
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2000-12

JAVA Wrappers for Automated Interoperability

Cheng, Ngom; Berzins, Valdis; Luqi; Bhattacharya, Swapan
Springer

Cheng, Ngom, Valdis Berzins, Luqi, and Swapan Bhattacharya. "JAVA Wrappers for
automated interoperability." International Workshop on Databases in Networked
Information Systems. Springer, Berlin, Heidelberg, 2000.
http://hdl.handle.net/10945/68938

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

REPORT DOCUMENTATION PAGE Form Approved
0MB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED
Reprint

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

TITLE ON REPRINT

6. AUTHOR(S) ARO MIPR

AUTHOR(S) ON REPRINT

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Postgraduate School

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

U.S. Anny Research Office
P.O. Box 12211 ARO 40473.30-MA-SP Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this r&ort are those of the author(~ and should not be construed as
an official Department of the Anny position, policy or ecision, unless so designate by other documentation.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

ABSTRACT ON REPRINT

2001 1024 062
- -- -- --- --

14. SUBJECT TERMS 15. NUMBER IF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500

OF ABSTRACT
UNCLASSIFIED UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

JAVA Wrappers for Automated Interoperability

Ngom Cheng, Valdis Berzins, Luqi, and Swapan Bhattacharya

Department of Computer Science
Naval Postgraduate School
Monterey, CA. 93943 USA

{cheng, berzins, luqi, swapan}@cs.nps.navy.mil

Abstract. This paper concentrates on the issues related to implementation of
interoperability between distributed subsystems, particularly in the context of re-
engineering and integration of several centralized legacy systems. Currently, most
interoperability techniques require the data or services to be tightly coupled to a
particular server. Furthermore, as most programmers are trained in designing stand-
alone application, developing distributed system proves to be time-consuming and
difficult Here, we addressed those concerns by creating an interface wrapper model
that allows developers to treat distributed objects as local objects. A tool that
automatically generates the features of Java interface wrapper from a specification
language called the Prototyping System Description Language has been developed
based on the model.

1 Introduction

Interoperability between software systems is the ability to exchange services from
one system to another. In order to exchange services, commands and data are relayed
from the requesters to the service providers. Current business and military systems
are typically 2-tier or 3-tier systems involving clients and serv:ers, each running on
different machines in the same or different locations. Current approaches for n-tier
systems have no standardization of protocol, data representation, invocation
techniques etc. Other problems related to interoperability are the implementation of
distributed systems and the use of services from heterogeneous operating
environments. These include issues concerning sharing of information amongst
various operating systems, and the necessity for evolution of standards for using data
of various types, sizes and byte ordering, in order to make them suitable for
interoperation. These problems make interoperable applications difficult to construct
and manage.

1.1 Current State-of-the-Art Solutions

Presently, the solutions attempting to address these interoperability problems range
from low-level sockets and messaging techniques to more sophisticated middleware
technology like object resource brokers (CORBA, DCOM). Middleware technology
uses higher abstraction than messaging, and can simplify the construction of
interoperable applications. It provides a bridge between the service provider and

S. Bhalla (Ed.): DNIS 2000, LNCS 1966, pp. 45-64, 2000.
© Springer-Verlag Berlin Heidelberg 2000

46 N. Cheng et al.

requester by providing standardized mechanisms that handle communication, data
exchange and type marshalling. The implementation details of the middleware are
generally not important to developers building the systems. Instead, developers are
concerned with service interface details. This form of information hiding enhances
system maintainability by encapsulating the communication mechanisms and
providing stable interface services for the developers. However, developers still need
to perform significant work to incorporate the middleware's services into their
systems. Furthermore, they must have a good knowledge of how to deploy the
middleware services to fully exploit the features provided.

Current middleware approaches have another major limitation in design - the data and
services are tightly coupled to the servers. Any attempt to parallelize or distribute a
computation across several machines therefore encounters complicated issues due to
this tight control of the server process on the data. Tuning performance by
redistributing processes and data over different hardware configurations requires
much more effort for software adjustment than system administrators would like.

1.2 Motivation

Distributed data structures provide an entirely different paradigm. Here, data is no
longer coupled to any particular process. Methods and services that work on the data
are also uncoupled from any particular process. Processes can now work on different
pieces of data at the same time. Until recently, building distributed data structures
together with their requisite interfaces has proved to be more daunting than other
conventional interoperability middleware techniques. The arrival of JavaSpace has
changed the scenario to some extent. It allows easy creation and access to distributed
objects. However, issues concerning data getting lost in the network, duplicated data
items, out-dated data, external exception handling and handshaking communication
between the data owner and data users are still open. Developers have to devise ways
to solve those problems and standardize them between applications.

1.3 Proposal

The situation concerning interoperability would greatly improve if a developer
working on some particular application could treat distributed objects as local objects
within the application. The developers could then modify the distributed object as if it
is local within the process. The changes may, however, still need to be reflected in
other applications using that distributed object without creating any problems related
to inconsistency. The current research aims at attaining this objective by creating a
model of an interface wrapper that can be used for a variety of distributed objects. In
addition, we seek models that can automate the process of generating the interface
wrapper directly from the interface specification of the requirement, thereby greatly
improving developers' productivity.

A tool, named the Automated Interface Codes Generator (AICG), has been developed
to generate the interface wrapper codes for interoperability, from a specification
language called the Prototype System Description Language (PSDL) [9]. The tool

JAVA Wrappers for Automated Interoperability 47

uses the principles of distributed data structure and JavaSpace Technology to
encapsulate transaction control, synchronization, and notification together with
lifetime control to provide an environment that treats distributed objects as if there
were local within the concerned applications.

