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Gradients and subgradients are central to optimization and sensitivity analysis of buffered failure 
probabilities. We furnish a characterization of subgradients based on subdifferential calculus in the 
case of finite probability distributions and, under additional assumptions, also a gradient expression for 
general distributions. Several examples illustrate the application of the results, especially in the context 
of optimality conditions.
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1. Introduction

In decision making under uncertainty, it is common to assess a 
random quantity of interest by computing the probability of out-
comes above a threshold. With little loss of generality, one can 
shift the quantity of interest and adopt zero as the threshold. 
This leads to the probability of failure with numerous uses in re-
liability engineering and stochastic optimization; see [6,11] and 
references therein. Despite advances in the analysis and compu-
tation of gradients and subgradients of failure probabilities with 
respect to parameters [5,9,14,18,19], it remains theoretically and 
computationally challenging to use failure probabilities in sensi-
tivity analysis and optimization. Convexity of functions describing 
quantities of interest does not necessarily translate into convex-
ity of failure probabilities [10]. In a data-driven setting with finite 
probability distributions, a failure probability is expressed by a 
weighted average of indicator functions and thus continuity is lost 
as well. One tends to end up with gradients that are either zero or 
not defined, making sensitivity analysis and optimization difficult. 
These challenges motivate the alternative buffered failure probability
[10]. Analogous to the shift from quantiles to superquantiles pio-
neered in [12], the pass from conventional failure probabilities to 
buffered failure probabilities results in several desirable properties 
[7]. In this paper, we provide gradient and subgradient expressions 
for buffered failure probabilities and discuss their use in sensitivity 
analysis and optimization.
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Buffered failure probabilities and the closely related buffered 
probabilities of exceedance [4] appear in several optimization 
models, often leveraging their connection with superquantiles 
(a.k.a. conditional/average value-at-risk), with applications in re-
liability engineering [1–3,10,21], data analytics [8], finance [16]
and to address natural disasters [4]. However, gradient expressions 
for buffered failure probabilities as functions of parameters are 
not fully developed. Since a buffered failure probability can be 
viewed as the “inverse” of superquantiles, one can leverage gra-
dient expressions for the latter and the implicit function theorem 
to compute gradients of buffered failure probabilities [20]. While 
this suffices in some cases, a superquantile is not generally smooth 
and sufficient conditions for such smoothness are nontrivial. Under 
a convexity assumption about the quantity of interest, subgradi-
ents of superquantiles emerge as quasigradients of buffered failure 
probabilities [20]. However, engineering systems often involve non-
convex quantities of interest; see for example [1]. When a finite 
distribution produces distinct outcomes for the quantity of inter-
est and certain expectations are bounded away from zero, gradient 
expressions for buffered failure probabilities become available [2]. 
We extend on these developments by considering both finite and 
continuous distributions, and circumventing any assumption about 
convexity. Our proofs of gradients and subgradients avoid relying 
on the implicit function theorem and distinct outcomes and in-
stead leverage subdifferential calculus as laid out in [13,15] and 
properties of expectation functions in [17].

For a quantity of interest expressed by g :Rm ×Rn →R and an 
m-dimensional random vector ξ , the (conventional) failure proba-
bility under decision x ∈Rn is given by

p(x) = prob
{

g(ξ , x) > 0
}
,
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which is well defined as long as g( · , x) is measurable. (We use 
boldface letters to indicate a random quantity and return to reg-
ular font for its outcomes.) Under the assumption that g(ξ , x) is 
integrable (which we retain throughout), the buffered failure proba-
bility is defined as

p̄(x) = b-prob
{

g(ξ , x) > 0
}

=

⎧⎪⎨
⎪⎩

0 if p(x) = 0

1 − ᾱ if p(x) > 0, E
[

g(ξ , x)
]
< 0

1 otherwise,

where ᾱ is the probability level α ∈ [0, 1] that makes the α-
superquantile of g(ξ , x) equal to zero. Although not explicitly indi-
cated, ᾱ typically depends on x. Recall that the α-superquantile of 
g(ξ , x) is given by

q̄α(x) = qα(x) + 1

1 − α
E

[
max

{
0, g(ξ , x) − qα(x)

}]
for α ∈ [0, 1), where qα(x) is the α-quantile of g(ξ , x), and q̄1(x) =
limα ↗1 q̄α(x); see [15, Section 3.C].

