−1 .
Fig. 4. Minimizers of Eq. (11) (top) and testing error (bottom) per iteration of a run of Algorithm 4.1 on Function A.5.15 interpolation data sampled by using all three
strategies. In the top plot, Algorithm 4.1 stops iterating when the minimizer is at least 0 (shown with a horizontal dotted line). In the bottom plot, the approximation
obtained by using d-LHD sampled data has the lowest testing error (shown with a horizontal dotted line). The numbering of the iterations of Algorithm 4.1 starts
at 1. In both plots, the lines for all strategies start from the same extreme point (at iteration 0).
number of iterations of Algorithm 4.1 over noise-free LHS data
is on average five times the number of iterations over noise-free
SG data (see Fig. 6).

We observe that almost all the minimizers of q(x) found in
each iteration of Algorithm 4.1 lie on the faces of the domain as
shown in Fig. 5. Hence, when SG places a number of points on
8

the face of the domain, the number of spurious poles is mini-
mized, which on average requires fewer iterations of Algorithm
4.1. So ideally, we want to use a sampling strategy that covers
the faces and the inside of the domain evenly such that the
points are not collinear, thereby combining the best features of SG
and LHS.
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Fig. 5. Minimizer of Eq. (11) from all iterations of Algorithm 4.1 on Function
A.5.15 interpolation data. The data are sampled by using LHS. All minimizers lie
on the face of the cubic domain.

The authors of [47] proposed the maximin augmented nested
atin hypercube design sampling strategy to maximize prediction
ccuracy. In this strategy, the samples are constructed by aug-
enting nested LHDs with additional parameters using a mod-

fied smart swap algorithm such that the final design satisfies
he maxmin property. However, the required properties of the
amples to satisfy our goal are simpler, and we therefore use
ur decoupled Latin hypercube design. We construct nested LHDs
ver all the 2n facets of the domain with dimension n − 1; in

other words, one of the dimensions in each face’s sample is fixed.
Because these samples are LHDs, the points are not collinear.
In order to cover the inside of the domain, an augmented LHD
is obtained inside the n-dimensional hyper-rectangle. These two
steps are independent. Even though the samples on each face and
inside the domain satisfy the maxmin property, we do not require
that the final design satisfies the maxmin property. We call this
sampling strategy decoupled Latin Hypercube Design (d-LHD).

In d-LHD, the number of points sampled is still twice the
degrees of freedom of the polynomials in each approximation,
namely, K = 2(αn(M) + αn(N)). On the 2n faces, there is an
(n−1)-dimensional rational function; hence, the number of points
sampled along each face of the domain is given as

K (fc)
=

2(αn−1(M)+ αn−1(N))
2n

=
(αn−1(M)+ αn−1(N))

n
, (15)

nd the number of points sampled inside the domain is given as
(in)
= K − 2n · K (fc). (16)

hus, the d-LHD samples points on each face as well as the inside
f the domain as illustrated in Fig. 2c.
Fig. 6 compares the number of iterations performed by Algo-

ithm 4.1 when the function domains are sampled with LHS and
-LHD, respectively. Table 1 shows statistics for the number of
terations performed over all test functions in Table A.5. Fitting
he approximation to data sampled using SG takes only one
teration, but it causes a higher testing error compared with the
ther two strategies (see Fig. 4). Additionally, when using d-LHD
o sample points, the number of iterations of Algorithm 4.1 is
lmost always lower compared with LHS (see Fig. 6) without
ompromising the approximation quality (see the bottom plot of
ig. 4). Hence, in the remainder of this section, we present results
or the approximations performed with data sampled by d-LHD.
he results corresponding to the other sampling strategies can be
ound in the electronic supplement sections SM1 and SM2.
9

Table 1
Number of iterations over all test functions in Table A.5 performed by Algorithm
4.1 over noise-free data sampled using LHS and d-LHD strategies. Here, ‘‘Range’’
is the difference between the maximum and the minimum iterations over all
test functions. When the data is sampled by using SG, the number of iterations
is 1 for all functions. However, the testing error of the approximation obtained
by using SG for all functions is much higher than those obtained by using LHS
and d-LHD (see electronic supplement section SM1). For almost all functions,
Algorithm 4.1 takes fewer iterations over data sampled using d-LHD, which
is evident from the median and the geometric mean. However, the average
number of iterations over Function A.5.18 data sampled by using d-LHD is 80.4
whereas that over data sampled by using LHS is 26.4. This outlier makes the
arithmetic mean look better for the LHS strategy. The corresponding results for
each function can be found in the electronic supplement section SM2.
Statistic LHS d-LHD