2 Review of Previous Works

A basic idea for enhancing interoperability is to make the network transparent to the
application developers. Previous approaches [1] include 1) Building blocks for
interoperability, 2) Architectures for unified, systematic interoperability and 3)
Packaging for encapsulating interoperability services. These approaches have been
assessed and sununerized using Kiviat graphs by Berzins [1] with various weight
factors. The Kiviat graphs give a good summary of the strong and weak points of
various approaches. ORBs and Jini are currently among the promising technologies
for interoperability. ,

2.1 ORB Approaches

There are however, some concerns with the ORB models. Sullivan (13] provides a
more in-depth analysis of the DCOM model, highlighting the architecture conflicts
between Dynamic Interface Negotiation (how a process queries a COM interface and
its services) and Aggregation (component composition mechanism). Interface
negotiation does not function properly within the aggregated boundaries. This
problem arises because interacting components share an interface. An interfac.e is
shared if the constructor or Query Interface functions of several components can return
a pointer to it. Querylnterface rules state that a holder of a shared interface should be
able to obtain interfaces of all types appearing on both the inner and outer
components. However, an aggregator can refuse to provide interfaces of some types
appearing on an inner component by hiding the inner component. Thus,
Queryinterface can fail to work properly with respect to delegation to the inner
interface. ·

Hence, for the ORB approaches, detailed understanding of the techniques is required
to design a truly reliable interoperable system. Programmers however, are trained
mostly on standalone programming techniques. Adding specialized network
programming models increases the learning as well as development time, with
occasional slippage of target deadlines. Furthermore, bugs in distributed programs are
harder to detect and consequences of failure are more catastrophic. An abnormal
program can cause other programs to go astray in a connected distributed environment
(9], (12].

2.2 Prototyping

The demand for large, high quality systems has increased to the point where a
quantum change in software technology is needed [9]. Requirements and

L

48 N. Cheng et al.

specification errors are a major cause of faults in complex systems. Rapid
prototyping is one of the most promising solutions to this problem. Completely
automated generation of prototype from a very high-level language is feasible and
generation of skeleton programming structures is currently common in the computer
world. One major advantage of the automatic generation of codes is that it frees the
developers from the implementation details by executing specifications via reusable
components [9].

In this perspective, an integrated software development environment, named
Computer Aided Prototyping System (CAPS) has been developed at the Naval
Postgraduate School, for rapid prototyping of hard real-time embedded software
systems, such as missile guidance systems, space shuttle avionics systems, software
controllers for a variety of consumer appliances and military Command, Control,
Communication and Intelligence (C3I) systems [11]. Rapid prototyping uses rapidly
constructed prototypes to help both the developers and their customers visualize the
proposed system and assess its properties in an iterative process. The heart of CAPS is
the Prototyping System Description Language (PSDL). It serves as an executable
prototyping language at a specification and software architecture level and has
special features for real-time system design. Building on the success of computer
aided rapid prototyping system (CAPS) [11], the AICG model also uses PSDL for
specification of distributed systems and automates the generation of interface codes
with the objective of making the network transparent from the developer's point of
view.

2.3 Transaction Handling

Building a networked application is entirely different from building a stand-alone
system in the sense that many additional issues need to be addressed for smooth
functioning of a networked application. The networked systems are also susceptible to
partial failures of computation, which can leave the system in an inconsistent state.

Proper transaction handling is essential to control and maintain concurrency and
consistency .within the system. Yang has examined the limitation of hard-wiring
concurrency control into either the client or the server. He found that the scalability
and flexibility of these configurations is greatly limited. Hence, he presented a
middleware approach: an external transaction server, which carries out the
concurrency control policies in the process of obtaining the data. Advantages of this
approach are 1) transaction server can be easily tailored to apply the desired
concurrency control policies of specific client applications. 2) The approach does not
require any changes to the servers or clients in order to support the standard
transaction model. 3) Coordination among the clients that share data but have
different concurrency control policies is possible if all of the clients use the same
transaction server.

The AICG model uses the same approach, by using an external transaction manager
such as the · one provided by SUN in the JIN! model. All transactions used by the
clients and servers are created and overseen by the manager.

JAVA Wrappers for Automated Interoperability 49

3 The AICG Interaction Model

The AICG model encapsulates some of the features of JavaSpace and Jini to provide
a simplified ways of developing distributed applications.

3.1 Jini Model

The Jini model is designed to make a service on a network available to anyone who
can reach it, and to do so in a type-safe and robust way [4]. The ability of Jini model
is based on five key concepts: (1) Discovery is the process used to find communities
on the network and join with them. (2) Lookup governs how the code that is needed to
use a particular services finds its way into participants that want to use that service.
(3)Leasing is the technique that provides the Jini self recovering ability. (4) Remote
events allow services to notify each other of changes to their state (5) Transactions
ensure that computations of several services and their host always remain in "safe"
state.

The Jini model was designed by Sun Microsystems \VW1 simplicity, reliability and
scalability as the focus. Its vision is that Jini-enable devices such as PDA, cell phone
or a printer, when plugged into a TCP/IP network, should be able to automatically
· detect and collaborate with other Jini-enabled devices.

The powerful features of Jini provide a good groundwork for developing
interoperability systems. However, the lack of automation for creating interface
software and the need for developers to fully understand the Jini Model before they
can use it created the same problems for developers as other interoperability
approaches.

3.2 The JavaSpace Model

The JavaSpace model is a high-level coordination tool for gluing processes together in
a distributed environment. It departs from conventional distribution techniques using

. message passing between processes or invoking methods on remote objects. The
technology provides a fundamentally different programming model that views an
application as a collection of processes cooperating via the flow of freshly copied
objects into and out of one or more spaces. This space-based model of distributed
computing or distributed structure has its roots in the Linda coordination language [3]
developed by Dr. David Gelernter at Yale University.

