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Abstract 

Human-machine interaction (HMI) has become an 

essential part of the daily routine in organizations. 

Although the machines are designed with state-of-the-

art Artificial Intelligence applications, they are limited 

in their ability to mimic human behavior. The human-

human interaction occurs between two or more 

humans; when a machine replaces a human, the 

interaction dynamics are not the same. The results 

indicate that a machine that interacts with a human 

can increase the mental uncertainty that a human 

experiences. Developments in decision sciences 

indicate that using quantum probability theory (QPT) 

improves the understanding of human decision-

making than merely using classical probability theory 

(CPT). In this paper, we examine the HMI from a QPT 

perspective.  Applying QPT to studying HMI for 

decision-making shows improvement in understanding 

the decision process when interacting with machines 

because it provides insights into the mental 

uncertainty of a human that is not apparent in CPT.   

1. Introduction

The advances in artificial intelligence (AI) and

machine learning (ML) have created and will continue 

to create fundamental shifts in human decision-

making. Although there is considerable evidence 

supporting the advantage of AI/ML-based systems for 

decision support [1], in certain situations interacting 

with a machine can inadvertently affect the human 

decision process. 

According to the national intelligence institute 

report, there are two types of AI, Artificial General 

Intelligence (General AI) and Artificial Narrow 

Intelligence (Narrow AI) [2]. General AI is known as 

a system that can handle memory, learning, 

abstraction, and creativity. Since General AI is not 

feasible soon, the limitations of narrow AI systems on 

human behavior must be comprehensively studied due 

to the limitations of CPT. Narrow AI is a system that 

is specialized for single purposes and cannot be 

generalized, and this limits studies on multi-purpose, 

multi-agent situations. Narrow AI is the standard 

approach and is built as an optimizing machine [3]. All 

of the most remarkable advances in AI applications 

use narrow AI [2]. These systems may be large and 

complicated and are considered closed systems.  In 

situations where HMI is prevalent, it is considered 

complex and an open system. As a result, an AI-based 

system that interacts with a human cannot adapt to the 

mental states or choice behavior of a human as humans 

adapt to other humans [12]. Since probability theories 

play a significant role in designing and developing 

narrow AI systems [4], their limitations can be better 

captured by understanding the limitations of the 

utilized probability theories. These narrow AI/ML 

applications are based on the Kolmogorovian 

probability theory, also known as classical probability 

theory (CPT). 

In this paper, we investigate the human-machine 

interaction (HMI) by using a more comprehensive 

approach to model human behavior, called quantum 

probability theory (QPT) [5]. By using QPT [5]–[7], 

we first model human-human interaction while two 

humans exchanging information; then apply this 

model to a scenario in which a human reads online 

medical information and compare the results in the 

case of the same human visiting a doctor. 

1.1 Human-machine interaction (HMI) 

HMI refers to a rationalization of relevant attributes 

and categories that emerge from the use of 

computerized machines. Along with the human factors 

line, this rationalization is drawn by physical (e.g., 

human-body related factors), cognitive (e.g., 

workload), and emotional (e.g., motivation) factors 

[8]. Cognition in the HMI is centralized within 

software due to its role in automation how it mediates 

most of the tasks. This allows us to interact with 

machines through software to execute a task. Within 

that interaction, task factors are crucial because the 

task is organized, supported by the machine, and 

executed by the human user [9]. This execution is 

called activity which is the process of the human 

becomes aware of the environment by acting on it and 

by transforming it. The interaction with the 

environment in which the user and machine are also 

important because it influences the task user and 

execution; hence, the process of activity (i.e., 

execution) is linked to environmental complexity [8]. 

The current HMI mostly considers explicit 

communication. In this study, we will examine the 

interaction dynamics between a human and the online 

medical content by considering relative and implicit 

information gain by capitalizing on decision-making 

theories. 
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1.2 Decision-making 
 

Decision-making refers to identifying and 

choosing options by comparing with alternatives 

based on the values and preferences of the decision-

maker in an interactive task environment [10]. 

According to Baker et al. (2001), decision-making 

should start with the identification of the decision-

maker(s) in the situation, reducing the possible 

disagreement and uncertainty about problem 

definition, requirements, and goals [11]. For instance, 

a human with medical complaints can visit a doctor 

and have the doctor diagnose the problem. By 

interacting with a doctor, the patient communicates 

explicitly with the doctor; therefore, all symptoms will 

be discussed and categorized. This interaction allows 

the human to develop coherent rationales and opinions 

by directly communicating with the doctor; hence, this 

decision process involving agent interdependency. 

On the other hand, reading online medical 

information and learning more about the symptoms 

involves more implicit communication because in this 

situation, neither the patient nor the webpage can make 

any explicit categorization of the symptoms (i.e., no 
explicit communication, no test results) and each 

missing categorization of the symptoms continue to 

influence the final decision. Although a more 

sophisticated AI-based machine could better assist a 

human and adapt to the questions that are asked by the 

human and since this can only be a narrow AI, an 

interdependent decision is not plausible for a machine; 

therefore, the interdependency that is observed in 

human-human interaction cannot emerge in HMI, and 

the ensuing decisions become individual. 

Traditionally, HMIs are typically modeled with the 

rules of CPT, involving two utility-maximizing agents 

[12]. However, in the case of having heterogonous 

agents, the differences that stem from relative 

information gain can complicate decision outcomes 

because, for a machine, the utility for two is not 

attainable  [3]. In this paper, we use quantum decision 

theory  [6], [13], [14] to understand the implications of 

HMI in the decision-making process. The findings of 

this paper are based on an interaction that occurs 

between a human and computer software, which 

represents the machine. 

We address the following two research questions: 

(1) What is the interdependency relation between 

information exchanging agents due to the relative 

information gain? (2) How can the human decision 

process be expressed probabilistically by using QPT 

when there is at least one non-human information 

source? 

We hypothesize that due to the situational relations 

between information exchanging human agents if a 

machine/computer replaces one of the humans, the 

uncertainty during the decision process that humans 

experience (because of the mental indecisiveness) 

increases. 

The structure of the paper is as follows. First, we 

discuss the two types of probability theories, i.e., CPT 

and QPT. Then we elaborate on the double-slit 

experiment in physics and how it can be used to model 

human decision-making.  Next, we explain quantum 

decision theory and interdependency in decision-

making between agents that exchange information. 

Finally, we discuss the application of the quantum 

decision theory and how that can elucidate arising 

anxiety while searching online information by using a 

case discussed in the book, The Cyber Effect [15].  

 

2. Probability theories  
 

2.1. Classical probability theory 
 

If P and N are two independent events, the 

probability they both occur is the product of their 

single-event probabilities, p(P and N) = p(P) ∙
p(N). When events become dependent events, the 
probability of event P happening affects the 

probability of event N. The “and” rule for dependent 

events is expressed as:  

 

p(P and N) = p(P ∩ N) = p(P) ∙ p(N|P). (1) 
 

The standard logic [4] with set theory principles 

indicates that p(P and N) = p(N and P). The set 

theory principles also require that the probability of 

the conjunction (intersection) of two events, p(P ∩ N), 
must be less than or equal to the probability of single 

events: p(P ∩ N) ≤ p(P), p(N). Also, the set theory 

principles require that the probability of the union of 

two events must be greater than or equal to the 

probability of single events: p(P ∪ N) ≥ p(P), p(N). 
The decision models that capitalize on CPT rules 

suppose that there is always a definite mind state for 

decision-makers; the evolution of system state is 

assumed to be happening from one state to another 

(Figure 1).  

 

 
Figure 1. Mental system representation with CPT 

modeling. The primary assumption is that the system 

is in a definite state, and it jumps from one state to 

another. 
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2.2 A CPT violation example: The sure-thing 

principle 
 

The sure-thing principle is one of the principles of 

rational decision-making [16], and it states that “if the 

alternative A is preferred to the alternative B, when an 

event E1 occurs, and it is also preferred to B, when an 

event E2 occurs; then A should be preferred to B, when 

it is not known which of the events, either E1 or E2 has 

occurred. This premise is derived from the rules of 

CPT, and violation of the sure-thing principle is 

known as the disjunction effect that violates the union 

probability p(A ∪ B) ≥ p(A), p(B) rule of CPT. 

According to rational decision-making principles, the 

sure-thing principle must always be satisfied in 

empirical tests. However, systemic violations of this 

principle have been observed in experiments  [5]–[7]; 

CPT rules fail to explain these systemic violations, 

whereas QPT coherently explains the sure-thing 

principle violations [5]–[7]. 

 

2.3 Quantum probability theory 
 

The paradoxes similar to the sure-things principle 

are observed when a joint mental representation of 

events may not be formed [5]–[7], [17]. In this type of 

situation, the axioms of CPT, (e.g., commutativity 

transitivity axioms), limit the cognitive models. QPT 

has been introduced to decision sciences and 

successfully explained the majority of the paradoxical 

findings that CPT fails to explain [5]–[7], [17]. QPT 

removes some strict axioms of the Boolean logic that 

form the foundations of CPT. It replaces the set logic 

with the logic of the subspace. In QPT, events are not 

always commutative, which means  p(B∩A) ≠ p(A∩B) 

is supported [5].  

When events are incompatible, a joint mental 

representation of the events may not be formed. Events 

can become incompatible when 1) information sources 

have different views; 2) the perceiver lacks the 

knowledge or experience to evaluate an event. Under 

these conditions, the event is evaluated by evoking an 

incongruent perspective [5]. Since QPT uses a 

projective probability; hence, incompatible events can 

be studied in a probabilistic framework.  

 In QPT, events are represented as subspaces in 

Hilbert space (Figure 2). For example, a system, S, can 

be represented by two bases, P and N, which are the 

subspaces of a two-dimensional Hilbert space. The 

cognitive system S is represented as the superposition 

of the subspaces P and N, |S⟩ =  a|P⟩ + b|N⟩; in this 

equation are complex numbers; they form the 

foundation of the probability calculation in QPT. The 

probability of a decision, P, is calculated by projecting 

the cognitive state vector |S⟩  on the subspace |P⟩. A 

projection operator can be written as PP = |P⟩⟨P|. If PA 

operates on a superposition vector PP|S⟩ =
|P⟩⟨P|(a|P⟩ + b|N⟩) = ⟨P|a|P⟩|P⟩, the inner product 

is ⟨P|N⟩ = 0 because of the orthogonality; the 

probability of event P is calculated as p(P) =
|⟨P|a|P⟩|2 = a2.  

 

 
Figure 2 Hilbert space representation of decision 

outcomes P and N. Time evolution of the amplitudes’ 

changes is expressed with unitary transformation. 

Due to the unitary evolution, the angle 𝜃 changes and 

results in temporal oscillation (shown in Figure 3). 

The probability of a decision P at time t is calculated 

with the amplitude square, 𝑎2. 

Critical for QPT is, introducing the superposition 

principle into the decision modeling. As shown in 

Figure 3, the superposition principle indicates that a 

definite decision state does not exist in the human 

mind [5], [7], [18]; instead, there is a superposition of 

states that evolves temporally with unitary evolution 

(shown in Figure 3) [5], [7], [18].  

  
Figure 3 Representation of decision outcomes with 

superposition in Hilbert space and resulting temporal 

oscillation. 

 

2.4 Double-slit experiment 
To better understand the difference between the 

CPT and QPT, the double-slit experiment can be 
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examined with both approaches. As shown in Figure 

4, an electron is fired towards a metal sheet that has 

two slits on it. The slits are close to each other such 

that electrons can pass through the slits and then be 

detected on the screen [19]. When both slits are open, 

and no detector is placed on any of the slits, an 

interference pattern is observed on the detector screen; 

if a detector is placed on any of the slits and detects an 

electron or one of the slits is closed, the interference 

pattern on the screen vanishes. 

 

 
Figure 4. Double Slit Experiment with an electron 

gun 

Now suppose slit two in Figure 4 is closed, and 

electrons can only pass through slit 1. If the state of the 

electron is |ψ1⟩, then the probability distribution that 

the electron is detected on the detector screen at 

position x is P1(x) = |⟨ψ1|x⟩|
2 where |x⟩  represents 

the state vector of x. If the state of the electron is |ψ2⟩, 
then the probability distribution becomes P2(x) =
|⟨ψ2|x⟩|

2 [19]. 

In the case of having both slits are open, electrons 

can pass through any of them. If the electron goes 

through the slit 1 or 2, then the probability distribution 

for the electron on the screen becomes P1(x) for the 

electrons passing through slit 1 and  P2(x) for the ones 

passing through slit 2. Suppose half of the electrons 

pass through slit 1 and the other half through slit 2, the 

probability distribution of electrons on the screen will 

be [19] 

P(x) =
1

2
P1(x) +

1

2
P2(x). (5) 

After passing the metal sheet with slits, the electron 

is in a mixture of two states, |ψ1⟩ and |ψ2⟩, and 

Equation 5 represents the probability distribution for 

the electron. When the electron reached the detector 

screen, the probability distribution for being in the 

state |x⟩ is [19] 

Pmix(x) = Tr[|x⟩⟨x|ρ] =
1

2
P1(x) +

1

2
P2(x) = P(x)(6) 

 

Where ρ represents the state of the electron mix  

ρ =
1

2
(|ψ1⟩⟨ψ1| + |ψ2⟩⟨ψ2|) (7) 

 

If Equation 7 is used to represent the state of the 

electron mix, the interference pattern on the detector 

screen cannot be explained because the actual state of 

the system is in a superposition [19] :  
1

√2
(|ψ1⟩ + |ψ2⟩) (8) 

If Equation 8 is used, it accounts for not having any 

detection on any of the slits. The total probability of 

being in the state |x⟩ becomes [19]: 

Ptot(x) =
1

2
P1(x) +

1

2
P2(x) + Re[⟨x|ψ1⟩⟨ψ2|x⟩]⏟          

interference term

(9) 

 

The interference term in Equation 9 can be either 

negative or positive, and explains why Ptot(x) ≠ P(x). 
This situation changes if a detector is placed on either 

of the slits in Figure 4 to measure if an electron passed 

through the chosen slit; the interference term in 

Equation 8 vanishes and Ptot(x) = P(x) [19]. 

 

2.5 Double-slit experiment in a decision-

making context 
 

Suppose Alice, a human decision-maker, and 

iDecide, an AI decision support tool, are on duty for 

an Intelligence, Surveillance, and Reconnaissance 

(ISR) mission. The ISR mission is to monitor a group 

of aliens on a far distant planet on which the U.S. 

Space Force’s (USSF) ground units conduct an 

operation. According to the intelligence report, there 

are two categories of aliens on the planet, “Beko” and 

“Keko”. A category “Beko” aliens are more likely to 

attack the USSF ground units, where “Keko” aliens are 

more likely to be friendly to the USFF ground units. 

The mission is to notify the ground units as early as 

possible of alien presence types so that ground forces 

can either withdraw “Withdraw” or attack “Attack” 

based on the type of approaching alien.   Making the 

task more difficult is the aliens’ cross-categorical 

facial features; their images can generate bistable 

perceptual stimuli; ergo, “Beko” could look like 

“Keko” vice versa. To complete this mission, Alice 

and Bob can interact via a platform, which includes a 

common operating picture (COP). iDecide provides 

recommendations on “Beko” and “Keko” to aid in 

making her decision to have the ground forces 

withdraw or attack.   Alice interacts with iDecide using 

a common operating picture that provides situational 

awareness and information about Beko and “Keko,” 

however interactions with ground forces are directed 

by Alice and do not require interaction with iDecide. 

x 
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Two scenarios are introduced. In Scenario-1, Alice 

decides, without interacting with iDecide or the COP, 

to instructs ground forces to withdraw, as shown in 

Figure 5a. In Scenario-2, Alice, based on the COP and 

s feedback based on iDecide inputs, identifies a Beko 

alien presence and instructs the ground forces to 

Withdraw, as shown in Figure 5b. The difference 

between these two scenarios is that in Scenario-1, 

Alice maintains her indecisiveness concerning the 

category of the approaching alien (as in the case of 

having both slits are open in the double-slit 

experiment); in Scenario-2, she makes her choice and 

resolves the indecisiveness concerning the category 

choice (as having a detector on one of the slits in the 

double-slit experiment). 

These two decision processes have been tested 

through numerous studies demonstrating a systemic 

violation of the total probability for the condition in 

Figure 5a as it occurs in the double-slit experiment. 

This violation is due to the mental indecisiveness 

(ontic uncertainty) [20] that influences the subsequent 

decision in Figure 5a but does not influence the 

decision in  Figure 5b because the superposition state 

(as explained in Equations 8 and 9) concerning the 

category is resolved and hence the mental (ontic) 

uncertainty is resolved by making a category choice.  

 

Figure 5. Path diagram representations of two 

decision scenarios: (a) the condition in which there is 

no observation, and the choice of outcome is “W”; 

and (b) the path that is taken is known, and the choice 

of outcome is “W.” 

There are always ontic and epistemic aspects of a 

system in any situation. Ontic states of a system are 

referents of individual descriptions of a system [21]. 

Epistemic states of a system describe the others’ 

knowledge of the system's properties. These two states 

give rise to different types of uncertainty, ontic and 

epistemic. Epistemic uncertainty can be resolved by 

obtaining more information about the system [20]–

[22]. However, no extra information can be obtained 

to reduce ontic uncertainty; it can only be resolved 

when the system interacts with the environment [20].  

The distinction between the two can be articulated by 

re-visiting the ISR example. In Figure 5a, Alice is in 

an indefinite mental state, neither “Beko” nor “Keko,” 

concerning the category of alien. Due to her indecisive 

mental state, Alice experiences a mental (ontic) 

uncertainty concerning the category of the alien. This 

mental uncertainty can only be resolved if Alice makes 

her choice of alien category. Therefore, in the case of 

Figure 5a, since the ontic uncertainty is not resolved, 

it influences her subsequent decision. In Figure 5b, 

since the mental (ontic) uncertainty is resolved 

concerning the alien’s category, the influence that 

occurs in Figure 5a vanishes. Typically, the effects of 

an interaction between Alice and Bob are scrutinized 

at the epistemic level. However, even though a 

decision, judgment, choice, communication, or 

selection of one alternative over another can allude to 

different meanings, each of these acts should be 

considered as an interaction between a human, 

machine, and the environment. Each interaction alters 

the human cognitive system as a constructive process.  

 

3. Quantum decision theory and relative 

information gain 
 

We used the quantum decision theory (QDT) 

introduced in [6] in the human-machine interaction 

model such that some of the aspects of ontic 

uncertainty can be captured. The mathematical 

structure of QDT captures the interference term that 

results from the superposition of composite situations 

that involves contextual effects, non-commutative 

subsequent decision making, and interference effects 

[6]. 

Suppose there are two decisions to choose, D1 and 

D2. According to QDT, the probability measure of 

choosing D1 for jth as a function of  time can be 

expressed as: 
pj(D1, t) = fj(D1, t) + qj(D1, t) (10) 

 

Where f(D1) is the utility factor representing the 

classical probability contribution and q(D1) is the 

interference term. The interference term is constrained 

by the quarter-law and therefore, the non-informative 

priors for the average interference term are q(D1,2) =
1

4
, −

1

4
  [6], [13], [14], [23], [24]. The sign of the 

interference term depends on the decision being 

attractive or repulsive in the situation [13].  
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In the rest of the paper, the utility factor, fj, will be 

treated time-independent [14] and the quantum 

interference term depends on the information received 

by the agent j, Mj(t): 

q(Dn, t) = q0(Dn) exp(−∑φ(t′, t)μj(t)

t′

t=1

) (11) 

 

 

In Equation 11, μj represents the information gained 

by a decision-making agent. In the case of two agents 

exchanging information, the information gain of the jth 

agent can be expressed as [13], [14]: 

 

μij(t) =∑pi(Dn, t)

N

n=1

ln
pi(Dn, t)

pj(Dn, t)
(12) 

 

In the case of having two alternative decisions, the 

information gain function shown in Equation 12 

becomes 

 

μij(t) = pi(D1, t) ln
pi(D1, t)

pj(D1, t)
+ pi(D2, t) ln

pi(D2, t)

pj(D2, t)
(13) 

 

Then, by using pi(D1, t) + pi(D2, t) = 1, one can 

rewrite Equation 13 as: 

 

μij(t) = pi(t) ln
pi(t)

pj(t)
+ [1 − pi(t)] ln

1 − pi(t)

1 − pj(t)
(14) 

 

3.1 Online medical information search: A 

case for human-machine interaction 
  

A story from The Cyber Effect [15] demonstrates the 

current state of human-machine interaction study. The 

story introduces Lisa, who went hiking with her friend 

during tick season as she and her friend were hiking 

and talked on various topics to include ticks and Lyme 

disease. Upon returning home from her hike, she 

became worried about ticks.  After a personal 

examination, she finds a tick; she removes it with the 

information she obtained online. After removing the 

tick, she began searching the internet about Lyme 

disease and its symptoms based on her previous 

discussion with her friend during their hike. While 

trying to remain calm, she clicked from one search 

result to another, and after visiting various web pages, 

her anxiety increased. Stressed out and unable to sleep, 

she decided to continue her reading more about Lyme 

disease. Click after click as she tumbled into the 

medical webpages, and while she was reading about 

the consequences of Lyme disease, her anxiety was 

high. Lisa lost track of time, and her imagination ran 

wild, often missing relevant information during her 

searches that might have been comforting. Based on 

her frenetic searches, Lisa started to think that she had 

Lyme disease and ended up visiting a doctor in the 

morning.  The doctor confirmed Lisa did not have 

Lyme disease but incurred costs for the unnecessary 

visit and contracted a virus from another patient who 

was visiting the same doctor’s office [15]. 

Lisa's story’s similarities with Alice and iDecide 

decision scenarios are as follows. To decide Lyme 

positive, there are symptoms (e.g., having red eyes) 

that need to be categorized. While searching online 

medical information about Lyme disease, Lisa could 

not make any decision for the intermediate symptoms; 

for example, during her internet searches, Lisa 

observed her eyes had become red, the red-eye 

symptom could be due to extended screen time she had 

while searching in the dark.  However, in spite of this 

context, it was instead interpreted as a result of the tick 

bite. As a result, the mental indecisiveness concerning 

the symptom categories influences her Lyme positive 

belief. 

However, after visiting a doctor, Lisa would learn 

the definite category choices for intermediate 

symptoms from a professional with the supported test 

result, and as a result, she would resolve her 

indecisiveness concerning the symptoms and would 

have a Lyme negative belief that couldn’t be 

influenced by any mental indecisiveness concerning 

the intermediate symptoms.  

.  

 

3.2 Relative information gain between agents 
 

Before the internet era, Lisa would have gone to a 

doctor if she did not feel well. During the visit, the 

doctor would ask questions concerning her health; 

Doctors have the training to make diagnoses and ask 

questions in a non-directive way [15]./ In contrast, a 

medical webpage is designed to provide information 

to the consumers but not make diagnoses.. As it 

occurred in Lisa’s situation, due to the increased 

anxiety, the terms that are entered into the search 

engine would become more Lyme-related; thus, the 

engine would continue to recommend more web pages 

that contain Lyme disease information.  

To model Lisa’s situation as an interaction, first, 

we assume that humans interact with two types of 

machines. This includes the search engines she used 

and the web pages that are recommended and clicked 

by her. Due to the nature of interaction and rising 

anxiety, in our model, the information provided by the 

visited webpage at time t has a higher weight in Lisa’s 

memory than the earlier ones. Hence, the total 

received information by Lisa in the exponential power 

term in Equation 11 becomes:  
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MLisa(t) =∑μLisa(t) ⋅ t

t′

t=1

(15) 

 

In the case of having two human agents exchanging 

information, Equation 10, probability of choosing 

decision D1, becomes  
pj(t + τ) = fj + qj(t) (16) 

  

Where the τ in Equation 17 is taken as 2.5 seconds in 

the model.  

In the case of replacing one of the humans with an 

inanimate agent, the model’s assumptions are as 

follows. Lisa’s utility factor, fj, is time-independent, 

and the interference factor, qj,  is time-dependent; 

therefore, the probability equation is still time-

dependent. Since search engines are optimized to find 

the most relevant web pages that can provide more 

information relevant to the terms that are searched, we 

suppose that there is no memory contribution for the 

inanimate agent and the interference term is zero, qj =

0, and the utility factor is time-independent. 

To express the content of a medical webpage in 

terms of probability measures, the model’s 

assumptions are as follows. First, we assume that if a 

textual/semantic analysis of a medical webpage is 

conducted, a probability value can be assigned to the 

Lyme positive or negative; for example, probability of 

Lyme positive 0.7 means that the content of this 

webpage conveys information such that after reading 

the web content, the reader would think that he/she 

was 70% Lyme positive. Two types of probability 

calculation are used to model the inanimate agents’ 

role in information exchange. The first probability 

value is time-invariant, which means that based on 

search entries, all the recommended medical pages’ 

content has a Lyme positive probability value of 0.7. 

The second probability calculation, shown in Table 1, 

has a small random variation; as more search terms are 

entered, the search engine pulls information from 

various resources, and the probabilistic variation of the 

meaning of the text is ±0.01. 

The initial value of the interference term is  qj =

0.20 for two reasons. First, a positive value is chosen 

because Lisa thought that she had Lyme disease and 

began searching for information about Lyme disease 

by using a search engine; therefore, the positive value 

indicates that she was attracted to any Lyme disease 

information. Second, due to the quarter limit [6], 

[13], [14], [23], [24], to avoid a very strong 

attraction, q = 0.20 is chosen.  

 

Table 1. Initial Values for the two human-machine 

cases. 

Term Case 1 Case 2 Random  Δ = 0.01 

pmachine 0.70 0.7 0.7 0.7±Δ 0.7±Δ 0.7±Δ 

phuman 0.85 0.86 0.89 0.85 0.86 0.89 

fmachine 0.70 0.70 0.70 0.70 0.70 0.70 

fhuman 0.65 0.66 0.69 0.65 0.66 0.69 

qmachine 0.00 0.00 0.00 0.00 0.00 0.00 

qhuman 0.20 0.20 0.20 0.20 0.20 0.20 

 

3.3 Case 1: Time-independent machine 

probability 
 

To calculate Lisa’s relative information gain, Equation 

14 is used, and the webpage’s relative information 

gain is zero. Lisa’s initial probability of Lyme positive 

belief is 0.85, and the probabilistic value for the 

content of the webpage is 0.70. With these initial 

values, Lisa’s belief does not demonstrate any 

temporal oscillation at the beginning and decreases; 

however, when the difference between two probability 

values becomes less than 0.10, a temporal oscillation 

begins in Lisa’s belief, as shown in Figure 6. After an 

extended interaction, Lisa’s belief oscillation 

stabilizes.  

 

 
Figure 6. Temporal oscillation of probability of 

Lyme positive belief for Lisa; the initial probability is 

0.65. 

When Lisa’s initial probability Lyme positive belief 

becomes 0.86, the temporal oscillation of Lisa’s 

Lyme positive belief probability begins around the 

same time as in the case of 0.85; however, as shown 

in Figure 7 temporal oscillation continues, which 

means that metal (ontic) uncertainty continues. This 

means that Lisa’s inability to diagnose her symptoms 

inflated Lisa’s anxiety, indecisiveness concerning the 

symptoms and increased her desire to seek more 

information. 
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Figure 7. Temporal oscillation of probability of 

Lyme positive belief for Lisa; the initial probability is 

0.66. 

If the initial probabilistic difference increases to 

0.19 by increasing Lisa’s initial utility factor value to 

0.69, as shown in Figure 8 the temporal oscillation of 

Lisa’s Lyme positive belief probability begins earlier 

than the other two cases; the temporal oscillation 

continues such that Lisa will experience higher anxiety 

while interacting with the online content. 

 

 
Figure 8. Temporal oscillation of Lisa’s probability 

Lyme positive belief when the initial probability is 

0.69. 

3.4 Case 2: Webpage information content 

with random noise 
 

In case two, random noise was added to the 

probabilistic value of the content of the webpage that 

appears in the search results; in doing so, the goal is to 

see the effects of minute content variations in the 

visited webpages on Lisa’s belief probability.  These 

minute probabilistic variations are included with a 

random noise ∆= 0.01. As shown in Figure 9, temporal 

oscillations begin earlier than the case in which the 

visited web page's probabilistic representation does 

not vary. In the case of increasing Lisa’s utility factor 

to 0.66, temporal oscillation, as shown in Figure 10, 

begins quickly and oscillates with higher amplitude 

than the case shown in Figure 7; very small variations 

in the probabilistic value of the webpage inflates 

Lisa’s uncertainty. 

  

 
Figure 9. Temporal oscillation of probability of 

Lyme positive belief for Lisa; the initial probability is 

0.69.  

In the case of increasing Lisa’s utility factor to 0.69, 

the uncertainty increases, shown in Figure 11.  

 

 

Figure 10. Temporal oscillation of probability of 

Lyme positive belief for Lisa. 

To compare these human-machine/computer 

interaction scenarios with human-human interaction 

ones, each scenario is further studied by using 

Equation 14, for both agents are assumed to be 

humans. Suppose Lisa goes to a doctor after finding a 

tick on her leg without any online Lyme disease 

inquiry. To model these scenarios, the initial 

conditions are examined for two different 

interference factors. In the first case, both agents 

have positive interference factors; in the second case, 

Lisa has a positive interference term, and the doctor 

has a negative interference term. 

The positive interference term represents that 

number of patients that are diagnosed with Lyme 

positive is high; therefore, the doctor thinks that this 

case can be a Lyme positive case. 
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Figure 11. Temporal oscillation of probability of 

Lyme positive belief for Lisa. 

The negative interference term represents that 

although it is tick season, Lyme positive cases are rare 

in the area.  It is also assumed that since Lisa thinks 

she might have Lyme disease because she found a tick 

on her leg and her initial utility factor varies between 

0.65 and 0.69; since the doctor is natural before 

meeting with the patient, the doctor’s utility factor is 

0.5 in all of the cases. As shown in Figure 12, Lisa 

does not experience any temporal oscillation while 

interacting with a doctor in all three initial condition 

values.  

 

 
Figure 12. Temporal oscillation of probability of 

Lyme positive belief both doctor and patient. The 

asymptotic behavior represents the mental stability of 

the agents. 

In the case of having initial disagreement due to the 

negative interference term of the doctor, both agents 

experience minute temporal oscillations (shown in 

Figure 13), then both agents' probabilistic 

understanding stabilizes to the initial utility values. 

A comparison of the oscillation range for different 

machine probability cases are further studied for 

changing probability differences between agents. As 

shown in Figure 14, as the probabilistic difference 

between human and machines increases, the temporal 

oscillation amplitude of the human probabilities 

increases and scales at 0.2. 

 

 
 

Figure 13. Temporal oscillation of probability of 

Lyme positive belief for both doctor and patient. 

After both humans experience mental uncertainty, 

their mental uncertainty represents asymptotic 

behavior.

 

Figure 14. Temporal oscillation range (Max-

Min)[Probability of Lisa’s belief Lyme Positive] for 

different probabilistic differences between human 

and machine. 

The reason for observing a scaling at 0.2 is due to 

the predetermined interference term value of 0.2. The 

interesting observation is that as the noise in the 
machine’s probabilistic representation of information 

increases, the scaling is observed independently from 

the probabilistic difference. One interpretation of this 

observation is that as the search engine increases the 

amount of available information to the human 

decision-maker, he/she can start experiencing higher 

(ontic) mental uncertainty. In return, a human can 

desire to seek more information and find him/herself 

in an information echo chamber, which can inflate 

anxiety.  

4. Summary and Conclusion 

 
This paper is intended to show how decision-related 

uncertainty cannot be fully explained with classical 

probability theory.  It introduces the authors’ position 

on the limitation of classical probability approaches 
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for dealing with uncertainty.  The paper illustrates 

this with an approach that describes a situation based 

on a popular case study and applying mathematical 

foundations from known theories to highlight the 

limitations of classical probability theory.  This is 

followed by a discussion on how quantum probability 

theory improves the understanding of uncertainty; it 

is demonstrated with a scenario meant to highlight a 

decision process with high uncertainty to show how 

quantum probability theory highlights the impact of 

ontic uncertainty on the decision process.  The paper 

is meant as a position using accepted theory to 

introduce a new perspective rather than theoretical 

work.  It was not meant to apply a research 

methodology consisting of an experiment, capturing 

the relevant data, conducting analysis, and discussing 

the implications for introducing a new theory. In this 

paper, we modeled a situation in which an 

interdependency emerges between information 

exchanging decision-making human agents. We 

demonstrated that if a computer replaces one of the 

humans, the uncertainty that the remaining human 

experiences can increase. 

We demonstrated that human probabilistic 

decision-making measures (e.g., Lyme positive 

belief) are affected by the minute probabilistic 

variation of the information that is provided by a 

computer (machine). The limitations of narrow AI 

systems that can inadvertently constraint human 

behavior must be comprehensively studied. As 

demonstrated, by modeling Lisa’s situation with 

QPT, frenetic interactions with computers (machines) 

can have repercussions beyond the epistemic level. 

The findings of this paper are valid only for the 

situations in which humans interact with computers, 

search engines, and online information sources. The 

next step in this research is to study the dynamics of 

information exchange between a machine with more 

capabilities and humans in a goal-oriented 

environment; this will enable to study team dynamics 

such as coordination, communication, and 

interdependency with QPT.    
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