As a key departure from [20], we leverage an alternative for-
mula due to Norton and Uryasev [8]:

p̄(x) = minγ ≥0 E
[

max
{

0, γ g(ξ , x) + 1
}]

, (1.1)

which applies under the assumption that p(x) > 0; see [7, Propo-
sition 2.2]. The set of minimizers,

�(x) = argminγ ≥0 E
[

max
{

0, γ g(ξ , x) + 1
}]

, (1.2)

contains −1/qᾱ (x) when E[g(ξ , x)] < 0 and p(x) > 0, where ᾱ is 
such that q̄ᾱ(x) = 0; see [8, Proposition 1]. In fact, −1/qᾱ (x) is the 
only minimizer unless the distribution function P of g(ξ , x) has a 
flat stretch to the right of qᾱ(x) and P (qᾱ (x)) = ᾱ as explained in 
the same reference.

The paper is laid out as follows. Section 2 addresses the case of 
finite probability distributions. Section 3 presents sufficient condi-
tions for the buffered failure probability to be smooth and gives 
an expression for the gradients. In both cases, we assume that 
g(ξ, · ) is smooth, at least locally near a point x of interest but 
not necessarily for all ξ as specified in detail below. Convexity is 
not required anywhere in the paper. These assumptions are well 
aligned with applications in engineering settings [10,11]. The pa-
per ends in Section 4 with application of the results, especially to 
derive optimality conditions.

2. Subgradients under finite distributions

When the distribution of ξ is finite with outcomes ξ1, . . . , ξν , 
each occurring with a positive probability, the buffered failure 
probability p̄ is differentiable at x̂ under the assumptions that 
{g(ξ i, ̂x), i = 1, . . . , ν} are all distinct, certain expectations are 
bounded away from zero and g(ξ i, · ) is smooth (i.e., continuously 
differentiable) for all i in a neighborhood of x̂; see Example 1 and 
[2]. Here, we derive a necessary condition for subgradients of p̄
at x̂ without requiring distinct values of {g(ξ i, ̂x), i = 1, . . . , ν} and 
the expectation assumptions. The set of subgradients ∂ f (x) of a 
function f : Rn → [−∞, ∞] is well defined at any point x with 
f (x) being finite. We note that subgradients are understood to be 
of the general kind [13, Chapter 8], also referred to as limiting or 
Mordukhovich subgradients; see [15, Section 4.I] for an introduc-
tion.

2.1 Theorem. Suppose that a point x̂ ∈ Rn, an m-dimensional random 
vector ξ and a function g :Rm ×Rn →R satisfy the following proper-
ties:
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(a) ξ has a finite distribution with outcomes ξ1, . . . , ξν and corre-
sponding positive probabilities p1, . . . , pν .

(b) For all i = 1, . . . , ν , the function g(ξ i, · ) is smooth in a neighbor-
hood of x̂.

(c) E[g(ξ , ̂x)] < 0 and g(ξ i, ̂x) > 0 for some i.

If y ∈ ∂ p̄(x̂), then there are γ̂ ∈ �(x̂) and multipliers μi ∈ [0, 1], i =
1, . . . , ν , such that

y = γ̂

ν∑
i=1

piμi∇x g(ξ i, x̂).

The multipliers satisfy the properties

ν∑
i=1

piμi g(ξ i, x̂) = 0 and, for all i:

μi ∈

⎧⎪⎨
⎪⎩

{0} if γ̂ g(ξ i, x̂) + 1 < 0

[0,1] if γ̂ g(ξ i, x̂) + 1 = 0

{1} if γ̂ g(ξ i, x̂) + 1 > 0.

(2.1)

Proof. Let i∗ be such that g(ξ i∗ , ̂x) > 0, which exists in light of 
assumption (c). By assumption (b), there is a nonempty compact 
set X ⊂Rn such that x̂ is in its interior, g(ξ i, · ) is smooth at every 
x ∈ X for all i and g(ξ i∗ , x) ≥ 1

2 g(ξ i∗ , ̂x) for all x ∈ X . We consider 
the function f :Rn ×R → (−∞, ∞] given by

f (x, γ ) =
{∑ν

i=1 pi f i(x, γ ) if x ∈ X, γ ≥ 0

∞ otherwise,

where f i(x, γ ) = h(ϕi(x, γ )), ϕi(x, γ ) = γ g(ξ i, x) + 1 and h(η) =
max{0, η}. Certainly,

p̄(x) = infγ ∈R f (x, γ ) ∀x ∈ X .

We now bring in subdifferential calculus rules for such inf-
projections. Let y ∈ ∂ p̄(x̂). By [15, Theorem 5.13], there exists a 
minimizer γ̂ of f (x̂, · ) such that (y, 0) ∈ ∂ f (x̂, γ̂ ). It is clear from 
the construction of f that γ̂ ∈ �(x̂). The cited theorem requires 
that f is proper and lsc, which is obvious in view of (b) and the 
construction of X . The theorem also requires that for all β ∈ R
and x̄ ∈ Rn there are ε > 0 and a bounded set C ⊂ R such that 
the level-sets {γ | f (x, γ ) ≤ β} ⊂ C whenever ‖x − x̄‖2 ≤ ε. By 
construction of X ,

f (x, γ ) ≥ pi∗
(
γ g(ξ i∗ , x) + 1

) ≥ pi∗
( 1

2γ g(ξ i∗ , x̂) + 1
)

∀x ∈ X, γ ≥ 0.

Thus, we can take C = [0, 2β/(pi∗ g(ξ i∗ , ̂x))] and the theorem ap-
plies. It remains to compute the subgradients of f at (x̂, γ̂ ). We 
note that γ̂ > 0 because if γ̂ were zero, then p̄(x̂) = 1 by (1.1). This 
in turn entails that E[g(ξ , ̂x)] ≥ 0 by the definition of the buffered 
failure probability. However, this is ruled out by assumption (c).

First, we consider the subgradients of f i . Without loss of gener-
ality, we can assume that ϕi is smooth because it can be extended 
beyond X × [0, ∞) in a smooth manner. Thus, the chain rule [15, 
Theorem 4.64] applies and we obtain that

∂ f i(x̂, γ̂ ) = ∇ϕi(x̂, γ̂ )∂h
(
ϕi(x̂, γ̂ )

)

=

⎧⎪⎨
⎪⎩

{(0,0)} if γ̂ g(ξ i, x̂) + 1 < 0(
γ̂ ∇x g(ξ i, x̂), g(ξ i, x̂)

)[0,1] if γ̂ g(ξ i, x̂) + 1 = 0{(
γ̂ ∇x g(ξ i, x̂), g(ξ i, x̂)

)}
if γ̂ g(ξ i, x̂) + 1 > 0.
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Second, by the sum rule [15, Proposition 4.67], we achieve the ex-
pression

∂ f (x̂, γ̂ ) =
ν∑

i=1

pi∂ f i(x̂, γ̂ ),

which holds by an equality, and not merely an inclusion, because 
f i is epi-regular at (x̂, γ̂ ). This means that

(y,0) =
ν∑

i=1

piμi
(
γ̂ ∇x g(ξ i, x̂), g(ξ i, x̂)

)
,

where μi is specified in the theorem. The conclusion follows. �
Beyond the restriction to finite distributions, which is common 

in a data driven setting, the theorem is widely applicable. Assump-
tion (c) rules out pathological cases and is hardly a limitation.

Example 1. Consider a Bernoulli random variable ξ with outcomes 
{0, 1} and equal probabilities. Let g(ξ, x) = xξ − 1 and consider x̂ ∈
(1, 2). This means that E[g(ξ , ̂x)] = x̂/2 − 1 < 0 and g(1, ̂x) = x̂ −
1 > 0. Direct computation establishes that the α-quantiles and α-
superquantiles are given by

qα(x̂) =
{

−1 if α ∈ (0,1/2]
x̂ − 1 if α ∈ (1/2,1)

q̄α(x̂) =
{

−1 + x̂/(2(1 − α)) if α ∈ [0,1/2]
x̂ − 1 if α ∈ (1/2,1].

We solve the equation q̄α(x̂) = 0 and find ᾱ = 1 − x̂/2 so that 
p̄(x̂) = x̂/2 and ∇ p̄(x̂) = 1/2.

Next, let’s examine Theorem 2.1 in this case. We find that y ∈
∂ p̄(x̂) implies that there are a minimizer γ̂ ∈ �(x̂) and multipliers 
μ1 and μ2 such that

y = 1

2
γ̂ · 0 · μ1 + 1

2
γ̂ · 1 · μ2 = 1

2
γ̂ μ2

0 = 1

2
(−1)μ1 + 1

2
(x̂ − 1)μ2.

From (1.2) and the surrounding discussion, γ̂ = −1/qᾱ (x̂) = 1. This 
minimizer is unique because ᾱ ∈ (0, 1/2), which, in turn, implies 
that the distribution function of g(ξ , ̂x) is strictly higher than ᾱ at 
qᾱ(x̂). The requirement from the theorem about μ1 and μ2 trans-
lates into μ1 ∈ [0, 1] and μ2 = 1 because

γ̂ (x̂ · 0 − 1) + 1 = 0

γ̂ (x̂ · 1 − 1) + 1 = x̂ > 0.

Thus, y = 1/2 so there is only one subgradient and this is indeed 
the gradient ∇ p̄(x).

For comparison, let us consider the gradient formula in [2]:

∇ p̄(x) =
ν∑

i= j+1

pi

(
g(ξ i, x)

(g(ξ j, x))2
∇x g(ξ j, x) − 1

g(ξ j, x)
∇x g(ξ i, x)

)
,

(2.2)

where g(ξ1, x) < g(ξ2, x) < · · · < g(ξν, x) are sorted and j ∈
{1, . . . , ν} satisfies

ν∑
pi g(ξ i, x) < 0 <

ν∑
pi g(ξ i, x).
i= j i= j+1

870
For the present example, g(0, ̂x) = −1 and g(1, ̂x) = x̂− 1. Thus, 
we can set j = 1 because

1
2 g(0, x̂) + 1

2 g(1, x̂) = 1
2 x̂ − 1 < 0 < 1

2 g(1, x̂) = 1
2 x̂ − 1

2 .

Using the formula (2.2), we obtain

∇ p̄(x̂) = 1

2

(
g(1, x̂)

(g(0, x̂))2
∇x g(0, x̂) − 1

g(0, x̂)
∇x g(1, x̂)

)
= 1

2

as expected. Example 3 furnishes a case when (2.2) does not ap-
ply. �
3. Gradients of buffered failure probability

Since a buffered failure probability is expressed in terms of 
“min” and “max” (see (1.1)), we cannot expect it to define a smooth 
function in general. However, the following requirements on the 
function g and the distribution of ξ ensure that p̄ is differentiable 
at a particular point x̂.

3.1 Theorem. For a point x̂ ∈ Rn, an m-dimensional random vector ξ
and a function g :Rm ×Rn →R, suppose that there is a neighborhood 
X of x̂ such that the following hold:

(a) For each x ∈ X, there is a set � ⊂Rm, with prob{ξ ∈ �} = 1, such 
that g(ξ, · ) is smooth at x for every ξ ∈ �.

(b) There are ε > 0 and δ ∈ (0, 1] such that prob{g(ξ , x) ≥ ε} ≥ δ for 
all x ∈ X.

(c) There is a measurable function h : Rm → [0, ∞) such that
E[h(ξ)] < ∞ and |g(ξ, x)| ≤ h(ξ) for all ξ ∈Rm and x ∈ X.

(d) There is a measurable function κ : Rm → [0, ∞) such that
E[κ(ξ)] < ∞ and∣∣g(ξ, x) − g(ξ, x′)

∣∣ ≤ κ(ξ)‖x − x′‖2 ∀x, x′ ∈ X, ξ ∈Rm.

(e) If γ > 0 and x ∈ X, then prob{−γ g(ξ , x) = 1} = 0.
(f) The set of minimizers �(x̂) is the single point γ̂ .

Then, p̄ is differentiable at x̂ and

∇ p̄(x̂) =E
[

F (ξ , x̂, γ̂ )
]
, where

F (ξ, x̂, γ̂ ) =
{

0 if γ̂ g(ξ, x̂) + 1 ≤ 0

γ̂ ∇x g(ξ, x̂) otherwise.

Proof. Assumptions (a-e) hold in a neighborhood of x̂. However, 
since the following analysis is local, we can assume without loss 
of generality that they hold on Rn . Let ϕ : Rn ×R → R be given 
by

ϕ(x, γ ) = E
[
�(ξ , x, γ )

]
, where

�(ξ, x, γ ) = min
{

0,−γ g(ξ, x) − 1
}
,

which indeed is real-valued because g(ξ , x) is integrable by as-
sumption (c).

First, we show that ϕ(· , γ ) is differentiable regardless of γ >

0 with the corresponding gradients being continuous jointly in 
(x, γ ). Fix γ > 0 and let �̂ be the set associated with x̂ in as-
sumption (a), i.e., prob{ξ ∈ �̂} = 1 and g(ξ, · ) is smooth at x̂ for 
all ξ ∈ �̂. By [17, Theorem 7.44], ϕ( · , γ ) is differentiable at x̂ and

∇xϕ(x̂, γ ) = E
[∇x�(ξ , x̂, γ )

]
provided that the following two conditions hold:
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Condition 1: There is a measurable function λ : Rm → [0, ∞)

and a neighborhood of x̂ such that E[λ(ξ )] < ∞ and

∣∣�(ξ, x, γ ) − �(ξ, x′, γ )
∣∣ ≤ λ(ξ)‖x − x′‖2

for all x, x′ in the neighborhood and all ξ ∈Rm .

Condition 2: There is a set �1 ⊂ Rm , with prob{ξ ∈ �1} = 1, 
such that �(ξ, ·, γ ) is differentiable at x̂ for all ξ ∈ �1.

Condition 1 holds with λ(ξ) = γ κ(ξ) by assumption (d). Condi-
tion 2 also holds by assumptions (a, e); recall that g(ξ, · ) is smooth 
at x̂ for all ξ ∈ �̂ and �(ξ, · , γ ) is smooth at x̂ if

ξ ∈ �̄ = �̂ ∩ {
ξ ∈Rm

∣∣ − γ g(ξ, x̂) − 1 �= 0
}
.

The event �̄ takes place with probability one and furnishes the 
required set �1.

We note that for ξ ∈ �̄,

∇x�(ξ, x̂, γ ) =
{

0 if − γ g(ξ, x̂) − 1 > 0

−γ ∇x g(ξ, x̂) if − γ g(ξ, x̂) − 1 < 0.

The above arguments hold not only for x̂ but at all other points 
as well. Thus, ϕ( · , γ ) is differentiable and the obtained formula 
for the gradient applies at any point.

By [17, Theorem 7.43], the mapping ∇xϕ is continuous at (x̂, γ )

provided that there is a set �′ , with prob{ξ ∈ �′} = 1, such that 
∇x�(ξ, · , · ) is continuous at (x̂, γ ). With �′ = �̄, this holds in light 
of assumption (a). Moreover, the cited theorem requires that there 
are a measurable function η : Rm → [0, ∞), with E[η(ξ)] < ∞, 
and a set �′′ , with prob{ξ ∈ �′′} = 1, such that ‖∇x�(ξ, x, γ ′)‖∞ ≤
η(ξ) for all ξ ∈ �′′ and (x, γ ′) in a neighborhood of (x̂, γ ). We set 
�′′ = �̄ and utilize η(ξ) = (γ + 1)κ(ξ), which is valid by assump-
tion (d). Thus, we conclude that ∇xϕ is continuous at (x̂, γ ). Again, 
we can repeat the argument for other x and γ > 0 and reach the 
same conclusion.

For the special case of γ = 0, ϕ(x, 0) = −1 and ∇xϕ(x, 0) = 0. 
Since ∇xϕ(xν, γ ν) → 0 as xν → x and γ ν ↘0, ∇xϕ is continuous 
relative to Rn × [0, ∞).

Following a similar argument, again relying on [17, Theorem 
7.43], we conclude that ϕ is continuous.

Second, we consider the function ψ :Rn →R given by

ψ(x) = maxγ ≥0 ϕ(x, γ ).

For each x, ϕ(x, · ) is continuous because ϕ is continuous. More-
over, ϕ(x, γ ) ≤ (−γ ε − 1)δ for all x ∈ X by assumption (b). Thus, 
any γ ≥ γ̄ = (1 − δ)/(εδ) yields ϕ(x, γ ) ≤ −1. Since ϕ(x, 0) = −1, 
this means that the maximization of ϕ(x, · ) over [0, ∞) is attained 
with a value no greater than γ̄ regardless of x ∈ X . Consequently, 
ψ(x) is well defined and the maximization can just as well be 
carried out over the compact set [0, γ̄ ]. We then invoke [15, Propo-
sition 6.30] and assumption (f) to conclude that ψ is differentiable 
at x̂ with ∇ψ(x̂) = ∇xϕ(x̂, γ̂ ). This implies that −ψ is also differ-
entiable at x̂ with gradient

−∇xϕ(x̂, γ̂ ) = E
[−∇x�(ξ , x̂, γ̂ )

] = E
[

F (ξ , x̂, γ̂ )
]
.

Since

−ψ(x̂) = −maxγ ≥0 ϕ(x̂, γ ) = minγ ≥0 −ϕ(x̂, γ ) = p̄(x̂),

the claim is established. �

871
Interestingly, the proof of the theorem follows a completely dif-
ferent path compared to that of Theorem 2.1.

Assumption (a) holds if g(ξ, · ) is smooth for all ξ ∈ Rm , but 
the theorem also allows for certain nonsmooth g of the kind often 
arising in stochastic programming [15, Chapter 3]. For example, if 
g(ξ, x) = max{0, β(x − ξ)} as in the newsvendor problem [15, Sec-
tion 1.C] and ξ has a continuous distribution, then assumption (a) 
still holds. Assumption (b) rules out situations with diminishing 
probability for positive outcomes of g(ξ , x), which is not restric-
tive in practice. Assumption (e) essentially requires that g(ξ , x) has 
a continuous distribution. As discussed around (1.2), γ̂ is “mostly” 
unique so assumption (f) is rather mild.

Example 2. Suppose that ξ is a uniformly distributed random 
variable on [−1, 1] and g(ξ, x) = xξ − 1. Let x > 1. Then, the 
α-quantile and α-superquantile become qα(x) = (2α − 1)x − 1
and q̄α(x) = αx − 1. This means that q̄ᾱ (x) = 0 implies ᾱ = 1/x
and then qᾱ (x) = 1 − x. Moreover, the buffered failure probabil-
ity p̄(x) = 1 − 1/x. Certainly, this function is differentiable at any 
positive x and ∇ p̄(x) = 1/x2.

Let’s now confirm this gradient formula using Theorem 3.1. By 
(1.2) and the surrounding discussion, γ̂ = 1/(x − 1) Moreover, one 
obtains

F (ξ, x, γ̂ ) =
{

0 if (2 − x)/x ≥ ξ

ξ/(x − 1) otherwise

and it only remains to compute the integral

E
[

F (ξ , x, γ̂ )
] =

1∫
−1

1
2 F (ξ, x, γ̂ )dξ = 1

2

1

x − 1

1∫
(2−x)/x

ξ dξ

= 1

2

1

x − 1

(1

2
− 1

2

(2 − x)2

x2

)
= 1

x2
.

We have confirmed the formula for ∇ p̄(x). �
4. Applications

We consider two applications of Theorem 2.1. The first one 
discusses sensitivity analysis of a simple network and illustrates 
how the formula in [2] may not apply; see (2.2). The second one 
presents an optimality condition for constrained minimization of 
the buffered failure probability.

Example 3. Consider the network in Fig. 1 consisting of four com-
ponents. The state of a component j is represented by a Bernoulli 
random variable ξ j having outcomes 1 and 0, respectively cor-
responding to its survival and failure, with prob{ξ j = 0} = ρ ∈
(0, 1/2). If a component survives, then it carries a flow equal to its 
capacity, while it carries no flows if it fails. The capacities of com-
ponents 1 and 2 are 2x, and those for 3 and 4 are x, with x > 0. 
The hope is that the network delivers at least one unit of flow be-
tween the two end nodes. Thus, the quantity of interest becomes 
the flow-shortfall: 1 minus the deliverable flow. We are concerned 
about the buffered failure probability of the flow-shortfall. With 
ξ = (ξ1, . . . , ξ4), this leads to

g(ξ, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2x if ξ1 = ξ2 = ξ3 = ξ4 = 1

1 − x if ξ1 = ξ2 = ξ3 = 1, ξ4 = 0;
or ξ1 = ξ2 = ξ4 = 1, ξ3 = 0

1 otherwise.
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Fig. 1. Network subject to component failure.

Fig. 2. Buffered failure probability p̄(x) and failure probability p(x) of flow-
shortfall as function of x when ρ = 0.1. The kink in the graph occurs at 
x̂ = 2.3587.

