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ASYMPTOTIC BEHAVIOR OF GAPS BETWEEN ROOTS OF WEIGHTED

FACTORIALS

COREY MARTINSEN AND PANTELIMON STĂNICĂ

Abstract. Here, we find a general method for computing the limit of differences of con-
secutive terms of n-th roots of weighted factorials by a sequence xn (under some technical

condition). As a consequence, we show that lim
n→∞

(
n+1
√

(n+ 1)!xn+1 − n
√
n!xn

)
= αe−1,

where α ≥ 1 is the dominant root of the characteristic equation of an increasing linear se-
quence xn, and e is Euler’s constant.

1. Motivation

In [1], Bătineţu–Giurgiu and Stanciu ask for the limits lim
n→∞

(an+1 − an), where an =
n
√
n!Fn, an = n

√
n!Ln, an = n

√
n!!Fn, and an = n

√
n!!Ln, where Fn, respectively, Ln are the

Fibonacci, respectively, Lucas sequences. In this note, we introduce a general method that

will find the limits of many such differences, in particular, our method is applicable to se-

quences of the form an = n
√
n!xn, where xn is any sequence under some technical assumptions

(in particular, the conditions are easily satisfied by any increasing linear recurrence sequence).

2. The results

We start with the next lemma which will be used throughout.

Lemma 2.1. We have lim
n→∞

n
√
n!

n
=

1

e
, lim
n→∞

(
1± 1

xn

)xn
= e±1, if 0 < xn →∞ as n→∞.

Proof. The second limit can be found in the reader’s preferred calculus book, and the second

follows easily by applying Stirling’s formula n! =
(
n
e

)n√
2πn e−

un
12n (where 0 < un < 1),

or Stolz-Cesàro theorem [6], which states that if {bn}n is a divergent strictly monotone real

sequence and {an}n is an arbitrary real sequence, such that lim
n→∞

an+1 − an
bn+1 − bn

= L, then the

following limit exists and lim
n→∞

an
bn

= L; or even as a particular case of Theorem 3.37 in [5]. �

Our approach to deal with (an+1 − an) is to transform this additive problem into a multi-

plicative one to be in sync with the flavor of the factorial. (The problem at hand resembles the

celebrated Lalescu’s sequence limit: lim
n→∞

(
n+1
√

(n+ 1)!− n
√
n!
)

= e−1.) We would like thank
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the referee pointing to the paper [3], which also contains a method for dealing with several

such sequences.

Lemma 2.2. Let an ≥ 1 be an increasing sequence of real numbers and set bn := an+1

an
> 1. If

the following conditions hold:

lim
n→∞

an
n

= α, lim
n→∞

bn = 1, lim
n→∞

ln(bnn) = β,

for some real numbers α, β, then lim
n→∞

(an+1 − an) = αβ.

Proof. We write

lim
n→∞

(an+1 − an) = lim
n→∞

an (bn − 1) = lim
n→∞

an
n
· bn − 1

ln(bn)
· ln(bnn).

Then,

lim
n→∞

bn − 1

ln(bn)
= lim

n→∞

1

ln(bn)
1

bn−1

=
1

limn→∞ ln(bn)
1

bn−1

=
1

limn→∞ ln(1 + (bn − 1))
1

bn−1

=
1

ln
(

limn→∞(1 + (bn − 1))
1

bn−1

) =
1

ln e
= 1.

The claim is shown. �

Theorem 2.3. Let xn be an increasing second-order recurrent sequence of real numbers satis-

fying xn+1 = axn+bxn−1, a ≥ 0, under some initial conditions x0 ≥ 0, x1 > 0, ∆ = a2+4b ≥ 0.

Assume that α = a+
√
a2+4b
2 ≥ 1 is the dominant root of the associated characteristic equation

for xn. We have the following limits:

(i) If an = n
√
n!xn, then lim

n→∞
(an+1 − an) =

α

e
.

(ii) If an = n
√

(2n)!!xn, or an = n
√

(2n− 1)!!xn, then lim
n→∞

(an+1 − an) =
2α

e
.

