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Frequency Response of Pressure Sensor
Con� gurations in Slip-Flow Conditions

Stephen A. Whitmore¤

Naval Postgraduate School, Monterey, California 93943

A dynamic model is presented for pneumatic tubing and pressure sensor con� gurations in rare� ed or slip-� ow
conditions. The model uses the linearized Navier–Stokes equations,with the boundaryconditionsextended to allow
for rare� ed conditions. At low pressure levels, the modi� ed wall boundary condition allows � uid elements to slip
when directly in contact with the tubing wall. This slippageeffectively lowers � uid viscosity. Dynamic effects of the
rare� ed-� ow extension are demonstrated by comparing rare� ed-� ow solutions to equivalent solutions generated
using continuum-�ow models. Lower viscosity resulting from rare� ed � ow causes the con� guration response to
be less damped than for similar conditions without molecular effects. Comparing steady-state response to data
from a series of laboratory experiments validates the range of the rare� ed-� ow model. When pneumatic tubing
is heated unevenly, rare� ed � ow forces the tube hot end to have higher pressure than the cold end, with no net
� ow along the tube. This pressure difference results in a dc offset in the measured pressure reading. Comparisons
of the steady-state model to experimental data show that the slip-� ow model is generally applicable for Knudsen
numbers up to approximately 0.65. Beyond 0.7 Knudsen number, molecular effects dominate, and the model is no
longer applicable to the problem physics.

Nomenclature
Ac = tube cross-sectionalarea, cm2 (in.2 )
c = sonic velocity, m/s (ft/s)
d = tube diameter, cm (in.)
i = node index
J0 = zeroth-orderBessel function
J1 = � rst-order Bessel function
J2 = second-orderBessel function
j =

p
¡1

K = polytropic density proportionalityconstant
KM = Maxwell pressure parameter
L = tube length, cm (in.)
n = number of computational nodes
P = pressure, kPa (¹m of Hg, psf )
Pcold = pressure at cold end of tube, kPa (¹m of Hg, psf )
Phot = pressure at hot end of tube, psf
PI = pressure at transducer, kPa (¹m of Hg, psf )
Pr = Prandtl number
P0 = pressure at surface, kPa (¹m of Hg, psf )
P1;2;3;:::;n = pressure at computational nodes 1; 2; 3; : : : ; n,

kPa (¹m of Hg, psf )
P1 = ambient pressure, kPa (psf )
R = tube radius, cm (in.)
Rg = universal gas constant, Nt-m/kg K (ft-lbf/[lbm ±R])
r = radial coordinate, cm (in.)
T = temperature, ±C (±F)
Tcold = temperature at cold end of tube, ±C (±F)
Thot = temperature at hot end of tube, ±C (±F)
T/ = ambient temperature, ±C (±F)
t = time, s
U = longitudinal velocity, m/s (ft/s)
Ucreep = creep � ow velocity at tubing wall, m/s (ft/s)
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Uslip = slip velocity at the wall, m/s (ft/s)
Uwall = total longitudinalvelocity at wall, m/s (ft/s)
V = transducer volume, cm3 (in.3 )
Ve = effective volume of a model node, cm3 (in.3)
x = longitudinal coordinate, cm (in.)
® = shear wave number, j 3=2p

.!½0 R2=¹0/
0p = wave propagation factor
1Trandom = random error in temperature,

measurement, ±C (±F)
±PMcLeod = rms error in McLeod gauge

measurement, kPa (psf )
±PVernier = rms error in Vernier manometer

measurement, kPa (psf)
@ P=@x = longitudinal pressure gradient, kPa/m (psf/ft)
@T=@x = longitudinal temperature gradient, K/m (±F/ft)
@U=@r = velocity shear at wall [m/s] ¢ cm ([ft/s] ¢ in.)
" = ratio of slip distance to mean free path
# = slip distance, ¹m
· = Knudsen number
·p = rare� ed-� ow correction term in

momentum equation
·0 = Knudsen number based on mean � ow properties
3 = � rst-variationoperator
3T = rms error in temperature measurement, ±C (±F)
¸ = mean free path of the � uid molecules, ¹m
¹ = dynamic viscosity, kg ¢ [m/s] (lbm ¢ [ft/s])
¹0 = local steady-statebulk viscosity in the tubing,

kg ¢ [m/s] (lbm ¢ [ft/s])
» = polytropic expansion parameter
¼ = irrational constant, 3.1415926535898: : :
½ = density, kg/m3 (lbm/ft3 )
½0 = density based on mean � ow properties,

kg/m3 (lbm/ft3 )
92 = mean-squared error
! = radian frequency, 1/s
20 log k¢k = log-magnitude of a complex quantity, dB

Introduction

A CHIEVING theability to sensesurfacepressuresaccuratelyon
hypersonic or � ight vehicles presents a formidable measure-

ment challenge.The hostility of the sensing environmentprecludes
intrusion into the � ow, and measurements must be obtained using
signi� cant lengths of small-diameter pneumatic tubing to connect
the surface ports to remotely located pressure transducers. An ide-
alized pneumatic con� guration is shown in Fig. 1 and consists of a
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220 WHITMORE

Fig. 1 Idealized schematic of pressure sensor con� guration.

surface pressureport connectedto a pressuretransducerusing a sec-
tion of cylindrical pneumatic tubing. The pneumatic tubing has a
diameter D (radius R) and length L . A small volume V is attachedto
the downstreamend of the tubing to represent the entrappedvolume
of the pressure transducer.

Away from the stagnation regions on the vehicle, in hypersonic-
� ow regimes pressure levels to be sensed are generally very low.
For some applications,such as air data measurements, local surface
static pressure levels are as low as 0.001 atm (0.1 kPa). Further
complicatingthe sensing problem is the effect of viscousboundary-
layerheatingat the surface.This surfaceheatingrequires the surface
port to be very small and also induces large temperature gradients
along the length of the pneumatic tubing. Because of the combi-
nation of very low pressure levels, small-diameter pneumatic lines,
and large temperature gradients, molecular effects are no longer
negligible

Background
The basic problemof predictingtube-� ow dynamics has been ex-

tensively studied. For continuum-�ow conditions, Lamb,1 Iberall,2

Schuder and Binder,3 and Hougen et al.4 have developed closed-
form frequency-domainsolutions for simple tubing geometries and
constant wall temperatures.Berg and Tijdeman5 and Tijdeman6 ex-
tend the analyses of Schuder and Binder3 and Hougen et al.4 to de-
velop a recursion formula for a complex geometry, which consists
of cascades of tubes and volumes. Parrot and Zorumski7 investi-
gated the dynamic transmission of sound in a simple quartz tube
subjected to high temperatures and large longitudinal temperature
gradients.References 1–7 are valid only for continuum-�ow condi-
tions. Maxwell,8 Knudsen,9 and Tompkins and Wheeler10 have in-
vestigatedtube� owfor rare� ed conditionsat high temperatureswith
longitudinaltemperaturegradients.However, these rare� ed � ow in-
vestigationsconsidered only steady-�ow conditions.The effects of
time-varying pressure input conditions were not investigated.

The dynamic in� uence of rare� ed � ow phenomenaon pneumatic
pressure sensing systems has not been generally well understood;
consequently, research was initiated at the NASA Dryden Flight
Research Center with a primary objective to develop a dynamic
response model for pneumatic pressure sensing systems that is ap-
plicable to both continuum and rare� ed � ows. Whitmore et al.11

present a detailed analytical development and empirical validation
of one such model.

For completeness, this paper summarizes information presented
in detail in Ref. 11. Additionally, this paper presents frequency-
response analyses for intermediate-Knudsen-number � ow condi-
tions not presented in Ref. 11. Also, additional laboratory data not
available when Ref. 11 was originally published will be presented.
These additional data will be compared to data taken from Ref. 11.
The new data to be presenteddirectly support the conclusionsdrawn
by the authors in Ref. 11. The model provides fundamental insight
into the behaviorof longitudinalpressurewaves at the transitionbe-
tweencontinuumandrare� ed � ow. Additionally,the modelprovides
instrumentationdesignerswith a tool that can be used to predict and
evaluate the responses of complex pneumatic systems over a wide
range of � ow conditions that vary continuously from continuum to
slip � ow.

Mathematical Analysis
In this paper, the model of Berg and Tijdeman5 and Tijdeman6

is extended to allow for rare� ed conditions by modifying the wall
boundarycondition to allow� uid elements to move when directly in

contactwith the wall. This boundary conditioncontrasts to the clas-
sical no-slip condition used for continuum-�ow mechanics. Other
than the wall boundary condition modi� cation, the classical equa-
tions of � uid motion fully apply in the slip-� ow regime.

Slip-� ow conditions correspond to � ow regimes with values of
Knudsen number that lie between approximately 0.01 and 1.0.
For hypersonic,reentry, and suborbital � ight applications,Knudsen
numbers variations from zero to approximately 0.50 are typically
encountered.For typical orbital applications, the � ow is so rare� ed
that the Navier–Stokes equationsno longer model the physicsof the
� ow. For these applicationsone must resort to statistical thermody-
namics to model the � uid behavior.8¡10

Knudsen Number
The Knudsennumber is de� ned as the ratioof theaveragedistance

each � uid particle travels between collisions (the mean free path
distance ¸) and the characteristic length scale of the system. If the
length scale of the system is de� ned to be the tube radius R, the
Knudsen number can be approximated by the expression12

· ¼
p

Rg¼T .¹=R P/ (1)

In Eq. (1) T is the local gas temperature.

Modi� ed Wall Boundary Condition
For slip-� ow conditions, the � uid velocity at the wall can be

decomposed into two parts,12 the wall slip velocity and the thermo-
molecularcreepvelocity.The wall slip velocityis a result of reduced
wall � uid viscosity in rare� ed � ow conditions. Fluid molecules no
longer stick to the walls of the tube, but instead slide along the wall.
The thermomolecular creep is a transpiration phenomenon where
the � uid molecules in contact with the heated tubing wall actually
migrate from the hot end of the tube toward the colder end. The
modi� ed wall boundary condition is the sum of the slip and molec-
ular creep velocities. The slip velocity is proportional to the local
wall shearing stress, but in the opposite direction:

Uslip D ¡#
@U

@r
(2a)

In Eq. (2a) # is de� ned as the slip distance and is an empirical
parameter that accounts for reduced � uid viscosity in rare� ed � ow
conditions. The ratio of slip distance to the mean free path ¸ is
de� ned as

" D #=¸

For the analyses presented, " is assumed to have a magnitude of
approximately 1.0. The unity value is a good approximation for
metallic surfaces. For ceramic surfaces, the magnitude of " is a bit
larger. For example, quartz glass has an " value of approximately
1.25. Kennard12 has tabulated values of " for various materials of
interest for high-temperatureor high-speed � ight applications.

The molecular creep velocity is proportional to the local longi-
tudinal temperature gradient and inversely proportional to the local
pressure. Molecular creep is caused by gas molecules originating
from the hot end of the tube having higher kinetic energy than
molecules originating from the colder regions. The result is that
the hot-end molecules recoil from collisions more strongly than do
cold-endmolecules, and gas molecules at the wall acquire a net tan-
gential momentum toward the hot end of the tube. Consequently,
� uid molecules creep along the tubing walls with a velocity that is
directly proportional to the local temperature gradient:
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WHITMORE 221

Ucreep D 3
4

¹0 Rg

P0

@T

@x
(2b)

Summing Eqs. (2a) and (2b), the resulting equation for the mod-
i� ed boundary condition is

Uwall.x; t/ D Ucreep C Uslip D 3

4

¹0 Rg

P0

@T

@x
¡ #

@U

@r
(3)

In Eq. (3), ¹0 and P0 are the longitudinal averages of viscosity and
pressure.

Solving the Boundary Value Equations
When the procedure laid out by Berg and Tijdeman5 and

Tijdeman6 is followed, the Navier–Stokes equations, expressed in
cylindrical coordinates, are linearized using small perturbations.
The linearizedboundary value equations express the pressure, tem-
perature, and velocity within the tube as a function of time t , radial
distance from the center of the tube r , and longitudinal location x
in the tube.

The energy equationis decoupledfrom the momentum and conti-
nuity equationsby assuming the wave expansionprocess in the tube
to be polytropic.A polytropicprocess is a simple energy model that
relates pressure, temperature, and density13;14:

P D K½» (4)

The polytropic expansionparameter » has limiting values given by
1 < » · ° , where ° is the ratio of speci� c heats at constantpressure
and volume. Values of » D ° correspondto an isentropicexpansion.
For values of » < ° , the expansion process is irreversible. A value
of » D 1 corresponds to a constant temperature process. The decou-
pling process implicitly expresses the temperature within the tube
as a function of pressure and velocity.

