
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2022-04-22

Securing Software Updates under Receiver
Radio Frequency Geolocation Risk

Hayden, Blake; Sweeney, Matthew; Hale, Britta
Naval Postgraduate School

http://hdl.handle.net/10945/69405

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Securing Software Updates

under Receiver Radio Frequency Geolocation Risk

Blake Hayden and Matthew Sweeney and Britta Hale

{blake.hayden,matthew.sweeney,britta.hale}@nps.edu
Naval Postgraduate School, Monterey, CA

Abstract

In the new, ever-changing cyber domain, it is crucial that the mil-
itary establishes a method of delivering large data payloads to remote
locations that minimizes radio frequency (RF) signature for receivers,
thereby reducing the associated geolocation potential. This paper in-
troduces three cryptographic protocols for different components of a
delivery architecture for a large data payload from a trusted, back-end
source to receivers: a low-response protocol for initial transmission and
confirmation and two possible inter-unit distribution protocols with
differing optimizations based on connectivity scenarios. All three pro-
tocols expressly aim to minimize the radio frequency (RF) footprint
created on the receiver end. We provide security models and analyze
the security protocols, and furthermore provide a worst-case example
bound on RF footprint created at the receivers for each protocol, with
variable inputs for data transmission size. These protocols introduce
a means for accounting for both security (authentication) and safety
(minimized RF footprint) in the delivery of critical data payloads to
remote receivers.

1 Introduction

After two decades of counter insurgency operations in urban environments
against guerrilla forces, the Marine Corps is shifting focus back to its roots of
amphibious warfare. While the Marine Corps is no stranger to the maritime
environment, the modern battlefield presents unprecedented challenges to
littoral operations. The challenges are amplified by a focus on peer com-
petition which no longer allows the Marine Corps to assume technological

1

superiority over the adversary. In the 38th Commandant’s Planning Guid-
ance, General Berger described the shifting focus by saying “the return of
great power competition requires a Marine Corps that is primarily orga-
nized, trained and equipped for the high-end fight against a peer competi-
tor” [1]. The General goes on to say the Marine Corps needs to be “trained
and equipped as a naval expeditionary force-in-readiness and prepared to
operate inside actively contested maritime spaces” [1].

To accomplish the Commandant’s goal and prepare for the evolving bat-
tlefield, the Marine Corps is shifting from its classic force design to new
operational focuses such as Distributed Maritime Operations (DMO) and
Expeditionary Advanced Basing Operations (EABO). Under the new force
structure, operational units will be spread out and separated for extended
periods from a headquarters location. Maintaining communications with
extended units is vital to the success of the future mission. With the em-
phasis on communications, comes the critical task of sending software up-
dates to forward units. While forces could rely on returning to headquarters
for updates in the past, distributed operations will not have that luxury.
Therefore, it is necessary to be able to securely and reliably push updates to
subordinate units. Given the information domain capabilities of the enemy,
software forwarding capability will be crucial to maintaining the advantage
in the information domain.

Situation

With the EABO construct in mind, the protocol must be designed for a
headquarters (back-end) unit that sends updates to operating units. The
back-end in this scenario will act as the original sender. We operate with
the assumption that the back-end has extensive communications equipment
and is not in range of adversarial attacks and is therefore not worried about
Radio Frequency (RF) footprint. The goal of the sender is to push the
update to all receiving units via satellite communications (SATCOM). The
message will be sent to multiple units in the same operational area. The job
of the receiving units is to receive the update sent via multiple messages,
analyze the packets, determine missing packets, confer internally to get all
packets, and apply the update.

The goals of the protocol are to authenticate the sender and minimize
the RF footprint for the receiver.

2

Constraints

The main constraint in this problem is the necessity for a low RF signature
on the receiving end. Given the dynamic adversarial threat, the receiving
units do not have the luxury of communicating with the sender extensively.
Any amount of RF footprint emitted by the receiving unit can expose their
location to the enemy. Such practices may have worked in the past but will
not in an information contested environment. The adversary would easily
identify the location of a forward unit if it communicated back to the sender
via SATCOM, thus jeopardizing the safety of the unit and success of the
mission.

In addition to reducing RF footprint, the transmission needs to provide
security against an adversary in whose interest it is to modify communi-
cations and potentially provide a malicious payload to the forward units.
Not only can the adversary detect locations through RF but can intercept,
drop, replay, and manipulate transmissions. The protocol(s) must protect
against adversarial capabilities. We can no longer rely solely on information
supremacy.

1.1 Prior Research

Updating software is not a new concept, neither in the military nor in the
civilian world. However, based on the new constraints and warfare environ-
ment defined above, the USMC cannot rely on the previous means it used
to update software:

• In the EABO force design, units will be unable to apply updates in
person with higher units.

• While past conflicts offered more time flexibility to installing updates
due to the adversary’s lack of technical capability, the new construct
demands the ability to combat a peer adversary with similar techno-
logical capabilities. Therefore, it is pertinent to install updates as soon
as possible.

• Finally, in contrast to normal software updating in commercial sectors,
any radio frequency (RF) footprint generation due to bi-directional
traffic poses and immediate and significant risk to operating units.
Thus standard paradigms based on bi-directional client-server com-
munications are no longer feasible.

Part of the problem is the fact that the operational systems used are
designed to last years, if not decades. As this gear is going to be put up

3

against adversaries with the ability to conduct cyber-attacks, there are new
security concerns that must be corrected with updates.

Military equipment is not the only area experiencing this problem. In-
dustrial automation and control systems are experiencing a similar threat,
with adversarial attack capabilities increasing in effectiveness against older
equipment. This concern is described in [2], where the authors state that
software updates “have generally addressed stability and functionality rather
than security”. The work presents a process for installing patches and
updates which includes significant testing of the update and distribution
through a standardized structure in accordance with a defined policy. The
proposed system is focused on policy and management but is designed for a
situation with few unknown variables. The number of machines is known,
the location of all machines is known and static, the activity of machines
should be the same, and the RF signature is not of concern.

Conversely, this work addresses a scenario which is dynamic with many
unknowns, and the back-end may not have knowledge of the state of the
update recipients. For example, the number and location of units may vary,
the activities of units may vary, and – crucially – the RF signature is a
concern. This precludes the proposed industrial solution as a solution for
the considered context.

Previous methods and policies of updating military equipment are dis-
cussed in [3]. This offers a “comprehensive mechanism for security and
reliability in software deployment” which ensures that no information about
the installation procedure can be learned (to protect against learning about
intended hardware for military applications), and also prevents malicious
users from forcing to install a package without its requirements being filled
[3]. The authors’ approach focuses on confidentiality and authenticity, en-
suring that the installation process is not view-able and that only required
packages get installed. Our reduced RF constraints, however, mean that
the proposed method does not satisfy the requirements for the environment
setting.

Prior work [4] addresses the issue of providing authenticity to updates
to address the issue of supply chain attacks. That work proposes a system
called Dit, a wrapper around the popular Git tool which adds threshold sig-
natures which enable auditing and verification of the code throughout the
development process, ensuring authenticity. In that approach, the focus is
on establishing a trusted infrastructure for decentralized package managers.
Additionally, the approach operates over standard HTTP protocol. In con-
trast, we are concerned with manipulation of the update while in transit,
and the HTTP construction does not fit within the RF signature mitigation

4

constraints.
Research has considered methods of securely updating firmware on re-

mote embedded devices (EDs) [5], in an approach that is specifically de-
signed for EDs that operate without an operating system. That approach
relies on cryptographic primitives that run directly on the hardware to en-
able the EDs to provide confidentiality and verify the update is unaltered
from a trusted source, and works by establishing a session key with the up-
date provider, receiving the update, and then verifying it on hardware. The
key exchange process used in [5] establishes a session key with the back-end
update provider, which requires an expensive RF signature from the forward
device and prevents a one-to-many broadcast from the back-end. This, does
not fit the RF-minimization environment due to interaction.

A peer-to-peer (P2P) approach to file sharing in an Internet-of-Things
network is detailed in [6], termed the InterPlanetary File System (IPFS).
IPFS provides a means to share information among dispersed nodes. It relies
on P2P sharing where the nodes comprise a Merkle DAG object - an object
based on a Merkle tree which is used to account for generic data structures.
IPFS also provides for versioning of its files and routing information to enable
web-like sharing. However, some of its features such as version control and
Merkle DAG objects introduce expensive consensus communication that is
not necessary for our situation as the back-end is completely trusted. One
feature included in IPFS that could be added in future work for the scenario
considered in this paper is implementation of a routing table to increase
efficiency when forward units are not fully connected.

1.2 Contributions

In this work, we propose a new software update protocol, comprised of three
sub-protocols, that securely delivers an update to a group of participants
while minimizing the RF signature of the participants. Specifically, the
main contributions are:

• Back-haul Authenticated Control (BAC) Protocol: A software update
protocol providing authenticated messages from a back-end to receiver
participants as well as a push-button option for selective confirmation
response on the received message.

• Constrained Communication Synchronization-Request (COCO-SYNC-
R) Protocol: A packet sharing protocol for distribution and confir-
mation of receipt of the update amongst forward participants. This
protocol utilizes a pull method for sharing packets.

5

Figure 1: BAC protocol (in green) covers initial transmission of data, while
the COCO-SYNC-R or COCO-SYNC-P protocols (in black) cover inter-unit
distribution.

• Constrained Communication Synchronization-Provide (COCO-SYNC-
P) Protocol: A packet sharing protocol for distribution and confir-
mation of receipt of the update amongst forward participants. This
protocol utilizes a push method where one unit broadcasts to all other
units.