Arithmetic mean 4.17 5.50
Geometric mean 1.86 1.51
Median 1.20 1.00
Range 26.60 79.40

5.3. Comparison of approximation quality

In this section, we evaluate the ability of constraints in Algo-
rithm 4.1 to remove spurious poles and compare the quality of
our rational approximations. More specifically, we examine the
number of spurious poles detected and its effect on the testing
error in the three rational approximation approaches. Then, we
compare the quality of the rational approximations with the
polynomial approximation by comparing their testing errors.

5.3.1. Ability to remove spurious poles
In this section, we compare the number of spurious poles

found in the three rational approximation approaches, since we
are interested in separating the error due to these poles from
the actual approximation error. Detecting these poles is difficult,
however, because multivariate rational approximations are more
complicated than univariate ones. They may have uncountably
many singular points, and these singularities are typically not
isolated. Hence, to perform this comparison, we find the testing
points near poles or pole-like points that have large function
deviations. As shown in Fig. 5, the minimizers of ql(x) in each
iteration of Algorithm 4.1 tend to be on the boundary of the
domain. Hence, we choose the testing points randomly on the
faces of the domain in addition to randomly chosen points inside
of the domain. For these testing points, we define Wr,t as the
index set of points whose absolute approximated value is much
larger than the corresponding absolute value of the function
indicating a possible spurious pole. More formally, we define Wr,t
s:

r,t = W (fc)
r,t ∪W (in)

r,t =

⎧⎨⎩j|
|r(x(j))|

max
(
1, |f (fc)max|

) > t

⎫⎬⎭
∪

⎧⎨⎩k|
|r(x(k))|

max
(
1, |f (in)max|

) > t

⎫⎬⎭ , (17)

where x(j) and x(k) are testing points on the face and inside of the
domain respectively, j ∈ I (fc), k ∈ I (in), I (fc) ∪ I (in) = {K , . . . , L −
1}, I (fc) ∩ I (in) = ∅, f (fc)max = max |fj|, f

(in)
max = max |fk|, and t is a large

threshold.
Fig. 7 shows the average number of pole-like points found over

all functions in Table A.5 when the interpolation data for these
functions was sampled by using d-LHD. The number of pole-like
points per function in Table A.5 for d-LHD, SG, and LHS-based ap-
proximations is given in the electronic supplement section SM1.
We observe pole-like points in r (x) and r (x) for noise-free and
1 2
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Fig. 6. Number of iterations performed by Algorithm 4.1 over noise-free data sampled by using LHS and d-LHD strategies. The standard deviation is shown as a
black vertical line. When the data are sampled by using SG, the number of iterations is 1 for all functions. As shown in the bottom plot of Fig. 4, however, the
testing error of the approximation obtained by using SG is much higher than those obtained using LHS and d-LHD.
Fig. 7. Comparison of the average number of pole-like points found over all functions in Table A.5 for different relative noise levels ϵ. The data is sampled with
-LHD. Each bar represents the average number of pole-like points found when t ≥ 102 . The average number of pole-like points found when t ≥ 103 is shown as a
atched bar. The average number of pole-like points found when 102

≤ t < 103 is shown as a faded bar. The number of pole-like points found in r3(x) is 0 for all
oise levels.
oisy interpolation data. In contrast, the approximation r3(x) does
ot have these pole-like points. As discussed in Section 4.1, this is
ue to the iterative removal of poles by Algorithm 4.1 by design,
hereby giving a pole-free r3(x). When no noise is added to the
interpolation data, that is, when ϵ = 0, the number of pole-like
points found on the faces of the domain is larger than inside of the
domain in r1(x) and r2(x). This difference is more prominent when
the interpolation data are sampled by using LHS. The number of
pole-like points found in r1(x) and r2(x) on the face is 24% higher
than those found on the inside whereas this difference is only
8.5% when the interpolation data are sampled by using d-LHD.
The reason is that LHS samples fewer interpolation points on
the faces of the domain, causing the LHS-based approximations
to be less accurate on the boundary of the domain, especially
when the function domain is in close proximity to the true poles.
Also, this result is consistent with our earlier observation that the
minimizers found in each iteration of Algorithm 4.1 tend to lie on
the face of the domain.