The resulting linearized and temperature-decoupled boundary
value equations are averaged across the radius of the tube to give a
set of one-dimensionalpartial differentialequationswhere the pres-
sure and velocity in the tube vary as a function of t and x . When the
Fourier transformsof the radial-averagedboundary value equations
are evaluated, the partial differential equations with respect to t and
x are transformed to ordinary differential equations with respect
to x . The frequency-domain boundary value equations now have
the radian frequency of the longitudinal pressure wave in the tube
! as a fundamental parameter. If one assumes that gas properties
and tube diameter remain constant along the length of the tube, the
one-dimensional, frequency-domain boundary value problem can
be solved analytically.This fundamental solution is used as a build-
ing block for complex solutions where � uid properties and tubing
geometry are allowed to change longitudinally along the length of
the tube.

Complex solutions can be achieved by starting at the transducer
end (Fig. 1) of the tube and analytically integrating upstream over
an incremental length (� nite element). A solution node is de� ned
as the point where the boundary conditions of one � nite element
must mesh with the boundary conditions of another element. The
problem is solved recursively assuming n solution nodes starting at
the transducer end (nth node) and working toward the surface end
(0th node) of the tube. Using these recursive formulas, solutions
for arbitrary geometries and longitudinal temperature pro� les are
constructed.

Recursion Formulas
The resulting recursive formulas for the frequency response, the

ratio of the Fourier transform of pressure at the transducer end of
the tube to the Fourier transform of the pressure at the surface end
of the tube, is

PL .!/

P0.!/
D

P1.!/

P0.!/

P2.!/

P1.!/
¢ ¢ ¢

Pn ¡ 1.!/

Pn ¡ 2.!/

Pn.!/

Pn ¡ 1.!/

D
nY

i D 1

³³
1

¿»
cosh

µ
!0pi

L i

ci

¶
C !

Vei 0pi

Aci ci
sinh

µ
!0pi

L i

ci

¶¼ ´́

(5)

In Eq. (5), the parameter Vei is the effectivevolume and accounts
for the entrapped volume at the i th node plus the impedance of
all downstream tubes and volumes. At the nth node there are no
downstream impedances, and Vn is only the volume entrapped by
the pressure transducer.The recursion formulas for the Ve are

Vei D Vi

C

¡
c2

i

¯
c2

i C 1

¢
Vei C 1 fcosh[!±i C 1] C [1=.!´i C 1/] sinh[!±i C 1]g
cosh[!±i C 1] C !´i C 1 sinh[!±i C 1]

(6)

where

´i C 1 D 0pi C 1

Vei C 1

Aci C 1 ci C 1

(7a)

±i C 1 D 0pi C 1

L i C 1

ci C 1

(7b)

0p D

(
.° =»/[J0[®] ¡ #.®=R/J1[®]]

· p.J2[®] C #.®=R/J1[®]/ C j! 3
4
.¹= NP0/[.»¡1/=» ].2=®/J1[®]

)1
2

(7c)

In Eq. (7c), 0p is referred to as the wave propagation factor5;6;11

and accounts for the dissipative forces acting at the tubing walls. As
developed by Berg and Tijdeman5 and Tijdeman,6 the variation of
» as a function of the fundamental � ow parameters is given by

» D
µ

1 C
µ

° ¡ 1

°

¶
J2[

p
Pr ®]

J0[
p

Pr ®]

¶¡1

(7d)

Equation (7d) is a direct result of the polytropic process as-
sumption made earlier [Eq. (4)]. If the rare� ed � ow terms are
dropped from Eqs. (5–7), then algorithm exactly reduces to the
recursion model developed by Berg and Tijdeman5 and Tijdeman6

for continuum-�ow conditions.

Results and Discussion
The dynamic model presented in Eqs. (5–7) predicts that rare� ed

gas effects will manifest themselvesprimarily in two peculiarways:
1) At very low pressure levels, low molecular density allows � uid

to slip at the tubing wall. Fluid viscosity is effectively lowered, and
dynamic response of the tubing con� guration is less damped than
occurs when molecular effects are negligible.

2) To balance creep � ow at the wall, gas molecules near the tube
centerlinemigrate from hot to cold ends of the tube. This migration
establishesa pressure gradient. With no net � ow in the tube, the hot
end of the tube will have a higher average pressure level than does
the cold end.