3.2.1 Distributed Data Structure and Loosely Coupled Programming
Conceptually a distributed data structure is one that can be accessed and manipulated
by multiple processes at the same time without regard for which machine is executing
those processes. In most distributed computing models, distributed data structures are
hard to achieve. Message passing and remote method invocation systems provide a
good example of the difficulty. Most of the systems tend to keep data structure behind
one central manager process, and processes that want to perform work on the data

50 N. Cheng et al.

structure must "wait in line" to ask the manager process to access or alter a piece of
data on their behalf. Attempts to parallelize or distribute a computation across more
than one machine face bottlenecks since data are tightly coupled by the one manager
process. True concurrent access is rarely achievable.

Distributed data structures provide an entirely different approach where we uncouple
the data from any particular process. Instead of hiding data structure behind a
manager process, we represent data structures as collections of objects that can be
independently and concurrently accessed and altered by remote processes. Distributed
data structures allow processes to work on the data without having to wait in line if
there are no serialization issues.

3.2.2 Space
A space is a shared, network-accessible repository for objects. Processes use the
repository as a persistent object storage and exchange mechanism Processes perform
simple operations to write new objects into space, take objects from space, or read
(make a copy of) objects in a space. When taking or reading objects, processes use a
simple value-matching lookup to find the objects that matter to them. If a matching
object is not found immediately, then a process can wait until one arrives. Unlike
conventional object stores, processes do not modify objects in the space or invoke
their methods directly. To modify an object, a process must explicitly remove it,
update it, and reinsert it into the space. During the period of updating, other processes
requesting for the object will wait until the process writes the object back to the space. ·
This protocol for modification ensures synchronization, as there can be no way for
more than one process to modify an object at the same time. However, it is possible
for many processes to read the same object at the same time.

Key Features of JavaSpace:
• Spaces are persistent: Spaces provide reliable storage for objects. Once stored in

the space, an object will remain there until a process explicitly removes it.
• Spaces are transactionally secure: The Spa,ce technology provides a transaction

model that ensures that an operation on a space is atomic. Transactions are
supported for single operations on a single space, as well as multiple operations
over one or more spaces.

• Spaces allow exchange of executable content: While in the space, objects are just
passive data, however, when we read or take an object from a space, a local copy
of the object is created. Like any other local object; we can modify its public fields
as well as invoke its methods.

3.3 The AICG Approach

The AICG approach to interoperability has two parts. The first part is to develop a
model to completely hide the interoperability from the developers and the second part
of the approach is to design a tool that automates the process of integrating the AICG
model into the distributed application so as to aid the development process.

JAVA Wrappers for Automated Interoperability 51

3.3.1 · The AICG Model
The AICG model is built on JavaSpace and Jini. It is designed to wrap around data
structures or objects that are shared between concurrent applications across a network.
The model gives the applications complete access to the contents of the objects as
though they were the sole owners of the data. Synchronization, transaction and error
handling are built into the model, freeing the developers to concentrate on the actual
requirement of the applications.

AICG uses the JavaSpace Distributed Data Structure principles as the main
communication channel for exchange of services. The model also encompasses Jini
services like Transaction, Leasing and Remote Event. However, the difference is that
the model wraps the services provided by the JavaSpace and Jini and hide their usage
from the application. Developers are not required to understand the underlying
principles before they can use the model. They should however be aware of object
oriented programming constraints such as no direct access to the attributes of an
object is allowed without going through the object methods.

The most common use of the AICG model is to encapsulate objects that are to be
shared. This form of abstraction has an advantage over direct use of a JavaSpace. The
JavaSpace distributed protocol for modification ensures synchronization by enforcing
that a process wishing to modify the object has to physically remove it from the space,
alter it and write it back to the space. There can be no way for more than one process
to modify an object at the same time. However, this does not prevent other processes
from overwriting the updated data. For example, in an ordinary JavaSpace, the
programmer of Process A could specify a "read" operation, followed by a "write"
operation. This would result in 2 copies of the object in the Space. The AICG model
prevents this since the 3 basic commands are embedded into distributed objects that
are automatically generated to conform to the proper protocol. All modifications on
the object are automatically translated to "take", followed by "write" and all
operations that access the fields of the distributed object are translated to "read".
These ensure that local data are up-to-date and serialization is maintained.

Although the basic idea of the AICG model is simple, it requires many supporting
features to make it work. Distributed objects may be lost if a process removes them
from the space and subsequently crashes or is cut off from the network. Similarly, the
system may enter a deadlock state if processes request more than one distributed
object while, at the same time, holding on to distributed objects required by other
processes. Similarly, latency and performance are very different between local access
and remote access. Those issues should not be ignored in any interoperability
techniques, if the systems to be built using the techniques must be robust. ORB
techniques such as RPC and CORBA do not even consider performance and latency
as part of their programming model, they treat it as a "hidden" implementation detail
that programmer must implicitly be aware of and deal with while they preach that
accessing remote object is similar to accessing local object.

The AICG model has a set of four supporting modules to handle those situations.
These modules provide transaction handling and user-defined latency to ensure
integrity of the updates, exception handling for reporting errors and failures without

·•

:)

i

52 N. Cheng et al.

crashing the system, a notification channel to inform the application of certain events,
and lease control for freeing up unused object during "house keeping". The supporting
features are discussed in section 5.

