
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1980-01

Format Based Data Compression

Lyons, Norman R.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/69423

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

HD
31

1 W925
no.-80.3

Working Paper Series
I I

DEPARTMENT OF ADMINISTRATIVE SCIENCES

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93940

y

h~ Ai l'OS DUAT[SC 00,
,_. ' EY CA 1940

WORKING PAPER SERIES

'lbe pm-poae of these working papers is to facilitate dialogue on tepice
of interest to researchers and practitioners in the broad field of management.

'lbe series provides a way to: (1) inform a variety of persons and co ...
muoities within academia, industry and government of some of the work in
process at the Naval Postgraduate School. (2) promote the generation and shar
ing of ideas that may net be formally publishable or officially sanctioned.
(3) reduce the lengthy period between the submission of an article and its
availability for wider readership; and (4) disseminate within the Navy and
scholarly comm\lllities papers of a theoretical, polemical, exploratory or
summary nature.

While the working paper series predominantly reflects the work of the
faculty at the Naval Postgraduate School, other researchers and practitioners
in the field are invited to submit appropriately typed and documented manus
cripts for consideration. All manuscripts will be reviewed by at least three
of the Department faculty at the Naval Postgraduate School for quality, rele
vance, and clarity of present&tion. Additions and modifications of the
distribution list are encouraged. Please send any comments, criticisms or
rejoinders directly to the authors of the various papers. Other communications
would be welcomed by the editor.

Roger Evered, Editor
Code 54Ev
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93940
Phone: (408) 646-2646

lhe views herein are solely the responsibility of the author and
do not represent the official position of the U.S. Navy, the Naval
Postgraduate School or the Department of Administrative Sciences.

..

FORMAT BASEO DATA COMPRESSION

Norman R. Lyons

January 1980 #80.3

•,

* NOT TO BE QUOTED WITHOUT PERMISSION FROM THE AUTHOR.

~J OX ~RY
•m;1 f'OSTf ~o· Alf SCHOOL
1 ·,, Pf'(t (l•r~o

.
One way to increase the amount of information that can be

stored on data storage devices is to develop techniques for reducing

the redundancy in the data. The obvious first approach to this prob

lem is the development of variable length records which repeat the

fields for tables and array only as many times as required. This

approach helps considerably, but you still have the problem of redun

dancy in the fields that make up the record. In most computer systems,

the fields in a record are assumed to be fixed length, padded on the

right with blanks if they are alphanumeric and padded on the left with

zeros if they are numeric. This kind of approach can be fairly

wasteful of storage space since field lengths are usually set so that

they can accomodate even the longest of the data items that will be

placed in the field. For fields holding data like an individual's

last name, this usually means setting aside about 20 or 25 character

positions even though most people's last names are considerably shorter.

This problem can be handled using some sort of scheme allowing

for variable length fields. There are a number of ways to set up a

variable length field system. A survey of the possible approaches is

given in the introduction to the article by Maxwell and Severance 1 •

The use of variable length fields is fairly simple to implement, but

the technique is not widely used. Perhaps the best known system

making use of data compression to achieve variable length fields is

the ADABAS database management system. The vendors of the ADABAS

1william Maxwell and Dennis Severance, "Comparison of Alterna
tives for the Representation of Data Item Values in an
Information System", pp 121-124.

system say that their users experience a 50 to 80% reduction in file

sizes through the use of compression routines that squeeze out extra

neous blanks or zeros. 2 These savings sound a bit large, and one

wonders if the users were not overly conservative in defining the

field lengths within their records. In addition to these standard

techniques of compressing filler characters, more elaborate techniques

for eliminating redundant characters in a field are possible. Some of
3 ·

these are given in Date, but the author is not aware of the use of

any of these approaches in a production system.

The literature shows that large savings can result from

the use of fairly straightforward data compression techniques. There

are probably a number of reasons why these techniques are not more

widely used. First of all, they would have to be implemented at the

operating system level so that all processors using a particular

machine could access the data files without reprogramming. This

means that the software would have to be provided by the manufacturer

who generally is also the hardware supplier. The economic incentives

to push a risky new feature like this are lacking. On the user side,

there would be some reluctance to accept compressed data since this

would make it more difficult to transfer files across machine lines.

The user objections are likely to be overcome by the spread of data

base management systems since these systems generally remove control

over the internal data format from the user.

One technique that could be used for data compression is that

2oavid Kroenke, Database Processing, p. 260.

3 C. J. Date, An Tntroduction to o·atabase Systems, pp. 41-42.

- 2 -

"

of changing the way in which the data is coded. We use fixed length

character codes for EBCDIC or ASCII data, and in an information

theoretic sense, this implies that all characters in the character set

are equally likely. In the absence of any information to the contrary

about our program and the purposes for which it will use the data, the

equally likely assumption is the only assumption that can be made on

general purpose computer systems. Occasionally in COBOL programs, a

programmer will specify the packed decimal notation for numbers instead

of letting COBOL default to the zoned decimal notation. This results

in about a 50% savings in space over zoned notation. But, the pro

grammer must explicitly declare this type of representation for his

data, and it is usually done to save CPU time in converting from

zoned to packed for purposes of arithmetic.

In dealing with data in a computer program, we usually do have

more information about the type of data to be found rather than having

to make the simple assumption that all characters in the allowable

character set are equally likely.

In a COBOL program, for example, each record has a definition

which tells whether the fields in that record are numeric, alphabetic

or alphanumeric. By using the information carried along in the format

of the program using the data, ~e can develop data encoding schemes

that are more efficient than fixed length ASCII or EBCDIC codes. The

data types that we 'cou.Jd µse .in.....ar.e given in . .ib..e.. Figure - l L=

- 3 -

Type

Binary

Numeric

Alphabetic

Alphanumeric

Text

General

Figure . 1 - Allowable Data Types

Length in
Bits

1

4

5

6

7

8

Purpose

Used for storing single bits to
be used as flags

Used for storing numeric data.
The data could be either edited
or non-edited numeric.

Used for storing the alphabetic
characters and some punctuation
symbols.

Used for storing alphabetic char
acters, numbers and some punctuation
symbols.

Used for storing upper and lower
case alphabetic characters, numbers
and punctuation symbols.

Used for storing any character
allowed on the character set of a
machine with an 8 bit code.

To use this type of variable length coding scheme for data,

we have to make a few assumptions. First of all, our system should

not recognize any word or byte boundaries. The data is to be stored

as bit string data. This means in turn that there must exist some

type of format or ·~schema -for decoding -the -data; ·
. .

This assumption is not problem since in data processing languages like

COBOL, there is always a record format containing information about

'•· the data stored on the file. All that we are doing is altering our

_<?._odin,g ~ystemto take _ advan t age of the information gi v"en by th ; --format.

To further compress the data, we will assume that extraneous padding

characters (trailing blanks in the case of alphabetic and alphanumeric

data and leading zeros in the case of numeric data) will be squeezed

out so that the coding system can use variable length fields. The

field boundaries will be determined by markers at the end of the field

- 4 -

unless the field is completely filled. In that case, the marker will

be omitted and the length specification in the format will give the

field boundary. The markers used will be a set of all one bits. Thus,

for a numeric field, four l's indicate the end of a field and so on.

When the data is read into a COBOL record area, it can be re-expanded

to the desired fixed lengths for the data and used in the same way

that normal COBOL data would be used.

Figure 2 gives the values for each of the characters in each

of the types of codes used by this coding system. Each of the types

of codes has a different length, and the binary code consisting of

all ones is reserved as the end of field marker for each type of code.

The exception to this is the binary type code which is only one bit

long and does not need any end of field marker . It is assumed that

compression will be done on the fields to store them on external I/0

devices. All unnecessary filler characters (leading zeros, trailing

blanks) will be compressed out before the data is written out on an

external device. When the data is called back into a program for use,

it can be re-expanded.

Notice in Figure 2 that some of the character codes for numeric

data have multiple definitions. This is possible because we can use

the format declaration of the data to decide which interpretation is

appropriate for a given character. For instance, we will not use the

cnaracter ~t r ~_ngs 11
-

11
, "CR" or "DB" in the same field definition. They •

are mutually exclusive. Similarly, we will not have occasion to use

the characters 11 $ 11 or "E" together. One will be used with edited

numeric data and the other with floating point.

- s -

Figure 2 - Internal Representation for Each Coding System.

Numeric o·ata - 4 bits.

Character(s)

0 - 9
-, CR or DB
$ or E
I

*

Alphabetic Data - 5 bits.

Character

J6
A - Z

,
'

Alphanumeric Data - 6 bits.

Uses codes 0 to F
X X

Value

O - 9
A
:B
C
D
E
F

Uses codes 00 to lFx
X

Value

00
01 - lA
1B
lC
1D
lE
lF

Uses codes 00x to 3Fx

same as _B~~ -~ode except th~t 3F is . end of field marker

Text Data - 7 bits. Uses codes 00x to 7Fx

- --- ---
same as ASCII except that 7F is end of field marker .

General Data - 8 bits. Codes 00x to FFx

same as EBCDIC except FF is end of field marker

- 6 -

I

In Figure 2, the character 'i' is used to represent the end

of field marker. Notice that for numeric values, the symbol"+" is

not defined. This is because we can assume all numbers to be positive

unless there is a negative sign carried along. The format specifi

cations for the number can tell us how the number is to be printed.

The numeric code definitions are set up so that we can use four bits

to define either edited or non-edited numeric values . One usually

does not wish to store edited numeric data, but it is useful to

have that capability built into the system.

It was assumed that alphabetic type data would generally be

used for storing proper names. So, besides the 26 alphabetic

characters and a blank, we have the " .",",", "-" and 11111 to handle

most of the situations that will come up in proper names . For the

other data types, alphanumeric, text and general, we can use codes

already in existence, namely BCD, ASCII and EBCDIC with the exception

that a string of all one bits represents the end of field marker.

In converting the data to this internal representation, we

ignore all conventional word or byte 'boundaries. All data is assumed

to be b~t string _and can conti nuL across byte, word or reco~d boundaries .

The format statements used with the data will help determine how the

bitstrings will be interpreted. On external storage, markers will be

used to determine the field boundaries, and the data will be expanded

once it is used internally in a program. To show ho~ this would work

in practice, suppose we had the COBOL record definition given in

Figure 3.

- 7 -

Figure 3 - COBOL Time Card Record.

01 TIME CARD

02 SOCIAL-SECURITY

02 FIRST-NAME

02 MIDDLE-IN IT

02 LAST NAME

02 DEPT-NO

02 HOURLY-CODE

02 HOURS

02 PAY-RATE

Record Length - 69 bytes or 552 bits.

Sample data

Social Security

Full name

Department

Hourly code

Hours

Pay rate

- 8 -

PICTURE 9 (9)

PICTURE A (20).

PICTURE A.

PICTURE A (20).

PICTURE 9 (5) •

PICTURE 9.

PICTURE 99V9 •

PICTURE 9 (8) V9 •

585019521

Charles R. Jackson

53621

1

45 hours

$7.50/hour

-,

When the data in Figure 3 is encoded using the format based

technique and extraneous characters are squeezed out, the result is

given in Figure 3.

Figure 4 - Time Card Data Encoded Using Format Compression.
Field Contents Length , Savings due to squeezing

(in bits) extraneous characters (in

SOCIAL-SECURITY 585019521 36 0
bits)

FIRST-NAME CHARLES# 40 55
MID-INIT R 5 0
LAST-NAME JACKSON# 40 55
DEPT-NO 53621 20 0
HOURLY-CODE 1 1 0
HOURS 450 12 0
PAY-RATE 750# 16 24

Totals 170 bits 134 bits

Total Savings 69%

Saving From
Character squeezing 24%

Savings Due to
Data Format 45%

In the example in Figure 4, we get a 69% savings in the

total length of the record. Most of this savings comes from using

the data format to allow us to encode the data differently, although

a substantial portion comes from squeezing out extraneous characters.

Notice that when the field is filled to its full length as SOCIAL-- -~J

SECURITY, MID-INIT, DEPT-NO and HOURS are, no markers are needed to

determine the end of the field. The length given in the record

description determines the length~ and this saves the space that would

have been required for markers.

The use of the compression technique on a single record gives

an idea of the possibilities, but use in specific applications is needed

to determine the savings one can achieve. A great deal depends on the

type of data in the file and the extent to which the fields in the file

- 9 -

are filled. As a further example, the format based compression

techniques was tried on a file containing sample student data for use in

a COBOL programming course. The record description for the file is

given in Figure 5. The file contains 201 records and each record is r

387 bytes long. The results are given below.

Total Length of Original File

Total Length of Compressed File

Average Compressed Record Length

Maximum Compressed Record Length

Minimum Compressed Record Length

Savings Due to Squeezing Extraneous
Characters

Total Savings

77787 bytes

34094 bytes

170 bytes

190 bytes

151 bytes

15%~,

56%

In this example, the savings due to the use of shorter charac

ter codes is 41% of the original file length. The actual savings in

an application could vary widely from this, depending on the type of

data in the original file, the lengths of the fields in the file and

the extent to which these fields were filled. The sample file used

to generate the data above had fields that were somewhat shorter than

might be the case in an actual application file, so the percentage

savings generated by squeezi~g extraneous characters is likely to be

somewhat greater in most cases. Still, the savings in file length

that can result from the use of format based compression techniques

can be very significant.

There are some problems with data compression using a format

- 10 -

'

Figure 5 - Sample Student Record Description

01 MASTER-RECORD.

02 STUDENT-NO PICTURE X (10) •
02 LAST-NAME PICTURE X(20).
02 FIRST-NAME PICTURE X(20).
02 INIT PICTURE x.
02 STREET PICTURE X(20).
02 CITY PICTURE X (20) •
02 STATE PICTURE XX.
02 ZIP PICTURE X(S).
02 PHONE PICTURE X(7).
02 SEX PICTURE X.
02 AGE PICTURE 99.
02 BIRTHDAY

03 MM PICTURE 99.
03 DD PICTURE 99.
03 Y.Y PICTURE 99.

02 COLLEGE PICTURE X{20).
02 MAJOR PICTURE X(20).
02 ADVISOR PICTURE X(30).
02 CREDITS PICTURE 999.
02 AVERAGE PICTURE 99V999.
02 COURSE OCCURS 5 TIMES.

03 NUMBR PICTURE X(6).
03 NAME PICTURE X(20).
03 HOURS PICTURE 99.
03 P-F PICTURE X.
03 GRADE PICTURE 9V99.

02 ROOM-BAL PICTURE 99999V99.
02 TUITION-BAL PICTURE 99999V99.
02 FEE-BAL PICTURE 99999V99.
02 OTHER-BAL PICTURE 99999V99.
02 TOTAL-BAL PICTURE 99999V99.

- 11 -

based approach. First of all, there is the additional machine time

required to compress and decompress the characters stared on the

file. If this were done by the main CPU of the machine, then there

might be some question as to whether the savings in I/0 device

space and data transmission time justified the expenditure of the

CPU time. But there are other ways to handle this problem rather than

having the CPU perform the data handling tasks . As we move into new

generations of machines, we should begin looking for ways to exploit

the advances in micropressor technology to build machines that are

networks of cooperating microprocessors rather than single stand

alone machines. The possibilities for this type of architecture are

especially interesting when combined with developments in database

technology. Large database problems are more efficiently handled by

networks of cooperating machines rather than single machines, and

with the advent of cheap microprocessors, we can make the machines

in our network much more specialized . Data compression could be one

of the tasks for a microprocessor in a database machine network.

A second problem with compressed data is the issue of trans

portability and compatability of data across systems. Unless users

adopted the same type of compression standards and codes for their

databases, it could be very difficult to change data sets across

machine lines unless they were exchanged in some standard decompressed

code. But this objection is likely to become less relevant with the

increasing use of database systems in which the user has little control

over the internal format of his data. The potential savings in storage

capacity that can result from this data compression technique make it

worth using on a production system.

- 12 -
jbb

..

References

1. Date, c. J., An Introduction to Database Systems. Second Edition,
Addison-Wesley Publishing Co., Inc., Reasind, MA, 1977

2. Kroenke, David, Database Processing, Science Research Associates,
Chicago, IL, 1977.

3. Maxwell, William and Dennis Severance, "Comparison of Alternatives
for the Representation of Data Item Values in an Information
System", Database, Vol. 5, Numbers 2, 3 and 4, Winter 1973,
pp. 121-139.

- 13 -

#.

80. 1

80.2

PREVIOUS WORKING PAPER TITLES: NEW SERIES ONLY

TITLES AUTHOR(S)

BUDGET ALLOCATION AND Dan. C. Boger
ENLISTMENT PREDICTION Kneale T. Marshall
MODELS OF RICHARD C.
MOREY: A BRIEF REVIEW

REVIEW OF SCHENDEL & Roger Evered
HOFER'S BOOK, STRATEGIC
MANAGEMENT: A NEW VIEW
OF BUSINESS POLICY AND
PLANNING

. ·:.-:·· ~- ·--· ·,
• ...t l),r n ':ol'.• •,.J> ,,'- • • • I

1
/ I~~· :~ I • • • • I .,

I - ••• U

. · ·- -- ;f. - 'II .. _. 1 . . ' .,. ...
....... . -,-~·- ·."

HD - 1 • :i.:; "'• 1 8 5 6 7 7
31 Lyons
tn cS Format based data
no.80.3 compression.

DATE

Jan' 1980

Jan 1 1980

NAVAL POSTGRADUATE SCHOOL
Faculty of the Department of Administrative Sciences

James Arima Ph.D.
*Robert Bobulinski M.S.
_Dan_Boger Ph.D.
*Ph1111p Butler Ph.D.

Paul Carrick .Ph.D.
w. Howard Church M.S.
John W. Creighton Ph.D.

*Robert Cunningham M.S.
Leslie Darbyshire Ph.D.
Phillip Ein-Dor Ph.D.
Richard Elster Ph.D.
Carson Eoyang Ph.D.
Ken Euske D.B.A.
Roger Evered Ph.D.

*Edwin Fincke M.S.
James Fremgen D.B.A.
Reuben Harris Ph.D.
Fenn Horton Ph.D.

*Jerry Horton M.S.
Carl Jones, Chairman Ph.D.
Melvin Kline Ph.D.
David LaJ1111 O.B.A.
Shu Liao Ph.D.
Meryl Louis Ph.D.
Norman Lyons Ph.D.
Richard McGonigal Ph.D.
Alan McMasters Ph.D.
Robert Nickerson Ph.D.

*James O'Hare M.S.
Clair Peterson Ph.D.
Denise Rousseau Ph.D.
Robert Sagehorn M.S.
Norman Schneidewind D.B.A.
John Senger Ph.D.

*Walter Skierkowski M.S.
George Thomas Ph.D.
Roger Weissinge~B.ay.lQn Ph.D.
Ron Weitzman Ph.D.
David Whipple Ph.D.
Chester Wright M.S.

KEY:: P
AP
aP
Adj
I

Ful 1 Professors
Associate Professors
Assistant Professors
Adjunct Professors
Instructors

Northwestern
Naval Postgraduate School
U. C. Berkeley
U. C. San Diego
U. C. Berkeley
U. Southern California
U. Michigan
Naval Postgraduate School
U. Washington
Carnegie-Mellon
U. Minnesota
Stanford
Arizona State
UCLA
Naval Postgraduate School
Indiana
Stanford
Claremont
Naval Postgraduate School
Claremont
UCLA
George Washington U.
Illinois
UCLA
Carnegie-Mellon
Michigan State
U. C. Berkeley
Stanford
Naval Postgraduate School
MIT
U. C. Berkeley
Naval Postgraduate School
U. Southern California
Illinois
U. Nebraska
Purdue
Stanford
Princeton
U. Kansas
UCLA

* Persons with Military Rank

AP
I
aP
I
AP
p
p
I
p
Adj
p
AP
aP
AP
I
p
AP
AP
I
p
p
aP
AP
aP
AP
AP
AP
aP
I
AP
aP
I
p
p
I
Adj
AP
AP
AP
aP

genHD 31.W92Sno.80.3

Format based data compression.

ilil!!l~i~i~l~ll~ll/1~11111~~11!~11
3 2768 001 82475 8

DUDLEY KNOX LIBRARY