In the presence of noise, that is, when ϵ ̸= 0, the number of
pole-like points found in r1(x) and r2(x) increases inside as well
as on the faces of the domain. As above, r3(x) does not suffer from
spurious poles. The number of pole-like points found for r2(x) is
much higher than for r1(x). As discussed before, the reason is that
multivariate rational approximations are more complicated than
univariate ones. Their singularities are never isolated; and even
10
if we eliminate unnecessary degrees of freedom, they will still,
in general, have uncountably many singular points. This problem
is compounded when the input data are noisy. Thus, we cannot
hope that the degree-reduction approach will work as well in the
multivariate case as it does in the univariate case. On the other
hand, the optimization approach by design eliminates poles in D.

5.3.2. Comparison of the testing error
To better compare the testing error, we divide it into two

parts: the component due to poles and the remainder. Given the
definition of Wr,t in Eq. (17), the error due to pole-like points is
defined as

Er,t =

⎡⎣ ∑
j∈Wr,t

(r(x(j))− fj)2

⎤⎦1/2

, (18)

and the error not due to pole-like points is

E ′r,t =
[
∆2

r − E2
r,t

]1/2
. (19)

The testing error for the three rational approximations r1(x), r2(x),
and r3(x), as well as the polynomial approximation p(x) is given
in Fig. 8 and Table 2. The data for these plots are given in the
electronic supplement section SM1. In order to ensure a fair
comparison, the degrees of freedom are the same among the
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Fig. 8. Comparison of the quality of rational and polynomial approximations. The data are sampled with d-LHD, the threshold is t = 102 and ϵ is the level of
relative noise added to the data. For approximations where pole-like points were found, the average error due to pole-like points is shown as a faded hatched bar.
The average errors not due to pole-like points are shown as solid bars and are superimposed on the faded hatched bar where applicable. All the faded hatched
bars, when not 0, are taller than the solid bars. The standard deviation is shown as a black vertical line. Function A.5.4 is an exponential function, Function A.5.7 is
rational function, Function A.5.15 is a Breit–Wigner function, and Functions A.5.16 and A.5.17 are functions whose denominator is a polynomial.
Table 2
Testing error (∆r ) for all test functions in Table A.5 of rational and polynomial approximations. The data are sampled with d-LHD, and ϵ is the level of relative
noise added to the data. Since the scale of the error for each function is different, the error is first normalized to a 0–1 scale before calculating each statistic over
all functions. The corresponding results for each function can be found in the electronic supplement section SM1.
Statistic ϵ = 0 ϵ = 10−6 ϵ = 10−2

r1(x) r2(x) r3(x) p(x) r1(x) r2(x) r3(x) p(x) r1(x) r2(x) r3(x) p(x)

Arithmetic mean 6.34E−02 6.34E−02 5.36E−02 8.38E−02 6.43E−02 5.33E−02 5.37E−02 8.38E−02 6.23E−02 7.49E−02 5.80E−02 8.37E−02
Median 1.88E−15 1.88E−15 4.48E−08 3.19E−04 1.85E−08 5.86E−07 5.16E−06 3.19E−04 3.65E−03 2.63E−03 8.71E−04 5.72E−04
n
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n
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rational approximations. The degrees of freedom of the polyno-
mial approximation are at least as large as those of the rational
approximation. For the rational approximations, the error due to
pole-like points is given for the threshold value of t = 102. From
able 2, we observe that the approximation r3(x) performs best
verall for all functions and all noise levels. More specifically,
he approximation r3(x) has the lowest error when there is no
oise or there are high levels of noise in the interpolation data.
owever, the quality of the approximation of r2(x) matches that

