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Abstract: In arid environments of the world, particularly in sub-Saharan Africa and Asia, floodplain
wetlands are a valuable agricultural resource. However, the water reticulation role by wetlands and
crop production can negatively impact wetland plants. Knowledge on the foliar biochemical elements
of wetland plants enhances understanding of the impacts of agricultural practices in wetlands. This
study thus used Sentinel-2 multispectral data to predict seasonal variations in the concentrations of
nine foliar biochemical elements in plant leaves of key floodplain wetland vegetation types and crops
in the uMfolozi floodplain system (UFS). Nutrient concentrations in different floodplain plant species
were estimated using Sentinel-2 multispectral data derived vegetation indices in concert with the
random forest regression. The results showed a mean R2 of 0.87 and 0.86 for the dry winter and wet
summer seasons, respectively. However, copper, sulphur, and magnesium were poorly correlated
(R2 ≤ 0.5) with vegetation indices during the summer season. The average % relative root mean
square errors (RMSE’s) for seasonal nutrient estimation accuracies for crops and wetland vegetation
were 15.2 % and 26.8%, respectively. There was a significant difference in nutrient concentrations
between the two plant types, (R2 = 0.94 (crops), R2 = 0.84 (vegetation). The red-edge position 1 (REP1)
and the normalised difference vegetation index (NDVI) were the best nutrient predictors. These
results demonstrate the usefulness of Sentinel-2 imagery and random forests regression in predicting
seasonal, nutrient concentrations as well as the accumulation of chemicals in wetland vegetation
and crops.

Keywords: crop production; multispectral data; random forests; vegetation indices; wetlands conservation

1. Introduction

Wetlands in South Africa cover about 2.9 million hectares and about 2.4% of the
country’s land area [1]. They are recognised as highly valuable natural resources that
sustain the livelihoods of local communities by providing a wide-ranging ecosystem goods
and services that include, wild fruits, vegetables, rice and water purification [2,3]. They
also mediate the adverse effects of extreme weather conditions [4] by attenuating floods
and slowing down the speed of water movement [5]. Despite their valued recognition, the
rate of wetland degradation worldwide and in SA remains high [6,7].

In South Africa, wetlands are some of the most threatened ecosystems, with ~50%
of them in a critically endangered state [1]. Although they are vital for the livelihoods of

Remote Sens. 2021, 13, 4249. https://doi.org/10.3390/rs13214249 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2232-3508
https://orcid.org/0000-0002-5784-033X
https://orcid.org/0000-0002-4589-7099
https://orcid.org/0000-0003-3626-5839
https://doi.org/10.3390/rs13214249
https://doi.org/10.3390/rs13214249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214249
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214249?type=check_update&version=2


Remote Sens. 2021, 13, 4249 2 of 24

rural communities [8], their sustainability is being threatened by the increasing incidence
of climate change-driven droughts and frequent rainfall failures [9]. In sub-Saharan coun-
tries including Ethiopia, Kenya, Malawi, Tanzania, and Zambia, wetland cultivation is a
recognised and common practice in arid environments [10] that generates about 37% of
consumed food and 55% of cash income per household [11]. In Zimbabwe for example,
Nyamadzawo, et al. [12] compared wetland gardens against upland fields and observed
that more harvests from wetland gardens (2–3 t ha−1) compared to upland fields (1 t ha−1).
Despite this higher productivity, wetland ecosystems are being adversely impacted by wa-
ter extraction, urbanisation, infrastructure development, pollution, poor farming practices
as well as droughts and climate variability.

Given their high agricultural productivity, and the water reticulation and other eco-
logical roles, there is a need to explore spatially explicit techniques that can be used to
assess and monitor nutrient enrichment in these ecosystems. This is essential because
nutrient loading and contamination by different chemicals can disrupt the ecological func-
tioning of these vital sub-systems. A selected example of this disruption is provided by
Zhu, et al. [13] who report that an increase in foliar copper content is often associated with
shrinkage of mesophyll cells and, concomitant destruction of the internal structure of a
plant’s leaves and its physiological and structural characteristics. Although a detailed
discussion of similar adverse effects is beyond the scope of this paper, it is apparent that
better understanding of the foliar nutrient composition of wetland vegetation and crops is
critical for informed adoption of eco-friendly management strategies. As vegetation links
the physical environment and the upper levels of the food chain [14,15], these linkages need
to be properly maintained because they determine the dynamics of nutrient circulation
and physiological traits of plants in these systems.

Plants require at least fourteen mineral elements for adequate nutrition [16], lack of
which reduces plant growth [17]. Six of these—nitrogen (N), phosphorus (P), potassium
(K), calcium (Ca), magnesium (Mg), and sulphur (S)—are critically required by plants
in adequate amounts [17]. Their presence at tolerable concentration levels in the plant
can now be determined using remote sensing techniques [18–27]. However, considerable
research still needs to be conducted on how the concentrations of these elements influence
plant growth, as most of the research has tended to be narrowly focused on foliar nitrogen,
phosphorus and potassium [18–27]. This bias can be explained by the dominant use of
point-based sampling techniques and laboratory assaying, which are time-consuming
and expensive These limitations can be overcome by tapping on the abilities of remote
sensing techniques to cost-effectively provide quantitative estimates of foliar nutrient
concentrations in wetland plants.

Nitrogen, phosphorus and potassium have been widely investigated using remote
sensing techniques [28–30]. Although the literature indicates that these elements can
be easily characterised using various techniques, other trace elements that are found in
wetlands such as magnesium (Mg), copper (Cu), boron (B) and sulphur (S) are difficult to
quantify. Remote sensing-based techniques provide a convenient way to overcome this
limitation. This dexterity provides partial explanation of why we decided to use both
in-situ and remotely sensing (RS) techniques to assess the foliar concentrations of these
chemical elements and others.

The decision to couple these techniques was reasoned to be helpful because other
researchers have also done this before using RS techniques and laboratory-based spec-
troscopy in order to cost-effectively maximise their usefulness [31–34]. Additional evidence
to support this improvisation is provided by Li, et al. [32], who used hyperspectral data
and laboratory analysis to characterise nitrogen and phosphorus concentrations in wetland
plants. The majority of these studies have however mostly focused on grassland and
dryland woody species [35]. Less effort has been exerted towards foliar nutrients like Cu,
B, and S in wetland settings [36]. Although the traditional laboratory methods have been
routinely used to provide the information that is required to guide wetland conservation



Remote Sens. 2021, 13, 4249 3 of 24

and management [37], these methods are confounded by reliance on labour intensive, time
consuming and costly field compilation and analysis of samples [38,39].

The use of hyperspectral RS data has proven to be capable of addressing these con-
straints and to further facilitate detailed characterisation of wetland plant nutrient con-
centrations [34]. Although these datasets are useful, they their usefulness is compromised
by restricted temporal and spatial coverage with airborne hyperspectral sensors offering
little for large scale applications compared to their space-borne equivalents because they
are prohibitively expensive. This limitation causes hyperspectral data to be inflexible,
inefficient, difficult to access and inappropriate for large scale mapping. To adequately
monitor nutrient concentrations in wetland plants, a monitoring system that can be applied
over optimum spatial and temporal scales is required. The use of freely available satellite
imagery is a viable option as it enables cost-effective mapping and regular monitoring of
inaccessible and extensive wetland areas [40,41]. Overall, the literature underscores the
immense potentials of the medium resolution (M-res) datasets such as the WorldView-2,
3 and Sentinel-2 (S-2) in detecting variations in plant nutrient concentrations [1,42–44]
compared to the costly high-resolution sensors [45].

In the last few years, S-2 is one of M-res datasets that has attracted a lot of interest
by many researchers. Although launched recently in 2015, it has already proven to be
highly useful for the monitoring of vegetation quality and macronutrients such as nitrogen
and phosphorus [46–48]. Its high revisit period of 5 days, spatial resolutions of 10–60 m,
systematic global acquisition and open access policy have made it the workhorse of local-
level real-time plant nutrient monitoring. In addition to the visible and near-infrared
(NIR) wavelengths, the S-2 includes three bands in the red edge region centred at 705,
740, and 775 nm, which are suitable for the characterisation of various plant traits and
vegetation monitoring including macronutrients [19,26,48–50]. For instance, S-2 has been
used to characterise the seasonal and spatial variations of the nitrogen and phosphorus
ratio in the alpine grasslands of China at optimal accuracies of R2 0.49 and 0.59 and root
mean square errors (RMSE) of 2.27 and 3.11 for the dry and wet seasons, respectively) [50].
Specifically, S-2 has 13 spectral bands comprising four bands, three bands and six bands
with spatial resolutions of 10, 20 and 60 m that are centred at; (1) 496, 560, 665 and 835 nm
(2), 703, 740, 783, 865, 1610 and 2202 nm, and (3), 443, 945 and 1373 nm respectively [51].
Because S-2 data can be accessed free of charge (https://scihub.copernicus.eu/25, accessed
on June 2020), it has offered substantial opportunities for the mapping and monitoring
of micro and vegetation macronutrients, especially in countries with limited access to
spatial data due to financial and logistical constraints. However, unfortunately most of the
studies that have sought to characterise foliar nutrients using S-2 remotely sensed data
have tended to selectively focus on a narrow range of the primary nutrients notably, N, P,
and K. This drawback argues for the need to explore ways through which the mapping of
foliar micronutrients nutrients such as Mg, Cu, B and S, can be improved.

Evaluation of the nutritional requirements by different plants is becoming increasingly
necessary because the scientific community is obliged to continue providing better means
of enhancing the realisation of SDG goals that have a bearing to sustainable utilisation of
the finite resources at our disposal. This asseveration is supported by the emergence of a
community practice that is informed by the potential realisation of benefits from systematic
utilisation of the rich RS datasets at our disposal and systematic use of the techniques that
science has so far provided [50,52]. Accomplishing this is possible because RS provides
robust techniques with demonstrated capabilities of providing the information required
for meaningful realisation of SDGs, i.e., random forests (RF) ensemble, machine learning
algorithms (MLAs) [53–55]. The use of MLAs, such as RF amongst others, in estimating
nitrogen is a novel advancement that involves a fusion of several spectral vegetation indices
in mapping leaf nutrient variations [56].

Although there is no machine learning method that is universally appropriate for
estimating vegetation quality, several studies have evaluated the performance of the RF
regression model (RF) in predicting the leaf nitrogen content of wetland vegetation [36,57].

https://scihub.copernicus.eu/25
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RF has been demonstrated to be one of the most robust and widely used algorithms for
this purpose [58–62]. The RF ensemble algorithm has been widely used in numerous
studies to estimate plant foliar nutrient variations. This is so because, apart from being
able to discern subtle variations in numerous variables, RF is able to identify the complex
relationships between auto-correlated descriptors [63,64]. When implemented properly,
RF offers additional advantages in that regardless of the sample size of the dataset used, it
has a bootstrapping mechanism that accommodates utilisation of data implemented when
drawing training data points for building trees for each model [65]. It is in this regard that
RF was perceived to be a suitable algorithm for estimating foliar nutrient concentrations
in the floodplain wetlands of Northern KwaZulu Natal, South Africa. The underlying
research question of the study was, can Sentinel-2 data in concert with RF be used to
characterise the concentrations of N, K, Ca, Mg, P, S, Zn, B and Cu in the leaves of wetland
natural vegetation? We attempted to answer this question by calculating Sentinel-2-derived
vegetation indices for different herbaceous species in. The results showed that there is
urgent need to explore techniques that can be used to provide unitary perspectives on how
these and other challenges can be addressed. This investigation attempts to do this by
providing a case illustration of how RF regression modelling can be used to (1) characterise
the N, K, Ca, Mg, P, S, Zn, B and Cu foliar concentrations in different wetland vegetation
species b) determining the key wavelengths that are important predictors in ascertaining
the biochemical leaf foliar variations in these chemicals and (3) characterising seasonal
variations in wetland plant leaf nutrient content.

2. Materials and Methods
2.1. Study Area

The uMfolozi floodplain (UFS) system is located in St Lucia, a town that is situated
at 28◦22′S and 32◦25′E in Mtubatuba Local Municipality, South Africa. The uMfolozi
River consists of two main tributaries, the Black uMfolozi; that rises at around 1500 m
asl. in the north and the White uMfolozi that rises to an altitude of 1620 m asl. these
two tributaries converge on the sea Around 50 km west of the mouth of the uMfolozi
River. Because the catchment falls within the uMfolozi–Hluhluwe Nature Reserve, the
bulk of the catchment comprises natural vegetation cover. Grasslands are about 60% of
natural vegetation, with 21% and being classified as thicket and bush respectively. In less
than a quarter of the uMfolozi catchment, natural vegetation comes under the dominant
agriculture and commercial forestry land uses. The UF floodplain is predominantly used
for sugar cane cultivation (65%), and the remaining designated as protected area under the
iSimangaliso Park (previously known as St. Lucia Wetlands Park).

The uMfolozi River catchment drains a portion of 11,068 km2 of northern KwaZulu-
Natal on Southern Africa’s eastern seaboard. The river’s surface geological layout consists
of Lebombo rhyolite rock in the east and, Zululand/Maputaland rocks calcarenite, calcare-
ous, limestone, and conglomerate formations in the north and south of the Indian Ocean
respectively [66]. About 80% of the rainfall/precipitation occurs in the summer months,
peaking between November and April [67]. Mean annual catchment precipitation ranges
between 1288 mm in the coastal town of St. Lucia and 667 mm/a in the mid-upper catch-
ment of the uMfolozi Game Reserve with ~914 mm/a occurring in the upper catchment in
Nongoma. Mean annual evapotranspiration potential is normally more than double that of
precipitation, with average amounts approximating 1800 mm/a [68]. Figure 1 shows the
geographic location of the study area in KwaZulu Natal province, South Africa.
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Figure 1. Geographic location of the study area in KwaZulu Natal province, South Africa.

2.2. Field Data Collection
2.2.1. Plant Leaf Sampling

The datasets comprised leaf samples of major crops (Musa acuminate, Ipomoea batatas,
sugarcane and Colocasia esculenta) and dominant wetland vegetation species (Phragmites
australis, Cyperus papyrus and Cynodon dactylon). Sampling points were systematically
generated to cover the study area’s footprint and leaves likewise selected following a
sampling procedure that was designed to provide representative coverage of the sampling
universe. Leaf samples were collected on the 12 March 2017 (wet/summer season) and
22 July 2017 (dry/winter season) respectively. During field investigation, the geographic
positions of identifiable herbaceous species were recorded in spreadsheet inventories for
further analysis and detailed verification of their geographic positions and species type

A Garmin Montana 650 global positioning system (GPS) with a rated positional
accuracy of ±3 m, was used to measure the location of each plant where leaves were
harvested. This was followed by randomised sampling of leaves at different crown levels
(top, middle, and bottom) to avoid bias. Overall, a total of 76 leaf samples (38 for crops
and 38 for vegetation) were collected in summer and 85 samples (40 for crops and 45 for
vegetation) collected in winter and ~150 g of leaf material collected from each crop/plant.
Leaf samples were then packed in labelled ziplock plastic bags and stored in a cooler box
to preserve them during transportation to the laboratory. In the laboratory, the samples
were oven-dried at 70 ◦C for at least 24 h and milled to particle sizes of <0.5 mm.

2.2.2. Chemical Analyses

In this study, six major elements required in large amounts by plants (nitrogen, phos-
phorus, potassium, calcium, magnesium and sulphur) [17] and three micronutrient el-
ements required as trace amounts (boron, zinc and copper) [69] were chosen. The dry
oxidation (Dumas) method was used to determine nitrogen [67] by igniting each leaf
sample in oxygen at 950 ◦C to produce carbon dioxide, nitrogen gas and oxides of nitrogen.
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These gases were passed through silvered cobalt oxide and a column of copper at 650 ◦C to
reduce the nitrogen oxides to nitrogen gas by removing excess O2. After removal of water
vapour and CO2, the N2 gas was finally separated from other gases using gas chromatogra-
phy, based on a helium carrier gas and detection by a thermal conductivity detector. The
instrument was calibrated against the pure compound of known composition following
standard procedures that been recommended for this purpose. The compound chosen for
the calibration standard is phenylalanine which contains 8.48% N.

An aliquot of the digest solution was used for the inductively coupled plasma optical
emission spectrometric (ICP-OES) instrument (Agilent Technologies, United States, North
America) for the determination of K, Ca, Mg, P, S, Zn, B and Cu [70]. This is an Agilent 725
(700 series) simultaneous instrument which determines all the elements and wavelengths
simultaneously. Thus, several of the elements may be determined at more than one
wavelength allowing confirmation of the values with no increase in analysis time or
consumption of digest solution. However, S was determined separately from the other
elements after purging the optics of the instrument with Ar gas. This is due to the low
wavelengths (<190 nm) used for detecting S and the problems caused by oxygen in the air
at these very low wavelengths if the system is not purged. Each element was measured at
one or two appropriate emission wavelengths that were chosen for their high sensitivity
and lack of spectral interferences.

2.2.3. Image Compilation and Pre-Processing

Table 1 describes the characteristics of the S-2 images that were used and the numbers
of sample sites from which leaf samples were collected during the wet (12 March 2017) and
dry (22 July 2017) seasons.

Table 1. Temporal sequencing, identity details, cloud cover percentages of Sentinel-2 images that were used and field
samples by scene ID.

Season Image
Acquisition Date

Sample
Collection Date Scene ID Cloud Cover (%) No of Samples

Wet 27 March 2017 12 March 2017 S2A_MSIL1C_20170327T074231
_N0204_R049_T36JVP 0.4 76

Dry 18 July 2017 22 July 2017 S2A_MSIL1C_20170718T075211
_N0205_R092_T36JVP 0 85

Source: https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts/ (accessed on 25 June 2020).

The S-2 images were preferred because of their optimum spatial and spectral resolu-
tions for leaf-nutrient characterisation and the availability of footprint coverages of the
study area. The difference in the number of days between collection dates of samples and
image acquisition dates for wet and dry periods were restricted to 15 and 4, respectively
(Table 1) in order to enhance the acquisition of similar leaf nutrient concentrations by using
samples at the same phenological stages. The images were atmospherically corrected to
surface reflectance using the Sen2Cor plug-in tool provided in the Sentinel Application
Platform (SNAP) toolbox, as illustrated in literature [71–73]. S-2 MSI has 13 spectral bands
four at 10 m (blue (band 2), green (band 3), red (band 4), and NIR 1 (band 8)), six at 20 m
(RE1 to 3 (band 5, 6 and 7), NIR-2 (band 8A), SWIR 1 (band 11) and 2 (band 12), and three
at 60 m spatial resolution. Except for bands 1, 9 and 10, all S-2 MSI 10 and 20mbands were
used in mapping foliar nutrients in this study. The 10 m bands were all resampled to a
spatial resolution of 20 m before estimating the foliar nutrients. However, bands 1, 9, and
10 which have a spatial resolution of 60 m were excluded in this study because they are not
suitable for vegetation applications. The images were classified in ArcGIS 10.6 by using
70% of the data that was collected during field investigation for signature compilation
with the remaining 30% being reserved for classification accuracy assessment. Vegetation
indices were then computed and used with the spectral bands to estimate leaf nutrient

https://www.sentinel-hub.com/develop/documentation/eo_products/Sentinel2EOproducts/
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concentrations in wetland vegetation and crops growing by using several red edge based
indices (Table 2).

Table 2. Vegetation indices used in this study. The Sentinel-2 band IDs are used in the formulas (as
per Section 2.2.1).

Name Equation References

Normalised Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [74]
Simple Ratio (SR) NIR/R [74]
Simple Ratio 1 (SR1) Re2/R [74]
Simple Ratio 2 (SR2) Re3/R [74]
Simple Ratio 3 (SR3) R3/R2 [75]
Red Edge Position 1 (REP1) (R1 − R)/2 [19,76]
Red Edge 2 Position 2 (REP2) (R2 − R1)/2 [19,76]
Red Edge 3 Position 3 (REP3) (R3 − R2)/2 [19,76]
Chlorophyll Red Edge (CIred-edge) (Re3/R2) − 1 [19]
Chlorophyll Green (CI green) (R3/green) − 1 [77,78]
The MERIS Terrestrial Chlorophyll Index (MTCI 1) (NIR − R2/R705)/(R2 − R) [79]
Modified NDVI (nDVI) (Bγi) − (Bγj)/(Bγi) + (Bγj) [46]
Modified Simple Ratio (sR) (Bγi)/(Bγj) [46]

NB: Bγi and Bγj are different Sentinel 2 MSI spectral bands.

Although a large and growing body of the literature has illustrated that vegetation
indices outperform general wavebands in estimating vegetation attributes [80–82], in this
study we combined the vegetation indices with spectral bands considering that very few
of the aforementioned studies were conducted in wetlands. Vegetation indices were used
in this study because of their robustness as illustrated in the literature [50,56,57,80,83–85].
They derive their robustness from two or more wavebands. These bands are often from
two different regions of the electromagnetic spectrum. Their optimal performances have
also been observed to be capable of circumventing the effects of the atmospheric noise,
view/sun angle soil background, topographic effects and sensitivity to vegetation spec-
tral and temporal attributes [86]. This and other considerations explain why Sentinel-2
wavebands were used in this investigation. The processes that were used for this purpose
are summarised in Figure 2 which shows how satellite image data and field data were
collected and combined in RF regression modelling.

2.3. Estimation of Nutrient Concentrations Using Random Forests Regression

RF was performed in the R statistical package to estimate the concentrations of nu-
trients in crops and wetland vegetation. RF is a blended model that is characterised by
an enormous number of trees [59,87]. The model works by repeatedly splitting each tree
(remotely sensed data in this study) into increasingly homogenous subsets at each node
to produce a series of terminal nodes. In this study, the training of the regression model
was based on 70% of the field data and new estimations determined by sensing the input
down the tree and taking the means of the response variables (nutrient contents) and the
remaining 30% was used for accuracy assessment as explained earlier.
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Figure 2. The flow chart summarises the overall methods for the study.

Each regression tree in the RF algorithm is built using a subset of training samples
that are independently selected by replacement of the original samples [88]. A subset
of a few variables was randomly selected to determine the split in order to increase the
robustness of the model by increasing diversity amongst trees and avoiding overfitting the
model [88] and the RF predictor was finally constructed by taking the average of overall
trees. The samples that are not utilised to grow the tree are referred to as Out of the Bag
(OOB) data [59] which the algorithm uses to estimate accuracy by using the difference in
the mean square errors to compute the OOB error estimate [71]. The explanatory power of
each variable is determined by a Gini coefficient which measures the total decrease in node
impurity (weighted by the probability of reaching that node) averaged across all trees. In
this study, two hyperparameters were used to tune the models, that is the number of trees
(ntree) and the number of variables randomly sampled as candidates at each split (mtry). It
has to be pointed out that the adjustment of these hyperparameters did not significantly
change the results hence these were held constant for various models considering the
variability in the number of samples in stages 1 to 3 illustrated in Table 3.
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Table 3. Experiments were performed using S-2 MSI data to estimate macro and micronutrient concentrations in crops and
wetland vegetation.

Analysis Data Manipulation Spectral Data Used

1 Separate plant functional types and seasons Bands and vegetation band indices separately
2 Pooled based on plant functional types and both seasons Bands and vegetation indices separately
3 Pooled based on nutrient types across all plant types Vegetation indices

Variable selection of the most important model parameters needed for accurate nu-
trient estimation was accomplished by implementing the backward feature elimination
method [89,90]. The variable importance in RF determines various measures such as
the importance of variables based on the Gini coefficient and permutation coefficient.
The variation method is considered superior to other approaches because it uses OOB
assessments [59]. RF assesses the variable importance of different factors by using the
mean decrease in accuracy. Increased mean variability indicates greater importance for
that particular variable, while low mean values indicate a lower influence in the model.
The method works by generating all the variables of the input predictor and gradually
removing input predictor variables with the least relative effect. Table 3 describes the
experiments that were performed with S-2 MSI data to estimate nutrient concentrations in
crops and wetland vegetation. More details on the RF regression ensemble are provided
elsewhere [50,59,91,92].

To estimate nutrient concentrations, data analysis was done in three analysis stages
(stage 1, 2, 3). Model input variables varied in each analytical phase. For analysis I, nutrient
concentrations were estimated using Sentinel 2 MSI bands only. These were bands 2, 3,
4, 5, 6, 7, 8, 8A, 11 and 12, whereas, additional vegetation indices were computed and
used as a stand-alone dataset to estimate nutrient concentrations. The following vegetation
indices were computed; chlorophyll green (Cl.green), chlorophyll red edge (Cl.green),
red edge position (REP 1, 2 and 3), simple ratio (SR 1, 2 and 3), the NDVI index, MERIS
terrestrial chlorophyll index 1 (MTCI.1), modified normalised vegetation indices (nDVI
(i.e., nDVI_Bγi_ Bγj)), as well as modified simple ratio vegetation indices (sR (i.e., sR_Bγi_
Bγj, where Bγi and Bγj are different Sentinel 2 MSI spectral bands)). The selected indices
were computed based on all possible Sentinel 2 band combinations (10 spectral bands).
Then S-2 MSI bands were then used as standalone model input variables except for the
wet season (March) and the dry (July) seasons (Tables 4 and 5). This was undertaken to
determine the ability of Sentinel-2 MSI data in detecting the seasonal differences in leaf
nutrient concentrations. For stage 2 analysis, we detected and characterised the year-round
nutrient concentrations using pooled seasonal data which was categorised into two datasets
(wetland vegetation and crops). In addition, spectral bands and vegetation indices were
used separately to estimate the foliar nutrients (Table 6). For the third analysis, to assess
the robustness of S-2 MSI data in detecting and characterising nutrient concentrations
across all seasons (Figure 3), wet and dry season datasets were pooled into one dataset.
Specifically, vegetation indices were used as standalone model input variables (Figure 3).
All estimation models were evaluated by using the explained mean squared residual (MSR)
variance (Var Expl (%), root mean square error (RMSE) and, RMSE %.



Remote Sens. 2021, 13, 4249 10 of 24

Table 4. Dry and wet season nutrient concentration estimation accuracies for crops.

Raw Spectral Bands Vegetation Indices

Period Element MSR Var Expl % R2 RMSE RMSE % MSR Var Expl % R2 RMSE RMSE %

Su
m

m
er

N% 0.36 62 0.64 0.65 32 0.20 89 0.97 0.51 23
K (mg/kg) 34,589,753.00 65 0.75 11,898.33 34 10,233,470.00 86 0.96 7357.83 28
Ca (mg/kg) 66,890,049.00 29 0.73 5889.75 52 26,130,783.00 57 0.95 3924.56 12
Mg (mg/kg) 5,751,843.00 35 0.74 3452.00 30 3,335,425.06 89 0.98 1969.82 32
P (mg/kg) 157,738.20 66 0.74 768.78 31 786,589.96 90 0.94 689.53 26
S (mg/kg) 218,191.40 54 0.69 1172.17 34 176,031.10 85 0.95 966.12 29
Zn (mg/kg) 43.85 76 0.6 10.97 32 30.84 87 0.96 8.56 26
B (mg/kg) 484.50 52 0.59 23.13 42 325.52 65 0.88 13.98 29
Cu(mg/kg) 16.56 54 0.71 12.36 32 12.99 66 0.94 5.86 26

W
in

te
r

N% 0.33 73 0.56 0.69 33 0.15 83 0.71 0.82 27
K (mg/kg) 20,789,123.00 71 0.71 6512.12 32 14,545,775.00 82 0.87 39,794.20 27
Ca (mg/kg) 2,189,691.00 64 0.72 2289.59 36 1,876,120.00 87 0.81 1582.82 28
Mg (mg/kg) 307,861.79 60 0.61 989.28 32 259,985.90 86 0.83 672.58 25
P (mg/kg) 92,876.18 68 0.59 548.96 31 69,886.90 84 0.79 391.86 22
S (mg/kg) 258,951.21 53 0.58 681.59 30 200,100.10 75 0.79 398.30 20
Zn (mg/kg) 28.80 66 0.62 9.99 32 20.74 73 0.75 5.99 24
B (mg/kg) 43.94 69 0.56 10.93 37 30.96 80 0.85 5.16 30
Cu (mg/kg) 2.99 70 0.67 3.98 30 1.28 82 0.76 2.90 25

Explanation: MSR = mean squared residual, Var Expl % = variance explained percentage, R2 = R-squared, RMSE % = root mean square
error (percentage).

Table 5. Dry and wet season nutrient concentration variations accuracies for wetland vegetation.

Raw Spectral Bands Vegetation Indices

Period Element MSR Var Expl % R2 RMSE RMSE % MSR Var Expl % R2 RMSE RMSE %

Su
m

m
er

N% 0.16 74 0.65 0.88 29 0.145685 69 0.82 0.575231 25
K (mg/kg) 18,186,459.00 51 0.51 3849.73 40 13,815,824 67 0.88 2989.125 20
Ca (mg/kg) 59,128,582.00 49 0.62 1789.77 29 4,812,124 55 0.85 1500.132 27
Mg (mg/kg) 698,784.20 54 0.57 1123.90 35 598,798.9 64 0.93 980.012 30
P (mg/kg) 558,987.10 51 0.53 594.48 29 498,689.99 66 0.73 512.354 24
S (mg/kg) 8,289,574.00 13 0.36 1289.20 33 791,210.01 10 0.27 981.012 31
Zn (mg/kg) 41.87 53 0.64 19.49 28 37.394 68.9 0.80 14.0581 22
B (mg/kg) 98.58 58 0.57 14.55 38 89.7865 60 0.89 10.01 35
Cu(mg/kg) 4.18 69 0.63 9.28 30 2.001087 67 0.83 6.12351 24

W
in

te
r

N% 0.19 57 0.66 1.00 29 0.12986 87 0.89 0.701 23
K (mg/kg) 42,894,179.00 63 0.61 6188.08 29 38,215,694 80 0.97 5010.56 22
Ca (mg/kg) 9,989,987.00 53 0.56 1684.49 29 8,614,811 73 0.98 1498.356 25
Mg (mg/kg) 4,958,737.00 52 69.00 991.88 38 4,015,420 59 0.98 865.2113 30
P (mg/kg) 29,879,879.00 39 0.63 497.99 24 2,132,142 45 0.90 390.12 15
S (mg/kg) 69,688.79 67 0.67 798.39 32 65,211.32 88 0.92 701.124 26
Zn (mg/kg) 32.99 68 0.56 7.94 26 25.096 89 0.94 5.998879 23
B (mg/kg) 199.93 62 0.68 6.88 29 150.32135 68 0.95 4.98794 25
Cu (mg/kg) 7.02 53 0.56 3.97 28 4.325612 74 0.95 1.9789 21

Table 6. Comparisons of nutrient estimation accuracies (RMSE %) between the summer and winter
seasons in crops and vegetation, respectively.