Suppose that ξ = (ξ1, . . . , ξ4) and the four random variables are 
statistically independent. Thus, ξ has 16 possible outcomes, de-
noted by ξ1, . . . , ξ16, but g(ξ , x) has only three outcomes 1 − 2x, 
1 − x and 1. This means that the formula (2.2) from [2] does not 
apply; it remains inapplicable after a consolidation of the proba-
bility space into one with only three outcomes.

We consider a particular value for x:

x̂ = 1 − (1 − ρ)4

2(1 − ρ)3ρ
,

which is greater than 2 for ρ ∈ (0, 1/2). For notational conve-
nience, let

σ = 1 − (1 − ρ)4 − (1 − ρ)3ρ and

τ = 1 − (1 − ρ)4 − 2(1 − ρ)3ρ.

Via the α-superquantile of g(ξ , x), we obtain

p̄(x) =
{

2σ x/(2x − 1) if 1/(2(1 − ρ)4) < x ≤ x̂

τ x/(x − 1) if x̂ < x,

which is visualized in Fig. 2 for ρ = 0.1. Thus, p̄ is neither smooth 
nor convex nor epi-regular [15, Definition 4.57]. For comparison, 
Fig. 2 also plots p(x). While not differentiable at x̂, the derivatives 
of p̄ to the left and right of that point are given by

∇ p̄(x) =
{

−2σ/(2x − 1)2 if 1/(2(1 − ρ)4) < x < x̂

−τ/(x − 1)2 if x̂ < x.

The definition of subgradients yields that

∂ p̄(x̂) =
{

− 2σ

(2x̂ − 1)2
, − τ

(x̂ − 1)2

}
For ρ = 0.1, this produces {−0.1073, −0.0392}.

Next, we turn to Theorem 2.1 and its (partial) characterization 
of ∂ p̄(x̂) in terms of the set

Y (x̂) =
⋃

γ̂ ∈�(x̂)

{
γ̂

16∑
i=1

piμi∇x g(ξ i, x̂)
∣∣∣ μ1, . . . ,μ16 satisfy (2.1)

}
.
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Fig. 3. Distribution function of flow-shortfall g(ξ , x̂) when ρ = 0.1.

We show that ∂ p̄(x̂) is a strict subset of Y (x̂), with the latter being 
the convex hull of the former.

The distribution function of g(ξ , ̂x) is a staircase with a first 
step of (1 −ρ)4 at 1 − 2x̂, a second step of 2(1 −ρ)3ρ at 1 − x̂ and 
the remaining step at 1; see Fig. 3. Since the (1 − p̄(x̂))-quantile of 
g(ξ , ̂x) is 1 − 2x̂ and the value of the distribution function at that 
point is 1 − p̄(x̂), we conclude that �(x̂) is the interval [1/(2x̂ −
1), 1/(x̂ − 1)]; see the discussion around (1.2).

In the following, we order the outcomes of ξ as follows: ξ1 =
(1, 1, 1, 1), ξ2 = (1, 1, 0, 1), ξ3 = (1, 1, 1, 0) and the remaining out-
comes are labeled ξ4, . . . , ξ16 arbitrarily. Then, g(ξ1, x) = 1 − 2x, 
g(ξ2, x) = g(ξ3, x) = 1 − x and g(ξ i, x) = 1 for i = 4, . . . , 16.

For any γ̂ ∈ [1/(2x̂ − 1), 1/(x̂ − 1)], which is a positive num-
ber, γ̂ g(ξ i, ̂x) + 1 > 0 when i = 4, . . . , 16. Thus, μi = 1 and 
μi∇x g(ξ i, ̂x) = 1 · 0 = 0 for such i.

For i = 2 and 3, γ̂ = 1/(x̂ − 1) implies that γ̂ g(ξ i, ̂x) + 1 = 0. 
Thus, μi ∈ [0, 1] and μi∇x g(ξ i, ̂x) = −μi for such i and this value 
of γ̂ . For γ̂ ∈ [1/(2x̂ − 1), 1/(x̂ − 1)), γ̂ g(ξ i, ̂x) + 1 > 0, μi = 1 and 
μi∇x g(ξ i, ̂x) = 1 · (−1) = −1.

