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Configurations in Slip-Flow Conditions

Stephen A. Whitmore*
Naval Postgraduate School, Monterey, California 93943

A dynamic model is presented for pneumatic tubing and pressure sensor configurations in rarefied or slip-flow
conditions. The model uses the linearized Navier-Stokes equations, with the boundary conditions extended to allow
for rarefied conditions. At low pressure levels, the modified wall boundary condition allows fluid elements to slip
when directly in contact with the tubing wall. This slippage effectively lowers fluid viscosity. Dynamic effects of the
rarefied-flow extension are demonstrated by comparing rarefied-flow solutions to equivalent solutions generated
using continuum-flow models. Lower viscosity resulting from rarefied flow causes the configuration response to
be less damped than for similar conditions without molecular effects. Comparing steady-state response to data
from a series of laboratory experiments validates the range of the rarefied-flow model. When pneumatic tubing
is heated unevenly, rarefied flow forces the tube hot end to have higher pressure than the cold end, with no net
flow along the tube. This pressure difference results in a dc offset in the measured pressure reading. Comparisons
of the steady-state model to experimental data show that the slip-flow model is generally applicable for Knudsen
numbers up to approximately 0.65. Beyond 0.7 Knudsen number, molecular effects dominate, and the model is no

longer applicable to the problem physics.

Nomenclature

. = tube cross-sectional area, cm? (in.?)

sonic velocity, m/s (ft/s)

tube diameter, cm (in.)

node index

zeroth-order Bessel function

first-order Bessel function

second-order Bessel function

-1

polytropic density proportionality constant
Maxwell pressure parameter

tube length, cm (in.)

number of computational nodes

pressure, kPa (um of Hg, psf)

pressure at cold end of tube, kPa (um of Hg, psf)
pressure at hot end of tube, psf

pressure at transducer, kPa (um of Hg, psf)
Prandtl number

pressure at surface, kPa (um of Hg, psf)
pressure at computationalnodes 1, 2,3, ..., n,
kPa (um of Hg, psf)

ambient pressure, kPa (psf)

tube radius, cm (in.)

B universal gas constant, Nt-m/kg K (ft-1bf/[Ibm °R])
radial coordinate, cm (in.)

temperature, °C (°F)

temperature at cold end of tube, °C (°F)
temperature at hot end of tube, °C (°F)
ambient temperature, °C (°F)

time, s

longitudinal velocity, m/s (ft/s)

creep flow velocity at tubing wall, m/s (ft/s)
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Ugip = slip velocity at the wall, m/s (ft/s)

Usan = total longitudinal velocity at wall, m/s (ft/s)
Vv = transducer volume, cm? (in.%)

v, = effective volume of a model node, cm? (in.})
X = longitudinal coordinate, cm (in.)

o = shear wave number, j*/%/(wpyR%/110)

r, wave propagation factor

AT 4om = random error in temperature,
measurement, °C (°F)

8Pycreoa = rms error in McLeod gauge
measurement, kPa (psf)

8 Pyermier = rms error in Vernier manometer
measurement, kPa (psf)
aP/ox = longitudinal pressure gradient, kPa/m (psf/ft)
T /ox = longitudinal temperature gradient, K/m (°F/ft)
aU/or = velocity shear at wall [m/s] - cm ([ft/s] - in.)
e = ratio of slip distance to mean free path
D = slip distance, um
K = Knudsen number
Kp = rarefied-flow correction term in
momentum equation
Ko = Knudsen number based on mean flow properties
A = first-variation operator
AT = rms error in temperature measurement, °C (°F)
A = mean free path of the fluid molecules, um
"w = dynamic viscosity, kg - [m/s] (Ibm - [ft/s])
o = local steady-state bulk viscosity in the tubing,
kg - [m/s] (Ibm - [ft/s])
& = polytropic expansion parameter
T = irrational constant,3.1415926535898 ..
0 = density, kg/m?® (Ibm/ft*)
Lo = density based on mean flow properties,
kg/m? (Ibm/f¢*)
w2 = mean-squared error
10} = radian frequency, 1/s
20log|l-ll = log-magnitudeof a complex quantity, dB

Introduction

CHIEVING the ability to sense surface pressuresaccurately on

hypersonic or flight vehicles presents a formidable measure-
ment challenge. The hostility of the sensing environment precludes
intrusion into the flow, and measurements must be obtained using
significant lengths of small-diameter pneumatic tubing to connect
the surface ports to remotely located pressure transducers. An ide-
alized pneumatic configuration is shown in Fig. 1 and consists of a
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Fig. 1 Idealized schematic of pressure sensor configuration.

surface pressure port connected to a pressure transducerusing a sec-
tion of cylindrical pneumatic tubing. The pneumatic tubing has a
diameter D (radius R) and length L. A small volume V is attachedto
the downstreamend of the tubing to represent the entrapped volume
of the pressure transducer.