Proof. We show (i) first. We first assume that the sequence is nondegenerate, that is, ∆ =

a2 + 4b 6= 0. Let α = a+
√
a2+4b
2 , ᾱ = a−

√
a2+4b
2 be the roots of the associated characteristic

equation x2 − ax− b = 0, and so

xn = Aαn +Bᾱn, where A =
x1 − x0ᾱ

∆
> 0, B =

x0α− x1

∆
< 0, ∆ =

√
a2 + 4b.

Given our assumptions, we see that A ≥ |B| = −B and α > |ᾱ|.
We will check the conditions of Lemma 2.2. We will use the inequalities (for n ≥ 1)

min

{
x2,

A

α2

}
αn−2 ≤ xn ≤ (A−B)αn. (2.1)

The upper bound follows easily since α > |ᾱ| and so xn = Aαn + Bᾱn ≤ Aαn + |B||ᾱ|n ≤
(A + |B|)αn. We now show the lower bound. If n is odd, then xn = Aαn + Bᾱn > Aαn
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ASYMPTOTIC BEHAVIOR OF GAPS

(since B < 0, ᾱ < 0). We next assume that n is even. The lower bound will be shown in this

case if we can prove that xn = Aαn + Bᾱn = αn
(
A− |B|

(
ᾱ
α

)n) ≥ αn x2
α2 . Since the sequence

A− |B|
(
ᾱ
α

)n
is increasing with respect to even n, then A− |B|

(
ᾱ
α

)n ≥ A− |B| ( ᾱα)2 = x2
α2 .

From (2.1), we see that lim
n→∞

n
√
xn = α. We infer,

lim
n→∞

an
n

= lim
n→∞

n
√
n!xn
n

= lim
n→∞

n
√
n!

n
· lim
n→∞

n
√
xn =

α

e
, (2.2)

from Lemma 2.1 and the previous analysis. Next, for bn = an+1

an
, we have

lim
n→∞

bn = lim
n→∞

n+1
√

(n+ 1)!xn+1
n
√
n!xn

= lim
n→∞

n+1
√

(n+ 1)!
n
√
n!

·
n+1
√
xn+1

n
√
xn

= lim
n→∞

n+1
√

(n+ 1)!/(n+ 1)
n
√
n!/n

· n

n+ 1
·

n+1
√
xn+1

n
√
xn

= 1.

Further, lim
n→∞

xn+1

xn
= lim

n→∞

Aαn+1 +Bᾱn+1

Aαn +Bᾱn
= lim

n→∞

αn+1
(
A+B ᾱn+1

αn+1

)
αn
(
A+B ᾱn

αn

) = α, and so,

ln lim
n→∞

(
n+1
√

(n+ 1)!xn+1
n
√
n!xn

)n
= ln lim

n→∞

((n+ 1)!)n/(n+1)x
n/(n+1)
n+1

n!xn

= ln lim
n→∞

(n+ 1)!((n+ 1)!)−1/(n+1)xn+1x
−1/(n+1)
n+1

n!xn

= ln lim
n→∞

n+ 1
n+1
√

(n+ 1)!
· lim
n→∞

xn+1

xn
· lim
n→∞

x
−1/(n+1)
n+1 (2.3)

= ln(e · α · α−1) = 1.

Thus, by Lemma 2.2, lim
n→∞

(
n+1
√

(n+ 1)!xn+1 − n
√
n!xn

)
=
α

e
.

We next assume that the sequence xn is degenerate, and so, ∆ = 0. Therefore, xn =

(A + Bn)αn, where α =
a

2
, A = x0, B =

x1

α
− x0 (it is obvious that if ∆ = 0, then aα 6= 0).

As before, for bn = an+1

an
,

lim
n→∞

an
n

=
α

e
, lim

n→∞
bn = 1, lim

n→∞
ln(bnn) = 1,

and consequently, lim
n→∞

(
n+1
√

(n+ 1)!xn+1 − n
√
n!xn

)
=
α

e
.

We now show (ii). Recall that

(2n− 1)!! =
(2n)!