RMSE%

Plants Statistics Summer Winter

Crops Rank Sum 138 52
p-value (α = 0.05) 0.001

Vegetation Rank Sum 189.2 69.2
p-value (α = 0.05) 0.012

The RMSE% and the R2 were scaled between 0 and 100. To compute the RMSE%,
all RMSEs from each model were normalised using the mean of each variable and then
expressed as percentages [93,94]. The RMSE% has been widely used in the literature to
compare different variable estimations [94–96] hence it was adopted and used in this study.
The accuracies (RMSE % and in some instances with R2) of the training datasets were
presented and used to conduct the Mann–Whitney U and the Student’s T tests. The Mann–
Whitney U independent samples test was then used to test whether there were significant
differences at α = 0.05 between the estimation accuracies (R2 and RMSE%) derived during
the summer in relation to those derived from the winter crops and wetland vegetation,
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respectively (Table 6). The Mann–Whitney U Test was used following the data’s significant
deviation from the normal distribution at α = 0.05 based on the Kolmogorov–Smirnov Test.
Similarly, a Student’s t-test of independent samples was then used to assess whether the
estimation accuracies derived from crops were significantly different from those derived
from wetland vegetation presented in (Table 7) at α = 0.05 (Table 8). The Student’s t-test
was used because the data did not significantly deviate from the normal distribution based
on the Kolmogorov–Smirnov test. The raster calculator tool in ArcGIS 10.6 was used to map
the spatial and temporal distributions of nutrients by utilizing the RF regression model
outputs and essential variables (NDVI, REP1, and band 7) to characterize the studied
nutrients. Figure 2. summarises the methods that were used to determine the accuracies of
these calculations.

Table 7. Seasonal nutrient estimation accuracies for crops and vegetation.

Plant Type Nutrient MSR
Var Expl RMSE

% R2 RMSE %

Wetland
vegetation

N 0.186243 69.97 0.94 0.48 18
K 65,985,615 84.82 0.83 7235.78 29
Ca 1,869,486 81.95 0.88 2610.2 30
Mg 247,612.98 80.83 0.75 2166.48 38
P 202,121.7 77.85 0.78 1231.25 29
S 3,981,612.2 39.44 0.84 310.41 12

Zn 11.58776 88.22 0.88 4.01 14
B 119.012 78.48 0.79 9.12 43

Cu 0.8844 89.2 0.88 2.12 29

Crops

N 0.18799 88.51 0.94 0.301 12
K 13,131,613 90.12 0.96 2911.59 14
Ca 15,532,853 59.75 0.95 1433.21 20
Mg 149,814 68.7 0.95 511.51 13
P 99,539.7 85.62 0.95 221.1 11
S 14,912.3 87 0.95 221.72 12

Zn 18.13452 90.04 0.96 2.51 12
B 123.89745 81.42 0.98 6.01 25

Cu 4.1765523 88.61 0.88 1.7 18

Table 8. Descriptive statistics for R2 values and RMSE% for vegetation and crop types using
pooled data.

Accuracy Unit Statistics Vegetation Crops

R2 Mean 0.84 0.94
Maximum 0.88 0.98
Minimum 0.75 0.88

Median 0.84 0.95
St deviation 0.06 0.027

p-value 0.02

RMSE % Mean 15 27
Maximum 25 43
Minimum 11 12

Median 29 29
St deviation 13 29

p-value 0.001
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Figure 3. Accuracies derived in estimating N, K, Ca, Mg, P, S, Zn, B, Cu concentrations using testing data sets. Dotted lines
in the graph illustrate the linear regression line.
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3. Results
3.1. Comparison of Single Bands and Vegetation Indices in Estimating Different Nutrients in
Summer and Winter Seasons

Tables 4 and 5 shows the seasonal accuracy levels (RMSE, R2, and RMSE %) for differ-
ent nutrients that were investigated based on the raw bands and vegetation indices. The
RMSE, which depicts the standard deviation of residuals, shows that the linear regression
model based on vegetation indices performed better than raw bands. Using raw spectral
bands, all of the RMSE values for both crops and vegetation in summer and winter were
greater than of the vegetation indices (Tables 4 and 5). As a result, the results of vegetation
indices were used for further analysis of this study because of their lower prediction errors
(RMSE values).

For both vegetation and crops, high R2 and low RMSE% were observed for all nu-
trients in winter (Tables 4 and 5). For instance, Calcium (Ca) estimation in crops based
on VIs exhibited an R2 of 0.73 and RMSE of 5889.75 (mg/kg) which was optimally es-
timated to an R2 of 0.95 and a RMSE of 39284.56 (mg/kg) (RMSE % = 12) based on
vegetation indices in summer (Table 4). Meanwhile in winter Ca exhibited a R2 = 0.72
and a RMSE = 2289.59 mg/kg (RMSE % = 36) based on bands only. These accuracies im-
proved to an R2 of 0.81, RMSE of 1582.82 mg/kg (RMSE % = 28). A similar trend was
observed when estimating nutrients in wetland vegetation (Table 5). Specifically, poor
accuracies of an R2 = 0.73, RMSE = 5889.75 mg/kg (RMSE % = 52) were attained when
estimating Ca in wetland vegetation using only spectral bands during the summer. These
accuracies improved when vegetation indices were used with an R2 of 0.95, RMSE of
3924.56 mg/kg and an RMSE % of 12. A similar trend was also observed in estimating Ca
during the winter season. A R2 = 0.56, RMSE = 1684.49 mg/kg and a RMSE% = 29. An
improvement in the accuracies was realised in estimating Ca in using bands only. Again,
an improvement was observed when estimating Ca using the vegetation indices (R2 = 0.98,
RMSE = 1498.356 mg/kg and a RMSE% = 25) during winter. The summer–winter RMSE
percentages were higher in vegetation compared to crops and the differences in average
values for both were significant (Table 6).

Tables 6–8 show seasonal mean comparisons of R2 and RMSE % nutrient estimations
and seasonal nutrient estimation accuracies for crops and vegetation Table 8 shows R2

values and RMSE% for vegetation and crop types using pooled data.