Away from the stagnation regions on the vehicle, in hypersonic-
flow regimes pressure levels to be sensed are generally very low.
For some applications,such as air data measurements, local surface
static pressure levels are as low as 0.001 atm (0.1 kPa). Further
complicatingthe sensing problem s the effect of viscous boundary-
layerheating at the surface. This surface heating requires the surface
port to be very small and also induces large temperature gradients
along the length of the pneumatic tubing. Because of the combi-
nation of very low pressure levels, small-diameter pneumatic lines,
and large temperature gradients, molecular effects are no longer
negligible

Background

The basic problem of predicting tube-flow dynamics has been ex-
tensively studied. For continuum-flow conditions, Lamb,' Iberall
Schuder and Binder,® and Hougen et al.* have developed closed-
form frequency-domainsolutions for simple tubing geometries and
constant wall temperatures. Berg and Tijdeman® and Tijdeman® ex-
tend the analyses of Schuder and Binder® and Hougen et al.* to de-
velop a recursion formula for a complex geometry, which consists
of cascades of tubes and volumes. Parrot and Zorumski’ investi-
gated the dynamic transmission of sound in a simple quartz tube
subjected to high temperatures and large longitudinal temperature
gradients. References 1-7 are valid only for continuum-flow condi-
tions. Maxwell,® Knudsen,” and Tompkins and Wheeler'® have in-
vestigatedtube flow forrarefied conditionsat high temperatureswith
longitudinal temperature gradients. However, these rarefied flow in-
vestigations considered only steady-flow conditions. The effects of
time-varying pressure input conditions were not investigated.

The dynamic influence of rarefied flow phenomenaon pneumatic
pressure sensing systems has not been generally well understood;
consequently, research was initiated at the NASA Dryden Flight
Research Center with a primary objective to develop a dynamic
response model for pneumatic pressure sensing systems that is ap-
plicable to both continuum and rarefied flows. Whitmore et al.!!
present a detailed analytical development and empirical validation
of one such model.

For completeness, this paper summarizes information presented
in detail in Ref. 11. Additionally, this paper presents frequency-
response analyses for intermediate-Knudsen-mmber flow condi-
tions not presented in Ref. 11. Also, additional laboratory data not
available when Ref. 11 was originally published will be presented.
These additional data will be compared to data taken from Ref. 11.
The new data to be presenteddirectly supportthe conclusionsdrawn
by the authors in Ref. 11. The model provides fundamental insight
into the behavior of longitudinal pressure waves at the transition be-
tween continuumand rarefied flow. Additionally,the model provides
instrumentationdesigners with a tool that can be used to predict and
evaluate the responses of complex pneumatic systems over a wide
range of flow conditions that vary continuously from continuum to
slip flow.

Mathematical Analysis

In this paper, the model of Berg and Tijdeman’ and Tijdeman®
is extended to allow for rarefied conditions by modifying the wall
boundary condition to allow fluid elements to move when directly in

contact with the wall. This boundary condition contrasts to the clas-
sical no-slip condition used for continuum-flow mechanics. Other
than the wall boundary condition modification, the classical equa-
tions of fluid motion fully apply in the slip-flow regime.

Slip-flow conditions correspond to flow regimes with values of
Knudsen number that lie between approximately 0.01 and 1.0.
For hypersonic, reentry, and suborbital flight applications, Knudsen
numbers variations from zero to approximately 0.50 are typically
encountered. For typical orbital applications, the flow is so rarefied
that the Navier-Stokes equations no longer model the physicsof the
flow. For these applications one must resort to statistical thermody-
namics to model the fluid behavior3-1°

Knudsen Number

The Knudsennumberis defined as the ratio of the averagedistance
each fluid particle travels between collisions (the mean free path
distance A) and the characteristic length scale of the system. If the
length scale of the system is defined to be the tube radius R, the
Knudsen number can be approximated by the expression'?

k ~ /R, T(u/RP) (1)

In Eq. (1) T is the local gas temperature.

Modified Wall Boundary Condition

For slip-flow conditions, the fluid velocity at the wall can be
decomposed into two parts,'? the wall slip velocity and the thermo-
molecularcreep velocity. The wall slip velocityis aresultof reduced
wall fluid viscosity in rarefied flow conditions. Fluid molecules no
longer stick to the walls of the tube, but instead slide along the wall.
The thermomolecular creep is a transpiration phenomenon where
the fluid molecules in contact with the heated tubing wall actually
migrate from the hot end of the tube toward the colder end. The
modified wall boundary conditionis the sum of the slip and molec-
ular creep velocities. The slip velocity is proportional to the local
wall shearing stress, but in the opposite direction:

oUu
Uslip = _19? (23)

In Eq. (2a) ¥ is defined as the slip distance and is an empirical
parameter that accounts for reduced fluid viscosity in rarefied flow
conditions. The ratio of slip distance to the mean free path X is
defined as

e=v/A

For the analyses presented, ¢ is assumed to have a magnitude of
approximately 1.0. The unity value is a good approximation for
metallic surfaces. For ceramic surfaces, the magnitude of ¢ is a bit
larger. For example, quartz glass has an ¢ value of approximately
1.25. Kennard'? has tabulated values of ¢ for various materials of
interest for high-temperature or high-speed flight applications.

The molecular creep velocity is proportional to the local longi-
tudinal temperature gradient and inversely proportional to the local
pressure. Molecular creep is caused by gas molecules originating
from the hot end of the tube having higher kinetic energy than
molecules originating from the colder regions. The result is that
the hot-end molecules recoil from collisions more strongly than do
cold-end molecules, and gas molecules at the wall acquire a net tan-
gential momentum toward the hot end of the tube. Consequently,
fluid molecules creep along the tubing walls with a velocity that is
directly proportional to the local temperature gradient:
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3 uoR, 0T
Ucrccp = _m A (2b)
4 Py, 0x
Summing Egs. (2a) and (2b), the resulting equation for the mod-
ified boundary condition is
3 woR, ﬂ e oU

Uwall ()C, t) = Ucrccp + Uslip ==

— 3
4 Py 0dx or ®)

In Eq. (3), uo and Py are the longitudinal averages of viscosity and
pressure.

Solving the Boundary Value Equations

When the procedure laid out by Berg and Tijdeman’ and
Tijdeman® is followed, the Navier-Stokes equations, expressed in
cylindrical coordinates, are linearized using small perturbations.
The linearized boundary value equations express the pressure, tem-
perature, and velocity within the tube as a function of time ¢, radial
distance from the center of the tube r, and longitudinal location x
in the tube.

The energy equationis decoupled from the momentum and conti-
nuity equations by assuming the wave expansion process in the tube
to be polytropic. A polytropic process is a simple energy model that
relates pressure, temperature, and density'314:

P =Kp* )

The polytropicexpansion parameter £ has limiting values given by
1 < & <y, where y is the ratio of specific heats at constant pressure
and volume. Values of £ = y correspondto an isentropicexpansion.
For values of & < y, the expansion process is irreversible. A value
of £ =1 corresponds to a constant temperature process. The decou-
pling process implicitly expresses the temperature within the tube
as a function of pressure and velocity.

The resulting linearized and temperature-decoupkd boundary
value equations are averaged across the radius of the tube to give a
set of one-dimensional partial differential equations where the pres-
sure and velocity in the tube vary as a function of # and x. When the
Fourier transforms of the radial-averagedboundary value equations
are evaluated, the partial differential equations with respect to ¢ and
x are transformed to ordinary differential equations with respect
to x. The frequency-domain boundary value equations now have
the radian frequency of the longitudinal pressure wave in the tube
w as a fundamental parameter. If one assumes that gas properties
and tube diameter remain constant along the length of the tube, the
one-dimensional, frequency-domain boundary value problem can
be solved analytically. This fundamental solution is used as a build-
ing block for complex solutions where fluid properties and tubing
geometry are allowed to change longitudinally along the length of
the tube.

Complex solutions can be achieved by starting at the transducer
end (Fig. 1) of the tube and analytically integrating upstream over
an incremental length (finite element). A solution node is defined
as the point where the boundary conditions of one finite element
must mesh with the boundary conditions of another element. The
problemis solved recursively assuming n solution nodes starting at
the transducer end (nth node) and working toward the surface end
(0th node) of the tube. Using these recursive formulas, solutions
for arbitrary geometries and longitudinal temperature profiles are
constructed.

Recursion Formulas

The resulting recursive formulas for the frequency response, the
ratio of the Fourier transform of pressure at the transducer end of
the tube to the Fourier transform of the pressure at the surface end
of the tube, is

PL@) _ Pi@) (@) Pii(@) Pu(®)
Po@)  Po(@) Pi@) Py 2(@) Pyi(@)

- Li Ve,‘ l_‘p,' . Li
= 1_[ 1 cosh| wl'), — | + w———sinh| wl"), —
Pl Ci Ac,- Ci Ci

5)

In Eq. (5), the parameter V,, is the effective volume and accounts
for the entrapped volume at the ith node plus the impedance of
all downstream tubes and volumes. At the nth node there are no
downstream impedances, and V, is only the volume entrapped by
the pressure transducer. The recursion formulas for the V, are

V.=V

. (¢2/c2, ) Ve, {coshlwd; 11+ [1/(wni )] sinh[w8; 111}
cosh[wé; 1]+ @n; 1 sinh[wd; 4 1]

6)

where

VL’i+l
Nig1 = F,;,-Hm (7a)
8iv1 = lﬂ]hw-lﬂ (7b)
Cit1

r,=

(v /) ylor] = # (@/R) i [a] ’
K, (Llal +17(06/R)J1[(¥])+jw%(M/Po)[(é—l)/$](2/(¥)fl [o]

(7¢)

In Eq. (7¢), T, is referred to as the wave propagation factor®!!
and accounts for the dissipative forces acting at the tubing walls. As
developed by Berg and Tijdeman’ and Tijdeman,® the variation of
& as a function of the fundamental flow parametersis given by

y =1 Jz[\/ﬁﬂf]}_l
=14 |—|—— 7d
: [ [ 1 Lowﬁod 7o

Equation (7d) is a direct result of the polytropic process as-
sumption made earlier [Eq. (4)]. If the rarefied flow terms are
dropped from Egs. (5-7), then algorithm exactly reduces to the
recursion model developed by Berg and Tijdeman® and Tijdeman®
for continuum-flow conditions.

Results and Discussion

The dynamic model presented in Eqs. (5-7) predicts that rarefied
gas effects will manifest themselves primarily in two peculiar ways:

1) At very low pressure levels, low molecular density allows fluid
to slip at the tubing wall. Fluid viscosity is effectively lowered, and
dynamic response of the tubing configuration is less damped than
occurs when molecular effects are negligible.

2) To balance creep flow at the wall, gas molecules near the tube
centerline migrate from hot to cold ends of the tube. This migration
establishesa pressure gradient. With no net flow in the tube, the hot
end of the tube will have a higher average pressure level than does
the cold end.

Slip-Flow Frequency Response

Theoretical effects of rarefied flow on frequency response are
shownin Figs.2 and 3. In Figs. 2 and 3, the frequencyresponseof an
example configuration is analyzed for ambient pressure levels from
0.00005 to 0.25 atm. The configuration parameters are L = 30.5 cm
(12in.), D =0.1585cm (0.0625in.), V =0.08 cm? (0.005in.?), and
Tomb = 5°C (500°F). Table 1 shows Knudsennumberscorresponding
to the analyzed pressure levels.

In Fig. 2a, the frequency-responsemagnitude in decibels,

201ogf{|| PL(w)/Po(w)|}

is plotted with the rarefied-flow effects modeled. In Fig. 2b,
the frequency-response magnitude in decibels is plotted without
rarefied-flow effects modeled. Clearly, at the higher pressure levels
where the Knudsen numbers are very low, the frequency-response
curves with and withoutthe Knudsen number effectsare nearly iden-
tical. However, as the pressure drops, the model without rarefied gas
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Fig. 2 Tubing frequency response for various ambient pressure levels,
L=30.5cm,D=0.16 cm,and T, =5°C: a) real gas effects modeled and
b) real gas effects not modeled.
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Fig. 3 Half-power frequency as function of Knudsen number.

effects exhibits significant magnitude attenuation when compared
to the model with rarefied gas effects.

Figure 3 shows a summary of the results of Figs. 2a and 2b. In
Fig. 3, the frequency of the half-power point (the point where the
magnitude is attenuated 3 dB from the dc level) is plotted as a func-
tion of Knudsennumber. The two curves are in good agreementup to
approximately « = 0.05. Beyond this point, the two curves diverge.
At higher Knudsen numbers the frequency-responsemagnitude of
the model with rarefied-gas effects is significantly less attenuated.
From this result, it can be concluded that rarefied-gas fluid slip at

Table1 Knudsen numbers corresponding
to the analyzed pressure levels®

Atm kPa psf K
0.2500 25.33 529.05 3.0x 1074
0.1000 10.13 211.62 7.6x 1074
0.0500 5.07 105.81 1.5% 1073
0.0100 1.01 21.16 7.6x 1073
0.0050 0.51 10.58 1.5x 1072
0.0010 0.10 2.12 7.6 x 1072
0.0005 0.05 1.06 0.1530
0.0001 0.01 0.21 0.7640
0.00005 0.005 0.11 1.5280

? Ambient pressure level.

the wall boundary has the same effect as reducing the viscosity of
the fluid.

Frequency-Response Experiments

In Ref. 11, a detailed validation is presented of the dynamic
model at continuum-flow conditions for a variety of tube geome-
tries sizable temperature gradients are forced along the lengths of
the tubes. However, validation of the model frequency response for
rarefied flow conditions has not been performed. The task of de-
vising an experimental procedure to measure the dynamic response
of a tubing/sensor configuration for slip-flow conditions is quite
daunting.

Acoustical methods normally used to generate a controlled input
signal to the sensor configuration are not applicable for extremely
low pressure levels. Electromechanical actuators such as high-
fidelity speaker systems require a minimal level of air impedanceto
functionproperly. The air densityrequiredto achieve this impedance
level is high enough that rarefied flow effects are negligible. Simi-
larly, without significant redesign, existing shock tunnels'> cannot
be used to generate the input pressure pulse. Fairly significant differ-
ential pressure levels are required to burst cleanly the shock-tunnel
membrane that isolates the evacuated end of the tunnel from the
pressurized end. The incoming pressure wave fills the evacuated
space upstream of the membrane, and the resulting pressure levels
become too high for rarefied gas effects to exist. All rarefied-gas
and thermomolecular effects are wiped out immediately after the
pulse is formed. Perhaps performing frequency-responseor shock-
tube types of measurements at low-to-moderate pressure levels for
microdiameter tubing could offer a viable solution. The potential
of using an electrical arc to generate a shock pulse should be in-
vestigated. However, in this case it must be recognized that plasma
effects will occur, and these may confuse the results of the tests.
In any case, development of these measurement methods were be-
yond the scope and funding for this research. The dynamic effects
presentedin Figs. 2 and 3 remain unvalidatedby empirical measure-
ments at this point and unhappily remain as a challenge for future
researchers.

Steady-State Model Response at High Knudsen Numbers

In the classical work on rarefied flow,® Maxwell determined that
in the free-molecular limit (infinite Knudsen number) the ratio of
the steady-state pressure gradient, when normalized by the mean
pressure level in the tube, is equal to one-half of the temperature
gradient in the tube when normalized by the mean temperature in

the tube:
aP/ox _ oT /ox

1
P 2 T

®)

For conditions that lie somewhere between the free-molecular
regime and the continuum-flow regime, the pressure gradient in-
duced by longitudinal temperature gradients is less than the limit
predicted by Maxwell and is strongly a function of Knudsen
number."!° Thus, it is important to examine the steady-state behav-
ior of Egs. (5-7) to determine that they exhibit a similar behavior.

The steady-statebehavior of the dynamic model was analyzed by
applying the final-value theorem!'® to Eqs. (5-7). This final-value
analysis is presented in detail in Ref. 11. The normalized steady
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pressure gradient can be written as a function of Knudsen number
and normalized temperature gradient. The resulting expression is

dP/ox dT/dx 62
P T w(l+4e)

©)

Equation (9) predicts that for small Knudsen number a very large
temperature gradient is required to get a measurable steady-state
pressure gradient. However, for higher Knudsen numbers, a signif-
icant steady-state pressure gradient can occur for relatively moder-
ate temperature gradients. Also, when it is assumed that the local
Knudsen number is approximated by the longitudinally averaged
Knudsen number k,, Eq. (9) can be integrated with respect to x to
give

(10)

( 6K§ )
&@[ Prot ] _ (1 + 4dexp)
Pcold Thol

Tcold

Equation (10) demonstrates that the resulting temperature-induced
pressure ratio is primarily a function of the endpoint temperatures
and does not strongly depend on temperature distribution along the
tube.

More important, in the free-molecule limit (infinite Knudsen
number), neither Eq. (9) nor Eq. (10) approaches a finite limit as
predicted by Maxwell [Eq. (8)]. Thus, one must conclude that the
model of Egs. (5-7) is not applicable in the very high-Knudsen-
number flow regime. Because the Navier-Stokes equations used to
model the flow in the core of the tube begin to break down at very
high Knudsen numbers, this conclusion makes sense. The relevant
questionis, At what Knudsen number does the dynamic model begin
to break down? Because Eq. (9) is directly derived from the dynamic
model, the steady-statebehavior providesa means for evaluatingthe
valid Knudsen number ranges for the dynamic model. When the pre-
dictions of Eq. (9) are compared against experimental data, one can
judgethe validityrange by lookingat the point where the predictions
diverge from the empirical data.

Steady-State Experiment

A seriesof steady-statelaboratorytests were conductedto develop
a data set that can be compared to the predictions of Eq. (9). This
comparisonwill subsequentlybe used to assess the validity range for
the model. Data obtained by an original set of tests are presented in
Ref. 11. Also, additionallaboratory data not available when Ref. 11
was originally published will be presented. These additional data
will be compared to data taken from Ref. 11.

The test apparatus is shown in Fig. 4. In this series of tests, an
evacuated, hermetically sealed oven was used to heat one end of a
tube at very low absolute pressure levels. The resulting temperature
gradient along the tube induced rarefied gas effects inside of the

@ Thermocouple

"hot" end
of tube  "cold" end L—"reference
Oven temperature of tube Jjunction.
controllerlJ /L \ with digital
T readout
Aluminum o L& :
Rod (thermal ] 5
mass,
) 2
Oven

: # Inlet Port

450 deg. C
Vacuum Oven

Fig. 4 Schematic of experimental apparatus.

tube. In this experimental setup, aluminum rods were center bored
and an assortment of brass tubes of varying diameters and lengths
were press-fit into the resulting holes. The aluminum rods provided
a thermal mass to distribute the heat evenly along one the end of
the tubing. The cold end of the tube was hermetically bonded to a
compression fitting that allowed the heated tube to be accessed from
outside the chamber.

The absolute chamber pressure was measured using a very low
pressure sensing device known as a McLeod vacuum gauge.'> For
the McLeod gauge, the manufacturer’s (estimated) accuracy specifi-
cationwas approximately20 pm of mercury (0.0027kPa). However,
repeatability of measurements demonstrated that this uncertainty
value was more likely better than 5 um of mercury (0.0007 kPa).

The differential pressurein the heated tube was measured using a
highly sensitive Verniermanometer.'” The manufacturer’s specifica-
tion for the (estimated) accuracy of the Vernier manometer data was
approximately 10 um of mercury (0.0014 kPa). However, when
pre- and posttest zero corrections were applied to the differential
pressure data, repeatability showed that the errors were reduced to
approximately 2 um of mercury (0.0003 kPa).

Bimetallic'? (type T) thermocouple sensors were spot welded to
each end of the tube. These thermocouples sensed tube-end tem-
peratures and were used to calculate the longitudinal temperature
gradient. At high temperatures, typical accuracies for type T ther-
mocouple measurements are approximately £1-2°C. Data repeata-
bility showed that this 1-2°C accuracy level was achieved during
these series of tests.

Experiment Uncertainty Analysis
The uncertainty in the normalized Maxwell pressure parameter

8P/8x/8T/8x
KM = —-——— _—
P T

is formally evaluated using the calculus of variations. Taking the
first variation with respect to the components variables gives

8P/8)C 8T/8X Phol — Pcold Thol + Tcold
A A X
P T Phol + Pcold Thol - Tcold

1 Tho + Tcold
= A[Phol - cold] X X -
Phol + Pcold Thol - Tcold
[Phol — cold] Thol + Tcold

- A[Pho + Pcold] X
' [Phol + Pcold]2 Thol - Tcold

+A[T -‘rT ]X[Phol_PcoldX 1 }
ho cold
' Phol + Pcold Thol — Lcold

_T ]Phol — Pcold x Thol + Tcold (11)
okt Phol + Pcold [Thol - Tcold]2

The variations in Eq. (11) are related to the fundamental mea-
surement errors by Eq. (12):

A[Phol - Pcold] = 8Pchicr
A[Phol + Pcold] = 8PMcLocd + 8Pchicr ~ 8PMchod
A[Thol + Tcold] ~ 2ATa A[Thol - Tcold] ~ ZAT;‘andom (12)

- A[Thol

When Eq. (12) is substituted into Eq. (11), the uncertainty equa-
tion becomes

aP/ax [aT/d 1 Thot + Too
A[ /x/ /X}Q(SPchich S hl+ -
P T Phol + Pcold Thol — Lcold
P ot — £ co To + Tco
_ 8PMchod x [ hot ld]2 hot 1d
[Phol + Pcold] Thol - Tcold
Pot — Puo 1
+2AT x [ o - ]
Phol + Pcold Thol - Tcold
P, ot T Pco T 0 + Tco
_ZATrandom hot 1d x hot 1d (13)

Phol + Pcold [Thol - Tcold]2
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The last two terms in Eq. (13) are negligible when compared to the
first two terms, and the uncertainty equation is approximated by

8P/8)C 8T/8)C 8PVcrnicr [Phol — Pcold]
A ~ — 8 Pyteen X o
P T Phol + Pcold [Phol + Pcold]
Thol + Tcold
X ——

Thol - Tcold

The temperature terms in Eq. (14) simply act as a scaling factor
on the certainty. Taking the expectation of the squared uncertainty
gives the mean square error in the Knudsen parameter

P /ox oT /ox ) Pchicr
2
w ~ FE - (SPMchod
P T th + Pcold

2 2
[Phol — Pcold] Thol + Tcold
[Phol + Pcold]2 Thol - Tcold

When it is assumed that the measurement errors in the McLeod
gauge and Vernier manometer are uncorrelated, the mean square
error equation reduces to

2 aP/ox [oT/ox | 1
P T [Phol + Pcold]2

2
[8PMchod]2 } [ Thol + Tcold }

(14)

(15)

(16)
[Phol + Pcold]2

The root mean square error equationresults by taking the square
root of Eq. (16):

aP/ax [aT/ox Tyor + Too
rInscn‘or[ / / / } ~ [ = = } /[Phol + Pcold]
P T Thol — Lcold

8P cLeo 2
x \/ [8 PP + ookt 17
[Phol + Pcold]
The error bounds predicted by Eq. (17) approximate (first-order)
1 — o uncertaintiesin the normalized Knudsen pressure parameter
Ky.

X [8Pchicr]2 +
[ Thol — Lcold

Experimental Procedures

Because of the extremely low pressure levels at which these se-
ries of tests were performed, a systematic set of test procedures was
developed to minimize errors introduced by variations in experi-
mental procedure. To minimize the effects of measurement bias in
the Vernier manometer a zero-correction procedure was followed.
At the beginning of each trial the zero differential pressure in the
tube at ambient temperature and pressure was recorded. At the end
of each trial, the system was vented and allowed to cool to ambient
temperature, and a new zero differential pressure reading was mea-
sured. The pre- and posttrial zero readings were averaged and used
to correct the differential pressure measurement for bias offsets in
the Vernier manometer.

Once the pretrial bias readings were recorded, the oven-chamber
heater was activated with the required temperature setting selected
on the thermal controller. The chamber was evacuatedto the desired
pressure,and the system was allowed to thermally stabilize. For each
trial, once a stable temperature was reached, the temperature setting
was maintained constant, and the chamber pressure was systemat-
ically lowered starting from the highest desired pressure level and
working toward the lowest desired pressure level. For each oven-
temperature setting, approximately 30 pressure levels were tested.
At each pressure setting, once a stable pressure and temperature
was achieved, the vacuum pump was shut down and sealed off.
The chamber was allowed to settle, and the hot- and cold-end tem-
peratures were recorded using the thermocouples. At this point the
absolute chamber pressure was recorded using the McLeod gauge,
and the differential pressure in the tubing was recorded using the
Vernier manometer.

Data Summary

As mentioned earlier, this paper presents steady-state test data
not available when Ref. 11 was published. The previously unpub-
lished test data are summarized in Fig. 5, where the average of the
hot- and cold-end tube pressures are plotted against x, (Knudsen
number calculated by averaging hot- and cold-end pressure and
temperature values). Four different tubing diameters, 0.071 (0.028),
0.16 (0.063), 2.14 (0.84), and 2.34 cm (0.92 in.), were tested. The
minimum pressure levels achieved for these series of tests are signif-
icantly lower than those achievedin Ref. 11. The minimum pressure
levels achieved in Ref. 11 were on the order of 100 pm of mercury
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Fig. 5 Summary of steady-state test conditions.
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Fig. 6 Comparison of the steady-state model response to experimental results.

(0.014 kPa). For these tests, modifications to the vacuum seal of
the oven chamber allowed pressures as low as 15 um of mercury
(0.002 kPa) to be achieved. The resulting values for Knudsen num-
ber varied from effectively zero to approximately 10. The vacuum
oven provided sufficient heating to allow temperature gradients as
high as 1340°C/cm to be achieved. The tube endpoint temperatures
achieved in this series of tests are summarized in Fig. 5.

Experiment Results

When Eq. (9) is used as a guide, the Maxwell pressure parameter
is approximated by dividing the normalized pressure differential by
the normalized temperature differential:

K., = 8P/8X/8T/8X ~ [ Phol — L cold / Thol — {Lcold }
" P T (Poot + Peia) /2] (Thot + Teoia) /2

(18)

This data normalization allows the experimental data to be col-
lapsed into a single curve by plotting the result as a function of «.
The normalized test data are plotted in Fig. 6 along with the model
steady-state predictions, the error bounds predicted by Eq. (17), and
experimental data originally publishedin Ref. 11. Several observa-
tions can be made with regard to Fig. 6:

1) The new experimental results show excellent agreement with
regard to the originally published experimental data taken from
Ref. 11. The relatively larger scatter at the higher Knudsen numbers
is a result of the relatively lower absolute pressure levels achieved
during these tests.

2) The approximate error analysisof Eq. (17) is conservative.For
Knudsen numbers below 2, the data repeatability shows that the true
measurement error is significantly better than the theoretical error
bound. The relatively larger amount of scatter at higher Knudsen
numbers is a result of the very low absolute pressure levels used in
the data normalization.

3) The steady-state model matches the data extremely well for
Knudsen numbers up to approximately0.65. In this flow regime the
slip-flow equations used in deriving the dynamic model appear to
be completely valid.

Beyond «, > 0.7, the curves rapidly diverge. The most likely
cause of this divergence is that molecular effects begin to domi-
nate, and continuum flow no longer exists in the center of the tube.
This divergence point is labeled in Fig. 6. This divergence point
marks the upper bound on the model’s usefulness. Fortunately, it
appears that the model is valid for most of the slip-flow data regime.

Summary

This paper reports on the development of a dynamic model for
pressure sensing configurations in slip-flow conditions. The model

represents a fundamental extension to the understanding of flow
behavior at the limits of the continuum-flow regime. Rarefied gas
effects manifest themselves in two ways:

1) At very low pressure levels, the low molecular density allows
the fluid to slip at the tubing wall. The end result is that the fluid
viscosity is effectively lowered, and the dynamic response of the
tubing configuration is less damped than would occur if molecu-
lar effects were negligible. The fluid motion at the wall boundary
allowed by the rarefied conditions has the effect of reducing the
viscosity.

2) Under steady flow conditions where the tube is heated un-
evenly, the hot end of the tube has a higher average cross-sectional
pressure than does the coldend of the tube, with no net flow in the
tube. This pressurebias manifestsitselfas a dc offsetin the measured
pressure reading.

The applicable flow regimes for the model were evaluated by a
series of steady-state laboratory tests. Model comparisons are ex-
cellent for Knudsen numbers up approximately 0.65. For values of
ko > 0.7, free-moleculeeffects dominate, and the model is no longer
valid. The model allows instrumentation designers to evaluate the
responses of pneumatic systems over a wide range of flow condi-
tions, which may vary continuously from continuum to slip flow.
Other potential applicationsoutside of aerospace include predicting
the behavior of micromachined fluid systems where the mean free
path of the working fluid is on the order of the channel diameter.
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