2n n!
,

(2n)!! = 2n n!
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Thus, if an = n
√

(2n)!!xn, then

lim
n→∞

(an+1 − an) = 2 lim
n→∞

(
n+1
√

(n+ 1)!xn+1 − n
√
n!xn

)
=

2α

e
,

by the previous work. We now assume that an = n
√

(2n− 1)!!xn = 1
2

n

√
(2n)!
n! xn. As before, we

will check the conditions of Lemma 2.2.

First, since lim
n→∞

n
√

(2n)!

(2n)2
=

1

e2
(by a simple application of Lemma 2.1), then (regardless of

whether xn is degenerate or not)

lim
n→∞

an
n

=
1

2
lim
n→∞

n

√
(2n)!
n! xn

n
= 2 lim

n→∞

n
√

(2n)!

(2n)2
· lim
n→∞

n
n
√
n!
· lim
n→∞

n
√
xn = 2 · 1

e2
· e · α =

2α

e

Similarly,

lim
n→∞

bn = lim
n→∞

n+1

√
(2n+2)!
(n+1)! xn+1

n

√
(2n)!
n! xn

= lim
n→∞

n+1
√

(2n+ 2)! n
√
n!

n
√

(2n)! n+1
√

(n+ 1)!
·

n+1
√
xn+1

n
√
xn

= lim
n→∞

n+1
√

(2n+2)!

(2n+2)2
·

n√
n!
n

n
√

(2n)!

(2n)2
·

n+1
√

(n+1)!

n+1

· n(2n+ 2)2

(n+ 1)(2n)2
·

n+1
√
xn+1

n
√
xn

= 1.

Lastly, observe that

lim
n→∞

n+1
√

(2n+ 2)!
n
√

(2n)!
= lim

n→∞

n+1
√

(2n+ 2)!/(2n+ 2)2

n
√

(2n)!/(2n)2
· (2n+ 2)2

(2n)2
= 1,

which implies that lim
n→∞

ln(bnn) = 1, and consequently, lim
n→∞

(an+1 − an) =
2α

e
. �

The next corollary solves immediately the posed problem B-1151, along with B-1160:(2)

and (4).

Corollary 2.4. Let φ = 1+
√

5
2 be the golden ratio, and e be Euler’s constant. Then:

(i) lim
n→∞

(
n+1
√

(n+ 1)!Fn+1 − n
√
n!Fn

)
=
φ

e
,

(ii) lim
n→∞

(
n+1
√

(n+ 1)!Ln+1 − n
√
n!Ln

)
=
φ

e
,

(iii) lim
n→∞

(
n+1
√

(2n+ 1)!!Fn+1 − n
√

(2n− 1)!!Fn

)
=

2φ

e
,

(iv) lim
n→∞

(
n+1
√

(2n+ 1)!!Ln+1 − n
√

(2n− 1)!!Ln

)
=

2φ

e
,

(v) lim
n→∞

(
en+1 · n+1

√
(n+ 1)!Fn+1 − en n

√
n!Fn

)
= φ,

(vi) lim
n→∞

(
en+1 · n+1

√
(n+ 1)!Ln+1 − en n

√
n!Ln

)
= φ.
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One would wonder if the method is extendable to other sequences xn. The same proof we

have used for the second-order linear sequence will work for any sequence {xn}, under some

technical conditions (see the theorem below).

Consequently, the following generalization of Theorem 2.3 will hold.

Theorem 2.5. Let xn be any increasing sequence of positive real numbers with exponential

growth, precisely, lim
n→∞

n
√
xn = α (or, equivalently, lim

n→∞

xn+1

xn
= α). We have

lim
n→∞

(
n+1
√

(n+ 1)!xn+1 − n
√
n!xn

)
=
α

e
,

lim
n→∞

(
n+1
√

(2n+ 1)!!xn+1 − n
√

(2n− 1)!!xn

)
=

2α

e
,

lim
n→∞

(
n+1
√

(2n+ 2)!!xn+1 − n
√

(2n)!!xn

)
=

2α

e
.

Proof. The proof is indeed similar, by using Lemma 2.2 and equations (2.2) and (2.3), however

we need to motivate our claim that lim
n→∞

n
√
xn = α is equivalent to lim

n→∞

xn+1

xn
= α. That follows

easily from the inequalities (true for any sequence of real numbers xn > 0; see [5, