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I. INTRODUCTION 

Electro-optical (EO) and infrared (IR) imagery are well-known technologies that 

have been widely used in many applications. This includes military and law enforcement 

applications involving providing situational awareness both day and night and in low light 

conditions. 

These days, an integrated EO/IR sensor and its associated signal or image 

processing, tightly integrated in form and function, is a standard payload for manned and 

unmanned aerial systems (UAS) of Group 1 and higher. Specifically, Group 3 - Group 5 

UAS use numerous sensor technologies that span from ultraviolet to far infrared [1]. 

Critical features of gimbaled EO/IR systems are long-range imaging abilities and 

image stabilization. EO/IR sensors are used to detect and identify targets, track moving 

targets, and assess threats from a distance and in challenging environmental conditions. 

Common applications of EO/IR systems include airborne homeland security, combat, 

patrol, surveillance, reconnaissance, search and rescue programs. 

For most gimbal pointing applications, including geo-referencing, the gimbal 

control system requires position data, which precludes a solution provided by pure inertial 

measurement unit (IMU) or Heading Reference System (AHRS) and requires a Global 

Navigation Satellite System (GNSS) -aided option. In order to operate in Global 

Positioning System (GPS) -denied environments, which is becoming a growing concern as 

peer-state rivals continue to advance GPS spoofing and denial techniques, new 

technologies are being explored / developed. The current most promising technologies are 

Signals of Opportunity (SoOP), magnetic anomaly navigation (MAGNAV) and Vision 

Navigation (VisNav) [2]. 

Particularly, VisNav is considered to be one of the most rudimentary forms of 

navigation and involves building a database of terrain features or landmarks that can then 

be tracked by onboard sensors in order to calculate vehicle’s position, velocity and altitude 

to provide Precision, Navigation and Timing (PNT) solution. There is a lot of research has 

been done in this area (e.g. [3,4] and references therein), but the developed prototypes  have 

not necessarily been advanced to the higher technology readiness levels (TRLs) yet. The 

premise is that as satellite imagery databases and image processing algorithms continue to 
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advance, visual navigation could likely become more automated and sophisticated. GPS-

free vision-based navigation concepts have been studied at the Naval Postgraduate School 

as well [5,6]. 

Multispectral (MS) and hyperspectral (HS) imagery is a relatively new technology. 

The difference compared to the EO and infrared IR sensors is that MS and HS sensors 

capture reflected light/energy in the number of bands rather than in a single narrow band. 

For example, a MS sensor may include 3-10 wide bands (Fig. 1a), while a HS 

sensor may include hundreds or thousands of much narrower (10-20 nm) bands (Fig. 1b). 

 

a)  

b)  

Figure 1. Typical MS (a) and HS (b) sensor bands. 

 

Because MS and HS imaging captures information that cannot be seen with the 

human eye and presents a more data-rich mosaic for scientists, it has become a highly 

desired technology for applications within the remote-sensing realm. These applications 

include crop science, precision agriculture, mining and mineral exploration, petroleum 

exploration, ecology, disaster mitigation, and others (typically, these applications are most 

efficiently done from the air). 

One of the first HS sensor usages includes NASA’s EO-1 satellite launched in 2000. 

This satellite carried the hyperspectral sensor “Hyperion” producing 30-meter resolution 

images in 242 spectral bands (0.4-2.5 um). Other hyperspectral imaging missions from 

space include PROBA-1 (ESA) in 2001, PRISMA (Italy) in 2019, EnMap (Germany) in 

2020, HISUI (Japan) in 2020, and HyspIRI (United States) in 2024 [7]. 

More compact sensors, compatible with Group 1 UAS include a HS Micro-

Hyperspec sensor family compatible with DJI Matrice 600 Pro, FreeFly Alta X, and BFD 

SE8 [8]. They are available as VNIR, NIR, extended VNIR, and SWIR versions. They 
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feature up to 369 spectral bands, up to 1,600 spatial bands, and frame rates of up to 450 

Hz. HS ranges for these sensors are shown in Fig. 2. 

 

 
Figure 2. HS ranges for a UAS compatible Micro-Hyperspec sensor family [8]. 

 

MS sensors are used in agriculture, environmental monitoring, forestry as well. 

They enable early detection of issues like disease, water stress, pest infestation, nutrient 

deficiencies, and more. The specific filters on MS cameras highlight changes in chlorophyll 

content in plants, which is oftentimes an indicator of disease or stress. Analytics and 

outputs from MS imagery is used to produce a variety of so-called agricultural indices (Fig. 

3) [9]. For example, NDVI (Normalized Difference Vegetation Index) is used to evaluate 

plant vigor, differences in soil water availability, foliar nutrient content (when water is not 

limiting), yield potential. CIR Composite (Color Infrared) is used to assess plant health, 

identify water bodies, assess soil composition and variability in soil moisture. NDRE 

(Normalized Difference Red Edge) and Chlorophyll Map are used to access leaf 

chlorophyll content, plant vigor, stress detection, fertilizer demand, Nitrogen uptake. 

OSAVI (Optimized Soil-Adjusted Vegetation Index) is used to differentiate soil pixels, 

account for non-linear interactions of light between soil and vegetation. DSM (Digital 

surface Model) is used to estimate relative crop volume, identify surface properties, model 

water flow and accumulation [9]. 

MS sensors compatible with small UAS (sUAS) include MicaSense RedEdge-MX 

and Altum. The corresponding wave lengths are shown in Fig. 4. Center wavelengths are 

as follows (Fig. 5): 

• Blue 475 nm 

• Green 560 nm 

• Red 668 nm 

• Red edge 717 nm 

• Near infrared 840 nm 

• Thermal 11 μm 
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NDVI     CIR Composite 

 
NDRE     Chlorophyll Map 

 
OSAVI     DSM 

Figure 3. Examples of agricultural indices produced using MS sensors [9]. 

 

 

 

 
Figure 4. Wavelengths for MicaSense RedEdge-MX and Altum MS sensors [9]. 
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Figure 5. Synchronized thermal and multispectral imagery for MicaSense RedEdge-

MX and Altum sensors [9]. 

 

The two aforementioned MS sensors were specifically designed for UAS and vegetation 

mapping and to date have been used by customers in 75+ countries, which includes many 

researchers. To date, the latter produced over 100 research publications. 

This study deals with analysis of feasibility of utilizing the MS and HS technologies 

in the areas they were not necessarily intended for. Specifically, the objective was to 

determine whether these technologies can enhance accuracy and precision of object 

detection (identification), classification and tracking (DCT) that may contribute to a variety 

of downstream applications including threat detection, forensics, battle damage-

assessment, additional/alternative aid to navigation (ATON) in the GPS-degraded or GPS-

denied environments. The research questions were formulated as 

• Whether using multiple spectral bands has any benefits compared to a standard EO 

sensor or EO sensor combined with IR sensor? That includes benefits of having a 

spectral profile of surrounding background area and objects from the standpoint of 

more reliable/precise DCT. 

• What are the limitations of using MS sensors and computer vision / artificial 

intelligence (CV/AI) algorithms to process data from the standpoint of operating 

environment, terrain, altitudes, object size and material, time of the day, weather, 

number of spectral bands, resolution, narrow field of view, addition of a 

downwelling light sensor)? 

• What computational resources would be required to enable DCT capability on board 

of Commercial Off-The-Shelf (COTS) sUAS? 
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Two additional questions were 

• Whether an onboard MS sensor and available feature-finding and matching 

techniques can contribute to enabling GPS-free navigation for aerial vehicles? 

• What accuracy could be expected when utilizing the non-standard navigational fixes 

provided by MS sensors? 

To address these research questions, this study is organized as follows. Section II 

discusses two possible suitable DCT applications to be considered. It also discusses the 

state of the art in these applications. Section III discusses the hardware issues as applied to 

the current study. Section VI presents the results of collecting and processing imagery for 

the MS-based detection application (to address the first three research questions). Section 

V considers the two remaining research questions based on the available data set. Section 

VI summarizes the results of this study. 
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II. CHOICE OF SUITABLE DCT APPLICATION AND 

LITERATURE REVIEW 

Originally, this study intended to consider two DCT applications as a suitable 

problem for assessing applicability and benefits of using MS sensor augmented with CV/AI 

algorithms. This first one had to do with DCT of unexploded ordinances (UXOs) and the 

second one - with classifying littoral areas. 

UXOs are well-known as a significant threat to warfighters who are serving in the 

places that used to be battlefields such as the Demilitarized Zone (DMZ) between South 

Korea and North Korea [10]. The current system to detect UXO based on the ground-based 

electromagnetic system push equipped soldiers to have to walk the dangerous area in 

person to detect UXOs. Additionally, the equipment always lacks in the field and the 

operation wastes a lot of time and effort. In reality, the small-size soldier units still need to 

cross the dangerous area without any support in many places while they are doing military 

operations. In the case of DMZ operations or Peace Keeping Operations, soldiers do not 

need to dig all UXOs in the operation area, but they only need to secure a temporary route 

to cross. In this case, UXOs on the surface are the most dangerous threat to soldiers. 

Currently, most company level infantry troops are already equipped with an sUAS 

with a vision sensor (camera). The warfighters make use of sUAS to secure their safe route; 

however, they still need to see and check in person the results broadcasted from sUAS. The 

object detection technology using a trained artificial convolutional neural network (CNN) 

– machine learning (ML) and deep learning (DL) – created a new bust in unmanned system 

industry [11]. This situation motivates an idea to detect UXOs on the surface in real time 

using EO and MS sensors-based CV enhanced with the ML and DL technology. 

Previously, a similar approach was used to develop a sUAS-based system to 

perform foreign object debris management (FOD) at an airport [12]. The field-testing 

results showed that FOD management using Group 1 UAS is feasible. The CV algorithms 

were used to process EO sensor data, but it could have probably been enhanced with MS 

sensor. 

In [13], the feasibility of using DLCNN in inspection of concrete decks and 

buildings using sUAS was investigated. The authors used images of lab-made bridge decks 
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taken with a point-and-shoot high-resolution camera to train their model. It was shown that 

it is feasible to apply DCNN for autonomous civil structural inspections with comparable 

results to human inspectors when using COTS sUAS and training datasets collected with 

a point-and-shoot handheld cameras. The authors trained the system with the MathWorks’ 

ALEX-net. They used two modes the architecture that were fully trained mode and transfer 

learning mode. Comparison of two different modes suggested the appropriate approach to 

train the UXO detector model. 

The rapid mine detection by a drone with a thermal camera was considered in [14]. 

The plastic mine, PFM-1, which is called the “butterfly mine” is not detected by 

electromagnetic detectors which are normally used for UXO detection. The authors 

asserted that available low-cost COTS sUAS equipped with thermal sensor allow accurate 

assessment of minefield presence, orientation, and potential minefield overlap. The results 

of the study proved a capability of sUAS to detect PFM-1 in various environments such as 

temperature variations, moisture content, and burial depth. 

A CV algorithm to estimate a vision-based relative position for sUAS was studied 

in [15]. This study objective was to demonstrate a defensive capability against an 

unauthorized drone by employing autonomous vision-based pursuit and intercept (via 

estimating the relative pose of hovering and moving airborne sUAS targets. In conclusion, 

the research assessed the CV-based range and angular estimation against GPS data. The 

research also suggested the conceptual design and the choice of a hardware implementation 

for a COTS-based counter-UAS. 

In [16], the detection of underground and near-surface UXOs was attempted using 

the drone-based transient electromagnetic (TEM) system. The results of a survey proved 

that the sUAS-based system is safer and more efficient than a ground-based TEM system 

in UXO detection. However, the TEM-based system was not very effective because of the 

range and altitude constraints. 

In terms of classifying littoral areas, an important topic for planning littoral 

operations, [17] the effectiveness of a model based upon the Smooth Support Vector 

Machine (SSVM) algorithm to classify five different coastal classes, object, sand, sky, 

vegetation and water, was demonstrated in [17]. After training, the model was able to 

correctly identify 93% of the pixels of the images sent to it for testing. More recently in 



 6 

2018, the use of remote sensing imagery along with a DCNN to classify eight different 

coastal landscapes with an accuracy of 95% was demonstrated [18]. 

Previous efforts to classify bottom types through remote sensing have used a variety 

of sensors to study this topic. In [19] the combination of LiDAR and Worldview-2 satellite 

data (using all 8 of the satellite’s multispectral bands) were demonstrated to classify three 

general bottom type classes (Hard, Soft, and SoftHiVeg). A random forest algorithm was 

used to classify the data. The combination of LiDAR and WV-2 data, with the random 

forest algorithm used for classification, achieved an accuracy of 76, versus just 59 for 

LiDAR alone and just 54 for WV-2 imagery alone, i.e., benefiting from two sensor data 

fusion [19]. 

In [20], a digital single lens reflex (DSLR) camera was used to capture 370 color 

(RGB) images and NIR images (with a NIR filter) of natural landscapes. These images 

were manually segmented and annotated at the pixel level to determine whether they 

belonged to one of ten classes (Building, Cloud, Grass, Road, Rock, Sky, Snow, Soil, Tree, 

and Water). A Conditional Random Field was used to train a computer to classify the 

images, which were separated into two datasets, one dataset had RGB images only and the 

other dataset had RGB plus NIR imagery. The RGB plus NIR datasets improved the 

classification accuracy of 7 out of the 10 classes. 

Because of hardware limitations addressed in the next section, only the UXO 

detection problem was ultimately considered. 
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III. HARDWARE CONSIDERATIONS 

For this research, two 5-band MS sensors shown in Table 1 were considered. Due to 

their price and weight, the RedEdge-MX sensor was chosen. 

 

Table 1. MicaSense Sensors [21]. 

 RedEdge-MX Altum 

  
Weight 231.9 g (8.18 oz.) 

RedEdge-MX + DLS 2 
406.5 g (14.34 oz.) 

Altum + DLS2 
Dimensions 8.7cm x 5.9cm x 4.54cm (3.4in x 

2.3in x 1.8in) 
8.2 cm x 6.7 cm x 6.75 cm (3.2 in x 2.6 in x 2.7 

in) 
External 
Power 

4.2 V - 15.8 V 4.9 V - 25.2 V 

Power Input 4.0/8.0W (nominal, peak) 5.5/7.0/10W (standby, average, peak) 
Spectral 
Bands 

Blue, green, red, red edge, near 
infrared (NIR) 

EO: Blue, green, red, red edge, near-infrared 
(NIR) 

LWIR: thermal infrared 8-14um 
RGB Output 3.6 MP (global shutter, aligned with 

all bands) 
High-resolution, global shutter, aligned with all 

bands 
Thermal  FLIR LWIR thermal infrared 8-14um 

radiometrically 
Sensor 
Resolution 

1280 x 960 (1.2 MP per EO band) 2064 x 1544 (3.2 MP per EO band) 160 x 120 
thermal infrared 

Ground 
Sample 
Distance 

8cm per pixel (per band) at 120m 
(~400 ft) AGL 

5.28 cm per pixel (per EO band) at 120 m 
(~400 ft) AGL 81cm per pixel (thermal) at 

120m 
Capture 
Rate* 

1 capture per second (all bands), 12-
bit RAW 

1 capture per second (all bands), 12-bit RAW 

Interfaces Serial, 10/100/1000 ethernet, 
removable Wi-Fi, external trigger, 

GPS, SDHC 

Aircraft: Trigger input, top of frame out, 1 PPS 
out. 3.3V isolated IO 2x USB 3.0 SuperSpeed 

ports for WiFi or Ethernet and USB 3.0 Storage. 
Field of View 47.2° HFOV (multispectral) 50.2º x 38.4º (multispectral) 57º x 44º 

(thermal) 
Storage SD Card USB 3.0 compatible storage devices 

* Capture rates vary based on write speed of USB storage device 
 

This sensor was specifically designed to be used with the DJI drones. When 

RedEdge-MX sensor was procured, it was integrated with the available DJI Inspire drone 

(Fig.6). The integrated system made its maiden flight, but unfortunately the limitations 
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imposed by Section 848 of the National Defense Authorization Act for Fiscal Year 2020 

(NDAA’20), prohibiting the further usage of DJI drones, hit this study. 

 

 
Figure 6. DJI Inspire integrated with a RedEdge-MX sensor. 

 

Other UAS were looked at after the aforementioned UAS ban. Specifically, the 

German Quantum-Systems Trinity F90+ was considered [22]. This high-quality UAS 

features up to 7 km command and control range, 60…90 min of flight time, wide range of 

high precision sensors and Live Air Traffic (ADS-B). Even though it turned to be a cost 

prohibitive solution, one Trinity F90+ owned by a local company was available (Fig. 7a). 

At that time, this UAS was not compatible with MicaSense sensors, so some design was 

conducted to allow integration (Fig. 7b). 

 

a)    b)  

Figure 7. Quantum-Systems Trinity F90+ UAS (a) and RedEdge-MX sensor in the 

nose bay of UAS (b). 
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Later on, per Sponsor’s suggestion, another US-made UAS was chosen for 

integration. GreenSight Dreamer UAS [23] can stay in the air for over 60 minutes while 

carrying GreenSight’s MS sensor (Fig. 8). Three such systems were ordered but as of 

October of 2021, only one was delivered (it was ordered with no camera). Two additional 

UAS were ordered with a MS sensor, but it turned out that GreenSight only offers a custom 

3-band MS camera package (visual, NIR, and thermal). The vendor provided a few samples 

of imagery from their sensor and this research did some analysis using just these few 

samples. 

 

 
Figure 8. GreenSight Dreamer UAS. 

 

Going forward, it should be noted that a Navy COTS UAS Cyber Board waiver 

(per NDAA’20) was obtained (and is still valid) for both Quantum-Systems Trinity F90+ 

and GreenSight Dreamer UAS. Moreover, two Certificates of Waiver or Authorization 

(COAs) were obtained from the Federal Aviation Administration to fly these UAS in Class 

G airspace between two Restrictive Areas, R-2504 and R-2513, and to the South-West 

offshore off CA-66 turf runway. 
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IV. APPLICABILITY OF MS IMAGERY FOR DCT 

As mentioned in Section II, the UXO detection problem was chosen to be 

considered from the standpoint of feasibility / effectiveness of utilizing MS sensors. This 

section discusses the UXO data collection process, design of CNN, MS detector training, 

and validation testing conducted on collected data. 

 

A. UXO IMAGERY COLLECTION AND PREPROCESSING 

For training the UXO detector, this study acquired a large volume of UXO imagery. 

Because UAS flights of a MS-equipped platform (Fig. 6) were banned by NDAA’20, this 

imagery was taken manually, by holding an EO or MS sensor in hands and walking around 

the planted UXO samples (simulating a low-altitude sUAS flight). 

The imagery collection took place at Camp Roberts, CA. Collected data consisted 

of still images and video clips featuring different UXOs. These included mortar projectiles, 

hand-grenades, bullets, etc., that had different shape, color, and size. To obtain diverse 

data, UXO were randomly placed on the ground. Some were placed under the bushes to 

mimic an operational environment. Figure 9a shows nine different types of UXOs, and Fig. 

9b demonstrates a couple of examples of the UXO imagery taken. 

 

a)  

b)  

Figure 9. UXOs used in this study (a), and examples of imagery taken to mimic an 

operational environment (b). 
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In total, 1,225 images and 59 video clips, each about 10 to 20 seconds in length, 

were taken with an EO sensor (Sony Alpha 6000); and 4,075 images (815 images for each 

of the five spectrum) were collected using an MS sensor. 

The taken images were then preprocessed using the following four-step procedure 

(for both EO and each band of MS images): 

• All images were resized to 416 pix × 416 pix format - this dimension happens to be 

the best image size for the YOLOv2 CNN model [24, 25] 

• The resized images were manually labeled to represent ground truth data 

• Labeled image sets were randomly subdivided into three groups—70% for training, 

15% for validation, and 15% for testing 

• The number of training images was artificially increased by applying different 

transformations and tweaking the colormap. 

 

B. CNN ARCHITECTURE DESIGN 

To implement the UXO detection, the object detection technique of creating the 

bounding boxes to mark the predicted object in the input image was applied [26]. After 

several trials with the ML-based detectors such as the histogram of oriented gradients 

(HOG), this study chose to apply DLCNN because of its best recognition accuracy for 

UXO imagery. Among the popular three CNN models for object detection—Faster R-CNN 

[27], SSD [28], and YOLOv2, the latter one was chosen due to the fastest learning speed 

[25]. Rather than building new network layers, the pre-trained network structure for the 

feature extractor was used. Specifically, DarknetReference, Darknet19, ResNet50, and 

Desnet201 were considered. Finally, due to its advantages in detecting small objects, the 

ResNet50 was chosen for the UXO detector network. 

ResNet50 refers to the Residual Network with 50 layers based on residual learning. 

In general, as the network goes deeper it becomes more difficult to train the learning 

feature. Instead of learning features, the ResNet50 is learning the residual inputs from those 

layers, making it easier to train the network [29]. Through several trials, this study chose 

the Activation 40 Recertified Linear Unit (ReLU) layer for feature extraction (due to 

detection performance per training time). The feature extraction transforms the raw data of 

UXO into numerical information that can be processed. With this approach, the layers 
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succeeding the feature layers in ResNet-50 were removed. The detection subnetwork along 

with the YOLOv2 transform and YOLOv2 output layers were added to the feature layer of 

the base network instead. By doing so, the extracted UXO feature transferred learning by 

YOLOv2. Table 2 tabulates the developed layer structure for the UXO detector’s network 

and Figure 10 visualizes it. 

 

Table 2. CNN architecture. 

 Component Deciding Factor 

Target Task Object Detection Provides the location of the object 

Backbone Network ResNet-50 Small Size of UXO within the Frame 

Feature Layer Activation 40 ReLU Performance and Training Speed 

Detection Network YOLOv2 Fastest Learning Speed 

 

 

 
Figure 10. Proposed network layer design for the UXO detector. 
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C. DETECTOR TRAINING 

First, an EO detector was trained (to further compare it performance against that of 

the MS sensor). The EO detector was trained with the 857 EO images of UXOs (that is 

70% of the collected EO UXO images). After several trials with different training options, 

the number of the anchor boxes (anchor boxes is one of the most important tuning 

parameters for improving detector’s performance) was set as nine, maximum epochs as 20, 

and mini-batch size as eight. Using a generic laptop (Table 3), the training of the EO UXO 

detector took about two hours with no significant training loss. 

 

Table 3. Specification of a laptop used in this study. 

Microprocessor 
Intel® Core™ i7-1065G7 (1.3 GHz base frequency, up to 3.9 GHz 

with Intel® Turbo Boost Technology, 8 MB cache, 4 cores)  

Memory 16 GB DDR4-2666 SDRAM (2×8 GB) 

Hard drive 1 TB 5400 rpm SATA  

Graphic card NVIDIA GeForce MX250  

 

Having the EO UXO detector trained, the UXO detection was conducted on the 

testing and validation imagery sets. To this end, Fig. 11 shows four examples of UXO 

detection for EO images. As seen, in all four cases shown in this figure, the detection was 

successful. Figure 12 though shows an example of a failed UXO detection. 

 

 
Figure 11. Examples of successful detection of single and multiple UXOs. 
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Figure 12. Example of unsuccessful UXO detection. 

 

What happens with the MS images? To detect UXOs using MS sensor data, this 

study employed the ensemble method [30], meaning that object detection in each spectral 

band is conducted by an individual detector separately and then all results are integrated. 

This is because it is presumed that for a MS sensor, “each spectral image has different 

characteristics and hence separately detecting objects in each spectral image will help to 

exploit the feature separately in each spectrum” [30]. 
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Figure 13. UXO detection workflow for MS imagery. 

 

Following this approach, while only one detector needed to be trained for the EO data set, 

five detectors were trained for five MS data sets (Detector 1 for the Blue spectrum of the 

UXO image, Detector 2 for the Green spectrum, and so on) (Fig. 13). 

These five detectors were trained in a manner similar to that for the EO detector. 

Nine anchor boxes, five maximum epochs, and eight mini-batch sizes were used. (The 

reason for the reduced number of maximum epochs was to reduce the training time without 

losing overall performance.) Each set of 570 UXO single-spectrum images trained the 

corresponding detector, which took 20 minutes per spectrum. 
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Once detectors were trained, the ensemble method was implemented so that each 

spectrum went into the corresponding detector, that is, the Red spectrum image went into 

Detector 3, the Blue spectrum image went into Detector 1, and so on (Fig. 11). As a result, 

each detector detects UXO in its spectrum area and has different detection results from 

those of other spectrum detectors. Then, the five individual detection results are merged in 

a two-step procedure: 1) simple merging, and 2) non-maximal suppression (NMS). 

The first step is the simple merging that puts the detection results from the five 

detectors into a single space. The simple merging step corresponding to the case when all 

detectors detect UXO in each spectrum is shown in Fig. 14. 

 

 
Figure 14. Illustration of a simple merging step. 

 

The next step is suppressing weak detection results and leaving the best detection 

result by using the Non-maximum Suppression (NMS) method. Following the simple 

merging step, NMS chooses the best candidate from the detection box with the highest 

confidence score (to be discussed next) while suppressing all the other overlapped 
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detection boxes above a certain threshold of intersection over union (IoU) [31]. (IoU 

indicates the area of overlap over area of the union of the two detection results.) 

To prevent the actual overlapped detection result from being recognized as not 

overlapped, the IoU threshold in this study was set as 0.1. Hence, the redundant detection 

results with IoU higher than 0.1 can effectively be suppressed. The reason for setting the 

low IoU threshold relates to the characteristic of a specific MS sensor used in this study - 

the MicaSense RedEdge-MX sensor has five physically different lenses for five spectra, 

and the different physical locations of the lenses cause misalignment. As a result, even 

though each spectral detector successfully detects UXO, the simply merged bounding 

boxes are misaligned and with a high IoU threshold it makes the system think each 

spectrum detected a different object. Figure 15 continues an example shown in Fig. 14 and 

shows a final UXO detection result after the NMS step leaving a single bounding box with 

the highest score among all detection results. 

 

 
Figure 15. Final detection result with application of NMS method. 

 

The question is then what advantage the ensemble method for a multi-band MS 

sensor has over a common EO sensor? Data shown in Fig. 16 give a clear answer. In this 

particular case, while Detectors 1 and 2 do detect UXO, Detectors 3, 4, and 5 fail to do so. 

The simple merging in this case results in two bounding boxes and the NMS step then 

merges them into a single bounding box. Hence, each spectral detector complements other 

detectors which results in a more reliable detection. 
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Figure 16. Successful UXO detection with three out of five MS bands failing to do it 

individually. 

 

D. PERFORMANCE ASSESSEMNET 

The performance of a detection algorithm is usually assessed using a confusion 

matrix. In this matrix, shown in Table 4, each row indicates a test result, and each column 

indicates an actual state. 

 

Table 4. Confusion matrix for UXO Detector Evaluation [32]. 

 
Actual State 

 
True False 

Test 

Result 

Positive Detection True Positive False Positive Total Positive 

Negative Detection False Negative True Negative Total Negative 

 Total True Total False  

 

In the UXO detection case, Positive or Negative is determined by whether the UXO 

detector detects UXO in a given image. True or False is determined by whether the value 

of the IoU is larger than a certain IoU threshold, indicating how much the detection results 

and the actual UXO location overlap. 

Detection precision measures how accurate the UXO detector’s predictions are 

based on the ground truth data—in this case, actual UXO location. Hence, 

• if the IoU between the prediction and the ground truth is more than or equal to a 

IoU threshold, the detection is classified as True Positive; 

• if IoU is less than a IoU threshold, the detection is classified as False Positive; and 
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• if a ground truth is present in the picture and the detector failed to detect the object, 

it is classified as False Negative. 

The concept of UXO detector precision, P, is represented by the following 

relationship [33]: 

True Positive True Postive (Correct Detection)
 = 

True Positive + False Positive Total Positive (All Detections)
P =          (1) 

Another measure, recall, r, measures how well the detector finds all positives based on the 

ground truth data. The recall of the UXO detector evaluation is mathematically defined as 

True Positive True Positive (Correct Detection)
 = 

True Positive + False Negative Total True (Actual UXO)
r =      (2) 

For assessing performance of UXO detector, the IoU threshold was set as 0.5 for 

the EO-based detection and 0.4 for the MS-based detection. The reason the MS detector 

has a lower threshold is that MS are not aligned with each other as discussed earlier. This 

misalignment can cause a phenomenon in which a True Positive—correct detection 

result—is recognized as a False Positive—wrong detection result. Setting a lower threshold 

for the MS detection can prevent the actual True Positive from being evaluated as False 

Positive. 

Once the test data set is run through the trained UXO detector, the detection results 

are ranked in the descending order based on the predicted confidence level. To visualize 

the Precision and Recall values of the detection results, the Precision-Recall (PR) curve 

can be plotted, which indicates the precision of the trained detector at different recalls [34]. 

Average precision, AP, then computes the average precision value for all recalls, 

i.e., finds the area under the PR curve. In the PASCAL Visual Object Classes (VOC) 

Challenge [35], the shape of the PR curve is calculated as the mean precision at a set of 11 

equally spaced recall levels [0,0.1,…,1]. The 11-point interpolated AP is calculated as 

1

interp interp
0

{0,0.1,...,1}

1
AP = ( )  ( ),  where ( ) max ( )

11 r r
r

P r P r P r P r




 =               (3) 

The calculated AP would thus be between 0 and 1, and it is presumed that the higher the 

AP, the better the detector. The AP value is commonly used as an ultimate metric to 

evaluate the effectiveness of trained detector. 
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To this end, Fig. 17, shows the results of computing the AP value for the EO 

detector. As shown in the table on the left in Fig.17, there were 193 detection instances in 

the 184 test images. For these 193 instances, the values of P and r were computed based 

on the ground truth data using Eqs. (1) and (2). The table was then ranked by the Precision 

column. The PR curve shown on the right was produced then. Using Eq.(3), the AP value 

(the area under the PR curve computed using an 11-point interpolant), was estimated to be 

0.774. 

 

 
Figure 17. The AP value computation for the EO detector. 

 

For MS detection, the respective detectors were evaluated with the 122 test images 

for each spectrum. The PR curves for the respective detectors are presented in Fig. 18 along 

with the AP values spread between 0.484 and 0.592 (shown in the legend). It should be 

noted that the PR curve for Blue, Green, and Red detectors include the (0, 0) point meaning 

that these detectors failed to detect UXO in some images (like it was shown in Fig. 16). On 

the contrary, the PR curve for NIR and Red edge detectors does not pass through the (0, 0) 

point indicating that these detectors did find some suspected UXO within each image even 

if there were no UXO (False Positive detection). Figure 19 shows the integrated PR curve 

for the MS-based UXO detection after applying the two-step merging procedure described 

earlier (Figs. 13, 15). The AP value for the integrated PR curve happens to be 0.871, i.e., 

13% higher than 0.774 for the EO PR curve. 

All AP values are shown in Table 5. As seen, while the evaluation results for all 

single-band detectors were lower than that of the EO sensor, when combined, the AP value 

for the MS sensor exceeded that of the EO sensor. 
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Figure 18. Individual Precision-Recall curves for five MS detectors. 

 

 
Figure 19. The overall Precision-Recall curve for MS-based UXO detection. 

 

Table 5. Comparison of EO and MS AP values for UXO detection. 

Individual Spectrum Detector Average Precision 

EO Detector 0.774 

Blue Spectrum 

Multi-spectral 

Detector 

0.433 

0.871 

Green Spectrum 0.583 

Red Spectrum 0.453 

Near Infrared Spectrum 0.484 

Red Edge Spectrum 0.592 
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Figures 20 and 21 show the results of one more experiment conducted with the EO 

data. The premise was that the size of the bounding box while creating a set of the ground 

truth data (which can be controlled during a manual procedure) has an effect on the quality 

of the detector. Figure 20a shows the results of UXO detection using a detector trained on 

a tight bounding box set of the ground truth data as opposed to the Fig. 20b showing the 

case of using a detector trained on a loose bounding box set of the ground truth data. Figure 

21 shows the PR curves in both cases. Overall, the effect happens to be negligible (1% 

improvement for the tight bounding boxing). 

 

a)    b)  

Figure 20. UXO detection using a tight (a) vs loose (b) bonding boxing. 

 

 
Figure 21. The PR curves for the loose and tight bounding boxing while the EO 

detector training. 
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E. SUMMARY 

To summarize: 

• The AI-based UXO detection system seems to be a good representative application 

where MS sensor could reveal its potential to contribute to the solution of DCT 

problems 

• As anticipated, the UXO detection capability by individual spectrum detectors is lower 

(AP<0.6) compared to that of EO sensor (AP=0.774) (Figs. 17, 18). However, it was 

found that they are complimentary to each other 

• By applying the two-step integration process, the overall UXO detection capability of 

MS detector (AP=0.871) exceeds that of EO sensor by about 13% (Figs. 18, 19, Table 

5) 

• Using more than one spectral band makes a detection process more reliable. For 

example, while in some cases Blue and Green detectors were able to detect UXO, other 

band detectors were not (Fig. 16). In some other cases, only the NIR detector was able 

to detect UXO while all other detectors failed to do so 

• All detectors detecting UXO in their own spectrum band feature a different size of the 

bounding box and different detection confidence score (i.e., some spectrum detectors 

detect UXO more precisely than others). For instance, in some cases, the Blue and 

Green detectors detected UXO more precisely than other detectors (Fig. 14). In some 

other cases, it was the Red and NIR detectors that detected UXO more precisely than 

the others 

• The limitations imposed by NDAA’20 precluded from exploring a variety of 

environmental effects (including time of the day, cloudiness, altitude of flying, etc.) as 

was originally planned 



 23 

V. APPLICABILITY OF MS IMAGERY FOR NAVIGATION 

This section considers applicability and benefits of using the MS sensor to aid GPS-

free navigation. It starts from providing some basics on the image feature extraction and 

matching and proceeds with analysis of a limited set of 2-band MS data provided by 

GreenSight. 

 

A. FEATURE-EXTRACTION ALGORITHMS 

As explained in Ref. [5], the vision-based navigation relies on a feature defection 

capability. When the camera makes a small motion, it is reasonable to assume that there 

exists some geometric transformation that maps some features / points found in the first 

image to the corresponding features / points found on a consecutive image. Different 

feature-extraction algorithms explored in this study included 

• cornerPoints - this is a single-scale corner detection algorithm, applicable for point 

tracking, image registration with little or no scale change, corner detection in scenes 

of human origin, such as streets and indoor scenes. To determine the corners, one 

of the following three different approximate metrics are used: 

− FAST (Features from Accelerated Segment Test) [36] 

− MinEigen (Minimum Eigenvalue algorithm) [37] 

− Harris (Harris–Stephens / Shi and Tomasi algorithm) [38] 

• ORB (Oriented FAST and rotated BRIEF) [39] - this is a multiscale corner 

detection algorithm handling changes in rotation (BRIEF stands for Binary Robust 

Independent Elementary Features). This method was developed to provide a fast 

and efficient alternative to a scale-invariant feature transform (SIFT) 

• BRISK (Binary Robust Invariant Scalable Keypoints) [40] - this is another 

multiscale corner detection algorithm. Unlike single-scale corner detection 

approach, it handles changes in both scale and rotation 

• SURF (Speeded-Up Robust Features) [41] - this is a multiscale blob detection 

algorithm with scale and rotation changes  

• KAZE (derived from the Japanese word kaze, , meaning breeze or wind) [42] - 

this is another multiscale blob detection algorithm  

• MSER (Maximally Stable Extremal Regions) [43-45] - this is a multiscale regions 

of uniform intensity detection algorithm for registration, wide baseline stereo 

calibration, text and object detection. It handles changes in scale and rotation. It is 

more robust to affine transforms in contrast to other detectors 
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• HOG (Histogram of Oriented Gradients) [46] – this is a gradient-based feature 

detection algorithm that uses a grid of uniformly-spaced rose plots, showing the 

distribution of gradient orientations within a HOG cell. 

As applied to all five bands of MicaSense RedEdge-MX sensor, there is more than 

sufficient number of features found by most of the aforementioned feature-extraction 

algorithms (of course, each algorithm finds a different number of features). From the 

efficiency standpoint, Figure 22 shows the computational time required to find a single 

feature (note, the computational time shown is for an uncompiled code, - for a compiled 

code it is expected to require two orders of magnitude less time). As seen from this figure, 

Thermal, Blue and Red spectra require less computational resources than other spectra. 

The Harris feature detection algorithm appears to be the most efficient, followed by MSER 

and SURF algorithms. 

 

 
Figure 22. Computational time required to find a single feature point using different 

feature detection methods. 

 

Once all features are found, a similarity or affine transform can be applied to 

compute the transition and rotation between the frames. To validate the developed 

algorithm, Fig. 23 shows a comparison conducted to compute a transformation 

between the different lenses of the MicaSense RedEdge-MX sensor. For example, 

the first row of images shows the difference between the Blue and all other bands 
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excluding Thermal (Green, Red, Red edge, NIR). Unfortunately, the preliminary 

results conducted on the very limited imagery obtained during the maiden flight of 

the DJI Inspire drone were not enhanced any further (because of NDAA’20 ban 

prohibiting further flights). 

 
Figure 23. Pairwise comparison (difference) between the different bands of MS 

sensor. 

 

B. GREENSIGHT IMAGERY 

As explained in Section III, GreenSight provided some imagery collected using 

their own 3-band MS sensor. Specifically, the set of 14 EO and 14 NIR images (taken about 

10s apart) were presented for analysis (Table 6). These 2×14 images, taken about 10m 

above the ground level, are shown in Fig. 24. Figure 25 presents a bird’s-eye view of a 

GreenSight Dreamer UAS trajectory when these images were taken (14 image-taking 

locations are depicted with the green circles). Even though the fact that provided images 

were taken 10s apart violates a premise of small motion (Ref. [5] shows that number of the 

matching points between the two images decreases rapidly with a decrease of the sampling 

rate), some limited analysis conducted on these two sets of 14 images allowed to confirm 

some expected trends, as discussed next 
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Table 6. Data provided by GreenSight. 

 

 
Figure 24. Available GreenSight imagery (4032 pix × 3040 pix). 

 

 
Figure 25. Bird’s-eye view of a GreenSight Dreamer trajectory with locations of still 

imagery taken. 
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C. FEATURE EXTRACTION 

First, Figs. 26 and 27 visualize the features found on EO and IR images using six 

different feature extraction methods mentioned earlier in this section. As seen from these 

figures and also from Fig. 28a, the number of the features found within each image is huge 

(compared to that of when a similar EO sensor was flown at 2,000’-8000’ AGL [5]). The 

number of the features found within a NIR image (Fig. 27) is on the order of magnitude 

lower than that of the corresponding EO image (Fig. 26). Figure 28b shows the required 

computational resource (computation time) to find all the features for each method. Figure 

29 shows a required computation time per feature. 

 

 
Figure 26. Feature extraction for an image taken with an EO sensor. 

 

 
Figure 27. Feature extraction for an image taken with a NIR sensor. 
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a)  

b)  

Figure 28. Number of features (a) and computational resources required to find a 

single feature (b) using different feature detection methods. 

 

 
Figure 29. Computation time per feature for different feature-finding methods. 

 

Figure 30 combines data shown in Fig. 28 a, b. From the effectiveness standpoint, 

the more features the feature-finding method finds and the faster it does it, the better (i.e., 

one should look at the method that delivers performance appearing the closest to the 



 29 

bottom-right corner of Fig. 30). As seen from Fig. 30, overall, the FAST and ORB methods 

are probably the most efficient ones for both EO and NIR images (it is worth mentioning 

that the Ingenious helicopter on Mars uses the FAST algorithm as well). 

 

 

Figure 30. Performance overview of explored feature-finding methods. 

 

D. FEATURE MATCHING 

Once the sets of good features are found in two consecutive images, they should be 

matched, i.e., the subset of those features belonging to both images needs to be found. Out 

of these found matching features, the so-called inliers (i.e., the matches supposedly 

belonging to the same transformation) should be further determined. The process of 

excluding outliers is based on using the M-estimator SAmple Consensus (MSAC) 

algorithm. The MSAC algorithm is a variant of the Random Sample Consensus (RANSAC) 

algorithm. (It should be noted that running the same outlier exclusion algorithm multiple 

times will not lead to the identical result. This is because of the randomized nature of the 

MSAC algorithm. Having more features in each image to begin with may be a mitigating 

factor.) 

Even though the number of features found in the NIR images is lower than the 

number of features found in the EO images (which in general may be crucial if the image 
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capture rate is low and/or UAS flies fast), it was still sufficient to do feature matching to 

determine transformation between two “consecutive” images (10s apart). Double quotation 

marks are used here to emphasize that two images 10s apart are not necessarily truly 

consecutive, because the scene beneath may change drastically and as a result no matching 

features would be found at all. Looking at Fig. 24, it is clear that while the first two images 

feature about the same scene (UAS was essentially hovering above the same point with no 

rotation), transitioning to the third image may result in no matching features at all). 

Switching from Image 5 to Image 6 represents a complete change of a scene. The same is 

true for Images 7-7, 9-10, 12-13, 13,14. 

To elaborate on this issue further, Fig. 31 shows pairwise feature matching between 

the first four images in a sequence of images provided by GreenSight. Row wise, Fig. 31 

shows three steps – feature matching, the process of excluding outliers using the MSAC 

algorithm, and applying similarity transformation derived from the matching inliers. 

 

 
Figure 31. Computing and applying similarity transformation  based on matching 

features obtained using the SURF algorithm (for four first images, 10s apart). 
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For the first column and third columns of images, showing all steps when 

comparing the first two and the last two images, showing pretty much the same scene, only 

15…20% are found to be the matching features (row 1). Out of these matching features 

only a small fraction is found to be inliers (row 2). This accounts to only 2…6% of the 

number of individual features found on each image. Yet, because of the large number of 

original features, this low percentage yields about 250…700 inliers to compute a 

transformation (transition and rotation). For example, the transition from the 1st image to 

the 2nd involves UAS movement down to the right (-893pix, -668pix) and slight 

counterclockwise rotation (by 1.35). The transition from the 3rd to the 4th image - 

movement down to the left (707pix, -234pix) and slight counterclockwise rotation (by 

1.71). 

As opposed to the first two and last two images, switching between the 2nd  and 3rd 

images in Fig. 31 causes a problem. As seen from the image located in the 1st row and 2nd 

column on the image matrix, the found matches happen to be all over the place. Out of 

these few, only 2 (!) matches are determined to be inliers (2nd row in the 2nd column). Even 

though a minimum number of matching pairs for the similarity transformation is two, the 

computed transformation cannot be trusted - the two inliers clearly suggest two 

contradictory transitions. 

 Figures 32 and 33 demonstrate a similar analysis performed on three images 

apparently featuring the same scene (Images 10-12 in Fig. 24). In this case, the feature 

matching for both EO images (Fig. 32) and NIR images (Fig. 33) yields reasonable results. 

The number of matching features, even for the images that are 20s apart, is big enough to 

find a good set of colinear inliers to produce a similarity transform. To this end, Fig. 34a 

shows the number of matching features found in each pairwise comparison (2nd image vs 

3 image, 1st image vs 2nd image, and 1st image vs 3rd image), and Fig. 34b shows a 

percentage of matching features (out of the maximum number of individual features in 

each pair of images). Consequently, Fig. 35a shows the number of inliers found for the 

same pair, while Fig. 35b shows a percentage of inliers (out of the maximum number of 

individual features in each pair of images). 
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Figure 32. Three “consecutive” EO images (10s apart) featuring about the same 

scene. 

 

 
Figure 33. Three “consecutive” IR images (10s apart) featuring about the same scene. 
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As seen from Figs. 34 and 35, even if UAS hovers above the same point, the time 

between the two images are taken has a strong effect. It is only about 1% of the total number 

of features found in each individual image that contributes to computing the 

transformation. That is why it is important to keep the number features found in each 

individual image substantially big (in other words, it is important to have a feature-rich 

terrain and good sensor resolution). Another observation is that while the number of inliers 

for the NIR images is about three times lower than that of the EO images (Fig. 35a), 

percentagewise (Fig. 35b) the NIR images exhibit a larger fraction of inliers. 

 

a)  

b)     

Figure 34. The number of matching features (a) and a percentage of matching 

features (b) vs sampling rate. 

 

To conclude this discussion, Fig. 36 shows the results of pairwise comparison of 

the EO and NIR images. The point of this comparison is to show that the EO and NIR 

images provide different sets of features that may be complementary to each other. 