Slip-Flow Frequency Response
Theoretical effects of rare� ed � ow on frequency response are

shown in Figs. 2 and 3. In Figs. 2 and 3, the frequencyresponseof an
example con� guration is analyzed for ambient pressure levels from
0.00005 to 0.25 atm. The con� guration parameters are L D 30:5 cm
(12 in.), D D 0:1585 cm (0.0625 in.), V D 0:08 cm3 (0.005 in.3), and
Tamb D 5±C (500±F).Table1 showsKnudsennumberscorresponding
to the analyzed pressure levels.

In Fig. 2a, the frequency-responsemagnitude in decibels,

20 logfkPL.!/=P0.!/kg

is plotted with the rare� ed-� ow effects modeled. In Fig. 2b,
the frequency-response magnitude in decibels is plotted without
rare� ed-� ow effects modeled. Clearly, at the higher pressure levels
where the Knudsen numbers are very low, the frequency-response
curveswith and without theKnudsennumber effectsare nearly iden-
tical.However, as the pressuredrops, the model without rare� ed gas
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222 WHITMORE

a)

b)

Fig. 2 Tubing frequency response for variousambientpressure levels,
L = 30:5 cm, D = 0:16 cm, and T 1 = 5±C: a) real gas effects modeled and
b) real gas effects not modeled.

Fig. 3 Half-power frequency as function of Knudsen number.

effects exhibits signi� cant magnitude attenuation when compared
to the model with rare� ed gas effects.

Figure 3 shows a summary of the results of Figs. 2a and 2b. In
Fig. 3, the frequency of the half-power point (the point where the
magnitude is attenuated3 dB from the dc level) is plotted as a func-
tionof Knudsennumber.The two curvesare in goodagreementup to
approximately · D 0:05. Beyond this point, the two curves diverge.
At higher Knudsen numbers the frequency-responsemagnitude of
the model with rare� ed-gas effects is signi� cantly less attenuated.
From this result, it can be concluded that rare� ed-gas � uid slip at

Table 1 Knudsen numbers corresponding
to the analyzed pressure levelsa

Atm kPa psf ·

0.2500 25.33 529.05 3.1 £ 10¡4

0.1000 10.13 211.62 7.6 £ 10¡4

0.0500 5.07 105.81 1.5 £ 10¡3

0.0100 1.01 21.16 7.6 £ 10¡3

0.0050 0.51 10.58 1.5 £ 10¡2

0.0010 0.10 2.12 7.6 £ 10¡2

0.0005 0.05 1.06 0.1530
0.0001 0.01 0.21 0.7640
0.00005 0.005 0.11 1.5280
aAmbient pressure level.

the wall boundary has the same effect as reducing the viscosity of
the � uid.

Frequency-Response Experiments
In Ref. 11, a detailed validation is presented of the dynamic

model at continuum-�ow conditions for a variety of tube geome-
tries sizable temperature gradients are forced along the lengths of
the tubes. However, validation of the model frequency response for
rare� ed � ow conditions has not been performed. The task of de-
vising an experimentalprocedure to measure the dynamic response
of a tubing/sensor con� guration for slip-� ow conditions is quite
daunting.

Acoustical methods normally used to generate a controlled input
signal to the sensor con� guration are not applicable for extremely
low pressure levels. Electromechanical actuators such as high-
� delity speaker systems require a minimal level of air impedance to
functionproperly.The air densityrequiredto achievethis impedance
level is high enough that rare� ed � ow effects are negligible. Simi-
larly, without signi� cant redesign, existing shock tunnels15 cannot
be used to generatethe input pressurepulse.Fairly signi� cant differ-
ential pressure levels are required to burst cleanly the shock-tunnel
membrane that isolates the evacuated end of the tunnel from the
pressurized end. The incoming pressure wave � lls the evacuated
space upstream of the membrane, and the resulting pressure levels
become too high for rare� ed gas effects to exist. All rare� ed-gas
and thermomolecular effects are wiped out immediately after the
pulse is formed. Perhaps performing frequency-responseor shock-
tube types of measurements at low-to-moderate pressure levels for
microdiameter tubing could offer a viable solution. The potential
of using an electrical arc to generate a shock pulse should be in-
vestigated.However, in this case it must be recognized that plasma
effects will occur, and these may confuse the results of the tests.
In any case, development of these measurement methods were be-
yond the scope and funding for this research. The dynamic effects
presentedin Figs. 2 and 3 remain unvalidatedby empirical measure-
ments at this point and unhappily remain as a challenge for future
researchers.