• Security Analysis: We model the security goals of of the above proto-
cols and prove security through computational analysis.

• RF Signature Analysis: We provide mathematical bounds for the RF
signature footprint on the above protocols.

2 Protocols

Here we will describe the proposed protocols. There are three protocols
outlined in this paper. The first, called Back-haul Authenticated Con-
trol (BAC), governs the authenticated data transfer from the back-end to
the forward units. The other two protocols are alternatives that govern
inter-unit communication for data sharing among the units. First we de-
scribed the Constrained Communication Synchronization-Request (COCO-
SYNC-R) protocol, which utilizes a “pull” mechanism. Second, we pro-
vide a “push” mechanism alternative protocol, Constrained Communication
Synchronization-Provide (COCO-SYNC-P). These protocol roles are illus-
trated in Figure 1.

6

Since we are primarily concerned with authentication from the back-
end for the update, we rely on the use of asymmetric digital signatures.
We do not provide for encryption within the protocol, but it should be
noted that in practice, military units use equipment with built in encryp-
tion methods [7]. The equipment exampled uses AES-256 bit symmetric
encryption and relies on pre-shared Transmission Encryption Keys (TEK)
[7]. This encryption method provides protection from adversaries listening
in (confidentiality), but it does not provide a means to verify the identity
of a sender (authenticity) nor uniqueness of the transmission (replay pro-
tection). Symmetric encryption requires additional computational resources
from the equipment, but it does not significantly impact the RF signature
from the forward units. In the worst case, the encryption will require an
additional 255-bits per transmission. Assuming a Max Transmission Unit
of 1500 Bytes (12,000 bits), the encryption will only incur a 2% increase in
RF.

In the protocols, flows that contain a digital signature do not include an
identity certificate from the sender. The protocol assumes that the receiver
will have a list of public keys, including the back-end and forward units,
and will perform an exhaustive search on this list until it finds a key that
verifies the tag (with the exception of confirmation messages which attest
to the sender). While this is an additional computational cost, it allows
us to reduce the RF bandwidth, so the added computation is acceptable.
Additionally, the public key list maintained by the forward units will be
relatively small (<1000) so the added time to compute in practice will be
negligible. Note, however, that this search can be avoided by the protocol
implementors by inclusion an the sender identity, if desired.

Variables

• BE: Back-end Sender

• Uv: Receiver

• k: The number of forward units participating in the protocol

• Nv: A fresh nonce sampled by Uv, where Nv ∈ {1, 0}∗

• Updatex: Numeric identifier for x-th update. This may also be in-
terpreted as Seq Update. We abuse notation and simply use Update,
with the sequencing of further updates handled by the application.

• M : Complete update message for the transmission

7

• Mn: The n-th packet of the update message

• Seqn: Numeric sequence number for the n-th packet.
This may also be interpreted as Seq Packetn.

• Seqtotal: Total number of packets included in transmission

Throughout this paper, the term packet refers to a section of the overall
Update message M from the back-end, i.e., the message is divided into
packets Mn for transmission, where Mn corresponds to a given Seqn and
M1||M2|| . . . ||Mn|| . . . = M represents the full Update transmission.

2.1 BAC Protocol

Notation

SignskBE(data): the tag generated from signing data with BE’s secret key
BE→ Uv: sending data from BE to Uv

Protocol Description

The overarching flow of the BAC protocol consists of the back-end server
sending an “announcement message” followed by the update message itself
in iterative packets (each individually signed), and finally a signature over
the complete Update message. Ideally, the back-end would provide the entire
sender side of the protocol (Flows 1-3) on repeat to reduce the number of
packets missing from the receiving units’ transcripts. This is due to the use
environment, where dropped packets are likely with a transmission of the
typical size; however, protocol repetition may not always be feasible given
bandwidth constraints and is left as an application decision.

The protocol iteration completes when the back-end (BE) receives a
signed confirmation message from one of the units. The confirmation mes-
sage is a compilation of requests from each of the forward units, indicating
what packets need to be re-transmitted.1 The confirmation message is then
signed by one of the forward units and sent to the back-end. Although the
message is signed and sent by only one unit, it is representative of all the
receiver participants, so while the transmissions BE → Uv are broadcast
from the back-end to all forward participants, the transmission BE← Uv is
from one unit to the back-end.

1If the confirmation message indicates missing packets, the implementation may select
to restart the protocol sending only those packets, e.g., re-transmission of missing packets.

8

We present the BAC protocol below in algorithmic form, with a visual-
ization shown in Figure 3.

Flow Data
BE→ Uv Update, Seqtotal, SignskBE(Update, Seqtotal)
BE→ Uv Update, Seqn, Seqtotal, Mn, SignskBE(Update, Seqn, Seqtotal, Mn)
. [∀Mn ∈M]
BE→ Uv SignskBE(Update, M)
BE← Uv Uv,Nv, Update, Confirmation Message*, Signskv(Uv,Nv,
. Update, Confirmation Message*)

∗Confirmation Message:

U1

U2

U3

.

.

.

Uk

MessagesUnits

U1, N1, Update, {Seqt}∗1, Signsk1
(U1, N1, Update, {Seqt}∗1)

U2, N2, Update, {Seqt}∗2, Signsk2
(U2, N2, Update, {Seqt}∗2)

U3, N3, Update, {Seqt}∗3, Signsk3
(U3, N3, Update, {Seqt}∗3)

.

.

.

Uk, Nk, Update, {Seqt}∗k, Signskk
(Uk, Nk, Update, {Seqt}∗k)

Figure 2: Confirmation Message Format

The protocol flows denoted in blue indicate the core BAC protocol. This
protocol denotes agreement on possession of Update data packets and intent
to send. The protocol on the receiver side, Uv, ‘accepts’ as a correct run of
the protocol if at least one of the messages in blue is received. The third
flow, SignskBE(Update, M), is a confirmation message on the sent Update
message, for use later by receiver units, e.g., in COCO-SYNC-P or COCO-
SYNC-R, as a verification to hold in memory over the entire Update message
vice individual packets and can therefore be transferred and validated locally
as needed. However, this last message from the back-end is not a protocol
confirmation message, and is therefore treated as channel data. Note also,
that unless all other flows from BE are received, the flow SignskBE(Update,
M) cannot be validated; since we intentionally support packet dropping and
use of confirmation message to request missing update packets, this third
flow is not considered part of the core protocol.

Remark 2.1. There is a space trade-off for including Seqtotal in each mes-

9

sage instead of only in the first message. For a more robust protocol, it
should be included as it enables the forward units to verify the completeness
of a received transmission even if the first and last packets are dropped. How-
ever, if the added space requirement is too much of a constraint, the Seqtotal
can be omitted from data messages and only kept in the header message. In
this scenario, units can verify the completeness of the data if they receive
either the header or the final message; in absence of both and without the in-
clusion of Seqtotal, the receiver must await a re-transmission before verifying
completeness.

Back-end Uv

Update, Seqtotal, SignskBE
(Update, Seqtotal)

Update, Seqn, Seqtotal, Mn, SignskBE
(Update, Seqn, Seqtotal, Mn)

∗Repeat Flow 2 for all Mn in update M

SignskBE
(Update, M)

Uv, Nv, Update, Signskv (Uv, Nv, Update, Confirmation Message)

Figure 3: BAC Protocol Illustration

2.2 Cache Requirements

It is expected that the forward units will maintain a cache of the signatures
(SignskBE(Update, M)) received in the transmission. This is essential for
local distribution so that receiver units may verify the authenticity of the
entire update message once received.

Furthermore, they may hold sequence numbers, packet numbers, and
packets in memory for the duration of the COCO-SYNC protocol (Seqn,
Seqtotal, Mn). Note, however, that due to optimization of bandwidth and
transmission reliability, units may re-package the update into smaller pack-
ets. While allowing flexibility, this may increase RF footprint locally, since
receivers may only verify the update using SignskBE(Update, M) once the en-
tire update is received. In the following COCO-SYNC protocol descriptions,
we aim to minimize protocol flows and therefore RF footprint by leveraging
the assumption that sequence numbers, packet numbers, and packets are
held in memory for local distribution during the COCO-SYNC protocol,
i.e., Seqn, Seqtotal, Mn.

10

2.3 COCO-SYNC-R

In both of the COCO-SYNC protocols, we present the protocol as an algo-
rithm first, followed by a simplified flow diagram as illustration. We do this
to demonstrate how w is iterated in the hierarchy throughout the protocol
and explicitly show how variables are updated during the protocol. The
flow diagram simplifies the protocol representation to show only the proto-
col flows—variable assignments are not shown in the flow diagram, but we
assume that all of the variables are assigned according to the algorithmic
description.

Assumptions

SignskBE(data): the original back-end signature on the received transmission.

Variables

In addition to the variables listed previously, we add the following notation:

• {Uv}: An ordered set of the forward units engaging in protocol. The
v-th unit is denoted Uv.

• {Seqt}∗v: The set of packet sequence numbers that the v-th unit is
requesting (requests denoted by ∗). The t-th packet’s sequence number
is denoted Seqt.

• {Seqs}w: The set of packet sequence numbers that unit w is responding
with. The s-th packet’s sequence number is denoted Seqs.

We require that {Seqs}w ⊆ {Seqt}∗v. Namely, the set of sequence numbers
that the w-th unit answers a request with must be a subset of the request.

Protocol Description

The following description assumes there is an execution hierarchy ordering
among the units which is known by all units. Unit v is selected from the
top of the hierarchy and then removed from the hierarchy for the duration
of its turn. For v’s turn, unit w begins at the new top of the hierarchy and
is iterated through all units in the ordering (excluding v). After v completes
its turn, it is added back into the hierarchy ordering at the bottom and a
new target unit is selected from the top of the ordering. This approaches
enforces a queued hierarchy.

11

Protocol COCO-SYNC-R is described below, with an illustration pro-
vided in Figure 4.

Flow Algorithm
. w ← 1
. Uv sets {Seqt}∗v

. while {Seqt}∗v ̸= {} ∧ (w < |{U}|):
Uv Nv ←$ {0, 1}λ
Uv → Uw Uw, Nv, Update, {Seqt}∗v, Signskv(Uw, Nv, Update, {Seqt}∗v)

. if Uw possesses {Seqs}w such that {Seqs}w ⊆ {Seqt}∗v

. and {Seqs}w ̸= {}:
Uw Nw ←$ {0, 1}λ
Uv ← Uw Nw, {Seqs}w, Signskw(Uv, Nv, Uw, Nw, {Seqs}w)
Uv ← Uw Update, Seqn, Seqtotal, Mn,
. SignskBE(Update, Seqn, Seqtotal, Mn)
. [∀Seqn ∈ {Seqs}w forwarded from Uw’s cache of the
. original back-end (BE) broadcast.]

Uv {Seqt}∗v ← {Seqt}∗v \ {Seqs}w
. [Computed updated set at Uv.]

. else
Uw Nw ←$ {0, 1}λ
Uv ← Uw Nw, NACK, Signskw(Uv, Nv, Uw, Nw, NACK)
. end if
. w ← w + 1
. end while

Uv Nv ←$ {0, 1}λ
Uv → broadcast Uv, Nv, Update, {Seqt}∗v, Signskv(Uv, Nv, Update, {Seqt}∗v)

. Repeat ∀v ∈ |{U}|

As with the BAC protocol, the protocol flows denoted in blue indicate
the core COCO-SYNC-R protocol. This protocol denotes agreement on pos-
session of Update data packets and intent to send. We do not include the
actual messages of the Update within the core protocol, as those may be
dropped (leading to a break in protocol transcript matching, as described

12

in Section 4). Also, we do not include the final broadcast message; the final
broadcast message is actually collected for return as a confirmation message
component in the BAC protocol, rather than a critical aspect of the COCO-
SYNC-R protocol. Furthermore, neither the BAC nor the COCO-SYNC-R
protocol should not fail if this message is lost due to packet dropping. If
Uv’s confirmation message is lost, there is no guarantee to the back-end that
Uv has the Update, but if other units possess the full Update it suffices that
Uv may obtain it from them. Otherwise, the lack of a full Update possessed
by any unit in the BAC confirmation message indicates to the back-end
possible need to re-transmit.

In addition to the above core protocol description, the implementation
should include a fail-safe timeout. A timeout is crucial for added robustness
to the protocol by ensuring the protocol does not hang while waiting for a
unit that loses connectivity or gets jammed. The timeout should be main-
tained by Uv, and if no response from the current Uw is received within the
timeout window, then a next Uw is selected and Uv sends its request. It
would be beneficial, however, for Uv to continue listening for a late response
from a previous Uw so that RF broadcasts (if answered later) are not wasted
just because of the timeout.

Although the flows indicate intended partners, the data will be sent
in broadcast form, so all units will be able to listen for any transmissions
containing missing sequence numbers even if that unit is not acting as v.
The goal of this is to reduce the number of duplicate requests. This idea is
further explained in section 3.

Unit v Broadcast Unit w

Uw, Nv, Update, {Seqt}∗v, Signskv
(Uw, Nv, Update, {Seqt}∗v)

if w possesses a set of messages such that {Seqs}w ⊆ {Seqt}∗v and {Seqs}w ̸= {}, then send

Nw, {Seqs}w, Signskw
(Uv, Nv, Uw, Nw, {Seqs}w)

Update, Seqn, Seqtotal, Mn, SignskBE
(Update, Seqn, Seqtotal, Mn)

Otherwise, send

Nw, NACK, Signskw
(Uv, Nv, Uw, Nw, NACK)

After all Uw have participated for Uv’s turn or {Seqt}∗v = {}, send

Uv, Nv, Update, {Seqt}∗v, Signskv
(Uv, Nv, Update, {Seqt}∗v)

Figure 4: COCO-SYNC-R Protocol Illustration

13

2.4 COCO-SYNC-P

Assumptions and Variables

We re-apply the same assumptions and variables as used in Section 2.3.

Protocol Description

The following protocol reverses the approach of COCO-SYNC-R. Instead
of having each unit request what it needs from every other unit, all units
will broadcast what they are missing at the beginning. Then, the unit with
the most complete transcript will be selected as the lead unit and broadcast
the missing sequence numbers it has to the other units. The protocol is
designed to be iterative, and the protocol can be repeated until matching
transcripts are achieved among all units, or an exit condition is set. More
on this in remark 2.2. Color coding in blue for the core COCO-SYNC-P
protocol follows that of BAC and COCO-SYNC-R protocol.

Flow Algorithm
Uw Nw,←$ {0, 1}λ
Uw → broadcast Nw, Update, Signskw(Uw,Nw,Update)
. For all Uu ∈ {U}:
Uu Nu ←$ {0, 1}λ
Uu → broadcast Uu, Nu, Update,
. {Seqs}∗u, Signsku(Uu, Nu, Update, {Seqs}∗u)
. End for

. (Uv, t)← (Uu, s).[min∀Uu∈{U}{|{Update.Seqs}∗u|}∧condLead]

. Lead← (Uv, t)

. {Seqt}v ←
{ |{U}|⋃

u=1
{Seqs}∗u

}
\ {Seqt}∗v

Uv Nv ←$ {0, 1}λ
Uv → broadcast Nv, Nw, {Seqt}v, Signskv(Uv, Nv, Uw, Nw, {Seqt}v)
. If {Seqt}v == {} ∨ condexit:
. exit
Uv → broadcast Update, Seqn, Seqtotal,
. Mn, SignskBE(Update, Seqn, Seqtotal, Mn)
. [∀Seqn ∈ {Seqt}v]

14

Repeat

Remark 2.2. The protocol can be re-run (i.e., corresponding to Repeat),
until all units’ transcripts match or until predetermined number of iterations
are reached. The former case is captured by {Seqt}v == {} which holds if
the request sets from all units were identical (whether from obtaining the
full Update, partial but identical packet sets, or no update packets). In the
worse case, units will have received the BAC message indicating that an
Update would be set, but non of the ensuing Update packets.

Protocol exit after a certain number of iterations can be enforced via
condexit.

Remark 2.3. We allow a tie-breaker condition condLead, such that if more
than one unit has an equal number of minimum requested packets. Alter-
natively, if (Uu, s) has already been the Lead, the condition can force a
re-calibration of hierarchy. For simplicity, we let condLead = 1 for the re-
mainder of this paper, but leave it up to the implementation for appropriate
conditions to handle other such cases.

If packet drops occur when units are broadcasting their request sets, it is
possible that more than one unit may claim the role as Lead. To account for
this, a timeout should be enforced following Flow 3 where a unit broadcasts
intent to be Lead. The timeout will allow all units that may have claimed
lead to examine the other broadcast commit sets and cede the role of Lead
the the unit with the most complete commit set. In the instance of more
than one unit having commit sets of the same size, the role of Lead will go
to the unit highest in the hierarchy.

One benefit to this protocol is that it only highlights the RF signature
of the lead unit. So if one unit is in a position where it is safer to broadcast
RF, that unit could always be selected as the lead (Uv). Additionally, the
protocol can be adapted to add a step where the lead unit requests missing
sequence numbers from units it knows has them based on the initial re-
quest broadcasts. That way, the lead unit has the most complete transcript
possible before it broadcasts.

15

Uw Broadcast

Uu

Uv

Nw, Update, Signskw
(Uw, Nw, Update)

Uw initiates the protocol with Flow 1

Uu, Nu, Update, {Seqs}∗u, Signsku
(Nw, Update, {Seqs}∗u)

Repeat Flow 2 for all u in {U}

Nv, Nw, {Seqt}v, Signskv
(Uv, Nv, Uw, Nw, {Seqt}v)

Update, Seqn, Seqtotal, Mn, SignskBE
(Update, Seqn, Seqtotal, Mn)

∀ Seqn ∈ {Seqt}v

Figure 5: COCO-SYNC-P Protocol

3 Examples

The issue of inter-unit communication represents a challenge when address-
ing this scenario. The forward units in question are likely experiencing
dynamic situations that cannot be fit into definitive solutions (e.g. via pre-
dictable connection among all forward parties). The units are further limited
by the necessity to maintain low RF signatures, communication equipment
that may be compromised or generally inferior, and terrain not conducive
to communication. Due to this complexity and range of situations, it is
misguided to assume one protocol will be optimal for all scenarios. Units
must be able to adapt to the environment and communicate amongst them-
selves. Thus, we have created two separate protocols that capture two dis-
tinct methods for inter-unit communications. Selection among these may be
made based on assessed optimality for a given scenario. These two methods,
presented in Section 2.3 and Section 2.4, are visualized below with exam-
ples. It is important to emphasize that these are not technical depictions
of the protocol, but rather high level scenario depictions to illustrate the
overarching concepts.

16

At a basic level, the COCO-SYNC-R protocol follows a pull mechanism
and relies on a pre-established hierarchy of units. Figure 6 shows an example
scenario. Assume there are five forward units, depicted as Units 1-5, which
need to affirm receipt of a shared update. The update itself consists of
packets a-e. For this example, we will assume Unit 1 is the unit exercising
its ‘turn’, followed by Unit 2, and so on (i.e. 1-5 is the listed hierarchy).
For both examples, we will say that units successfully received the following
packets:

• Unit 1: {d, e}

• Unit 2: {b, c, d, e}

• Unit 3: {c, d, e}

• Unit 4: {a, b, d}

• Unit 5: {b, c, d}

After receiving the final flow of the BAC protocol consisting of the update
from headquarters, Unit 1 sends labels (packet numbers) to Unit 2 for the
packets it is missing. In this case, Unit 1 will send Unit 2 that it is missing
{a, b, c}. Unit 2 then replies with the subset list of labels {b, c} in its cache,
followed by original packets as sent by the back-end.

At this point, any unit missing b or c that sees Unit 2’s message will
receive the packets as well.2 So Unit 3 gets b and Unit 4 gets c. Unit 1, which
is still in need of packet a, will then send Unit 3 its new request set (which
is just the label for a). At this point, Unit 3 responds with its subset list of
labels followed by the corresponding packets in its cache. If a unit does not
have any of the requested packets, the unit will respond with a NACK. This
process will continue until Unit 1 has nothing left to request, requesting the
empty set, or Units 2-5 have responded. The process will then start over
with Unit 2 as the lead unit, requesting all missing packets from other units
according to the pre-established ordering. The entire protocol can then be
repeated until all units request the same request set, or for a predetermined
number of iterations.

2We call this an observing case for which we will consider RF footprint as distinct from
a non-observing case in Section 5.4.

17

U1

U1

U1

U1

U1

U1

U1

U1

U1

U2

U2

U2

U3

U3

U4

U4

U4

Broadcast

UwUv

RequestSet{a, b, c}

Announcement{b, c}

CachedPackets{b, c}

RequestSet{a}

NACK

RequestSet{a}

Announcement{a}

CachedPackets{a}

RequestSet{}

At this point, Unit 1 has requested the empty set so its turn ends and Unit 2
begins to request

Figure 6: COCO-SYNC-R Flow Diagram for Example Case

The COCO-SYNC-P protocol mirrors COCO-SYNC-R but follows a
push structure. It features an agreed-upon method to determine the lead
unit and relies on that unit acting as a forward hub. After receiving the final
flow of the BAC protocol, a unit within {U} will begin the protocol with
an initiation message. After the protocol is begun, all units will broadcast a
request set consisting of the packets they are missing. The unit missing the
least number of packets is then assigned to be the lead. The lead unit will
then broadcast the packets it possesses which have been seen in other units’
request sets. The protocol is designed to be iterative and can be repeated
until every unit broadcasts the same request set or for a determined number
of iterations.

18

To visualize it, we can refer to the same example, with five units, labeled
1-5, needing packets a-e where the units’ transcripts are identical to those
above. After receiving the final message, one of the units, for this example
it will be Unit 3, sends the initiation message. Then, Unit 1 broadcasts
labels (packet numbers) for packets {a, b, c}, signaling it is missing packets
a, b, c; Unit 2 broadcasts label {a}; Unit 3 broadcasts labels {a, b}; Unit
4 broadcasts labels {c, e}; and Unit 5 broadcasts labels {a, e}. The units
all recognize that Unit 2 will take lead because it has the most complete
update (note that if multiple units had the same number of packets miss-
ing, they would refer to a predetermined order again). Unit 2 then sends
packets {b, c, d, e} as a broadcast to all other units. The protocol can then
be repeated where Unit 4 is selected as lead and broadcasts labels {a}.

U3

U1

U2

U3

U4

U5

U2

BroadcastUnits

InitiationMessage

RequestSet{a, b, c}

RequestSet{a}

RequestSet{a, b}

RequestSet{c, e}

RequestSet{a, e}

All units see that Unit 2 has the smallest request set, so it is selected as lead

CachedPackets{b, c, d, e}

Figure 7: COCO-SYNC-P Flow Diagram for Example Case

4 Security Model

To perform an analysis on the three protocols, we will first describe the
security model consisting of protocol goals and adversarial capabilities. In

19

analyzing security, we will demonstrate the required steps and computa-
tional capabilities that an adversary must have to compromise the protocol.
Finally, we will also bound the RF footprint created from these protocols.

Protocol Agnostic Variables In our model, an adversary A interacts
with several sessions of multiple identities running the protocol. We abuse
notation and denote by πv

i the i-th session of identity Uv running the pro-
tocol. We adapt the notation of [8] and denote I = R ∪ S as the set of
identities modeling both various recipients (R = {Ui}) and the back-end
(S = {BE}) in the system, each identity Uv ∈ I being associated with a
secret/public key pair (skv, pkv). Each identity also has access to the public
keys of all other identities. We associate with each session the following
protocol-agnostic internal state variables:

• id ∈ I indicates the owner of the session (e.g., id = Uv for a session
πv
i).

• trans ∈ {0, 1}∗ ∪ {⊥} records the sent and received messages.

• ad ∈ {0, 1}∗ assigns additional, authenticated data provided by the
protocol participants. The content of ad is not specified within the
protocol (e.g. Update message content); however, we consider ad to
be a sub-component of the sent and received messages, trans.

• Λ ∈ {accept, reject}.

We write, e.g., πv
i .trans when referring to state variables of a specific

session.

Adversarial Capabilities The more capabilities an adversary is granted,
the stronger the adversary is considered. We will assume an adversary-
as-the-network paradigm, where A controls the network and possesses a
standard set of the capabilities to delete, read, modify, and replay messages
and create new session instances. Additionally, we allow specific queries to
the adversary, adapting from [9]:

• Corrupt(Uv): corrupts the long-term private key corresponding to iden-
tity Uv ∈ I. If Corrupt(Uv) is the τ -th query of A, we say that Uv is
τ -corrupted. For parties that are uncorrupted, we set τ :=∞.

20

• Send(πv
i ,M): The adversary may use a Send query to send a message

M to session πv
i . The session oracle will respond according to the

protocol specification, depending on its internal state.

– BAC Protocol:

If the adversary asks Send to oracle πv
i , the oracle first checks ifM

consists of an initiation symbol and Update message pair (⊤,m),
and if so sets role = BE and responds with the first message in
the protocol based on Update m. Else it sets role = recipient and
responds according to the protocol.

– COCO-SYNC-R Protocol:

If the adversary asks Send to oracle πv
i , the oracle first checks ifM

consists of an initiation symbol and Update message pair (⊤,m),
and if so sets role = sender and responds with the first message
in the protocol based on Update m. Else it sets role = receiver
and responds according to the protocol.

– COCO-SYNC-P Protocol:

If the adversary asks Send to oracle πw
j , the oracle first checks

if M consists of an initiation symbol and Update message pair
(⊤,m), and if so sets role = sender and responds with the first
message in the protocol based on the Update m. Else it responds
according to the protocol.

If, during the protocol run, Lead ← (Uv, t), then for πv
i we set

role = receiver.

For both the BAC protocol and COCO-SYNC-P protocol, the receiver is
specified during the course of the protocol run, and is not immediately known
to the sender.

Following [9], we denote the transcript at a session by πv
i .trans, a se-

quence that consists of all messages sent and received by πv
i in chronolog-

ical order (not including the initialization-symbol). We further clarify as-
signment to trans as plaintext messages in pre-processing (sender-side) and
post-processing (receiver side) form.

We say that πv
i .trans is a prefix of πw

j .trans, if π
v
i .trans contains at least

one message and the messages in πv
i .trans are identical to and in the same

order as the first |πv
i .trans| messages of πw

j .trans.

Definition 4.1 (Matching Conversations [9]). We say that πv
i has a match-

ing conversation with πw
j , if

21

• πw
j .trans is a prefix of πv

i .trans and πv
i .trans sent the last message, or

• πv
i .trans = πw

j .trans and πw
j .trans sent the last message.

Definition 4.2. We say that a protocol Π between two parties πv
i and πw

j ,
run under a ‘benign’ adversary A that faithfully delivers messages through a
series of Send queries, is correct if both oracles set Λ = accept.

BAC Security

We associate with each session the additional following internal state vari-
ables:

• role ∈ {BE, recipient} indicates the entity’s role in the session. We
require that role = recipient (resp. role = BE) if and only if id ∈ R
(resp. id = S ∈ S).

• pid ∈ I ∪ {⊥} indicates the communication partner, and is set exactly
once per sub-protocol run. Initially, pid = ⊥ can be set (if role = BE) to
indicate that the receiver’s identity is to be learned within the protocol
(i.e., post-specified).

Definition 4.3 (Mutual Authentication Security (adapted from [9])). We
say that an adversary BAC-(t, ϵ)-breaks a mutual authentication (MA) pro-
tocol Π run on security parameter λ, if A runs in time t and when A ter-
minates, then with probability at least ϵ there exists an oracle πv

i such that

• πv
i ‘accepts’ when A issues its τ -th query with partner pid = Uw, and

• Uw is τw-corrupted with τ < τw, and

– If πv
i .role = BE: there is no oracle πw

j such that πv
i has a matching

conversation to πw
j .

– If πv
i .role = recipient: there is no unique oracle πw

j such that πv
i

has a matching conversation to πw
j .

If an oracle πv
i accepts in the above sense, then we say that πv

i accepts mali-
ciously. We say that an MA protocol is BAC-(t, ϵ)-secure, if it is correct and
there exists no adversary that BAC-(t, ϵ)-breaks it. We define the adversarial
advantage of A, AdvBACΠ,A , as the probability that A BAC-(t, ϵ)-breaks it.

22

COCO-SYNC-R Security

We associate with each session the following additional internal state vari-
ables:

• role ∈ {sender, receiver} indicates the entity’s role in the session.

• pid ∈ I ∪ {⊥} indicates the communication partner, and is set exactly
once per sub-protocol run.

The remaining aspects of modeling for COCO-SYNC-R reflect those
used in the BAC model above, with the following adaptation to Definition
4.5:

Definition 4.4 (Mutual Authentication Security (adapted from [9])). We
say that an adversary COCO-SYNC-R-(t, ϵ)-breaks an MA protocol Π run on
security parameter λ, if A runs in time t and when A terminates, then with
probability at least ϵ there exists an oracle πv

i such that

• πv
i ‘accepts’ when A issues its τ -th query with partner pid = Uw, and

• Uw is τw-corrupted with τ < τw, and

• There is no unique oracle πw
j such that πv

i has a matching conversation
to πw

j .

If an oracle πv
i accepts in the above sense, then we say that πv

i accepts
maliciously. We say that an MA protocol is COCO-SYNC-R-(t, ϵ)-secure, if
it is correct and there exists no adversary that COCO-SYNC-R-(t, ϵ)-breaks it.
We define the adversarial advantage of A, AdvCOCO-SYNC-R

Π,A , as the probability
that A COCO-SYNC-R-(t, ϵ)-breaks it.

The above differs from MA security under the BAC model in that we
require uniqueness of the partner oracle. Under BAC, any recipient may have
a matching transcript (similarly how distributed units may respond with a
confirmation message). Under COCO-SYNC-R, following a ‘pull mechanism’
assumption, we require that exactly one unit responds.

COCO-SYNC-P Security

We associate with each session the following additional internal state vari-
ables:

• role ∈ {sender, receiver} indicates the entity’s role in the session.

23

• pid ∈ I ∪ {⊥} indicates the communication partner, and is set exactly
once per sub-protocol run. Initially, pid = ⊥ can be set (if role =
sender) to indicate that the receiver’s identity is to be learned within
the protocol (i.e., post-specified).

The remaining aspects of modeling for COCO-SYNC-P reflect those used
in the BAC model above, with the following adaptation to Definition 4.5,
namely removing the requirement for a unique partner oracle if the session
is in a sender role.3

Definition 4.5 (Mutual Authentication Security (adapted from [9])). We
say that an adversary COCO-SYNC-P-(t, ϵ)-breaks an MA protocol Π run on
security parameter λ, if A runs in time t and when A terminates, then with
probability at least ϵ there exists an oracle πv

i such that

• πv
i ‘accepts’ when A issues its τ -th query with partner pid = Uw, and

• Uw is τw-corrupted with τ < τw, and

– If πv
i .role = sender: there is no oracle πw

j such that πv
i has a

matching conversation to πw
j .

– If πv
i .role = receiver: there is no unique oracle πw

j such that πv
i

has a matching conversation to πw
j .

If an oracle πv
i accepts in the above sense, then we say that πv

i accepts mali-
ciously. We say that an MA protocol, Π is COCO-SYNC-P-(t, ϵ)-secure, if it
is correct and there exists no adversary that COCO-SYNC-P-(t, ϵ)-breaks it.
We define the adversarial advantage of A, AdvCOCO-SYNC-P

Π,A , as the probability
that A COCO-SYNC-P-(t, ϵ)-breaks it.

5 Analysis

In this section we analyze the three protocols under the respective models de-
scribed in Section 4. The security of packet transmission in the channel cor-
relates to the EUF-CMA security of the digital signature (see Appendix 7.1
for definition). This section’s analyses correspond to the protocol security
of the communicating parties, and the proofs follow similarly to that of [10]
and [11].

3In COCO-SYNC-P, multiple receivers may self-identify for the receiver role due to
disconnected networks, and we consider this as acceptable execution for obtaining a max-
imum number of missing packets, accepting that the format of COCO-SYNC-P already
comes at an added RF cost over COCO-SYNC-R.

24

5.1 BAC Protocol Analysis

The BAC protocol focuses on authenticity of the update packets as exem-
plified by the BAC security model. We are not concerned about replays of
these packets as replays will not cause unnecessary responses which would
increase RF footprint among the receiving units, i.e. units can choose to
accept or reject authenticated packets based on whether the packets are
needed. In fact, the BAC protocol design is intended to specifically support
transmission to cover cases of missing packets.
Freshness of the protocol and data authenticity on the associated data as well
as entity authenticity is required from BE. Freshness and entity authenticity
from Uv is required by BE for termination of the protocol. The transcript
πv
i .trans (resp. π

w
j .trans) is defined across the BAC protocol flows shown in

blue (see Section 2.1).

Theorem 5.1 (Security of BAC). Let A be a PPT adversary against the
BAC security of the BAC protocol Π, running in time t′ ≈ t. Then

AdvBACΠ,A (λ) = q2 · 2−λ + (Seqtotal + 2) · nIn
2
s ·AdvSUF−CMA

µ,B (λ)

where q is a polynomial bound on the number of queries allowed to A, Seqtotal
is the total packets that the Update message transmission is parsed into,
nI = |I| is the number of identities, ns = |[s]| the maximum number of
sessions at an identity, and µ is a signature scheme.

Proof. We perform analysis as an experiment as a series of games, starting
with the real security experiment and introducing modifications in each
game until a final bound on the adversary, A’s, success is reached. The
adversarial advantage in Game i is denoted Advi.

Game 0. This game is the same as the original experiment:

Adv0A = AdvBACΠ,A (λ)

Game 1. This game proceeds as in Game 1, but we abort the experiment
if any two sessions select the same nonce.

Adv0 ≤ q2 · 2−λ +Adv1 .

25

Game 2. This game proceeds as in Game 1, except that the challenger
guesses Uv ∈ I where |I| = nI and sessions i, j ∈ [s] where |[s]| = ns, i.e.,
the party identities and sessions that A will try to win the BAC experiment
against. We raise an abort clause and end the experiment if A does not try
to win against the guessed sessions. Thus,

Adv1 ≤ nIn
2
s ·Adv2 .

We now provide the final bound to the adversarial probability of winning
BAC, i.e., the adversary attempts to win by getting the sender or receiver to
accept maliciously. We break this game into two cases, based on sender/re-
ceiver roles:

Case 1: Receiver accepts maliciously. At some point Uv receives a
flow of the form Update, ad, SignskBE(Update, ad) with associated data
corresponding to Seqtotal or Seqn, Seqtotal, Mn. Uv may receive all messages
in the first and second core BAC flows, or only one.
Uv accepts maliciously with pid = BE if BE is uncorrupted and there is no
unique oracle πBE

j with matching conversation to πv
i . This implies that the

adversary would need to forge the message Update, ad, SignskBE(Update,
ad), such that the received message differs or that the verification holds for
an identity other than BE (as identities are already addressed in Game 2).
However, that in turn implies ability to create an adversary, B against the
strong unforgeability of the signature. Thus,

Adv2−recv
A ≤ (Seqtotal + 1) ·AdvSUF−CMA

B (λ) .

Case 2: Sender accepts maliciously. At some point BE receives a flow
of the form Uv, Nv, Update, ad, Signskv(Uv,Nv, ad), with associated data
corresponding to the Confirmation Message. BE sets pid = Uv, checks the
validity of the signature under the public signing key of Uv, and accepts
maliciously with pid = Uv if Uv did not send a message of this form. This
in turn implies ability to create an adversary, B against the strong unforge-
ability of the signature, and thus

Adv2−send
A ≤ AdvSUF−CMA

B (λ) .

Remark 5.1. Since we allow for a protocol run to ‘accept’ if any of the
first two flow back-end messages are received, and these are each individu-
ally signed to support better functionality on the receiver side, the worst-case

26

adversarial advantage gains a factor of Seqtotal. However, it is worth noting
that nI is likely quite small, and the fixed BE identity also removed a typ-
ical reduction factor of nI . Thus, the overall reduction may be considered
reasonably tight.

5.2 COCO-SYNC-R Security Analysis

We restrict analysis of COCO-SYNC-R to the core protocol, i.e., the flows
depicted in blue in the protocol description. Inter-unit transmission of the
update packets is protected by the back-end’s signature in that Update
messages as part of the BAC protocol. We do not require replay protection,
etc., on such packets as re-receipt and authenticity of the source unit relay of
the Update message is not considered a security threat in our model as long
as the BAC transmission itself is authentic. Thus, the COCO-SYNC-R core
protocol focuses on authenticity and freshness of the request-to-send packets
inter-unit, as responses to replays of such requests could cause unnecessary
RF footprint. Similarly, authenticity of the receiver and associated data
establishes knowledge of what packets the receiver may (resp. may not)
provide. Transcript πv

i .trans (resp. πw
j .trans) is defined across the COCO-

SYNC-R protocol flows shown in blue.

Theorem 5.2 (Security of COCO-SYNC-R). Let A be a PPT adversary
against the COCO-SYNC-R security of the COCO-SYNC-R protocol Π, run-
ning time t′ ≈ t. Then

AdvCOCO-SYNC-R
Π,A (λ) = q2 · 2−λ + 2n2

In
2
s ·AdvSUF−CMA

µ,B(λ)

where q is a polynomial bound on the number of queries allowed to A, nI =
|I| is the number of identities, ns = |[s]| the maximum number of sessions
at an identity, and µ is a signature scheme.

Proof. We perform analysis as an experiment as a series of games, starting
with the real security experiment and introducing modifications in each
game until a final bound on the adversary, A’s, success is reached. The
adversarial advantage in Game i is denoted Advi.

Game 0. This game is the same as the original experiment:

Adv0 = AdvCOCO-SYNC-R
Π,A (λ) .

27

Game 1. This game proceeds as in Game 1, but we abort the experiment
if any two sessions select the same nonce.

Adv0 ≤ q2 · 2−λ +Adv1 .

Game 2. This game proceeds as in Game 1, except that the challenger
guesses v, w ∈ I where |I| = nI and sessions i, j ∈ [s] where |[s]| = ns, i.e.,
the party identities and sessions that A will try to win the COCO-SYNC-R
experiment against. We raise an abort clause and end the experiment if A
does not try to win against the guessed sessions. Thus,

Adv1 ≤ n2
In

2
s ·Adv2 .

We now provide the final bound to the adversarial probability of winning
COCO-SYNC-R, i.e., the adversary attempts to win by getting the sender or
receiver to accept maliciously. We break this game into two cases, based on
sender/receiver roles:
Case 1: Receiver accepts maliciously. At some point Uw receives a
flow of the form Uw, Nv, ad, Signskv(Uw, Nv, ad) (with associated data
corresponding to the components of Update, {Seqt}∗v. Uw performs a search
and verification check of the signature over all identities in I. Uw accepts
maliciously with pid = Uv if Uv is uncorrupted and there is no unique oracle
πv
i with matching conversation to πw

j . This implies that the adversary would
need to forge the message Uw, Nv, ad, Signskv(Uw, Nv, ad), such that the
received message differs or that the verification holds for an identity other
than Uv (a case already addressed in Game 2). However, that in turn
implies ability to create an adversary, B against the strong unforgeability of
the signature. Thus,

Adv2−recv
A ≤ AdvSUF−CMA

B (λ) .

Case 2: Sender accepts maliciously. At some point Uv receives a flow
of the form Nw, ad, Signskw(Uv, Nv, Uw, Nw, ad), (with associated data
corresponding to the components of either {Seqs}w or NACK). Uv checks
the validity of the signature under the public signing key of Uw and accepts
maliciously with pid = Uw if Uw did not send a message of the form Nw,
ad, Signskw(Uv, Nv, Uw, Nw, ad) (all other variables under the signature are
known to Uv). This in turn implies ability to create an adversary, B against
the strong unforgeability of the signature, and thus

Adv2−send
A ≤ AdvSUF−CMA

B (λ) .

28

5.3 COCO-SYNC-P Protocol Analysis

As in Section 5.2, we restrict analysis of COCO-SYNC-P to the core proto-
col, i.e., the flows depicted in blue in the protocol description.

Theorem 5.3 (Security of COCO-SYNC-P). Let A be a PPT adversary
against the COCO-SYNC-P security of the COCO-SYNC-P protocol Π, run-
ning time t′ ≈ t. Then

AdvCOCO-SYNC-P
Π,A (λ) = q2 · 2−λ + 2n2

In
2
s ·AdvSUF−CMA

µ,B(λ)

where q is a polynomial bound on the number of queries allowed to A, nI =
|I| is the number of identities, ns = |[s]| the maximum number of sessions
at an identity, and µ is a signature scheme.

The proof also follows similarly to that of COCO-SYNC-R, with the excep-
tion that we no longer require a unique partner for the requester, per the
COCO-SYNC-P experiment.

5.4 RF Analysis

We will now analyze the RF footprint of the three protocols presented in
this paper. For each protocol, we consider the worst-case analysis of the
RF footprint under a correct protocol run, i.e., the most expensive run of
the protocol where the protocol still terminates, and there has been no ad-
versarial interference. If an adversary were to e.g., drop packets through
jamming, it could force the protocol to loop or restart, hence we consider
such instances outside of the RF baseline analysis. It is important to note
that the average cases for these protocols will have significantly lower RF
footprint than the worst case; our upper bounds simply represent the max-
imum footprint possible. We also provide a best case analysis.
We proceed under the assumption that inter-unit communications are less
RF-expensive than SATCOM communications to the back-end. Using this
assumption, the analysis is performed by calculating the RF cost per trans-
mission as the product of power level and message length, represented as

RF = (PowerLevel) · (|message|)

Inter-unit transmissions will be considered low power, while transmissions
to the back-end will be considered high power.

29

Variables

In addition to the variables used for the protocols in Section 2, we add the
following notation:

• k: Number of forward units participating in the protocol.

• PL: RF footprint associated with low power RF transmission.

• PH : RF footprint associated with high power RF transmission.

• ν: The field bit-length allotted for entity identifiers, Uv ∈ I.

• µ: The field bit-length allotted for a sequence number, i.e. |Seqn|. We
assume that the field length allotted for the back-end sequence number
(i.e., the sequence number Update), the nonce field length, and the
NACK length are equivalent to the field length allotted for packet
sequence numbers, i.e., µ = |Seqn| ≈ |Update| ≈ |Nv| ≈ |NACK|.

• ρ: The length in bits of the signature tag generated from signing a
message.

• ω: The length in bits of the update message M , i.e., Seqtotal ·|Mn| = ω.

The analysis can be adjusted accordingly for cases where |Seqn| ≈ |Update| ≈
|Nv| does not hold. For simplicity we assume that ν ≤ µ.

BAC – Worst Case.
The worst case scenario for the BAC protocol occurs if the back-end trans-
mits the update and none of the units receive any part of the update. In this
case, one unit will reply with a confirmation message that indicates that all
units are missing all packets.

Worst case We calculate the example worst-case RF footprint of the for-
ward units as:

RFBAC ≤ PH ·
(
|Uv|+ |Nv|+ |Update|+ k

(
|Uv|+ |Nv|+ Seqtotal · |Seq|+ |sig|

)
+ |sig|

)
≤ PH ·

(
ν + 2µ+ k(ν + µ+ µ · Seqtotal + ρ) + ρ

)
≈ PH ·

(
(k + 1)(ν + ρ) + µ(k + kSeqtotal + 2)

)
.

30

• In this worst-case scenario, the reply RF footprint expense of the con-
firmation assumes that each unit’s confirmation message includes a
request set of all sequence numbers, i.e., that none of the Update
message itself was received. This gives us k multiples of Seqtotal · µ.
Naturally, most cases will have better performance, reducing or nearly
nullifying the factor of Seqtotal.

• The confirmation message also includes a unit identifier, nonce, update
number, and signature tag, giving us k multiples of (|Uv| + |Nv| +
|Update|+ρ) where the field length allotted to a variable Uv is denoted
|Uv|.

BAC – Best Case.
Now we calculate the best case RF footprint for BAC. This corresponds to
when all packets are correctly received the back-end transmission.

RFBAC ≤ PH ·
(
|Uv|+ |Nv|+ |Update|+ k

(
|Uv|+ |Nv|+ |Seq|+ |sig|

)
+ |sig|

)
≤ PH ·

(
ν + 2µ+ k(ν + µ+ µ+ ρ) + ρ

)
≈ PH · (k + 1)(ν + 2µ+ ρ)

COCO-SYNC-R – Worst Case.
For the COCO-SYNC-R protocol, the worst-case RF footprint occurs if no
unit received the full Update message, thus necessitating each requester
to contact every other unit. Simultaneously, this occurs when the units
cumulatively possess the full Update message, as otherwise less packets exist
to share. In this scenario, each unit, when acting as Uv, must make a request
to all other units and will receive the full Update message. In the worst case
scenario, Uv only obtains the full Update message after sending requests to
all other units – without loss of generality we simplify representation of this
case by having k − 1 units missing Seqtotal − 1 packets, while the last unit
is missing 1 packet.

Observing case Here we calculate based on that all units hold a given
packet except for the last, which holds all packets but the specific one. We

31

assume that units listen in (observing) on traffic not addressed to them:

RFSY NC−R ≤ PL ·
(
(k − 1) · (|Uw|+ |Nv|+ |Update|

+ (Seqtotal − 1) · |Seq|+ |sig|)
+ (k − 2) · (|Nw|+ |NACK|+ |sig|)
+ (|Nw|+ (Seqtotal − 1) · |Seq|+ |sig|)
+ (Seqtotal − 1) · (|Update|+ |Seq|+ |Seq|+ |Mn|+ |sig|)
+ (|Uw|+ |Nv|+ |Update|+ |Seq|+ |sig|)
+ (|Nw|+ |Seq|+ |sig|)
+ (|Update|+ |Seq|+ |Seq|+ |Mn|+ |sig|)
+ k(|Uv|+ |Nv|+ |Update|+ |Seq|+ |sig|)

)
≤ PL ·

(
(k − 1) · (ν + 2µ+ µ(Seqtotal − 1) + ρ)

+ (k − 2) · (2µ+ ρ)

+ (µ · Seqtotal + ρ)

+ (Seqtotal − 1) · (3µ+ |Mn|+ ρ)

+ (ν + 3µ+ ρ) + (2µ+ ρ) + (3µ+ |Mn|+ ρ)

+ k(4µ+ ρ)
)

≈ PL ·
(
kν + 7kµ+ kµSeqtotal + 2kρ+ 4ρ+ 3µSeqtotal

+ ρSeqtotal + ω
)
.

• When the first unit takes its turn, it will request its missing sequence
numbers from every other unit in Flow 1 of COCO-SYNC-R. Since
the last unit holds all (Seqtotal - 1) needed packets, the request set will
remain the same for k − 1 requests. Thus we have (k − 1) · (|Uw| +
|Nv|+ |Update|+ (Seqtotal − 1) · |Seq|+ |sig|).

• In response to the first unit’s requests, all units between the first and
last unit in the hierarchy will send NACKs, giving (k − 2) · (|Nw| +
|NACK|+ |sig|).

• Once the final unit receives the request from the first unit, it commits
its (Seqtotal - 1) packets from cache. The result is (|Nw| + (Seqtotal −
1) · |Seq|+ |sig|). Then, it transmits the packets it has committed to,
resulting in (Seqtotal − 1) · (|Update|+ |Seq|+ |Seq|+ |Mn|+ |sig|).

32

• The last unit (based on the original hierarchy) will request its missing
packet, receive a confirmation of send, and then receive the packet
transmission itself, resulting in (|Uw|+ |Nv|+ |Update|+ |Seq|+ |sig|)+
(|Nw|+ |Seq|+ |sig|) + (|Update|+ |Seq|+ |Seq|+ |Mn|+ |sig|).

• Finally, all units, on their respective turns, will broadcast a confirma-
tion message k · (|Uv|+ |Nv|+ |Update|+ |Seq|+ |sig|).

Non-observing case Here we calculate based on that all units hold a
given packet except for the last, which holds all packets but the specific
one. We assume that units do not listen in (non-observing) on traffic not
addressed to them:

RFSY NC−R ≤ PL ·
(
(k − 1) · (k − 2)

2
· (|Uw|+ |Nv|+ |Update|

+ (Seqtotal − 1) · |Seq|+ |sig|)

+
(k − 2) · (k − 3)

2
· (|Nw|+ |NACK|+ |sig|)

+ (k − 1) · (|Nw|+ (Seqtotal − 1) · |Seqn|+ |sig|)
+ (k − 1) · (Seqtotal − 1) · (|Update|+ |Seq|+ |Seq|+ |Mn|+ |sig|)
+ (|Uw|+ |Nv|+ |Update|+ |Seq|+ |sig|)
+ (|Nw|+ |Seq|+ |sig|)
+ (|Update|+ |Seq|+ |Seq|+ |Mn|+ |sig|)

+ k · (|Uv|+ |Nv|+ |Update|+ |Seq|+ |sig|)
)

≤ PL ·
(
(k − 1) · (k − 2)

2
· (ν + 2µ+ µ(Seqtotal − 1) + ρ)

+
(k − 2) · (k − 3)

2
· (2µ+ ρ)

+ (k − 1) · (µ · Seqtotal + ρ)

+ (k − 1) · (Seqtotal − 1) · (3µ+ |Mn|+ ρ)

+ (ν + 3µ+ ρ) + (2µ+ ρ) + (3µ+ |Mn|+ ρ)

+ k(4µ+ ρ)

)
≈ PL ·

(
1

2
k
(
kν + 3kµ+ kµSeqtotal + 2kρ− 3ν + 5µ− 6ρ

+ 8µSeqtotal + 2ρSeqtotal

)
− 7

2
µSeqtotal + 3ν + 25µ+ 11ρ

33

+ kω − (k + Seqtotal − 2)|Mn| − ρSeqtotal

)
• Each unit takes its turn requesting missing sequence numbers from
every other unit in Flow 1 of COCO-SYNC-R. Each unit will request
Seqtotal − 1 from every other unit until reaching the unit with holding
the packets. After its turn, each unit is placed at the bottom of the
hierarchy, so the number of requests shrinks by one for each turn,
resulting in (k− 1)+ (k− 2)+ . . .+1 requests for Seqtotal− 1 packets.

Thus we have (k−1)·(k−2)
2 · (|Uw|+ |Nv|+ |Update|

+ (Seqtotal − 1) · |Seq|+ |sig|).

• All units except the unit with the Seqtotal − 1 packets will NACK the
request above, giving us the same series, except it begins at k − 2,
since the final unit will not NACK. Thus we have (k−2)·(k−3)

2 · (|Nw|+
|NACK|+ |sig|).

• The final unit (based on the original hierarchy) will commit to sending
k − 1 units Seqtotal − 1 packets, i.e., (k − 1) · (|Nw| + (Seqtotal − 1) ·
|Seqn|+ |sig|).

• If the unit commits to providing sequence numbers, it will provide
the cache message from the BAC protocol to each unit that requested
them, i.e., (k−1) ·(Seqtotal−1) ·(|Update|+ |Seq|+ |Seq|+ |Mn|+ |sig|).

• The last unit will request its missing packet, receive a confirmation
of it, and then receive the packet transmission, i.e., (|Uw| + |Nv| +
|Update|+ |Seq|+ |sig|) + (|Nw|+ |Seq|+ |sig|) + (|Update|+ |Seq|+
|Seq|+ |Mn|+ |sig|)

• Finally, all units, on their respective turns, will broadcast a confir-
mation message k · (|Uv| + |Nv| + |Update| + |Seq| + |sig|). For this
calculation we assume that either all units are listening to the final
broadcast or, more commonly, that the confirmation messages are sent
to a designated unit for collection and transmission to the back-end.
If neither of these cases are possible (i.e., that the confirmation mes-
sages must be individually sent to each other unit in the group) then
a factor of k − 1 on this term is incurred.

COCO-SYNC-R – Best Case.
The best-case scenario occurs when all units have correctly received the full
Update transmission and share confirmation of that inter-unit.

34

RFSY NC−R ≤ PL ·
(
k · (|Uv|+ |Nv|+ |Update|+ |Seq|+ |sig|)

)
≤ PL · k(ν + 3µ+ ρ)

COCO-SYNC-P – Worst Case.
The worst case for the COCO-SYNC-P protocol (run until matching tran-
scripts among the receivers are achieved) occurs if no one unit received
all Update packets from the initial BAC transmission. In this scenario,
the maximum number of messages would need to be transmitted. With-
out loss of generality, we suppose that each unit has received non-empty
set of packets {Seqt}v such that |{Seqt}v| = |{Seqs}u| = q for all u, s and
{Seqt}v ∩ {Seqs}u = ∅. Thus | ⋃

u,s
{Seqs}u| = Seqtotal. In this calculation we

assume that the protocol repeats until all units have broadcast their packets.

RFSY NC−P ≤ PL ·
k∑

i=0

(
|Nw|+ |Update|+ |sig|

+
(
|Uu|+ |Nu|+ |Update|+ |Seq| · |{Seq}∗u| ·

(
i(k − 1)

+ (k − i)(k − 1− i)
)
+ |sig|

)
+ |Nv|+ |Nw|+ |Seq| · |{Seq}v|+ |sig|

+ |{Seq}v| · (|Update|+ |Seq|+ |Seqtotal|+ |Mn|+ |sig|)
)

≤ PL ·
(
2kµ+ kρ

+ kν + 2kµ+ µ · q ·
k∑

i=0

(k2 − k − ik + i) + ρ+ 2kµ+ kµ · q + kρ

+ kq · (3µ+ |Mn|+ ρ)

≈ PL

(
kν + 6kµ+ 2kρ+ ρ+ 4kqµ+ kq|Mn|+ kqρ

+ qµ(
1

2
k3 + k2 − 3

2
k)
)

≈ PL

(
kν + 6kµ+ 2kρ+ ρ+

5

2
µSeqtotal + ω + ρSeqtotal

+
1

2
k2µSeqtotal + kµSeqtotal

)

35

• To initiate the protocol, a unit from {U} must send Flow 1, consisting
of a nonce, the update number, and a signature. This gives us |Nw|+
|Update|+ |sig|.

• Once the protocol has been initiated, each unit then broadcasts its
request set. The broadcast request consists of a nonce, update number,
the set of requested sequence numbers, and a signature. The request

set decreases with each protocol iteration, giving us
(
|Uu| + |Nu| +

|Update|+ |Seq| · |{Seq}∗u| ·
(
i(k − 1) + (k − i)(k − 1− i)

)
+ |sig|

)
.

• Following the requests, one unit will be set as Lead. Since all units
will have the same size request set, the role of Lead will fall to the
unit highest in the hierarchy. Throughout the run of the protocol,
Seqtotal sequence numbers will eventually be provided. This gives us
|Nv|+ |Nw|+ |Seq| · |{Seq}v|+ |sig|.

• The lead unit then provides its commit set by relaying the cached
messages from the back-end. This gives us |{Seq}v|·(|Update|+|Seq|+
|Seqtotal|+ |Mn|+ |sig|).

• The above sequence repeats for all units, with the lead in each round
possessing an increased packet set by a term of q.

COCO-SYNC-P – Best Case.
As with COCO-SYNC-R, the best-case scenario for COCO-SYNC-P occurs
when all units have correctly received the full Update transmission and share
confirmation of that inter-unit.