3.3.2 The AICG Tool
The second part of the research aims at developing a tool that generates software
wrapper realizing the AICG model to aid the construction of distributed applications.
The tool is designed to generate interface wrappers for data structures or objects that
need to be shared, and is particularly useful for applications that can be modeled as
flows of objects through one or more servers. The tool allows the developers to use all
the features in the AICG model without the need to write complicated codes. This
enhances interoperability by making network and concurrent issues transparent to the
application developers.

The interface wrappers are generated from an extension of a prototype description
language called Prototyping System Description Language (PSDL). The extended
Description language (PSDL-ext) expands property definitions that are specific only
to AICG model.
Some of the salient features of the AICG model generated by the tool are:
• Distributed objects are treated as local objects within the application process. The

application code need not depend on how the object is distributed, since the local
object copy is always synchronous with the distributed copy.

• Synchronization with various · applications is automatically handled. Since the
AICG model is based on the space transaction secure model and all operations are
atomic. Deadlock is prevented automatically within the interface and each object
has through transaction control. Any type of object can be shared as long as ~e
object is serializable. Any data structure and object cap. be distributed as long as it
obeys and implements the java serializable feature.

• Every distributed object has a lifetime. The distributed object lifetime is a period
of time guaranteed by the AICG model for storage and distribution of the object.
The time can be set by developer.

• All write operations are transaction secure by default. AICG transactions are based
on the Atomicity, Consistency, Isolation, and Durability (ACID) features.

• Clients can be informed of changes to the distributed object through the AICG
event model. A client application can subscribe for change notification, and when
the distributed object is modified, a separate thread is spawned to execute a

· callback method defined by the developer.
• The wrapper codes are generated from high-level descriptive languages; hence,

· they are more manageable and more·maintainable. ·

4 Types of Services

Services can be basic raw data, messages, remote method invocation, complex data
structures, or object with attributes and methods. The AICG model is suited for
exchange and sharing of complex data structures and objects. It can be tailored for
raw data, messaging, and remote method invocation types of communication.

JAVA Wrappers for Automated Interoperability 53

The AICG model uses the space as a transmission medium and hence loosens the tie
between producers and consumers of services which are forced to interact indirectly
through a space. This is a significant difference, as loosely coupled systems tend to
·be more flexible and robust.

4.1 Overview of the PSDL Interface

Prototype System Description Language (PSDL) provides a data flow notation
augmented by application-orientated timing and control constraints to describe a
system as a hierarchy of networks of processing units communicating via data streams
[1]. Data Streams carry values of abstract types and provide error-free communication
channels. PSDL can be presented in a semi-graphical form for easy specifying of the
specifications and requirements. An introduction to the real-time aspects of the PSDL
can be found in [1] and [2].

In PSDL, every computational entity such as an application, a procedure, a method or
a distributed system is represented as an operator. It is hierarchical in nature and each
operator can be decomposed to sub-operators and streams. Every operator is a state
machine. Its internal states are modeled by variable sets local only to this operator.
Operators are represented as circular icons in PSDL Graph, and triggered by data
stream or periodic timing constraints. When an operator is triggered, it reads one data
value from each input stream and computes the results if the execution guard or
constraint is satisfied. "nte results are placed on the output streams if the output guard
is satisfied.

Operators communicate via data streams. These data streams contain values that are
instances of an abstract data type. For each stream, there are zero or more operators
that write data on the stream and zero or more operators that read data from that
stream. There are two kinds of streams in PSDL, dataflow and sampled streams.
Dataflow streams act as FIFO buffers, where the data values cannot be lost or
replicated. These streams are used to synchronize data from multiple sources.
Consumers of dataflo_w streams never read an empty stream. Similarly, each value in a
stream is read only once. The control constraint used by the PSDL to distinguish a
stream as data:flow is "TRIGGERED BY ALL". · ·

Sampled Streams act as atomic memory cells providing continuous data. Connected
operators can write on or read from the streams at uncoordinated rates. Older data are
lost if the producer is faster than the consumer. Absence of "TRIGGERED BY ALL"
control constraint implies the stream is sampled.

If any of the streams have any initial value, then it is known as State Stream. State
Streams are declared in specification of the parent operator and are represented by
thicker lines in the PSDL graph. State streams correspond to spaces that contain
objects intended to be updated.

The mapping of dataflow streams or sampled streams into space-based
communication is accomplished by treating the services, which in this case are the
communication streams as objects to be shared.

' ' . i

. !

54 N. Cheng et al.

4.2 Benefit of Loosely Coupled Communication

In tightly coupled systems, the communication process needs the answers to the
questions of "who" to send to, "where" the receiving parties are located, and "when"
the messages need to be sent The "who" is which processes, "where" is which
machines, and "when" is right now or later. They must be specified explicitly in order
for the message to be delivered. Hence, in a distributed environment, in order for a
producer and consumer to communicate successfully, they must know each other's
identity and location, and must be running at the same time. This tight coupling leads
to inflexible applications that are not mobile and in particular difficult to build, debug
and change. In loosely coupled systems the issues of "who?", "where?" and "when?"
are answered with "anyone", "anywhere" and "anytime".

"Anyone": Producers and consumers do not need to know each other's identities, but
can instead communicate anonymously. In the sampled stream mapping, the
producers place a message entity into the space without knowing who will be reading
the messages. Similarly, the consumers read the message entity from the space
without concern with the identity of the producers.

"Anywhere": Producers and consumers can be located anywhere, as long as they have
access to an agreed-upon space for exchanging messages. The producer does not need
to know the consumer's location. Conversely, the consumer picks up the message
from the space using associative lookup, and has no need to be aware of the pr.oducer
location. This is especially useful when the producers and the receivers roam from
machine to machine, because the space-based programs do not need to change.

"Anytime": With space-based communication, producers and c9nsumers are able to
communicate even if they do not exist at the same time, because message entries
persist in the space. This works well when. the producers and the consumers operate
asynchronously (Sampled Stream). This does not mean that synchronous
communication would not work; the space is also an event driven repository and can
trigger the consumers whenever new entities are· created in the space. This
decoupling in time is useful because it enables operators to be scheduled flexibly to
accommodate real-time constraints.

5 How AICG Unifies Localized and Distributed Systems

The AICG model aims at bridging the differences between localized and distributed
systems by simplifying the distributed model and encapsulating all the necessary
elements of the distributed systems into the wrapper interfaces.

5.1 Localized and Distributed Systems

The major differences between localized and distributed systems concern the areas of
latency, memory access, partial failure, and concurrency. Most of interoperability
techniques try to hide the network and simplify the problems by stating that locations

JAVA Wrappers for Automated Interoperability 55

of the software components do not affect the correctness of the computations, just the
performance. These techniques concentrate on addressing the packing of data into
portable forms, causing an invocation of a remote method somewhere on the network

. and so forth. However, latency, performance, partial failure and concurrency are
some of the characteristics of distributed systems which also need serious attention.

5.1.1 Latency and Memory Access
The most obvious difference between accessing a local object and accessing a remote
object has to do with the latency of the two calls. The difference between the two is
currently between four and five orders of magnitude. In the AICG model vision of
unified object where remote access is actually a three steps process, step one retrieves
remote object from the space, step two executes the method of the remote object
locally and lastly step three returns the object back to the space if it is modified.
Developers must be aware of the latency and performance concerns. To ensure that
the developers are aware of the issues, the AICG model requires the developers to
specify the maximum latency period before an exception is raised. This forces the
developers to consider the latency issues for the type of data and methods that are to
be shared.

Another fundamental difference between local and remote computing concerns access
to memory, specifically in the use of pointers. Simply stated, pointers are valid only

. within the local address space. There are two solutions; either all the memory access
must be controlled by the underlying system, or the developers must be aware of the
different type of access., whether local or remote.

Using the object-oriented paradigm to the fullest is a way of eliminating the boundary
between the local and remote computing. However, it requires the developers to build
an application that is entirely object-oriented. Such a unified model is difficult to
enforce. The AICG solution to this issue is by enforcing the object-oriented paradigm
only on distributed objects. The distributed object wrapper generated automatically
forces all access to the actual shared object to go through the wrapper which is always
a local object, eliminating direct reference to the actual object itself. This promotes
and enforces the principle that "remote access and local access are exactly the same".

5.1.2 Partial Failure and Concurrency
In case of local systems, failures are usually total, affecting all the components of the
system working together in an application. In distributed systems; one subsystem can
fail while other systems continue. Similarly, a · failure of network link is
indistinguishable from the failure of a system on the other end of the link. The system
may still function with partial failure, if certain unimportant components have
crashed. It is however difficult to detect partial failure since there is no common
agent that is able to determine which systems have failed, and this may result in the
entire system going into unstable states

The AICG model uses the loosely-coupled paradigm, and component failure may
have impact on the distributed system when the systems retrieve objects from the
space and later crash before returning the objects back to space. The AICG model
resolves this issue by enforcing update of distributed objects with transaction control

. t

56 N. Cheng et al.

and allowing the developers to specify useful lifetime or lease for the object. When a
lease has expired, the object would be automatically removed from the space.

Distributed objects by their nature must handle concurrent access and invocations.
Invocations are usually asynchronous and difficult to model in distributed systems.
Usually most models leave the concurrency issues to the developers discretion during
implementation. However, this should be an interface issue and not solely an
implementation issue, since dealing with concurrency can take place only by passing
information from one object to another through the agency of the interface. The
AICG model handles concurrency by design since there is only one copy of
distributed object at a time in the entire distributed system. Processes are made to wait
if the shared objects are not available in the space.

5.2 Transaction

Transaction control must validate operations to ensure consistency of the data,
particularly when there are consistency constraints that link the states of several
objects. The AICG model implements the transaction feature with the Jini
Transaction model and provide a simplified interface for the developers.

5.2.1 Jini Transaction Model
All transactions are overseen by a. transaction manager. When a distributed
application needs operations to occur in a transaction secure manner, the process asks_
the transaction manager to create a transaction. Once a transaction has been created,
one or more processes can perform operations under the transaction. A transaction can
complete in two ways. If a transaction commits successfully, then all operations
performed under it are complete. However, if problems arise, then the transaction is
aborted and none of the operations occur. These semantics are provided by a two-
phase commit protocol that is performed by the transaction manager as it interacts
with the transaction participants.

5.2.2 AICG Transaction Model
AICG model encapsulates and manages the transaction procedures. All operations on
a distributed object Call be either with transaction control or without. Transaction
control operations are controlled with a default lease of six sec. This default value of
leasing time may, however, be overridden by the user. This is kept by the transaction
manager as a leased resource, and if a lease expires before the operation committed,
the transaction manager aborts the transaction.

The AICG model by · default, enables all transactions for write operations with a
transaction lease time of six seconds. The developer can modify the lease time
through the PSDL SPACE transactiontime property.

All the read operations in the AICG model do not have transactions enabled by
default. However, the user can enable it by using the property transactiontime with the
upper limit in transaction time for the read operation.

JAVA Wrappers for Automated Interoperability SI

5.3 Object Life Time (Leases/Timeout)

Leasing provides a methodology for controlling the life span of the distributed objects
in the AICG space. This allows resources to be freed after a fixed period. This model
is beneficial in the distributed environment, where partial failure can cause holders of
resources to fail thereby disconnecting them from the resources before they can
explicitly free them. In the absence of a leasing model, resource usage could grow
without bound.

There are other constructive ways to harness the benefit of the leasing model besides
using it as a garbage collector. For example, in a real-time system, the value of the
information regarding some distributed objects becomes useless after certain
deadlines. Accessing obsolete information can be more damaging in this case. By
setting the lease on the distributed object, the AICG model automatically removes the
object once the lease expires or the deadline is reached.

Java Spaces allocate resources that are tied to leases. When a distributed object is
written into a space, it is granted a lease that specifies a period for which the space
guarantees its storage. The holder of the lease may renew or cancel the lease before it
expires. If the leaseholder does neither, the lease simply expires, and the space
removes the entry from its store.

Generally, a distributed object that is not a part of a transaction lasts forever as. long as
the space exists, even if the leaseholder (the process that creates the object) has died.
This configuration is enabled by setting the SPACE lease property in the
Implementation to 0: · ·
In real-time environment, a distributed object lasts for a fixed duration of x ms
specified by the object designer. To keep the object alive, a write operation must be
performed on the object before the lease expires. This configuration is set through the
SPA CE lease property in the Implementation to the time in ms required.

If an object has a lifetime, it must be renewed before it expires. In the AICG model,
renewal is achieved by calling any method that mo.difies the object. If no modification
is required, the developer can provide a dummy method with the spacemode set to
"write". Invoking that method will automatically renew the lease.

5.4 AICG Event Notification

In a loosely-coupled distributed environment, it is desirable for an application to react
to changes or arrival of newly distributed objects instead of "busy waiting" for it
through polling. AICG provides this feature by introducing a callback mechanism that
invokes user-defined methods when certain conditions are met.

Java provides a simple but powerful event model based on event sources, event
listeners and event objects. An event source is any object that "fires" an event, usually
based on some internal state change in the object. In this case, writing an object into
space would generate an event. An event listener is an object that listens for events
fired by an event source. Typically, an · event source provides a method whereby

58 N. Cheng et al.

listeners can request to be added to a list of listeners. Whenever an event source fires
an event, it notifies each of its registered listeners by calling a method on the listener
object and passing it an event object.

Within a Java Virtual machine (JVM), an application is guaranteed that it will not
miss an event fired from within. Distributed events on the other hand, had to travel
either from one JVM to another JVM within a machine or between machines
networked together. Events traveling from one JVM to another may be lost in transit,
or may never reach their event listener. Likewise, an event may reach its listener more
than once.

Space-based distributed events are built on top of the Jini Distributed Event model,
and the AICG event model further extends it. When using the AICG event model,. the
space is an event source that fires events when entries are written into the space
matching a certain template an application is interested in. When the event fires, the
space sends a remote event object to the listener. The event listener codes are found in
one of the generated AICG interface wrapper files. Upon receiving an event, the
listener would spawn a new thread to process the event and invoke the application
callback method. This allows the application codes to be executed without involving
the developer in the process of event-management.

The distributed objects must have the SPACE properties for Notification set to yes.
One of the application classes must implement Gava term for inherit) the notifyAICG
abstract class. The notifyAICG class has only one method, which is the callback
method. The user class must override this method with the codes that need to be
executed when an event fires.

6 Developing Distributed Application with the AICG Tool

This section describes the steps for developing distributed applications using the
AICG model. An example of a C4ISR application is introduced in section 6.2 to aid
the explanation of the process.

6.1 Development Process

The developer starts the development process by defining shared objects using the
Prototyping System Description Language (PSDL). The PSDL is processed through a
code generator (PSDLtoSpace) to produce a set of interface wrapper codes. The
interface wrappers contain the necessary codes for interaction between application ·
and the space without the need for the developers to be concerned with the writing
and removing of objects in the space. The developers can treat shared or distributed
objects as local objects, where synchronization and distribution are automatically
handled by the interface codes.

JAVA Wrappers for Automated Interoperability 59

6.2 Input Definition to the Code Generator

The following example demonstrates the development of one of the many distributed
objects in a C4ISR system. Airplane positions picked up from sensors are processed
to produce track objects. These objects are distributed over a large network and used
by several clients' stations for displaying the positions of planes. Each track or plane
is identified by track number. The tracks are 'owned' by a group of track servers, and
only the track servers can update the track positions and its attributes. The clients only
have read access on the track data. PSDL codes define (1) track object and as well as
(2) Track_list object with the corresponding methods. AICG has used an extended
version of the original PSDL grammar to model the interactions between applications
in an entire distributed system.

The track PSDL starts with the definition of a type called track. It has only one
identification field tracknumber. Of course, the track objects can have more than
one field, but only one field is used in this case to uniquely identify any particular
track object. The type track_list on the other hand, does not need an identification
field since there is only one track_list object in the whole system. Track_list is used
to keep a list of the tracknumbers of all the active tracks in the system at each
moment in time.
All the operators (methods) of the type are defined immediately after the specification.
Each method has a list of input and output parameters that define the arguments of the
method. The most important portion in the method declaration is the implementation.
The developer must be able to define the type of operation the method supposed to
perform. The operation types are constructor (used to initialize the class), read (no
modification to any field in the class) and write (modification is done to one or more
fields in the class). These are necessary, as the code generated will encapsulate the
synchronization of the distributed objects.

The other field in the implementation portion of the method, is transactiontime.
transactiontime defines the upper limit in milliseconds within which the operation
must be completed.

Upon running the example through the generator tool, a set of Java interface wrapper
files are produced. Developers can ignore most of the generated files except the
following:

• Track.java: this file contains the skeleton of the fields and ~e methods of the
track cl~s. The user is supposed to fill the body of the methods.

• TrackExtClient.java: this is the wrapper class that the client initializes and uses
instead of the track class.

• TrackExtServer.java: this is the wrapper class that the server initializes and uses
instead of the track class.

• NotifyAICG.java: this class must be extended or implemented by the application
if event-notification and call-back are needed.

60 N. Cheng et al.

The methods found in the trackExtC!ient and trackExtServer have the same method
names and signatures as the track class. In fact, the track class methods are called
within trackExtClient or trackExtServer.

7 AICG Wrapper Design

This section explains the design of the AICG and the codes that are generated from
psdl2java program.

7.1 AICG Wrapper Architecture

The AICG wrapper codes generated consists of four main module types. They are the
Interface modules, the Event modules, Transaction modules and the Exception
module. The interface modules implement the distributed object methods and
communicate directly with the application. In reference to the example in section 6.2,
the interface modules are entry AICG, track, trackExt, trackExtClient, trackExtServer.
Instead of creating the actual object (track), the application should instantiate the
corresponding interface object, either the trackExtClient or trackExtServer. Event
modules (eventAICGID, eventAICGHandler, notifyAICG) handle external events
generated from the JavaSpace that are of interest to the application. Transaction
modules (transactionAICG, transactlonManagerAICG) support the interface module
with transaction services. Lastly, the exception module (exceptionAICG) defines the
possible types of exceptions that can be raised and need to be captured by the
application.

Each time the application instantiates a track class by creating a new trackExtServer,
the following events take place in the Interface:
1. An Entry object is created together with the track object by the trackExtServer.

The tack object is placed into the Entry object and stored in the space.
2. Transaction Manager is enabled. ·
3. The reference pointer to trackExtServer is_returned to the application.

Each time a method (getID, getCallsign, getPosition) that does not modify the
contents of the object is invoked, the following events take place in the Interface:
1. The application invokes the method through the Interface

(trackExtServer/trackExtClient).
2. The Interface perfonns a Space "get" operation to update the local copy.
3. The method is then executed on the updated copy of the object to return the value

back to the application.

Each time a method (setCallsign, setPosition), which does modify the contents of the
object is invoked, the following events take place in the Interface:
1. · The application invokes the method through the Interface.
2. The interface performs a Space "take" operation, which retrieves the object from

the space.
3. The actual object method is then invoked to perform the modification.

JAVA Wrappers for Automated Interoperability 61

4. Upon completion of the modification, the object is returned to the space by the
interface using a "write" operation.

7.2 Interface Modules

The interface modules consist of the following modules; an entry (entry AICG) that is
stored in space, the actual object (trackExt) that is shared and the object wrapper
(trackExt, trackExtClient, trackExtServe.).

7.2.1 Entry
A space stores entries. An entry is a collection of typed objects that implements the
Entry interface. The Entry interface is empty; it has no methods that have to be
implemented. Empty interfaces are often referred to as "marker" interfaces because
they are used to mark a class as suitable for some role. That is exactly what the Entry
interface is used for, to mark a class appropriate for use within a space.

All entries in the AICG extend from this base class. It has one main public attribute,
an identifier and an abstract method that returns the object Any type of object can be
stored in the entry. The only limitation is that the object must be serializable. The
serializable property allows the java virtual machine to pass the entire object by value
instead of by reference

All Entry attributes are declared as publicly accessible. Although it is not typical of
fields to be defined as public in object-oriented programming style, an associative
lookup is the way the space-based programs locate entries in the space. To locate an
object in space, a template is specified that matches the contents of the fields. By
declaring entry fields public, it allows the space to compare and locate the object
AICG encourages object-oriented programming style by encapsulating the actual data
object into the entry. The object attributes can then be declared as private and made
accessible only through clearly defined public methods of the object.

7.2.2 Serialization
Each distributed interface object is a local object that acts as a proxy to the remote
space object. It is not a reference to a remote object but instead a connection passes all
operations and value through the proxy to the remote space. All the objects must be
serializable in order to meet this objective. The Serializable interface is "marker"
interface that contains no methods and serves only to mark a class as appropriate for
serialization. Classes marked as serializable should not contain pointers in their
representation.

7.2.3 The Actual Object
We now look at the actual objects that are shared between servers and clients. The
psdl2java generates a skeleton version of the actual class with the method names and
its arguments. The bodies of the methods and its fields need to be filled by the
developers.

:;
-~ ...•

. ;

::,
j

62 N. Cheng et al.

7.2.4 Object Wrapper
Wrapping is an approach to protecting legacy software systems and commercial off-
the-shelf (COTS) software products that require no modification of those products [1].
It consists of two parts, an adapter that provides some additional functionality for an
application program at key external interfaces, and an encapsulation mechanism that
binds the adapter to the application and protects the combined components [1].

In this context, the software being protected contains the actual distributed objects,
and the AICG model has no way of knowing the behaviors of the distributed objects
other than the operation types of of the methods. The adapter intercepts all
invocations to provide additional functionalities such as synchronization between the
local and distributed object, transaction control, event monitoring and exception
handling. The encapsulation mechanism has been explained in the earlier section
(AICG Architecture). Instead of instantiation of the actual object, the respective
interface wrapper is instantiated. Instantiating the interface wrapper indirectly
instantiates the actual object as well as storing the object in the space.

Three classes are generated for every distributed object. There are named with the
object name appended with the following Ext, ExtCiient, and ExtServer.

7.3 Event Modules

The event modules consist of the event callback template (notifyAICG), the ev~nt
handler (eventAICGHandler) and the event identification object (eventAICGID).