Steady-State Model Response at High Knudsen Numbers
In the classical work on rare� ed � ow,8 Maxwell determined that

in the free-molecular limit (in� nite Knudsen number) the ratio of
the steady-state pressure gradient, when normalized by the mean
pressure level in the tube, is equal to one-half of the temperature
gradient in the tube when normalized by the mean temperature in
the tube:

@ P=@ x

P
D 1

2
@T=@ x

T
(8)

For conditions that lie somewhere between the free-molecular
regime and the continuum-�ow regime, the pressure gradient in-
duced by longitudinal temperature gradients is less than the limit
predicted by Maxwell and is strongly a function of Knudsen
number.1;10 Thus, it is important to examine the steady-statebehav-
ior of Eqs. (5–7) to determine that they exhibit a similar behavior.

The steady-statebehaviorof the dynamic model was analyzedby
applying the � nal-value theorem16 to Eqs. (5–7). This � nal-value
analysis is presented in detail in Ref. 11. The normalized steady
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WHITMORE 223

pressure gradient can be written as a function of Knudsen number
and normalized temperature gradient. The resulting expression is

@ P=@x

P
D @T=@x

T

6·2

¼.1 C 4"·/
(9)

Equation (9) predicts that for small Knudsen number a very large
temperature gradient is required to get a measurable steady-state
pressure gradient. However, for higher Knudsen numbers, a signif-
icant steady-state pressure gradient can occur for relatively moder-
ate temperature gradients. Also, when it is assumed that the local
Knudsen number is approximated by the longitudinally averaged
Knudsen number ·0, Eq. (9) can be integrated with respect to x to
give

µ
Phot

Pcold

¶
D

2

6664

³
6·2

0

¼.1 C 4"·0/

´

Thot

Tcold

3

7775
(10)

Equation (10) demonstrates that the resulting temperature-induced
pressure ratio is primarily a function of the endpoint temperatures
and does not strongly depend on temperature distribution along the
tube.

More important, in the free-molecule limit (in� nite Knudsen
number), neither Eq. (9) nor Eq. (10) approaches a � nite limit as
predicted by Maxwell [Eq. (8)]. Thus, one must conclude that the
model of Eqs. (5–7) is not applicable in the very high-Knudsen-
number � ow regime. Because the Navier–Stokes equations used to
model the � ow in the core of the tube begin to break down at very
high Knudsen numbers, this conclusion makes sense. The relevant
questionis,At whatKnudsennumberdoes the dynamicmodelbegin
to breakdown? BecauseEq. (9) is directlyderivedfrom the dynamic
model, the steady-statebehaviorprovidesa means for evaluatingthe
validKnudsennumber rangesfor the dynamicmodel. When thepre-
dictions of Eq. (9) are compared against experimental data, one can
judgethe validityrangeby lookingat thepointwhere the predictions
diverge from the empirical data.

Steady-State Experiment
A seriesof steady-statelaboratorytestswere conductedto develop

a data set that can be compared to the predictions of Eq. (9). This
comparisonwill subsequentlybe used to assessthe validityrange for
the model. Data obtained by an original set of tests are presented in
Ref. 11. Also, additional laboratorydata not availablewhen Ref. 11
was originally published will be presented. These additional data
will be compared to data taken from Ref. 11.

The test apparatus is shown in Fig. 4. In this series of tests, an
evacuated, hermetically sealed oven was used to heat one end of a
tube at very low absolutepressure levels. The resulting temperature
gradient along the tube induced rare� ed gas effects inside of the

Fig. 4 Schematic of experimental apparatus.

tube. In this experimental setup, aluminum rods were center bored
and an assortment of brass tubes of varying diameters and lengths
were press-� t into the resulting holes. The aluminum rods provided
a thermal mass to distribute the heat evenly along one the end of
the tubing. The cold end of the tube was hermetically bonded to a
compression� tting that allowed the heated tube to be accessed from
outside the chamber.

The absolute chamber pressure was measured using a very low
pressure sensing device known as a McLeod vacuum gauge.15 For
the McLeod gauge, the manufacturer’s (estimated) accuracyspeci� -
cationwas approximately20¹m ofmercury(0.0027kPa). However,
repeatability of measurements demonstrated that this uncertainty
value was more likely better than 5 ¹m of mercury (0.0007 kPa).