3.2. Dry and Wet Season Crop and Vegetation Nutrient Estimation Using Pooled Data

In addition, the annual estimations of nutrient concentrations presented in Table 7
were used to calculate the statistics provided in Table 8. A higher mean R2 accuracy for
nutrients across plant types was observed for vegetation (0.94) when compared to a mean
R2 of 0.84 for crops (Table 8). The differences in the mean R2 values were significant.
A higher percentage of RMSE (27) was observed for crops when compared to what was
observed for vegetation (15). The difference between these vegetation types and crop RMSE
values was significant. In all cases, measured and estimated nutrient concentrations were
strongly correlated with R2 ranging from 0.98 for boron to 0.75 for magnesium. Although
boron and magnesium showed a good correlation, both had high RMSE percentages.

Figure 2 is a composite summary of the performance of the statistical models that
were used to relate foliar nutrients measured from the laboratory and data from S-2 images.
Figure 3 shows the best fits for the model (in terms of R2 and RMSE %) arranged by
performance. As it can be noted, the studied nutrients’ estimation performances were
strong and very consistent, with R2 values ranging from 0.81 to 0.93. The nutrients, on the
other hand, showed the opposite in terms of variability based on the RMSE%. However,
it’s worth noting that lower RMSE values suggest a better model estimation fit. The RMSE
percentages for different nutrients ranged from 14% to 29%. Zinc, potassium, sulphur,
copper, and nitrogen were found to have low RMSE percentages ranging from 14% to 17%.
The RMSE of calcium, boron, and magnesium were all high, with boron having the highest
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of 29 per cent. The overall findings revealed that several nutrients, such as calcium, boron,
and magnesium, are poorly estimated, as evidenced by the RMSE per cent values.

3.3. Variable Importance Selection

The RF model was able to rank the variables by their estimation capabilities. Figure 3
shows important variables derived in estimating N, K, Ca, Mg, P, S, Zn, B and Cu. REP1 and
NDVI were the most frequent vegetation indices that yielded optimal models of estimating
foliar nutrients as indicated by their high % IncMSE in Figure 4.

Figure 5 illustrates the estimated spatial distributions of sulphur, potassium, mag-
nesium, copper, nitrogen, phosphorus, zinc and boron. The lowest values correspond to
areas with crop farming (dark red for waterbodies), higher values (dark green) represent
the most developed vegetation (forest and grassland). It can be observed that nutrients
have high concentrations in the eastern section of the study area, except for magnesium
that showed high concentrations in the sugarcane infested area.

Figure 4. Cont.
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Figure 4. Importance of variables that were used to estimate N, Ca, K, Mg, P, Cu, Zn, B and, S by using S-2 MIS derived
vegetation indices data. NB *, %IncMSE is Mean decrease accuracy, IncNodePurity is mean decrease Gini, REP; 1, 2 and 3
is red edge position 1, 2 and 3, chlorophyll green (Cl. Green), simple ratio (SR; 1, 2 and 3), MTCI.1 is MERIS Terrestrial
Chlorophyll Index 1, NDVI is normalised difference vegetation index, nDVI (nDVI_Bγi_ Bγj) is modified normalised
vegetation difference index and sR (sR_Bγi_ Bγj) _ is modified sample ratio where Bγi_ Bγj are any Sentinel 2 MSI bands
excluding bands 1, 9 and 10.
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Figure 5. Spatial distribution of nutrients: S, K, Mg, Cu, N, P, Zn, Ca and B.

4. Discussion

In this study, we used the RF algorithm and S-2 on both wetlands vegetation and crops
and across seasons to estimate the concentrations of N, K, Ca, Mg, P, S, Zn, B and Cu. The
results show that: (a) the RF model using S-2 can estimate foliar concentration across several
nutrients and (b) S-2 can estimate nutrients across plant types and seasons. Derived S-2
vegetation indices such as NDVI and bands 2 and 7 performed well in estimating nutrients
in crops and vegetation. Seasonal characterisation of nutrients was also successful which
could be attributed to the variability of photosynthetic pigments such as chlorophyll [36].
However, the RF model performed poorly in estimating magnesium, and sulphur in the
summer season. It also performed poorly in estimating calcium, magnesium, phosphorus
and boron in wetland vegetation across the seasons as demonstrated by high RMSE %s.
This can be attributed to easy leaching and increased mobility of these nutrients that might
have caused the decrease of their concentration during the high rainfall period hence weak
correlation with S-2. Phenology is also an important factor in this result because most
vegetation indices such as NDVI, especially red edge-based indices, rely on the vigour and
greenness of the vegetation. Osco, et al. [97] also found nutrients like Mg, S, P, K and Ca
presented inferior performances compared to nutrients such as nitrogen, zinc etc. Another
contribution of this work is that it was possible to identify wavelengths and spectral regions
that contributed most to nutrient estimation.

A combination of vegetation indices and spectral bands was found to be robust when
compared to the raw spectral bands. As outlined above, the infusion of vegetation spectral
indices proved to be important in the evaluation of the most studied nutrients [98–100].
Different indices and bands that were key to estimating nutrient concentrations include
the red edge position, NDVI and band 2 (Figure 2). This observation implies that different
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nutrients can be estimated by these different variables. In this study, the key variables that
were important in estimating most of the nutrients including nitrogen, potassium, calcium,
boron and copper were the red edge position 1 computed from the NIR and red edge
position bands followed by NDVI for estimating P and S. Similar findings were observed
in Bush Buck Ridge, Mpumalanga, South African savannah grass where canopy nitrogen
was correlated to NIR spectral region [101]. In similar findings were also found in North
American forests where canopy nitrogen was correlated to both the NIR spectral region as
well as NIR-based vegetation indices including NDVI [102,103].

The sensitivity of red edge bands to potassium, calcium, copper and nitrogen was not
surprising. Studies by other researchers confirm the strong correlation between nitrogen
concentrations and red edge bands [18,51,104,105]. The red edge is considered as the
surrogate measure of vegetation chlorophyll content [51,106,107]. Therefore, in this study,
an expectation of the magnesium concentration to be strongly estimated in the red edge
bands was not questionable. Magnesium is located in the central of the chlorophyll
molecule and it is regarded as the activator of some enzymes in plants [108]. The results
by [109,110] found the NIR region to be the best in estimating magnesium concentrations.
NDVI computed from red and NIR bands showed to be the key variable in estimating
phosphorus and sulphur concentrations. This is similar to the findings of Lisboa, et al. [111],
who found NDVI to be a useful tool in estimating nitrogen and phosphorus concentrations
in sugarcane crops. Several studies have used these indices (NIR spectral region and NDVI)
to study heavy metals in plants [112–114].