RFSY NC−P ≤ PL ·
(
|Nw|+ |Update|+ |sig|

+ k
(
|Uv|+ |Nu|+ |Update|+ |Seq|+ |sig|

))
≤ PL ·

(
2µ+ ρ+ k(ν + 3µ+ ρ)

)
6 Conclusion

We have provided three protocols for use in a constrained RF scenario: the
BAC protocol which provides a means for a remote back-end to provide an
update to forward units while minimizing the amount of data that is sent

36

by the forward units over SATCOM, the COCO-SYNC-R protocol which
allows units to share update data among themselves via a pull method, and
COCO-SYNC-P which utilizes a push approach for inter-unit sharing. These
protocols detail a robust method for updating EABO software (or sharing
a mutual view of other information) and provide options to the end user on
how to share packets amongst receivers.
We provide security models and analysis to show assumptions under which
these protocols are secure. Additionally, we mathematically represent bounds
for worst case RF scenarios for all three protocols, based on the forward
units’ RF footprint.
Future work opportunities include implementation of the protocols described
above and optimizing the performance of the protocols in sparsely connected
networks. Additionally, extensive testing will need to be performed to deter-
mine which variation of the COCO-SYNC sharing protocols is best suited
for specific scenarios that result from varying environments and varying
physical layer transmission for inter-unit communication links.

References

[1] General David H. Berger. Commandant’s Planning Guidance. USMC,
1(1):1–26, 10 2020.

[2] Imanol Mugarza, Jose Luis Flores, and Jose Luis Montero. Security
Issues and Software Updates Management in the Industrial Internet of
Things (IIoT) Era. Sensors (Basel, Switzerland), 20(24):7160–, 2020.

[3] Luigi Catuogno, Clemente Galdi, and Giuseppe Persiano. Secure De-
pendency Enforcement in Package Management Systems. IEEE Trans-
actions on Dependable and Secure Computing, 17(2):377–390, 2020.

[4] Lukas Zapolskas and Nicolas Gailly. Increasing Software Update Secu-
rity Through PGP-Compatible Threshold Signatures, Nov 2021.

[5] Solon Falas, Charalambos Konstantinou, and Maria K Michael. A Mod-
ular End-to-End Framework for Secure Firmware Updates on Embed-
ded Systems. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 18(1):1–19, 2021.

[6] Juan Benet. IPFS – Content Addressed, Versioned, P2P File System,
2014.

37

[7] United States Marine Corps. COMMUNICATION EQUIPMENT
B191716 STUDENT HANDOUT. United States Marine Corps.

[8] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT
Key Exchange with Full Forward Secrecy. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
pages 519–548. Springer, 2017.

[9] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the
security of tls-dhe in the standard model. In Advances in Cryptology –
CRYPTO 2012, pages 273–293. Springer Berlin Heidelberg, 2012.

[10] Mihir Bellare and Phillip Rogaway. Entity authentication and key dis-
tribution. In Advances in Cryptology – CRYPTO’ 93, pages 232–249.
Springer Berlin Heidelberg, 1994.

[11] Britta Hale and Colin Boyd. Computationally Analyzing the ISO 9798-
2.4 Authentication Protocol. In SSR, 2014.

[12] Cas Cremers, Britta Hale, and Konrad Kohbrok. The Complexities
of Healing in Secure Group Messaging: Why {Cross-Group} Effects
Matter. In 30th USENIX Security Symposium (USENIX Security 21),
pages 1847–1864, 2021.

[13] Fagen Li, Hui Zhang, and Tsuyoshi Takagi. Efficient Signcryption for
Heterogeneous Systems. IEEE Systems Journal, 7(3):420–429, 2013.

7 Appendix

7.1 Primitive Definitions

Definition 7.1 (Digital Signature Scheme). (pulled from [12]) µ is an al-
lowed digital signature scheme if µ = (µ.Gen, µ.Sign, µ.Verify) such that:

• µ.Gen is a probabilistic key generation algorithm which takes as input
a security parameter λ ∈ µ and returns a pair (sk, pk), where sk is
the secret key and pk is the public key.

• µ.Sign is a (possibly probabilistic) signing algorithm which takes as
input the secret key sk and a message m and returns σ, a signature
on m.

38

• µ.Verify is a deterministic verification algorithm which takes as input
a public key pk, a message m, and a signature σm and outputs bit
verify such that verify = 1 if σm is a valid signature on m and verify
= 0 otherwise.

Definition 7.2 (EUF-CMA). (adapted from [13]) A digital signature scheme
is said to have the EUF-CMA property if no polynomially bounded adversary
has a non-negligible advantage in the following game.

Initialize: The challenger T runs µ.Gen algorithm to generate (sk, pk) and
provides the public key pk to adversary F . F is provided with a signing ora-
cle πE which accepts message m and returns σm such that σm = µ.Sign(sk,
m).

Attack: F performs a polynomially bounded number of queries to πE with
m ∈ {m0, m1,...,mq} and receives back the corresponding σm from πE .

Forgery: F achieves forgery if he can generate (m∗, σ∗) such that m∗ /∈
{(m0, m1,...,mq} and µ.Verify(pk, (m∗, σ∗)) = 1.

Definition 7.3 (SUF-CMA). (adapted from [13]) A digital signature scheme
is said to have the SUF-CMA property if no polynomially bounded adversary
has a non-negligible advantage in the following game.

Initialize: The challenger T runs µ.Gen algorithm to generate (sk, pk) and
provides the public key pk to adversary F . F is provided with a signing ora-
cle πE which accepts message m and returns σm such that σm = µ.Sign(sk,
m).

Attack: F performs a polynomially bounded number of queries to πE with
m ∈ {m0, m1,...,mq} and receives back the corresponding σm from πE .

Forgery: F achieves forgery if he can generate (m∗, σ∗) such that (m∗, σ∗) /∈
{(m0, σ0), (m1, σ1),...,(mq, σq)} and µ.Verify(pk, (m∗, σ∗)) = 1.

7.2 Decision Points

Here, we discuss some decision points and trade-offs that arose throughout
the development of these protocols. Some points became more pertinent
than others and may have been discussed in the main body of the paper. The

39

purpose of this section is to provide background on the variety of decision
points.

A first decision point is whether authentication should be done with
symmetric or asymmetric keys. Specifically, some options include key en-
capsulation to the forward units followed by symmetric authentication, vs.
digital signatures. Symmetric authentication would result in shorter mes-
sage transmissions (i.e., from a shorter tag length), but come at the cost
of (a) a requirement that all parties received their respective encapsulated
keys and can thus verify the transmission (assuming individually key encap-
sulations), (b) lack of back-end authenticity for packets distributed among
forward units (if a group key is encapsulated). In the case of (b), an ad-
versary could compromise all inter-unit communications and packet sharing
if it just compromised one unit and obtained the transmission key. Ulti-
mately, digital signatures proved to be a better fit given the requirements
of the situation, particularly with respect to resiliency to packet dropping.

Another decision point occurs when receiving units request missing
packets. The first option would be to request the packet from the original
sender. This would significantly spotlight that unit’s location but would
not involve the other receiving units. The other option would be to rely
on inter-unit communications to share missing packets. This method is
anticipated to generate significantly less RF because SATCOM is not used,
but would spotlight all units to a lesser extent. We chose to use inter-unit
communications in COCO-SYNC-R and COCO-SYNC-P.

The inter unit communications can be done in multiple ways. The two
methods presented here represent two options of push and pull mechanisms.
The pull method (COCO-SYNC-R) relies on a predetermined communica-
tions hierarchy amongst the units, requests for missing packets, NACKs, and
timeouts as a failsafe. This method is more complex in practice than the
alternative, but it does not spotlight a single unit’s location as transmissions
are spread evenly, and the hierarchy can be set to minimize location sharing
for certain units. The push method (COCO-SYNC-P) relies on all units
sharing packet requests and the unit with the least number of needed pack-
ets taking a lead role in sending to other units. This method is less complex
in practice and potentially more efficient in sharing time, but introduces un-
necessary packet transmission and may to a greater extent highlight units’
locations.

Further, the push method itself can be conducted in two distinct ways.
The method presented consists of every unit broadcasting their missing pack-
ets followed by a designated leader broadcasting all of its messages. The
process repeats until all units have the same transcript. This manner offers

40

the most basic form of communication for units to build on and is automatic
in that the lead unit immediately sends the messages. An alternative op-
tion, not focused on here, would be for the other units to send the lead unit
the messages it has requested, whereupon the lead would compile the most
complete update and then broadcast. This technique is presents a middle
ground between the presented COCO-SYNC-R and COCO-SYNC-P.

Yet another trade off considered is the balance between a requirement
to limit RF signature at the receiving units or limit bandwidth requirements
on the back-end. A simple approach which optimizes on the former is to
send the Update on repeat for an extended period. This would maximize the
probability that all messages are received by the forward units and would
significantly limit the requirement for the forward units to communicate
amongst each other. More importantly, it would reduce necessary transmis-
sions to the back-end (which incur RF footprint on the forward units) as
it gives multiple opportunities for all units to receive the original message.
Furthermore, if RF footprint from unit transmission to the back-end is high-
risk, the units may choose to delay or forgo the confirmation message for
an extended period of time. The drawback to this option is the significant
bandwidth incurred on the back-end. Given, however, that the back-end
is likely e.g., a Marine Expeditionary Force (MEF) level asset, it is reason-
able to assume the capability exists and could be used in such a manner.
The alternative, of course, is to only send the Update once and leave the
forward units to communicate amongst themselves, responding with poten-
tially more requests to the back-end. Given the importance of limiting RF
footprint, we focus on the prior option.

41

	Introduction
	Prior Research
	Contributions

	Protocols
	BAC Protocol
	Cache Requirements
	COCO-SYNC-R
	COCO-SYNC-P

	Examples
	Security Model
	Analysis
	BAC Protocol Analysis
	COCO-SYNC-R Security Analysis
	COCO-SYNC-P Protocol Analysis
	RF Analysis

	Conclusion
	Appendix
	Primitive Definitions
	Decision Points