The differentialpressure in the heated tube was measured using a
highlysensitiveVerniermanometer.15 The manufacturer’s speci� ca-
tion for the (estimated) accuracyof the Vernier manometer data was
approximately 10 ¹m of mercury (0.0014 kPa). However, when
pre- and posttest zero corrections were applied to the differential
pressure data, repeatability showed that the errors were reduced to
approximately 2 ¹m of mercury (0.0003 kPa).

Bimetallic17 (type T) thermocouple sensors were spot welded to
each end of the tube. These thermocouples sensed tube-end tem-
peratures and were used to calculate the longitudinal temperature
gradient. At high temperatures, typical accuracies for type T ther-
mocouple measurements are approximately§1–2±C. Data repeata-
bility showed that this 1–2±C accuracy level was achieved during
these series of tests.

Experiment Uncertainty Analysis
The uncertainty in the normalized Maxwell pressure parameter

K M D @ P=@x

P

¿
@T=@x

T

is formally evaluated using the calculus of variations. Taking the
� rst variation with respect to the components variables gives
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(11)

The variations in Eq. (11) are related to the fundamental mea-
surement errors by Eq. (12):

1[Phot ¡ Pcold] ´ ±PVernier

1[Phot C Pcold] ´ ±PMcLoed C ±PVernier ¼ ±PMcLeod

1[Thot C Tcold] ¼ 21T; 1[Thot ¡ Tcold] ¼ 21Trandom (12)

When Eq. (12) is substituted into Eq. (11), the uncertaintyequa-
tion becomes
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(13)
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The last two terms in Eq. (13) are negligible when compared to the
� rst two terms, and the uncertainty equation is approximated by

1

µ
@ P=@x

P

¿
@T=@x

T

¶
¼

µ
±PVernier

Phot C Pcold
¡ ±PMcLeod £
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¶

£
Thot C Tcold

Thot ¡ Tcold

(14)

The temperature terms in Eq. (14) simply act as a scaling factor
on the certainty. Taking the expectation of the squared uncertainty
gives the mean square error in the Knudsen parameter

Ã 2
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(15)

When it is assumed that the measurement errors in the McLeod
gauge and Vernier manometer are uncorrelated, the mean square
error equation reduces to
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(16)

The root mean square error equation results by taking the square
root of Eq. (16):

rmserror
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¶¿
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£
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(17)

The error bounds predicted by Eq. (17) approximate (� rst-order)
1 ¡ ¾ uncertainties in the normalized Knudsen pressure parameter
KM .

Fig. 5 Summary of steady-state test conditions.

Experimental Procedures
Because of the extremely low pressure levels at which these se-

ries of tests were performed, a systematic set of test procedureswas
developed to minimize errors introduced by variations in experi-
mental procedure. To minimize the effects of measurement bias in
the Vernier manometer a zero-correction procedure was followed.
At the beginning of each trial the zero differential pressure in the
tube at ambient temperature and pressure was recorded. At the end
of each trial, the system was vented and allowed to cool to ambient
temperature, and a new zero differential pressure reading was mea-
sured. The pre- and posttrial zero readings were averaged and used
to correct the differential pressure measurement for bias offsets in
the Vernier manometer.

Once the pretrial bias readings were recorded, the oven-chamber
heater was activated with the required temperature setting selected
on the thermal controller.The chamber was evacuatedto the desired
pressure,and the systemwas allowedto thermallystabilize.For each
trial, once a stable temperaturewas reached, the temperaturesetting
was maintained constant, and the chamber pressure was systemat-
ically lowered starting from the highest desired pressure level and
working toward the lowest desired pressure level. For each oven-
temperature setting, approximately 30 pressure levels were tested.
At each pressure setting, once a stable pressure and temperature
was achieved, the vacuum pump was shut down and sealed off.
The chamber was allowed to settle, and the hot- and cold-end tem-
peratures were recorded using the thermocouples.At this point the
absolute chamber pressure was recorded using the McLeod gauge,
and the differential pressure in the tubing was recorded using the
Vernier manometer.

