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ABSTRACT 
Three evaporation models for single-component liquid drop 

floating in a gaseous environment are compared: two of them 
rely on the widely used assumption of constant (molar or mass) 
density and yield an explicit formula for the evaporation rate, 
while the third model relieves the constant density hypothesis 
yielding an implicit form of the evaporation rate. The 
comparison is made for a relative wide range of temperature 
and pressure operating conditions and for three liquids: water, 
n-octane and n-dodecane. 

 
INTRODUCTION 

    Modelling drop evaporation is of paramount importance 
in all those applied field where a correct estimation of vapour-
gas mixture characteristics is necessary, like for example in a 
combustion environment. The main approach to the problem, 
based on some simplifying hypotheses like constancy of gas 
properties, spherical shape of the drop, quasi-steadiness, 
uniform drop temperature and composition and many others 
(see [1,2] for a thorough review) has led to a limited number of 
analytical models, among which [3] is the most widespread 
one, which are nowadays implemented in most of commercial 
and in-house CFD codes for dispersed flow modelling. 
Recently some of the above mentioned simplifications have 
been questioned [4,5] and a renewed interest for a more 
accurate modelling led to some improvements. The classical 
approach to model the vapour transport through the gas phases 
relies on the constancy of the gas density, which cannot 
obviously represents correctly the physics of the phenomenon 
when the gas and the drop temperatures differ noticeably. The 
above mentioned model that relieve such hypothesis [4], 
differently form the classical approach, yields the evaporation 
rate in implicit form, rendering computationally less efficient 
its implementation in CFD codes.  

For single component drop evaporation, the widely accepted 
Stefan-Maxwell constitutive equations can be reduced to the 
well-known Fick's law, that can be expressed equivalently in 
molar or in mass form [6]. Simplified solution can then be 
obtained from both forms by imposing a different 
approximation (namely the constancy of the mass rather than 
the molar density) that yields different solutions. 

    The aim of the present work is to quantitatively 
investigate the role of each of the two approximations in order 
to evidence the effect on the quantitative prediction of the 
evaporation rate from a spherical drop floating in a gaseous 
environment. 

NOMENCLATURE 
 
Roman symbols 
cp [J/kgK] Specific heat at constant pressure 
c [kmol/m3] Molar density 
Dpk [m2/s] Binary diffusion coefficient  

G [-] Logarithm of gas mass fraction 
H [-] Logarithm of gas molar fraction 
J [kmol/m2s] Diffusive component of molar flux 
k [W/mK] Thermal conductivity 
Le [-] Modified Lewis number 
M [-] Mass/molar evaporation rate ratio 
mev [kg/s] Mass evaporation rate 
Mm [kg/kmol] Molar mass 
n

 
[kg/m2s] Mass flux 

N
 

[kmol/m2s] Molar flux 
Nev [kmol/s] Molar evaporation rate 
P [Pa] Pressure 
r [m] Radial coordinate 
R [J/kmolK] Universal gas constant 
R0 [m] Drop radius 
Re [-] Reynolds number 
T [K]  Temperature 
U [m/s] Stefan velocity 
y [-] Molar fraction 
Y [-] Non-dimensional evaporation rate 
 
Greek symbols 
χ [-] Mass fraction 
ρ [kg/m3] Mass density  
Λ [-] Non-dimensional number (equation 17) 
θ [-] Molar mass ratio 
ζ [-] Non-dimensional radial coordinate, ζ=R0/r  
 
Subscripts 
b  Boiling 
r  Radial component 
ref  Reference condition 
s  Surface 
T  Total 
v  Vapour  
∞  Free stream condition 
0  Ambient or reference 
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Superscripts 
mass  Mass 
mol  Molar 
(0)  Gas 
(1)  Vapour 
∼  Non-dimensional 

 