For i = 1, γ̂ = 1/(2x̂ − 1) implies that γ̂ g(ξ i, ̂x) + 1 = 0. Thus, 
μi ∈ [0, 1] and μi∇x g(ξ i, ̂x) = −2μi for such i and this value of 
γ̂ . For γ̂ ∈ (1/(2x̂ − 1), 1/(x̂ − 1)], γ̂ g(ξ i, ̂x) + 1 < 0, μi = 0 and 
μi∇x g(ξ i, ̂x) = 0 · (−2) = 0. Based on the choice of γ̂ , this leads to 
three cases.

Case A: γ̂ ∈ (1/(2x̂ − 1), 1/(x̂ − 1)). Then, one has

16∑
i=1

piμi g(ξ i, x̂) = 2(1 − ρ)3ρ(1 − x̂) + τ = 0,

which is verified by plugging in the expression for x̂. Hence, the 
multipliers μ1 = 0 and μi = 1 for i > 1 are valid. This leads to the 
expression

γ̂

16∑
i=1

piμi∇x g(ξ i, x̂) = −γ̂ 2(1 − ρ)3ρ.

Case B: γ̂ = 1/(x̂ − 1). Then, μ1 = 0 and μi = 1 for i =
4, . . . , 16. The multipliers μ2, μ3 ∈ [0, 1] and are specified by

16∑
i=1

piμi g(ξ i, x̂) = (μ2 + μ3)(1 − ρ)3ρ(1 − x̂) + τ = 0.

This simplifies to μ2 + μ3 = 2 and then μ2 = μ3 = 1. Conse-
quently,

γ̂

16∑
piμi∇x g(ξ i, x̂) = −2(1 − ρ)3ρ

x̂ − 1
.

i=1
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Case C: γ̂ = 1/(2x̂ − 1). Then, μi = 1 for i > 1 while μ1 ∈ [0, 1]. 
The latter is narrowed down by

16∑
i=1

piμi g(ξ i, x̂) = (1 − ρ)4μ1(1 − 2x̂) + 2(1 − ρ)3ρ(1 − x̂) + τ

= 0,

which results in μ1 = 0. Thus,

γ̂

16∑
i=1

piμi∇x g(ξ i, x̂) = −2(1 − ρ)3ρ

2x̂ − 1
.

Summarizing all the three cases, we see that Theorem 2.1 spec-
ifies

Y (x̂) =
[

− 2σ

(2x̂ − 1)2
, − τ

(x̂ − 1)2

]
,

which is the convex hull of ∂ p̄(x̂). �
Example 4. For a nonempty closed set C ⊂ Rn , Theorem 2.1 pro-
duces an optimality condition for the problem

minimize
x∈C

p̄(x)

in terms of the normal cone NC (x) of C at a point x [15, Defini-
tion 4.35]. (Normal cones are understood in the general or limiting 
sense; see [13, Chapter 6].) Specifically, under the assumptions of 
Theorem 2.1, if x̂ is a local minimizer of the problem, then there 
are γ̂ ∈ �(x̂) and multipliers μi ∈ [0, 1], i = 1, . . . , ν satisfying (2.1)
such that

−γ̂

ν∑
i=1

piμi∇x g(ξ i, x̂) ∈ NC (x̂).

This optimality condition holds by the following argument: Let 
x̂ be a local minimizer of the problem. The Fermat rule [15, Theo-
rem 4.37] then asserts that

0 ∈ ∂(p̄ + ιC )(x̂),

where ιC (x) = 0 if x ∈ C and ιC (x) = ∞ otherwise. Since ∂ιC (x̂) =
NC (x̂) [15, Example 4.56], the conclusion follows as long as

∂(p̄ + ιC )(x̂) ⊂ ∂ p̄(x̂) + NC (x̂) (4.1)

because then we have the inclusion 0 ∈ ∂ p̄(x̂) + NC (x̂) and we can 
invoke Theorem 2.1. The inclusion (4.1) holds by a subdifferential 
sum rule [15, Proposition 4.67] provided that the horizon subgradi-
ents ∂∞ p̄(x̂) = {0} [15, Definition 4.60]. This follows by arguing as 
in the proof of Theorem 2.1, but now invoking formulas for horizon 
subgradients instead of for subgradients and employing Theorem 
10.6, Corollary 10.9 and Theorem 10.13 in [13].

These arguments also confirm that p̄ is locally Lipschitz contin-
uous at x̂; see [13, Theorem 9.13]. �
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