Data Summary
As mentioned earlier, this paper presents steady-state test data

not available when Ref. 11 was published. The previously unpub-
lished test data are summarized in Fig. 5, where the average of the
hot- and cold-end tube pressures are plotted against ·0 (Knudsen
number calculated by averaging hot- and cold-end pressure and
temperaturevalues). Four different tubing diameters, 0.071 (0.028),
0.16 (0.063), 2.14 (0.84), and 2.34 cm (0.92 in.), were tested. The
minimum pressurelevels achievedfor these seriesof tests are signif-
icantly lower than those achieved in Ref. 11. The minimum pressure
levels achieved in Ref. 11 were on the order of 100 ¹m of mercury
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Fig. 6 Comparison of the steady-state model response to experimental results.

(0.014 kPa). For these tests, modi� cations to the vacuum seal of
the oven chamber allowed pressures as low as 15 ¹m of mercury
(0.002 kPa) to be achieved. The resulting values for Knudsen num-
ber varied from effectively zero to approximately 10. The vacuum
oven provided suf� cient heating to allow temperature gradients as
high as 1340±C/cm to be achieved. The tube endpoint temperatures
achieved in this series of tests are summarized in Fig. 5.

Experiment Results
When Eq. (9) is used as a guide, the Maxwell pressure parameter

is approximatedby dividing the normalized pressure differentialby
the normalized temperature differential:

K M D @ P=@x

P

¿
@T=@x

T
¼

µ
Phot ¡ Pcold

.Phot C Pcold/=2

¿
Thot ¡ Tcold

.Thot C Tcold/=2

¶

(18)

This data normalization allows the experimental data to be col-
lapsed into a single curve by plotting the result as a function of ·0.
The normalized test data are plotted in Fig. 6 along with the model
steady-statepredictions,the error boundspredictedby Eq. (17), and
experimental data originally published in Ref. 11. Several observa-
tions can be made with regard to Fig. 6:

1) The new experimental results show excellent agreement with
regard to the originally published experimental data taken from
Ref. 11. The relatively larger scatter at the higher Knudsen numbers
is a result of the relatively lower absolute pressure levels achieved
during these tests.

2) The approximateerror analysisof Eq. (17) is conservative.For
Knudsen numbers below 2, the data repeatabilityshows that the true
measurement error is signi� cantly better than the theoretical error
bound. The relatively larger amount of scatter at higher Knudsen
numbers is a result of the very low absolute pressure levels used in
the data normalization.

3) The steady-state model matches the data extremely well for
Knudsen numbers up to approximately0.65. In this � ow regime the
slip-� ow equations used in deriving the dynamic model appear to
be completely valid.

Beyond ·0 > 0:7, the curves rapidly diverge. The most likely
cause of this divergence is that molecular effects begin to domi-
nate, and continuum � ow no longer exists in the center of the tube.
This divergence point is labeled in Fig. 6. This divergence point
marks the upper bound on the model’s usefulness. Fortunately, it
appears that the model is valid for most of the slip-� ow data regime.

Summary
This paper reports on the development of a dynamic model for

pressure sensing con� gurations in slip-� ow conditions. The model

represents a fundamental extension to the understanding of � ow
behavior at the limits of the continuum-�ow regime. Rare� ed gas
effects manifest themselves in two ways:

1) At very low pressure levels, the low molecular density allows
the � uid to slip at the tubing wall. The end result is that the � uid
viscosity is effectively lowered, and the dynamic response of the
tubing con� guration is less damped than would occur if molecu-
lar effects were negligible. The � uid motion at the wall boundary
allowed by the rare� ed conditions has the effect of reducing the
viscosity.

2) Under steady � ow conditions where the tube is heated un-
evenly, the hot end of the tube has a higher average cross-sectional
pressure than does the coldend of the tube, with no net � ow in the
tube.This pressurebiasmanifests itselfas a dcoffset in themeasured
pressure reading.

The applicable � ow regimes for the model were evaluated by a
series of steady-state laboratory tests. Model comparisons are ex-
cellent for Knudsen numbers up approximately 0.65. For values of
·0 > 0:7, free-moleculeeffects dominate,and the model is no longer
valid. The model allows instrumentation designers to evaluate the
responses of pneumatic systems over a wide range of � ow condi-
tions, which may vary continuously from continuum to slip � ow.
Other potential applicationsoutsideof aerospace includepredicting
the behavior of micromachined � uid systems where the mean free
path of the working � uid is on the order of the channel diameter.
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