JENSEN-OSTROWSKI INEQUALITIES AND INTEGRATION
SCHEMES VIA THE DARBOUX EXPANSION

PIETRO CERONE, SEVER S. DRAGOMIR, AND EDER KIKIANTY

ABSTRACT. Using Darboux’s formula, which is a generalisation of Taylor’s
formula, we derive some Jensen-Ostrowski type inequalities. Applications for
quadrature rules and f-divergence measures (specifically, for higher-order x-
divergence) are also given.

1. INTRODUCTION

In 1938, Ostrowski proved the following inequality [14]: Let f : [a,b] — R be
continuous on [a, b] and differentiable on (a,b) such that f’: (a,b) — R is bounded
n (a,b), ie. |[f'| = sup |f'(t)| < oo. Then,
t

€(a,b)
2
1 x — atb
< |z -2 / bh—
< 4+< b_a> 17 =),

for all « € [a,b] and the constant 1/4 is the best possible. In particular, when = =

b
(1) ‘f(w)—b_la [ s

(a+b)/2, this inequality gives an error estimate to the midpoint rule: f: ft)dt =
(b—a)f ((a+0)/2).

The midpoint rule is the simplest form of quadrature rules. Derivative-based
quadrature rules are of interest due to the larger number of parameters which in-
creases the precision and order of accuracy (cf. Burg [2]). Wiersma [18] introduced
a derivative-based quadrature rule that is similar to the Euler-Maclaurin formula.

In Wang and Guo [17], the Euler-Maclaurin formula, or simply Euler’s formula,
is derived from Darboux’s formula.

Proposition 1 (Darboux’s formula). Let f(z) be an analytic function along the
straight line from a point a to the point z, and let p(t) be an arbitrary polynomial
of degree n. Then,

12) 0 [f(:) - f()
= Y ()" E =) [T - o0 (@)

m=1

Her et [ o7~ tat 12l dr

Taylor’s formula is a special case, with () = (¢t — 1)" [17].
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In [5], some inequalities are derived by utilising Taylor’s formula (with integral
remainder) :

f +Z 09 0y 5 [ s 0

These inequalities both generalise Ostrowski’s and Jensen’s inequalities for general
integrals (and are referred to as Jensen-Ostrowski type inequalities). In particular,
an Ostrowski type inequality in [5, p. 68] gives the following quadrature rule

b n _ A\k+1 a— k+1
(1.3) / f(t)dm(b—a)f(<)+;f(’“)(<) 0=¢) (k+§)! S

for ¢ € [a,b] and the error estimate is given by

G-+ (b - ¢
(n+2)!

£+ o, b1,00

For further reading on this type of inequalities, we refer the readers to [3], [4], [5],
8], [9], and [10].

In this paper, we provide further, wider, and fuller treatment of our earlier work
in [5] by considering Darboux’s formula in place of Taylor’s formula. The work
also develops broader and more general application in areas such as derivative-
based quadrature rules and divergence measures (specifically for the higher-order
x-divergence) as demonstrated in Sections 4 and 5, respectively.

2. PRELIMINARIES
2.1. Euler’s formula. This subsection serves as a reference point for the facts
concerning Euler’s formula. The explicit expression for the Bernoulli polynomial is

n

(2.1) Z < )(pkm

where
n—1

1
—1, and — =0 (n>2).
po=n oAl kZ:O R e =0 (22

The Bernoulli numbers are given by

1
(2.2) wo=1, 1 = —3 Yok = (—1)k—1Bk, and @ory1 =0 (k> 2).
The first five Bernoulli numbers and polynomials are given in the following:
1 67 2 307 3 42’ 4 30, 5 66’
1 9 1
o) =1, p1@) =z -5, @ar)=2"—a+,
3 1 1
ps(x) = 2° — 5172 + 5% ou(x) = 2t — 223 + 22 — 0
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Choosing the Bernoulli polynomial ¢, (¢) in place of ¢(t) and replacing n with 2n
and the polynomial ¢,, with (g, in Darboux’s formula (1.2) gives Euler’s formula:

zZ—a n zZ—a 2k
0~ f@) = FFE @]+ D R B - )
k=1 ’
—a)?n 1 1
(2.3) +(Z(2n>;+/0 ©on () fE (1 = t)a + tz2) dt.