of r3(x) when the level of noise is low (ϵ = 10−6). The reason is
that the degree reduction in Algorithm 3.1 is able to reduce poles
and give a better-quality approximation for low noise levels. From
Fig. 8, we observe that whenever pole-like points are found, their
contribution to the testing error is high, as defined in Eq. (18).
The polynomial approximation yields a lower testing error than
rational approximations do for the noise-free case of Function
A.5.4 because Function A.5.4 is approximated by a polynomial.
Conversely, for rational functions such as Function A.5.6, the
rational approximations over noise-free data yield better testing
errors than the polynomial approximation does. Moreover, for
rational functions, the errors without pole-like points in approx-
imations r1(x) and r2(x) is on the order of 10−8 and is lower
than 10−6 for r3(x). We believe the reason is that the approxi-
mations r1(x) and r2(x) are obtained from Algorithm 3.1, whose
orthonormal basis implementation is numerically more accurate
than the constrained optimization approach of Algorithm 4.1 in
the monomial basis. We also observe that the testing errors of the
approximations of noise-free data of Function A.5.15 show trends
similar to those described above for the rational functions. The
reason is that the denominator of this function approximates to
a polynomial of degree 4 and has the unit of physical energy E4.
Since Function A.5.15 is unitless, the numerator also has a unit of
E4. Thus, the entire function can be approximated by a rational
function with numerator of degree 4 and denominator of degree
4 [42,43]. For other functions, the approximation r3(x) over noise-
free data performs better than the other approximations due to
the lack of spurious poles as well as due to better goodness of fit.
 t
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Table 3
Total CPU time over all test functions in Table A.5 for all four approximation
approaches when the interpolation data is sampled using d-LHD and is noise-
free. The total time taken by Algorithm 4.1 is shown as its fit time and multistart
time to perform the global optimization of ql(x). Algorithm 4.1 is more expensive
than the other approaches are, and this time is clearly dominated by the
multistart time. The corresponding results for each function can be found in
the electronic supplement section SM2.
Statistic p(x) r1(x) r2(x) r3(x): Fit time r3(x): Multistart time

Arithmetic mean 0.66 3.17 4.00 8.60 88.95
Geometric mean 0.63 3.11 3.94 0.19 31.44
Median 0.62 3.30 4.02 0.04 15.85

Generally all approximations for noise-free data are better
than for noisy data. For r1(x) and r2(x), one reason is the higher
umber of pole-like points in the noisy data case. Another reason
s the poor quality of the fit of the approximations to the data.
his is because the degrees of freedom are the same in both the
oise-free and the noisy data cases. Hence, for higher levels of
oise, the approximation underfits the data because there may
ot be any spare degrees of freedom to fit the data and the noise.
e would prefer to prevent overfitting the data, but for high
oise levels, more degrees of freedom may be required in order
o better fit the data.

.4. Computational effort of computing approximations

In this section, we compare the computational effort required
o compute all four approximations. Fig. 9 and Table 3 show the
otal CPU time taken by the four approximation approaches when
he interpolation data are sampled by using d-LHD. In Fig. 9 each
ar is the average CPU time, and the error bars at the top of each
ar indicate the standard deviation. The time taken by Algorithm
.1 is split into the time taken to fit the data by solving Eq. (10)
nd the time to perform the global minimization of q(x) by using
he multistart approach across all iterations. Because the CPU
imes are generally consistent across the different noise levels,
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Fig. 9. Total CPU time taken by the four approximation approaches when the interpolation data is sampled by using d-LHD and is noise-free. Each bar is the average
CPU time, and the error bars at the top of each bar are the standard deviations. The total time taken by Algorithm 4.1 is shown as its fit time and multistart time to
perform the global optimization of ql(x). Function A.5.4 is an exponential function, Function A.5.7 is a rational function, Function A.5.15 is a Breit–Wigner function,
and Functions A.5.16 and A.5.17 are functions whose denominator is a polynomial. The multistart time clearly dominates the total time taken by Algorithm 4.1.
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we show the results only for the noise-free case. The CPU times
for all functions, sampling strategies and noise levels are given in
the electronic supplement section SM2.

We observe that the multistart time of Algorithm 4.1 clearly
dominates the total CPU time. The reason is that the fitting time
grows with the number of iterations of Algorithm 4.1, as shown
in Fig. 6. However, the multistart time increases exponentially
with the degrees of freedom, as is expected because the global
optimization cost grows exponentially. On the other hand, the
compute cost of the other approaches grows more slowly with
the degrees of freedom because these algorithms are polynomial
in time. Despite the computation overhead, the cost of obtaining
r3(x) may be negligible when they are used as surrogates for the
expensive simulations of the physics processes, as we show in the
next section.

5.5. Summary of computational results

From our experiments, we conclude that among the sampling
strategies considered, d-LHD performs the best when the goal is
to fit a rational approximation to data generated from a black
box. We found this result to be true even when d-LHD was
compared with the uniform random sampling of points over the
domain. The d-LHD method samples both on the faces and on the
inside of the domain evenly and requires only a few interpolation
points more than the degrees of freedom of the approximation.
This is especially useful for applications whose function eval-
uations are computationally extremely expensive (minutes to
hours per evaluation). We also find that the approximations based
on d-LHD-generated samples require overall fewer iterations of
Algorithm 4.1 and produce better-quality approximations than
the LHS-based approximations do.