4.1. Estimation of Nutrients Using the RF Model

This study has shown the utility of the RF model using S-2 in estimating concentrations
of N, K, Ca, Mg, P, S, Cu, Zn and B. The technique yielded high coefficients of determination
ranging between 0.75 and 0.98. The technique also exhibited low RMSE % for most nutrients
except for magnesium (38%), boron (43%) and calcium (30%) which emerged as difficult
to detect by using the RF model and S-2. The usefulness of RF regression and remotely
sensed images is demonstrated by its ability to estimate sugarcane leaf nitrogen levels
from Hyperion images [104]. Multiple studies have demonstrated that RF models often
perform remarkably well in different fields of scientific research including the estimation
of nitrogen content [115–118]. In this study, fusing vegetation indices in the NIR spectral
region and NIR-based vegetation indices (NDVI) with RF proved to be a suitable approach
for estimating the studied nutrients. RF also proved to be suitable in relation to NDVI,
REP1 and band 7 in developing a relationship between nutrient variations and land use
land cover types (Figure 4) except for magnesium, which exhibited high concentrations
in sugarcane farms where the land use land cover-nutrient effect variation was consistent.
This is attributed to the antagonistic effects of (Ca and Mg) and K in sugarcane, where soils
with high Ca and Mg can lower leaf K and vice versa.

4.2. Crops and Vegetation Nutrients Seasonal Estimations

Most nutrients exhibited significant relationships (R2 < 0.7) between measured and
estimated concentrations across seasons and plant types with few that showed a weak
relationship (R2 > 0.5), i.e., calcium, magnesium, phosphorus and boron). This implies that
S-2 has the potential in estimating concentrations of selected chemical elements across the
seasons and plant types. Generally, with the R2 accuracies in estimating foliar nutrient
concentrations, there were no significant differences within nutrients from crops and
vegetation between the summer and winter seasons.

Similar findings by Gama, et al. [119] confirmed a weak relationship between leaf
reflectance and concentrations of phosphorus, potassium and calcium. Poor estimations
of magnesium, copper and sulphur in summer were observed which implies difficulties
in estimating such nutrients in a wet season. Magnesium, copper and sulphur are mi-
cronutrients that are highly affected by the processes of reduction and oxidation (redox)
in concert with the shifting of water levels which determines their seasonal concentration



Remote Sens. 2021, 13, 4249 18 of 24

levels in wetland soils and water. Their poor detection in this study could therefore be
explained by the seasonal variations in the amount of available water which regulates
the redox processes thereby and their concentration levels in soil, water different plant
systems [120–122]. For instance, a related study [121] also concluded that seasonally occur-
ring processes such as redox and seasonal shifts in water abundance regulate the type and
amount of trace elements that are available in the water.

Moreover, high the poor performance revealed by the model’s high RMSE % sug-
gesting across the seasons was also observed in calcium, magnesium, phosphorus and
boron in wetland vegetation. Season-specific analyses showed that dry season models per-
formed better than their wet season counterparts, as shown by their respective coefficient
determinants of 0.87 in winter and 0.86 (Tables 4 and 5). This might be attributed to the
higher reflectance in the visible spectrum (bands 2, 4 and 4) in the dry season compared
to the wet season. Plants are generally less green in dry seasons due to lower moisture
content and less chlorophyll which leads to lower energy absorption and greater reflection.
Contrary to these observations, however, Ramoelo, et al. [123]; Cho, et al. [124] and Skid-
more, et al. [125] found models such as RF to perform better in the wet season compared to
the dry season.

4.3. Implications of Remote Sensing on Wetland Plant Nutrients

Over the past years, several studies [126,127] have used remote sensing and chemical
analyses in estimating foliar nutrient concentrations in plants. However, these studies
mostly concentrated on seasonal estimations of nitrogen in grasses. This study has at-
tempted to build on these initiatives by broadening the application of these techniques to
the estimation of different nutrients. This initiative is helpful because it offers opportunities
for enhanced understanding of vegetation health which has been previously regarded
as a complex research area [128]. Although limited in geographical reach, our findings
show that S-2 imagery could be a significant additional source of valuable information on
seasonal variations in plant nutrient content.

This study has demonstrated that RF using S-2 can be useful for monitoring and
estimating various plant nutrient quantities and the quality of floodplain vegetation. S-2
images yielded significant relationships between nutrient content in the NIR spectral region
and NIR-based vegetation indices (NDVI). S-2 also provided an opportunity to seasonally
characterize the studied nutrients. The findings of this study present a great opportunity
and technique for mapping and monitoring nutrient enrichment in wetlands beyond the
characterization of plant macronutrients (NPK) across both crops and natural vegetation
species. This is a step towards a time-efficient and affordable technique for mapping and
monitoring wetlands from local to regional scales based on S-2’s optimal spatial resolution
and swath widths.

A method of performing chemical analysis in plants in the laboratory is spatially
limited for many reasons. Our approach returned high coefficients of determination for
most of the nutrients in crops and vegetation. By implication, remotely sensed data make
up for shortcomings of the traditional methods with the advantages of real-time and rapid
observations. As a result, this technique would be a useful alternative for estimating plant
health conditions and nutritional status under different environmental settings.

5. Conclusions

This study demonstrated immense potentials for Sentinel-2 data to be used for esti-
mating leaf nitrogen, potassium, calcium, magnesium, phosphorus, sulphur, zinc, boron
and copper concentrations. Different vegetation indices and bands including the red edge
position, NDVI and band 2 can be important in estimating different nutrients across the
seasons even though foliar estimation using Sentinel-2 did not show a strong relationship
in estimating leaf magnesium, copper and sulphur in a wet season. The major conclusion
of this work is that the RF model was able to provide estimated nutrients with reason-
able accuracies. The study, therefore, recommends that researchers elsewhere can use the
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methodology provided in this article as a tool in assessing and monitoring the quality
of crops/vegetation in floodplain wetlands and the use of at least two scenes (satellite
images) per season to achieve representative estimates over these periods. Considering
that there is no consensus with regards to the performance of different machine learning
techniques in characterising foliar chemical elements such as leaf nitrogen, potassium,
calcium, magnesium, phosphorus, sulphur, zinc, boron and copper, future studies need to
compare and assess their performance.
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