2.2. Identities. Throughout the paper, let (2, A, 1) be a measurable space with
fQ dp = 1, consisting of a set €2, a og-algebra A of subsets of {2, and a countably ad-
ditive and positive measure p on A with values in the set of extended real numbers.
Throughout this subsection, let I be an interval in R.

Lemma 1. Let f : I — C be such that f) is absolutely continuous on I and
a€l. Let o(t) be an arbitrary polynomial of degree exactly n. If g : Q@ — I is
Lebesgue p-measurable on Q, fog, (g—a)™, (g—a)™ (f"™ og) € L(Q, u) for all
m € {1,..,n+ 1}, then we have

(24) [ Fogdn= (@) = PaslaX) + Ropla )
Q
for all X € C, where P, ,(a,\) = P, ,(a,X; f,g) is defined by
(2.5) P, s(a,N)
= : i(—nm‘l {90("_7”)(1) / (g—a)™(f"™ o g)dpu
M (0) £~ )
)1 [ -

(=D"A /1 / 41
+ e)dt | (g—a)"" dpu,
©™(0) Jo 0 sz( )
and Ry, ,(a,\) = Ry »(a, X; f,g) is defined by

(2.6) Ry o(a, )
n 1
= (1)0) /Q(g —a)"tt </ o(t) {f(”“)[(l —t)a+tg] — A} dt> dp

e 0
- (,E(_n)l()g) /01 w(t) /Q(g —a)™ ([f(nﬂ)[(l —t)a+tg] - A] du) dt.

Proof. Since f(™ is absolutely continuous on I, f("+1) exists almost everywhere on
I and is Lebesgue integrable on I. By Proposition 1, we have

f(2> - f(a) = (73(0 Z (_1)m—1(z — a)m{w(n—m)(l)f(m)(z)
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By replacing z with ¢(t) and integrating on €, we have
[ ogdn- f@
Q
1 n

= g U [ arn oo dn

=0 [ arah + S e [ - arta

+;(n>1()g) /Q(g —a)"t? (/01 o(t) [f("“ [(1—t)a +tg] — )\] dt>

The last equality in (2.6) follows by Fubini’s theorem. O

Lemma 2. Let f : I — C be such that f®™) is absolutely continuous on I and a € I.
Let @o,(t) be the Bernoulli polynomials. If g : Q — I is Lebesgue p-measurable on
Q, fog, (g—a)™, (g—a)" (f"™ og) € L(Q, u) for allm € {1,...,2n + 1}, then
we have

(2.7) / fogdi— f(a) = Pala, \) + Ra(a, ),

for all X € C, where P,(a,\) = Py(a, \; f,g) is defined by

08 P = /Q[f(ﬂf/og]du

/Q g T (10 6 g R 0)] dy
k=1
(g — a)2n+t
+)\/0 Pan(t )dt/Q@n)!d/l

and R,(a,\) = Ry(a, X; f,g) is defined by
(2.9) Ry (a, A)

-/ W [ / oo OFZH((1 = Ha+ tg) = N dt] an,
= /Olsozn(t)/g(g(a)%+1 [f@”“)((l —t)a +tg) —A] dudt.

2n)!

The proof follows by the Euler’s formula (2.3) and similar arguments to those in
the proof of Lemma 1. We omit the proof.

Remark 1. Recall that B; = 1/6 and ¢a(t) = t> —t + 1/6; and note that
fo p2(t) dt = 0. Taking n = 1 in Lemma 2, we have

@10) [ fogdn= s

:/Q(g;a)[f( )+ f o] du—% (9= a)?[f"og - f"(a)ldp

¢ 2 U <t2 o é) FO((1 = t)a+tg) = Ndt| dy.
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3. MAIN RESULTS: JENSEN-OSTROWSKI INEQUALITIES

In this section, we derive some inequalities of Jensen-Ostrowski inequalities using
the lemmas obtain in Subsection 2.2. We use the notation

(/Q Ik(t)lpdu(t)>1/p, p>1, ke L,(Q,pu);