The approximation approach using Algorithm 3.1 with and
without degree reduction is computationally more efficient than
the approach using Algorithm 4.1. However, our goal was to
develop an approximation method for computationally expensive
simulations that performs overall well when the underlying sim-
ulation function is unknown (black box). Thus, the computational
overhead of the algorithms is negligible; and when applied to a
true black-box simulation, Algorithm 4.1 is more likely to give
12
low errors, in particular when the interpolation data are noisy.
More specifically, no spurious poles are found in r3(x) for nonra-
tional functions as well as noisy problems, and the goodness of fit
of r3(x) is much better than r1(x) or r2(x). We note here that these
laims are based on the assumption that the data are sampled
ver a domain that does not include any true poles.
The approximation using Algorithm 4.1 is computationally

ore expensive than the other approaches because it solves a
arder problem of removing the poles iteratively. Most of this
xpense is due to the multistart optimization whose time grows
xponentially with the degrees of freedom since it is tasked to
he perform global minimization of q(x). As we will see in the
ext section, however, the additional time to get a pole-free and
superior quality of approximation is a small price to pay con-
idering that this approximation replaces expensive simulations
f the physics processes.

. Rational approximation for high energy physics

A common problem in HEP is to infer information on unob-
ervable parameters, x, from experimentally measured data, d.
ypically, this is achieved by using a dedicated physics simu-
ation program and statistical measures. Since it is particularly
ell suited for rational approximations, we will discuss a mea-
ure called ‘‘binned likelihood’’ in which the measured and the
imulated data take on the form of histograms with the same
inning [48]. The binning of the histogram is driven by experi-
ental constraints such as how precise the quantity in question
an actually be measured. An illustrative example of the problem
etup is shown in Fig. 10.
In our example, the simulation predicts how postulated dark

atter particles interact with a Xenon-based detector in a process
alled ‘‘direct detection’’ (see [49, Sec. 26]). Our physics simu-
ation has three parameters, x = (mχ , c+, cπ ), which represent
he dark matter particle mass and two couplings to ordinary
atter. The parameter domain is [10, 100] × [0.0001, 0.001] ×

0.001, 0.1]. The particle mass has the dimension of GeV/c2,
while the couplings are dimensionless.

We note that at the time of writing, no experimental re-
sult on the direct detection of dark matter has been published.
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Fig. 10. Illustration of a typical problem setup in particle physics. Shown are histogram skylines of observable experimental data (black) with observable predictions
coming from simulations at different points x(k) in the same parameter space (blue and red). Numerical comparisons of the experimental with the simulated quantities
are typically used to infer quantitative statements on the (unobservable) parameters of the simulation. Here, for example, one would be interested in finding parameter
points x such that the corresponding simulation prediction resembles the experimental observation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
T
e

Here, we assume a signal consistent with a dark matter mass
mχ = 10 GeV/c2 and an interaction strength large enough to
produce approximately 100 events in future xenon detectors. The
simulated experimental data for each bin is: {d1, d2, . . . , d6} =
70.4, 26.7, 9.8, 3.4, 1.0, 0.2}. The values db, b = 1, . . . , 6, are
imulated by using a specific framework of the generalized spin-
ndependent response to dark matter in direct detection experi-
ents [50,51].
At a given point x(k) in the parameter domain, we define

he likelihood function L(x(k)|d1, d2, . . . , d6) as the product of
ndependent Poisson processes over all bins (generalized for non-
nteger variables):

(x(k)|d1, d2, . . . , d6) =
6∏

b=1

Nb(x(k))dbeNb(x(k))

Γ (db + 1)
, (20)

where the Nb(x(k)) denote the simulated quantities for a point x(k)
that correspond to the db; in other words, one simulation returns
the values for all bins.

By numerically maximizing Eq. (20), we infer information
about the parameters x or regions of the parameter space that
yields simulated data consistent with their experimentally ob-
served counterpart. We use MultiNest [52–54] for this purpose,
which requires the evaluation of Eq. (20) at tens of thousands2 of
x(k) to succeed. The computational cost of this operation is driven
by the cost to obtain Nb(x(k)) and can be substantial.