MATHEMATICAL MODELLING 
The Stefan-Maxwell equations are considered the correct 

constitutive equations to model the diffusion of 
multicomponent species in a mixture, and a simple form for a 
mixture of n+1 species, neglecting Soret effect and diffusion 
due to pressure gradients and to external force, is [6]: 
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 where y(p) is the molar fraction of the p-component, J(p) is 
the diffusive molar flux of the p-component, c is the molar 
density and Dpk=Dkp are the binary diffusion coefficient of p-
component into k-component. Since the total flux of a species 
is given by: 
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component of the molar flux, the LHS of equation (1) can be 
transformed into the more useful form: 
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    The evaporation of a multi-component drop can then be 
modelled on the basis of equation (3) and an exact solution for 
multi-component spherical drops can be found in [7]. 

   Hereinafter the index 0 will always refers to the species 
that is not part of the liquid drop composition, some time 
referred also as "gas". When the evaporation of a single 
component drop is considered, the above constitutive equations 
can be simplified obtaining 
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which is a way to state the Fick's law of diffusion [6]. To 
notice that the two equations are linearly dependent. 

    Considering now the species mass fluxes, that are related 

to the molar fluxes by )()()( ppp MmNn = , where Mm(p) is the p-
component molar mass, equations (4) can be transformed into 
the most used mass form: 
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where χ(p) is the mass fraction of the p-species, which is 
related to the molar fraction by the rule: 
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The two forms are a direct consequence of S-M equations 
and they are equivalent only for the case of single component 
drop (n=1). When considering steady drop evaporation it is 
often assumed that the liquid-gas interface is still and the 
diffusion of the gas species through the liquid is neglectful, 
then it can be assumed that the gas flux is nil everywhere i.e. 

0)0()0()0( == MmNn . This assumption transforms equations (4) 
and (5) for the gas species into: 
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The steady-state species conservation equations for both 
molar and mass cases are given by [6]: 

0;0 )()( =∇=∇ pp nN                                                       (8) 

and summation over the index p yields the usual mass 
conservation equations: 

0)( =∇ TN                      (9a) 

0)( =∇ Tn                       (9b) 

Simple analytical solutions of (9a) and (9b) can be found 
imposing the constancy of the molar (c) or the mass (ρ) 
densities respectively. These assumptions are not equivalent 
and then the two equations, that are perfectly equivalent, yield 
instead different solutions. After imposing the constancy of 
either the mass or the molar density, using equation (7) and 

setting )0(ln yH = and )0(ln χ=G equations (9a) and (9b) yield:  

02 =∇ H                     (10a) 

02 =∇ G                     (10b) 

CONSTANT DENSITY DROP EVAPORATION MODELS  
    The classical drop evaporation models are obtained by 

integrating equation (10b) in spherical coordinates with the 
B.C.: 
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yielding: 
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and then evaluating the mass evaporation rate by: 
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(see for example [8]), where the value of the constant mass 
density ρref is usually evaluated at a reference condition through 
the "1/3-law" proposed by [9]. This equation, that holds for 
drop evaporation at Re=0 is the basis of the above mentioned 
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widespread model of Abramzon and Sirignano [3] that holds 
for large Re.  

    Similarly, equation (10a) can be integrated with the B.C.: 

( ) ( ) ∞∞ ==∞== HyHHyRH ss
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yielding: 
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where cref can be evaluated again by the 1/3rd-rule. To notice 

that the mass evaporation rate mas
evm is different from mol

evm , as 
above explained, since generally: 
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Since the second approach is as justified as the first one, it 
is worth to investigate which of them is the most accurate, if 
any. To this end the results of the two approaches can be 
compared with those obtained solving the conservation 
equations (9a,b) without assuming a constant molar or mass 
density. 

VARIABLE DENSITY DROP EVAPORATION MODEL  
 
    As above pointed out the molar and mass approach for 

single drop evaporation modelling yields different results only 
by the fact that the simplifying assumptions differ (constancy of 
molar either then mass density). A previous work [4] has shown 
that an analytical solution can be found by relieving the 
constant density assumption. The approach consists of 
assuming perfect gas behaviour for the gaseous phase and 
showing that for 
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which is a quite acceptable assumption for practical 
applications, the momentum equation yields the constancy of 
the pressure across all the gas phase: 
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where 
(1) (0)

(0)

Mm Mm

Mm
θ −= . The gas temperature field can be 

found solving the energy equation in radial symmetry and 
neglecting minor terms like dissipation from viscous stresses, 
species excess kinetic energy, and work of pressure forces (see 
[6] for the complete equation): 

 02 =∇−∇ TkTUcpρ                                                   (19) 
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 and evm  is the 

evaporation rate.  
Allowing for the variability of the gas density the two forms 

(molar and mass) of the species conservation equation yield the 
same differential equation. The solution reported in [4] was 
derived from the mass form (9b) yielding the following implicit 
equation for the non-dimensional evaporation rate: 
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where ( )
refprefref
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cDMmc
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=  is the modified Lewis number 

evaluated at the reference temperature. It should be stressed 
that the numerical value of Le is very slightly dependent on the 
reference temperature since the temperature dependence of kref, 
cref and D10,ref practically cancels out in Le. A simpler form can 
be obtained transforming equation (21) using the relations: 
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or directly solving (9a) with the same method used in [4], 
yielding: 
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As reported in [5], the present and the above reported 
constant molar and mass density evaporation models can be 
extended to include the effect of convective flow through an 
approach based on the film theory (see also [3]). 

MODEL COMPARISON 
    The previous results about the evaporation rate can be 

written in non-dimensional form as: 
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where: 
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=  can be assumed to be a more accurate 

estimation of the non-dimensional evaporation rate since it has 
been obtained without imposing a constant gas density. 
Moreover the model has been validated in [5] against an 
extensive experimental data base, confirming a relatively good 
agreement between the model predictions and the 
measurements. 

It should be noticed that the constant mass density model 
yields the same results as the constant molar density one only 
when θ=0 (i.e. when Mm(1)= Mm(0), like for example for a 
methanol drop evaporating in oxygen), in fact in such case:  
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Moreover, for the isothermal case (Ts=T∞): 
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and the constant molar density model yields the same results of 
the variable density one, while the results from the constant 
mass density model still yields different values. 

The ratio between the evaporation rate predictions from the 
constant mass and molar density models can be expressed as 
follows: 
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revealing that this ratio is only a function of the drop 
temperature and composition and the total pressure 

( )( )Ts PMmTMM ,, 1= . 
To better appreciate the model performances in some 

applicative conditions, three liquids are selected to represent 
different applications: water (fire control), n-octane (gasoline 
engines) and n-dodecane (aeronautic or Diesel engines) [10,11]. 

All the results presented in the following paragraphs are 

obtained setting ( ) 01 =∞y . 

Figure 1 shows the values of the 
mol

mass

Y

Y
M =  , equation (27), 

for the three selected liquids, as function of the drop 
temperature, which has been varied from 280K up to the 
boiling temperature at the selected total pressure, and for 
different values of total pressures representative of each liquid 
applicative conditions. The selected pressures were chosen to 
cover a range of applicative conditions bounded from above by 
the critical pressure for each species. The boiling temperatures, 
corresponding to each total pressure, are also reported. The 
results show that the differences between the constant mass and 
molar evaporation models are within few percentages (less than 
4%) for water drops (Figure 1a) and they reduce decreasing the 
drop temperature. The constant mass density model 
underpredicts (relatively to the constant molar density model) 
the evaporation rate as the drop temperature increases, but 
when the drop approaches the boiling values the opposite 
behaviour is shown. Equation (27) reveals that, for each back 
pressure and liquid, a drop temperature closer to the boiling 
value can be found where the two models predict identical 
results (M=1). The test cases with n-octane (Figure 1b) and n-
dodecane (Figure 1c) show larger discrepancies between the 
two constant density models, in particular when the drop 
temperature approaches the boiling temperature.  

The values of the non-dimensional evaporation rate 
predicted by the three proposed models (see equations 11) are 
shown in Figure 2 for a water drop evaporating under 
atmospheric pressure conditions and gas temperature fixed 
equal to 1000K, with the drop temperature varying from 280K 
up to the boiling value. The results for this particular case show 
that both the constant density models overpredict the 
evaporation rate. To better appreciate the differences among the 
three models, Figure 3 shows the ratio between the values 
predicted by the two constant density models (molar and mass) 
and the values predicted by the variable density model 
(assumed as reference case) for water drop evaporating under 
atmospheric pressure conditions and three gas temperatures 
equal to 500, 1000 and 1500K. The drop temperature has been 
changed within the same range of Figure 2.  

 
 

(a)                                                                (b)                                                                 (c) 

 
Figure 1 Mass/molar evaporation rate ratio as function of drop temperature for (a) water drop at atmospheric pressure, (b) n-octane 

drop at 1, 10 and 20bar and (c) n-dodecane drop at 1, 5 and 15bar. 
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Figure 2 Non-dimensional evaporation rate predicted by the 

three models as function of drop temperature for water drop at 
atmospheric pressure. 

 

 
Figure 3 Non-dimensional evaporation rate ratio as function of 

drop temperature at three gas temperatures for water drop at 
atmospheric pressure. 

 

The results show that the two constant density models 
overpredict the evaporation rate (compared to the variable 
density one) except for a small range of drop temperature close 
to the boiling condition, and the overprediction increases with 
the gas temperature.  

The same analysis was performed for the hydrocarbon 
liquids (n-octane and n-dodecane) and the results are reported 
in Figures 4 and 5, respectively, for the total pressures reported 
in Figure 1 (1, 10 and 20bar for n-octane and 1, 5 and 15bar for 
n-dodecane). At relatively low temperature, far from the liquid 
boiling point at the given pressure, both constant density 
models overpredict the evaporation rate, and the discrepancy 
increases with gas temperature. When drop temperature 
increases the evaporation rate predicted by both constant 
density models approaches the reference value, with the 
constant molar density model showing a closer agreement with 
the reference values.  

Around a temperature not far from the liquid boiling 
temperature, the constant molar density model inverts the 
behaviour, underpredicting the reference value. The constant 
mass density model shows a similar behaviour, but the 
temperature at which the trend is inverted depends more on the 
gas temperature. As a general remark, for both hydrocarbons 
and all the selected back pressures, the constant molar density 
model yields evaporation rate prediction closer to the reference 
value for a larger drop temperature interval, while close to the 
drop boiling temperature both models tend to underpredict it 
and there exists only a small drop temperature interval where 
the constant mass density model behaves better.   

                            
(a)                                                              (b)                                                                (c) 

 
Figure 4 Non-dimensional evaporation rate ratio as function of drop temperature at three gas temperatures for n-octane drop at (a) 

1bar, (b) 10bar and (c) 20 bar. 
 

                             (a)                                                              (b)                                                                (c) 

 
Figure 5 Non-dimensional evaporation rate ratio as function of drop temperature at three gas temperatures for n-dodecane drop at (a) 

1bar, (b) 5bar and (c) 15 bar. 
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CONCLUSIONS  
Two drop evaporation models based on the common 

assumption of constant gas density are compared to a novel 
model that relieves the cited assumption, and the following 
conclusion are summarised: 
- the two constant density models predict similar values of the 
evaporation rate for drop temperature far from the boiling 
point, but the discrepancy increases when drop temperature 
approaches the boiling condition;  
- both constant density models overpredict the evaporation rate 
when compared to the variable density model, which is taken as 
a reference in this study, for temperature far from the boiling 
temperature and by larger values as the gas temperature 
increases, showing that for evaporation in hot environment 
(combustion) these models may become less reliable; 
- the constant molar density model appears to be more reliable 
than the constant mass density one for a large range of drop 
temperature at all the tested gas temperatures and pressures.   
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