Ikllep ==

esssup |k(t)|, p=00, k€ Loo(Q,p);
teQ
and
1/p

P (/|f Pas) L p21 fe Lo,

0,1,p ‘=
PPN esssup |£(5)) p =00, f € Lau([0, 1))

s€[0,1]

We also denote by ¢, the identity function on [0, 1], namely ¢(¢) = ¢, for ¢ € [0, 1].
Throughout this section, let I be an interval in R. We note that I is not necessar-

ily a finite interval and therefore we make the following assumptions for functions

f and g for a fixed n € N:

(A1) Let f: I — C be such that £ is locally absolutely continuous on I, i.e. it is
locally absolutely continuous on each closed subinterval [a,b] on I, and a € I.

(A2) Let g : Q — I be Lebesgue p-measurable on Q and fog, (g — a)™, (g — a)™ (f(™o
g9) € L(Q,p) forall m e {1,...,n+ 1}.

(A3) We assume that | f("TV[(1—¢)a+ lg] — )\H[O’”)OO < oo for all t € Q and
AreC.

Furthermore, the following cases are considered for a given n € N:

) H |g _ a|n+1 HQ - < 00 and HHf(nJrl) [(1 —f)a-‘rfg] - )\H[O,l],OOHQ_l < 0

02) [lg—a [, < o0 ana 7010~ 0+ 1]~ Al |, < o0, e
p>1w1th 1/p+1/qg=1, |
C3) [[lg — al"* [, < o0 and [0 10~ D)@t tg] = Ay ]l < oo

n+1

Theorem 1. Let f and g be functions that satisfy (A1)-(A3) and ¢(t) be an arbi-
trary polynomial of degree n. Then,

o gdji— f<>n@mAﬂ

1
([ i)

Hm—’”wwamHumAMOHQI
if (C1) holds

<(/1 o (t)] dt) Hg = al™ [lg,, |1 a0 (2 Mg 17,06 H 7
~ o le™(0)] if (C2) holds;

+1
[lg —al” HQl H||f”+1=9(a’)‘)H[OJLOOHQ,OO ’
if (C3) holds;

for any X € C, where foi14(a,\) = fOHD[(1— ) a+ Lg] — \. Here, P, ,(a,\) is
as defined in (2.5).
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Proof. Taking the modulus in (2.4) for any A € C, we have

‘/fogdu f(@) = Poyla, A)‘

Lot
</ m”(/ lg — a|”+1‘f(”+1) t)a—i—tg]—/\‘ d,u) dt
(™) (0)]

1
le(t)] / +1 || £( +1)
< dt " (1 -2 Lg] — A .
< [ e ([ la=ars Jattol =N

We obtain the desired result by applying Holder’s inequality.

Corollary 1. Under the assumptions of Theorem 1, if || f" TV ||1.00 < 00, then

(32) [ fovdn 1@ - Puta)

< ( / L) 15l [l al ).

Here, P, ,(a, ) is as defined in (2.5).

Proof. Let A =0 in (2.4), and take the modulus to obtain

’/fogdu f(a) - w(ao)‘

< / &dt (/ lg — a|" Hf(”“) (1 —E)a-i—ﬂg]” du) :
o™ [0.1].00

For any t € 2 and almost every s € [0, 1], we have

£ (1= s)at sg(t)) | < esssup [ ()] = O]
uecl

Therefore, we have

[F0 @ —artg) < essp 15 (- s)at sgle)|
[071]700 S€[O,1], teQ
(3.4) < e

The desired inequality follows from (3.3) and (3.4).

O

Utilising (2.3) and applying similar arguments to those in Theorem 1 and Corol-

lary 1, we have the following results. We omit the proofs.

Theorem 2. Let f and g be functions that satisfy (A1)-(A3) for 2n instead of n,

and an(t) be the Bernoulli polynomials. Then,
(35) [ 7ogau = f@) - Pt

1
|2 (t)] / 2n+1
< dt — n S A d
/O (271)' o ‘g a’| ||f2 +1,g(a )H[(Ll],oo H




JENSEN-OSTROWSKI INEQUALITIES 7

llg = a1 fonsn0 e Mgy,
if (C1) holds fof 2n,

< (/1 [p2n () dt) llg = al*"lg, HHfQ”H’g(a’)\)H[O’”’“HQ,q’
o (2n)! if (C2) holds for 2n,
g = P, [ f2ns 10 Ml ]|,

Q,
if (C3) holds for 2n,

for any X € C, where foni1,4(a,\) = fC"FY (1 =€) a+ Lg) — \. Here, P,(a, \) is
as defined in (2.8).

Corollary 2. Under the assumptions of Theorem 2, if || f" V|| o < 00, then

(36) [ £esdu= 1@ Pu(e.0)

1
[Pan(0) (2n+1) ( _ g2t )
< </o 2n)] dt) £ oo /Q|g " du ).

Here, P,(a, ) is as defined in (2.8).

Remark 2. Setting n =1 in Corollary 2, we have

| rogin=s@- [ U5 r@ 40 g) d

1
12 /g

(3.7)

tg5 o=t @] < Ll [ i ap

T 18V3

The following terminology introduced in [8] will be required for alternate Jensen-
Ostrowski inequality results. For +,T" € C and [a,b] an interval of real numbers,
define the sets of complex-valued functions [8]

Uiy (7,T) == {h : [a,b] = C|Re [(r — h(t))(R(1) — ﬁ)} >0 for ae. t € [a,b]}
and

+7T
A[a’b}(%f‘) = {h : [(L,b] — (C’ ’h(t) — ,YT

1
< §\F—7\ for a.e. t € [a,b}}.

We recall some results in [8] concerning the above sets.

Proposition 2. For any v,I' € C and v # T', we have

(Z) U[a,b} (7; F) = A[a,b] (73 F); and
iy U1 D) = {1 [a,8] > C |(Re(T) — Re(h(t))) (Re(i(t)) ~ Re())
+ (Im(T") — Im(h(t))) (Im(h(t)) — Im(v)) > 0 for a.e. t € [a,b]} .

We refer to [8] for the proofs of these results. In a nutshell, they are consequences
of the identity:

v+ T
PO s

1 2
Z|F77|27 =Re[(T — 2)(2—%)], forall z€C.

We have the following Jensen-Ostrowski inequality for functions with bounded
higher (n + 1)-th derivatives:
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Theorem 3. Let f and g be functions that satisfy (A1) and (A2) and (t) be

an arbitrary polynomial of degree n. For some ~v,I' € C, v # T', assume that
FOD € Ut (7, 7) = Apap) (7, T). Then,

(3.8) )/fogdu fa) - ( WQF)‘

|F—7|/ 11 /1 p(8)]
< g—a|l" " du dt.
2 Q| | \90( 0)]

Here, P, ,(a,\) is as defined in (2.5).

Proof. Let A= (y+T)/2 in (2.4), we have

/fogdu fla) = w(a WQF>

= o [a=ar ([ e [reoia-na+ia - 15T ) an

Since f("*1) € Af,y (7,T), we have

y+T

(39 £ (= atg) - THE| < G,

for almost every ¢t € [0,1] and any s € Q. Multiply (3.9) with |p(t)] > 0 and
integrate over [0, 1], we obtain

/01|w<t>|\f<"+l><<1—t>a+tg> e}

for any s € Q2. Now, we have

‘/fogdu fla) - w(a ”‘;F)’
/\g I”“</ ‘W) |‘f("+” )curw]—%r dt)d

F_ 1
2 Q o lptn (0)|

This completes the proof. [

dt < 50 - WI/Iw (1) dt,

Similarly, we have the following via Euler’s formula (2.3) and Lemma 2. We
omit the proof.

Theorem 4. Let f and g be functions that satisfy (A1) and (A2) for 2n instead
of n and oy, (t) be the Bernoulli polynomials. For some v,T' € C, v # T, assume
that G+l ¢ U] (1:T) = Apap) (7, T). Then,

(3.10) ’/Qfogd,u—f(a) — Py, <a,7+r>‘

2

I = / 2n+1 /1
= Sy J,\9 el du | lean (D]t
Here, P,(a, ) is as defined in (2.8).
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4. APPLICATIONS: QUADRATURE RULES

In this section, we present quadrature rules based on the inequalities presented
in Section 3. The associated composite rules may be stated in the usual manner by
breaking up the interval [a, b] into a number of subintervals, applying the quadrature
rule for each subinterval, then adding up all the results. The precise statements for
these composite rules are omitted.

Let g : [a,b] — [a, b] defined by g(¢t) =t and u(t) =¢/(b — a) in Corollary 1. We
have the following quadrature rule:

b ~ & _1\ym—1 (p(nim)(l) b _ m g(m)
[ ra = 0= a)f @)+ 32 {wnm [ =y i

©(m(0)
— - m—1 (p(n—m)(l) ’ m r£(m
= -7 @)+ 32 {wm)/ (1 — )" £ e dt
(p(n—m) (O) m (b — x)m+1 — (a — x)m+1
oy 0 (TR )}

(note that we also replace a in Corollary 1 by x) with the following error estimate:

1
Lp n n
| e ( [ 1= dt) 17 a0

1 z — a)" 2 — )"t
:/0 llsﬁ(t)l)ldt<( il U >||f(n+1)||[a,b],oov

(™ (0 n+ 2
for x € [a,b].
Similarly, Corollary 2 gives us
3 [0 1
3 /a f@ydt — (b —a)f(z) = 5 [(b—2)f(b) - (a - z)f(a)]
f'(x)

[0 —2)" = (a—2)’]
/b i kBk —x)? [FER(t) — fF) ()] dt

k=1
1 2n+2 2n+2
<p n T—a +b-x
( ‘ 27L dt> Hf(2 +1)|| a7 ]7 ( ) ( )

)

2n 4+ 2

for all x € [a, ], thus we have the following quadrature rule:

b
[t~ S0 as@ 5 6= 010 - @ 0)fa)

+f/($) [(b o x)2 _ (a o $)2]

6
i kB”_“’) [FER (1) — fOR) (2)] dt

k=1

_|_

2
3 Ja
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for x € [a,b], with the following error estimate:
1
g / ‘@QH(tN dit ||f(2n+1)| (.’b B a)2n+2 + (b — $)2n+2

2n+2
When n = 1, we have

la,b],00

b
@y |3 [ f0dt-0-as@ - 3 (6= 07 - (a-0)fa)
f'(@) 2 2 1 2 pr 2 pr
o [(b—2)* —(a— )] +ﬁ[(b—$) f'(b) = (a—2)" f'(a)]
L0~ a0 < o el = ) (- 0
for x € [a, b], thus we have the following quadrature rule:
b
[rwa = HED o+ 2i0-070) - (@ 25@)
1 2 g/ 2 pt
— 5 llb = 2P () = (a~ )/ (@)
22D (4w (-0 + T -0y — (0 0y7)

for « € [a, ], with the following error estimate:

1 "
2073 Nesellz= a)' + (b —=)"].

5. APPLICATIONS FOR f-DIVERGENCE

Assume that a set Q and the o-finite measure p are given. Consider the set of
all probability densities on p to be

P {0 R0 20, [ p0dnt =1},
Q
We recall the definition of some divergence measures which we use in this text.

Definition 1. Let p,q € P and k > 2.
1. The Kullback-Leibler divergence [12]:

(5.1) Drr (p,q) r=/ﬂp(t) log [ZSH du(t), p,qeP.
2. The y2-divergence:
(52) Do) = [ o0 Kig) —1] du(t). paeP.

3. Higher order y-divergence [1

|:
_ k k
63 Dutno= | dew: / ("“’ 1) p(t) du(t),

Q p(t)
— k k
64)  Dea)i= [ ORI a0 = [ |45 1] pte) dut)
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Furthermore, (5.3) and (5.4) can be generalised as follows [13]:
_ [ @ —ap@)t [ (a®) )
65 Doalra)= [T e = [ (45 -a) sorauin.

710 »(0)
k
(56 Dyl / WOZ PO gty = [ 15— af ity

4. Csiszar f-divergence [6

(5.7) If(p,q) == /Qp(t)f [28} du(t), p,q € P,

where f is convex on (0,00). It is assumed that f(u) is zero and strictly convex
at u=1.

Remark 3. (1) We note that when k = 2, (5.3) coincides with (5.2).
(2) The Kullback-Leibler divergence and the x2-divergence are particular in-
stances of Csiszar f-divergence. For the basic properties of Csiszdr f-
divergence, we refer the readers to [6], [7], and [16].

Example 1. (i) Let f: (0,00) — R be defined by f(t) = tlog(t). We have
o0t [0 o oo [20] ar —
17 ) = [ (050 0g | 105 ) = [ ateytos | 23] aute) = Dicsta.
(ii) Let g: (0,00) — R be defined by ¢(t) = —log(t). We have
Iy (p,q) = */Q (t) log [qg ;] dp(t) = /Qp(t) log Egm dp(t) = Drr(p; q)-
We obtain the next three results by choosing g(t) = q(t)/p(t) in Corollary 1,

Corollary 2, and (3.7). We also note that fQ p(t)dp = 1. The proofs are stra1ght—
forward and therefore we omit the details.

Proposition 3. Let f : (0,00) — R be a convexr function with the property that
f(1) = 0. Let ¢(t) be an arbitrary polynomial of degree n. Assume that p,q € P
and there exists constants 0 <r <1 < R < oo such that

q(t)
(5.8) r< o)

Ifa € [r,R] and f" is absolutely continuous on [r, R], then we have the inequalities

<R, forp-a.e te.

Ii(p.g) — f (a Z ) (0) £ (@) Dy ()

(0) £
_ = (1) ((t)fzt())f (q(t)) du}‘

o pmTi(t) p(t)

1
lo(t) ) :
< LA so Do (D2 ).
(/ EQIA hoo D, (P )

Proposition 4. Let f : (0,00) — R be a convex function with the property that
f(1) =0. Let pa,(t) be the Bernoulli polynomials. Assume that p,q € P and there
exists constants 0 < r <1 < R < oo such that

q(t)
p(t)

(5.9) r < <R, forp-a.e. te.
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Ifa € [r, R] and f®™ is absolutely continuous on [r, R], then we have the inequalities

‘ff(p, q) — f(a) - f/éa)( —a)- %/Q[q(t) ~apOlf (Zg) o
(

a(t) —ap()™ oy (a0 o pew,
/ A p2k l(t) f <p(t)> d” f ( )Dx%,a(pvq)

= </0 (2n)! dt) 1F "D, R 00 Dixfan+1,0(p5 0),

Corollary 3. Let f : (0,00) — R be a conver function with the property that
f(1) = 0. Assume that p,q € P and there exist constants O <r<1<R< oo such
that r < q( o < R, for p-a.e. t € Q. Ifa € [r,R] and I is absolutely continuous
on [r, R], then we have the inequalities

(=1)* By
2h)!

1

>
Il

Q (4
‘fﬂp, 0~ ()~ 520 =0 - 3 [ )~ apto)s (p<t>> w
1 (q( —apt q(t f”()
+E <pt)) 12 DXZ,a(p7Q)'
18fllf II[TR] o Dixfs,a(P; q)-

Example 2. We consider the convex function f : (0,00) = R, f(t) = tlog(t). We
have

F'#)=logt) +1 and () = (=1)Ft*"D(k—2)1,  for k> 2.

Thus, ||f(k)||[r,R] = r~(F=D(k — 2)!. Recall from Example 1 Part (i) that I(p,q) =
Dk (q,p). We also have

/ (q(t) —iap(t))mf(m) (fJ(t)) dy
Q

pm(t) p(t)

Therefore, Proposition 3 gives us:

n (n—m)
‘DKL@,p)—alog(a)— 5 2= { 5D ra)

(5:10)  +(=1)" """ (1) Dy 1 (a,0) ||

(-1 (et
=T ( |¢<n><o>dt>DX'"+““<p’q)'
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In particular, when a = 1, we have

w (n—m)
Diataen) = Y m -2 { € D)

(5.11) S570)

S~
<
—
~
S~—
il
N
’U‘»-Q
|
~ |~
S— | —
N———
Q,
=
=
Il
S~
N
Q
=
S~—
5}

Loor (53) aw = [ o) o 23] +1) aute
)

(t)
- 7/Qp(t)log [p(] du(t) +1 = —Dkr(p,q) + 1.

q(t)