7.3.1 Event Identification Object
The event identification object is used to distinguish one event from others. When an
event of interest is registered, an event identification object is created to store the
identification and event source. The object has only two methods, an 'equals' method
that checks if two event identification objects are the same and a 'to string' method
which is used by the event handler for retrieving the right event objects from the hash
table.

7.3.2 Event Handler
Event Handler is the main body of the event operation in the AICG model. It handles
registration of new events, deletion of old events, listening for event and invoking the
right callback for that event. Inside the event handler are in fact, three inner classes to
perform the above functions. Events are stored in a hash table with the event
identification object as the key to the hash table. This allows fast retrieval of the event
object and the callback methods.

The event handler listens for new events from the space or other sources. When an
object is written to the space, an event is created by the space and captured by the all
the listeners .. The event handler would immediately spawn a new thread and check
whether the event is of interest to the application.

JAVA Wrappers for Automated Interoperability 63

7.3.3 The Callback Template
The callback template is a simple interface class with an abstract method
listenerAICGEvents. Its main function is to allow the AICG model to invoke the
application program when certain events of interest is "fired". As explained earlier,
the notify AICG interface needs to be implemented by each application that wishes to
have notification. ·

7.4 The Transaction Modules

The transaction modules consist of a transaction interface (transactionAICG) and the
transaction factory (transactionManagerAICG).

The transaction intetface is a group of static methods that are used for obtaining
references to the transaction manager server somewhere on the network. It uses the
Java RMI registry or the look-up server to locate the transaction server.

The transaction factory uses the transaction intetface to obtain the reference to the
server, which is then used to create the default transaction or user-defined
transactions. In short the transaction factory can perform the following:

1. Invoke··the transaction interface to obtain a transaction manager.
2. Create·a default transaction with lease time of 6 seconds.
3. Create a transaction with a user defined lease time.

7.5 The Exception Module

The exception module defines all the exception codes that are returned to the
application when certain unexpected conditions occur in the AICG model. The
exceptions include
• "UnDefinedExceptionCode"; unknown error occur.
• "SystemExceptionCode"; system level exceptions, such disk failure, network

failure,
•
•
•
•
•
•
•

"ObjectNotFoundException"; the space does not contain the object.
"TransactionException"; transaction server not found, transaction expired
before commit.
"LeaseExpiredException"; object lease has expired.
"CommunicationException"; space communication errors .
"UnusableObjectException"; object corrupted .
"ObjectExistsException"; there another object with the same key in the space.
"NotificationException"; events notification errors .

8 Conclusion

The AICG vision of distributed object-oriented computing is an environment in
which, from the developer's point of view, there is no distinct difference between

I

:I

f
I
I .
,; .

I':
1.

64 N. Cheng et al.

sharing of objects within an address space and objects that are on different machines.
The model talces care of underlying interoperability issues by taking into account
network latency, partial failure and concurrency. Automating the generation of
interface wrappers directly from the Prototype System Description Language further
enhances the reliability of the systems by enforcing proper object-oriented
programming styles on the shared objects. Usage of PSDL for specification of shared
o~jects also results in increased efficiency and shorter development time.

References

1. Valdis Berzins, Luqi, Bruce Shultes, Jiang Guo, Jim Allen, Ngom Cheng, Karen
Gee, Tom Nguyen, and Eric Stiema : Interoperability Technology Assessment for
Joint C4ISR Systems. Naval Postgraduate School Report NPSCS-00-001
September, (1999). ·

2. Nicholas Carriere, David Gelemter : How to Write Parallel Programs: A Guide to
the Perplexed. ACM Computing Surveys, September (1989) 102-122.

3.David Gelernter : Generative Communication in Linda. ACM Transaction on
Programming Languages and Systems, Vol. 7, No. 1, January (1985) 80-112.

4. Bill Joy: The Jini Specification. Addison Wesley, Inc. (1999)
5.Edward Keith: Core Jini. Prentice Hall, PTR, (1999)
6. Eun-Gyung Kim : A Study on Developing a Distributed Problem Solving System.

IEEE Software, January (1995) 122-127
7.Fred Kuhns, Carlos O'Ryan, Douglas Schmidt, Ossarna Othman, Jeff Parsons :

The Design and Performance of a Pluggable Protocols Framework for Object
Request Broker Middleware. IFIP 6u, International Workshop on Protocols For
High-Speed Networks (PfHSN' 99), August 25-27, (1999)

8. David Levein, Sergio Flores-Gaitan, Douglas Schmidt : An Empirical Evaulation
of OD Endsystem Support for Real-time CORBA Object Request Brokers.
Multimedia Computing and Network 2000, January (2000).

9. Luqi, V aldis Berzins : Rapidly Prototyping Real-Time Systems. IEEE Software,
September (1988) 25-35

10.Luqi, Valdis Berzins, Bernd Kraemer, Laura White : A Proposed Design for a
Rapid Prototyping Language. Naval Postgraduate School Technical Report, March
(1989)

11.Luqi, Mantalc Shing: CAPS - A Tool for Real-Time System Devleopment and
Acquisition. Naval Research Review, Vol I (1992) 12-16

12.Luqi, Valdis Berzins, Raymond Yeh : A Prototyping Language for Real-Time
Software. IEEE Software, October (1998) 1409-1423

13.Kevin Sullivan, Mark Marchukov, John Socha: Analysis of a Conflict Between
Aggregation and Interface Negotiation in Microsoft's Component Object Model.
IEEE Transactions on Software Engineering, Vol. 25, No. 4, July/August (1999)
584-599

14.Antoni Wolski : LINDA: A System for Loosely Integrateu DataBases. IEEE
Software, January (1989)66-73.