In the following we will discuss how rational approximations
can be used to significantly reduce the required CPU cost of
maximizing the likelihood. We will show results for rational
approximations of degree M = 4,N = 4 as well as polynomial
approximations of degree 7.3

2 The dimension of the problem and the convergence criteria of the MultiNest
lgorithm strongly influence the number of required function calls.
3 The degree is chosen such that the number of coefficients is comparable to

he number of coefficients used in the rational approximations.
13
Table 4
Comparison of computational cost when maximizing the likelihood Eq. (20)
using the true simulation and maximizing the approximate likelihood Eq. (22)
using a rational approximation for the data in each bin.

Likelihood evaluations Total run-time [s]

Using full simulation Fig. 11a 29459 14594
Using rb with Algorithm 4.1,
M = 4,N = 4

29612 288

First, we calculate separate rational approximations rb(x) that
approximates Nb(x) for each bin b. This calculation requires eval-
uating the exact simulation at sufficiently many training points.
We use Npoint = 500 points sampled using the Latin hypercube
method from the parameter space, x(k), k = 1, . . . ,Npoints, at
which we evaluate Nb(x(k)), k = 1, . . . ,Npoints. We compute the
rb from the input–output data pairs{(

x(k),Nb(x(k))
)}Npoints

k=1 for b = 1, . . . ,Nbins. (21)

By replacing the expensive simulations to obtain Nb(x(k)) with
cheap-to-evaluate rational (or polynomial) approximations rb in
Eq. (20) we can define an approximate likelihood:

L(x(k)|d1, d2, . . . , dNbins ) ≈ L̃(x(k)|d1, d2, . . . , dNbins )

=

Nbins∏
b=1

rb(x(k))dberb(x
(k))

Γ (db + 1)
. (22)

he maximization of Eqs. (20) and (22) requires about 30,000
valuations of L(x(k)|d1, d2, . . . , dNbins ) and L̃(x(k)|d1, d2, . . . ,

dNbins ), respectively. The run time of the latter is, however, about
a factor 50 faster (Table 4).

To demonstrate that the results obtained with the rational
approximations rb are in agreement with the full simulation, we
present our results in terms of two-dimensional profile-likelihood
projections (Fig. 11). We limit the discussion to the projection
onto the c − c plane because it exhibits the most interesting
π +
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Fig. 11. Two-dimensional profile-likelihood projections of a 3-dimensional parameter space with superplot [55]. Regions of higher likelihood are shown darker. The
data are normalized to the maximum likelihood observed before plotting. We compare the result obtained with the full physics simulation (Fig. 11a) to the result
obtained when using pole-free rational approximations (M = 4,N = 4) calculated with the semi-infinite approach (Fig. 11b). Fig. 11c shows the effect of poles in the
elevant parameter domain. The poles are visible as dark dots. For completeness, Fig. 11d shows the result when using polynomial approximations with a similar
umber of coefficients as in Fig. 11b.
attern. In those plots, dark regions indicate higher likelihood val-
es and therefore high level of compatibility with experimentally
bserved data.
The top-left plot (Fig. 11a) shows the result obtained with

he full simulation Eq. (20). We observe two ridges of equal
ikelihood, meaning that there are very different parameter com-
inations that are equally in agreement with the experimentally
bserved data. This is our ground truth for comparison with the
pproximation based results.
The result obtained with pole-free (Algorithm 4.1) rational

pproximations in Fig. 11b is in excellent agreement with the
round truth both qualitatively and quantitatively. The rational
pproximations obtained with Eq. (4), shown in Fig. 11c, demon-
trates the impact of spurious poles: although we find qualitative
imilarities with the ground truth, the poles that are present in
ome of the rb lead to a complete distortion of the evaluated
ikelihoods and therefore to a quantitatively wrong interpreta-
ion. For completeness, we show in Fig. 11d the result obtained
ith polynomials of order 7. It clearly shows the advantage of
14
rational approximations since the polynomial approximations are
apparently not able to capture the true likelihood at all. Thus,
the information inferred by using the polynomial approximation
would be misleading.

7. Conclusions

We have presented two approaches for computing rational ap-
proximations for computationally expensive black-box functions.
Our first approach uses linear algebra to construct the rational
approximation, but it does not guarantee that the approxima-
tion is pole-free. Our second approach exploits a semi-infinite
optimization problem formulation that leads to accurate rational
approximations without poles.