Therefore, Proposition 4 gives us

‘DKL(qm) ~atog(a) - BT 0y LD (g - L - DL
a n kB t) — an(t 2k DXZka |
+5- > 2)![4%_5;»@@)_%@”

‘DKL 4p) — 5 109;( Ja+1)+(a—1) - %(DKL(q,p) + aDkr(p,q))

- ( Bk D 2k,a(paq)
Z %szk’%((bp) - Xan_l

= 4k2 — 2k
(2”— D! ([ [o2n(t)]
< r2n 0 (QTL)' dt D|x|2”+1,a(pa Q)
_ ([ e L Pixerralp,a)
0 n 2n

In particular, when a = 1, we have

~ (=1)" By
(5.12) Dk r(q,p) — Drr(p,q) — Z [Dy21(q,p) — Dyar(p,q)]

13
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‘We note that

(q(t) —ap(t))* ., (q(t) _ (q(t) — ap(t))?
I T <p<t>>d“(“ =
o _ 9%+ a? p(t)Z
= 1-2a+ /Q—q(t) du(t)

= 1-2a+a*(D,2(q,p) +1)
a2DX2 (g,p)+ (1 — a)Q.
Note the use of (5.16). Thus, Corollary 3 gives us

‘DKL(q,p) - %bg(a)(a +1)+(a—1)— %(DKL(q,p) +aDkr(p,q))

D|x|3,a(pa Q)

1|5 2 1
+— |:CL DXQ(Qap) + (1 - a‘) - anz,a(p7 q):| ’ < 18\/§7’2

12
In particular, when a = 1, we have

<D|x\3(p,Q)
932

Example 3. We consider the convex function g : (0,00) = R, g(t) = —log(t). We
have

(5.13) ‘DKL((LP) — Dkr(p,q) + % [Dy2(q,p) — Dy2(p, q)] ‘

g P ) = (=D)*tF(k —1), for k> 1.

Thus, Hg(k)H[T’R] = r~*. From Example 1 Part (ii) , we have I,(p,q) = Dk (p,q).
Proposition 3 gives us

n (n—m)
Dicalpa) +108(0) -~ S = 0 { S 0D pg)

519~ [ (1 -2 e )]

n! /1 lo(t)] )
< : dt | Diyjn+1,4(ps q)-
+( oy ) Prstaled

In particular, when a = 1, we have

n

Dir(p,q) — QO(%)(O) mgl(m —1)! {w("‘m)(O)Dxm (p.q)
(5.15) —m [ (1- fq’gg)mw) )]
< i (] oy ) P
We have
/Qq(t)g’ (Z%) dp = —/Qq(t) <§8> dp = -1
and

s ((at) [P — D,
/Qp(t)g (p(t)) dp = /Q ) du(t) = — [Dy2(q,p) + 1] .
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Note the use of the following identity:

(516)  Delap) = /Qqu)[(’q’gg) —1] an(v) = [ 28 aut) -1

Proposition 4 gives us

Dicalp.0) +1o8(a) 4 -1~ ) 4 5~ F(Dyela) +1

2
- kBk p(t) 1
(5.17) g (1= t)) p(t) du - %Dxaaa(p,q)]

Dy, 2041 (7(])
<</ |pan (t) |dt> N 2n+a1 :

In particular, when a = 1, we have

(5.18) ‘DKL(paQ) ;Dx (4,p)
) n kBk () 2%k -
Z [(-55) o DX”“(p’q)H

D 2n+1(p, )
(/ lpan (t |dt) |X|r2n+1 :

Corollary 3 gives us

1 1 a
Dk (p,q) + log(a) + %(1 —a)+ 5~ i(sz(q,p) +1)

1 pt)\’ 1

— 1— a2’ D

+35 Q( “a ) p(t) dp 902 Dx o q)
< D|x\3,a(pa Q)

93

In particular, when a = 1, we have

(5.19)

2 1
Drr(p,q) — ngz (g,p) + D

1 (5 oot

< Dpgs(p:9)
I VATS

‘We note the use of

(5.20)

P’ _ L2 (a0’
[, (1) v = A(p(“ 20 (5 pw) W

q
— 12DX2(q,p)+/Q<p(t)>2p(t)dﬂ-
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