Specifically, it shows the comparison of the first and last images in the 14-image series of 

Fig. 24. 
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a)  

b)   

Figure 35. The number of inliers (a) and a percentage of inliers (b) vs sampling rate. 

 

 

 
Figure 36. The first and last EO/NIR image matching. 
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The comparison for the first and last images reveals the following. While 11,706 

features were found in the first EO image vs 1,031 features found in the first NIR image, 

only 73 features (0.6%) seem to match each other. In fact, there were only 7 inliers or 

0.06% (100*7/max(11706,1031)). Similarly, for the last image, 1,919 features were found 

in the EO image vs 1,441 features found in the NIR image. There were only 45 (2.3%) 

matched features, and only 13 (0.7%) inliers. Comparing these numbers to what is shown 

in Figs. 34 and 35, it becomes clear that the same feature-finding method finds mostly 

different features in the EO and NIR images representing the same scene. 

The feature matching and matched inlier stages for the last images are zoomed in 

in Figs. 37, 38. While Fig. 37 visualizes 45 seemingly matched features (which are all over 

the place, i.e., not collinear), Fig. 38 shows only 13 inliers (located in the upper left corner 

of the image). 

 

 
Figure 37. The last EO vs last NIR image matching. 
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Figure 38. Inliers for the last EO - last NIR image pair. 
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E. SUMMARY 

To summarize: 

• Three feature finding methods (out of eight explored), specifically, ORB, FAST and 

SURF, seem to provide the best feature finding results for both EO and NIR spectra 

(more matched featured found faster) (Fig. 30) 

• Features found by EO and NIR sensors, seem to be complimentary (not necessarily the 

same) (Fig. 36) 

• If two consecutive images feature about the same scene, many features can be matched 

between the images, even though they are far apart (slow flight, high altitude flight, 

high sampling rate). Even for the specific set of data provided by GreenSight, when the 

Dreamer UAS was flying very low and images were taken  10s or even 20s apart, there 

was a healthy number of the matching features and inliers to produce a transform (Figs. 

34, 35) 

• This is not the case, if the scene changes (like between IMG_0001 and IMG_0002, 

IMG_0004 and IMG_0005, IMG_0006 and IMG_0007, IMG_0008 and IMG_0009, 

IMG_0011 and IMG_0012, IMG_0012 and IMG_0013 provided by GreenSight) (Fig. 

31) 

• As of October 2021, it is unclear what other parameters were recorded by GreenSight 

Dreamer UAS while flying a trajectory shown in Fig. 25 (including the EO and NIR 

sensor attitude with respect to the airframe and their zoom setting), whether these flight 

parameters were synchronized with imagery data (relatively high roll and pitch angles 

shown in Table 6 seem to contradict imagery data), whether the images were taken by 

both sensors simultaneously. It is also unknown how GreenSight 3-band sensors were 

mounted during that flight (whether they had a (joint) gimble mount). The only 

available data provided in Table 6 did not allow to conduct further analysis 
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VI. CONCLUSION 

The research questions formulated for this study can be answered as follows: 

 

• Whether using multiple spectral bands has any benefits compared to a standard EO 

sensor or EO sensor combined with IR sensor? That includes benefits of having a 

spectral profile of surrounding background area and objects from the standpoint of 

more reliable/precise DCT. 

 

Yes, using multiple spectral bands does seem to have benefits compared to a standard EO 

sensor. In two considered applications (Sections VI and V), using five spectral bands (Blue, 

Green, Red, Red edge, NIR) of a MicaSense RedEdge-MX sensor (Section IV) or even just 

two spectral bands (EO and NIR) of a custom GreenSight 3-band MS camera package 

(Section V), as opposed to just one grayscale image produced from a standard EO sensor 

output, improvements in reliability (multiple bands complement each other) and accuracy 

were clearly demonstrated. 

 

• What are the limitations of using MS sensors and CV/AI algorithms to process data 

from the standpoint of operating environment, terrain, altitudes, object size and 

material, time of the day, weather, number of spectral bands, resolution, narrow field 

of view, addition of a downwelling light sensor)? 

 

For two applications considered in this study (object detection and vision-aided 

navigation), the CV/AI algorithms that were developed in the MATLAB development 

environment worked reliably and did not take more resources than it would be required for 

processing a standard EO and/or IR sensor output. In a parallel effort, similar algorithms, 

developed for a standard EO sensor, were successfully deployed on a secondary computer 

of a Scan Eagle UAS. Due to NDAA’20 ban on flying specific UASs (which included UAS 

available at NPS and equipped with a MicaSense sensor), and constraints related to 

coronavirus pandemic, the effects of the operating environment and UAS mission 

parameters were not addressed. 
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• What computational resources would be required to enable DCT capability on board 

of COTS sUAS? 

 

The developed algorithms can successfully be run in real time on a secondary computer 

added to a COTS Group 1 / Group 2 UAS. For example, on a DJI Manifold 2 (currently 

banned), a high-performance embedded computer, that comes with pre-installed Ubuntu 

meaning support for Linux, CUDA, OpenCV, and ROS. NPS’ ScanEagle UAS takes 

advantage of using NVIDIA Jetson TX2. As mentioned above, a vision-based GPS-free 

navigation algorithm developed for a EO sensor, is now under development. 

 

• Whether an onboard MS sensor and available feature-finding and matching techniques 

can contribute to enabling GPS-free navigation for aerial vehicles? 

 

Yes, the MS sensors assessed in this study demonstrated a capability to find thousands of 

features that can be used for image matching / tracking. While imagery used in this study 

included a low-altitude flight profile only (10m AGL), the earlier study showed that enough 

features can be obtained for high-altitude flights (~2km MSL), even in a feature-poor 

condition, as well [5]. 

 

• What accuracy could be expected when utilizing the non-standard navigational fixes 

provided by MS sensors? 

 

This question is yet to be addressed (the current UAS constraints precluded from 

addressing this research question of this study). A fully-equipped UAS, recording UAS 

(sensor) position and attitude while taking MS imagery needs to be employed. Using a 

matching with a satellite imagery technique reported in [6], the positional accuracy while 

flying a racetrack pattern at ~2 km AGL was estimated to be within 100m. The expectation 

is that for the low-flying UAS it could be improved significantly (down to 1cm). This 

question still needed to be addressed in the future research. 
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The overall conclusion from this study is that utilizing sUAS equipped with MS 

sensor and CV/AI algorithms may be very beneficial to DoD and DoN offering new and 

enhancing existing capabilities. As such, the recommendation is to continue the assessment 

of technologies discussed in this study. 
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