Our numerical study shows that the selection of interpolation
points for fitting the approximations has a major impact on the
approximation error and the number of iterations taken by the
pole-free rational approximation. We find that a Latin hypercube
design that is augmented with sample points on the boundary of
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Table A.5
Description of fast-to-compute test problems. Here, n is the number of variables, M is the degree of the numerator, N is the degree of the denominator, f is the
unctional form, and Domain for each dimension is the interval in which no poles exist. If either the numerator or denominator is not a polynomial, then the entry
or M or N is a dash, respectively.
No. Description n M N f Domain

A.5.1 Function whose denominator is a polynomial 2 – 4
ex1x2

(x21 − 1.44)(x22 − 1.44)
x ∈ [−1, 1]2

A.5.2 Log function 2 – – log(2.25− x21 − x22) x ∈ [−1, 1]2

A.5.3 Hyperbolic tangent function 2 – – tanh(5(x1 − x2)) x ∈ [−1, 1]2

A.5.4 Exponential function 2 – – e
−(x21+x

2
2)

1000 x ∈ [−1, 1]2

A.5.5 Absolute value function 2 – – |(x1 − x2)|3 x ∈ [−1, 1]2

A.5.6 Rational function 2 3 3
x1 + x32
x1x22 + 1

x ∈ [0, 1]2

A.5.7 Rational function 2 2 2
x21 + x22 + x1 − x2 − 1
(x1 − 1.1)(x2 − 1.1)

x ∈ [−1, 1]2

A.5.8 Rational function 2 4 4
x41 + x42 + x21x

2
2 + x1x2

(x21 − 1.1)(x22 − 1.1)
x ∈ [−1, 1]2

A.5.9 Rational function 4 2 2
x21 + x22 + x1 − x2 + 1
(x3 − 1.5)(x4 − 1.5)

x ∈ [−1, 1]4

A.5.10 Rational function 2 2 3
x21 + x22 + x1 − x2 − 1

x31 + x32 + 4
x ∈ [−1, 1]2

A.5.11 Rational function 2 3 2
x31 + x32

x21 + x22 + 3
x ∈ [−1, 1]2

A.5.12 Rational function 2 4 4
x41 + x42 + x21x

2
2 + x1x2

x21x
2
2 − 2x21 − 2x22 + 4

x ∈ [−1, 1]2

A.5.13 Rational function 2 3 4
x31 + x32

x21x
2
2 − 2x21 − 2x22 + 4

x ∈ [−1, 1]2

A.5.14 Rational function 2 4 3
x41 + x42 + x21x

2
2 + x1x2

x31 + x32 + 4
x ∈ [−1, 1]2

A.5.15 Breit–Wigner function 3 – –
2
√
2MΓ γ

(π
√

M2+γ )[(E2−M2)2+M2Γ 2]

where γ =
√
M2(M2 + Γ 2)

E ∈ [80, 100],

Γ ∈ [5, 10],
M ∈ [90, 93]

A.5.16 Function whose denominator is a polynomial 4 – 4
tan−1 (x1)+ · · · + tan−1 (x4)

x21x
2
2 − x21 − x22 + 1

x ∈ [−0.95, 0.95]4

A.5.17 Function whose denominator is a polynomial 4 – 2
ex1x2x3x4

x21 + x22 − x3x4 + 3
x ∈ [−1, 1]4

A.5.18 Sinc function 4 – – 10
4∏

i=1

sin xi
xi

x ∈ [10−6, 4π ]4

A.5.19 Sinc function 2 – – 10
sin x1
x1

sin x2
x2

x ∈ [10−6, 4π ]2

A.5.20 Polynomial function 2 2 – x21 + x22 + x1x2 − x2 + 1 x ∈ [−1, 1]2
the parameter domain leads to improved approximations more
efficiently. We hypothesize that this is due to close proximity
of the function domain to the true poles and the approxima-
tions fare poorly without the sample points on the boundary.
We showed that for a variety of analytic fast-to-compute test
problems with and without noise the rational approximations
generally perform better than the polynomial approximations do.
The result was further confirmed by approximating data gen-
erated from an expensive HEP simulation. The polynomial did
not capture the true underlying functional relationship at all.
Thus, for black-box simulations whose true underlying functional
forms are unknown, using a polynomial may lead to incorrect
conclusions.

An outstanding challenge for using rational approximations is
he determination of the ‘‘correct’’ polynomial degrees in the nu-
erator and denominator. We have experimented with a heuris-

ic method to determine these degrees, but noisy data pose an
dditional challenge, and more research is needed.
The structural constraint considered in the pole-free ratio-

al approximation is mitigating poles through enforcing non-
egativity of the denominator q(x). Other structural constraints
15
arise in the solution of chance-constraint optimization, where
we wish to approximate an empirical cumulative density func-
tion. By construction, the function should be monotonic, which
again imposes a constraint on the rational approximation.
Such structural constraints should also be modeled in the
future.

The rational approximations require a minimum number of
interpolation points to fit the model. One drawback is in obtaining
these interpolation points, since the number of points required
increases significantly with the number of parameters and the
degrees of the polynomials of the approximation. Hence, ob-
taining these interpolation points may become computationally
too expensive. Additionally, the multistart global optimization
of the denominator q(x) in the pole-free rational approximation
will become computationally significantly more expensive as the
number of parameters increase. We have tested problems with
up to 7 parameters, but especially in high energy physics dozens
of parameters are commonly encountered. Thus, the question
of scalability of the proposed rational approximation approaches
must be addressed in the future.
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ppendix A. Description of test problems

The functional forms of the test problems that we use in our
umerical experiments are shown in Table A.5.

ppendix B. Checking for poles

In this section, we discuss practical ways to solve the global
ptimization subproblem in line 4 of Algorithm 4.1. We compare
ifferent strategies to perform the global minimization of ql(x) to

detect poles in D for a number of fast-to-compute test functions
described in Table A.5. The benchmark for the comparison is
the Baron global optimization solver for nonlinear and mixed-
integer nonlinear problems [56,57]. The other strategies include
‘‘singlestart’’, in which we choose one point randomly from D
as starting point for the optimization; ‘‘multistart’’, which starts
multiple optimizations from different points in D; and ‘‘sam-
pling’’, where ql(x) is evaluated at multiple random points in D
to check if any evaluation of ql(x) < 0. We allow multistart and
sampling to run for the same amount of time as Baron to ensure
a fair comparison of these approaches. However, multistart and
sampling stop as soon as the first x with ql(x) < 0 is detected
and do not continue toward finding the global minimum.

The results from this comparison are summarized in Table B.6.
We observe that multistart detects poles almost as well as Baron
in a much shorter time. The reason is that multistart stops as
soon as some x with ql(x) < 0 is detected, whereas Baron tries
to solve the problem to optimality in each iteration of Algorithm
4.1. Also, multistart detects poles almost as well as Baron does
16
Table B.6
Comparing global optimization strategies for detecting poles. Here, n denotes
the number of variables, nnl is the number of nonlinearities in ql(x) that is
btained by subtracting the constant and linear terms from the total degrees of
reedom of ql(x). Time is the CPU time in seconds, and %FN is the percentage of
false negatives for detecting poles, that is, when Baron identifies the existence
of a pole, while the corresponding other method did not. The results are more
informative for problems where n > 2. Hence, results are only obtained for
some functions with n = 2.
Function No. n nnl Baron Singlestart Multistart Sampling

Time % FN Time % FN Time % FN Time

A.5.12 2 7 0.0809 0.68 0.0021 0.00 0.0319 1.35 0.0306
A.5.13 2 7 0.0575 2.67 0.0017 0.00 0.0541 2.00 0.0539
A.5.14 2 7 0.0564 1.29 0.0018 0.00 0.0506 0.65 0.0503
A.5.15 3 16 0.1066 9.66 0.0057 0.00 0.0742 1.70 0.0743
A.5.16 4 30 0.2653 23.63 0.0082 1.10 0.0757 19.23 0.1270
A.5.17 4 30 0.1202 0.00 0.0051 0.00 0.0539 5.00 0.0756
A.5.18 in 7D 7 112 259.0448 0.29 0.0078 0.00 0.3549 2.20 0.4579

when the time taken by both approaches is the same. Therefore,
to set a suitable time limit for multistart a priori, we estimate
the amount of time Baron would take to solve the problem given
the number of nonlinearities. Then we compute the number of
multistart iterations that can be completed within this time. The
goal of this heuristic is to minimize the occurrence of poles in q(x)
without spending the effort required to run Baron. The number
of multistart iterations needed is approximately an exponential
function, φ, of the number of nonlinearities, nnl, when multistart
ran for the same time as Baron.

φ(nnl) = 2042.023e0.029nnl (B.1)

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cpc.2020.107663.
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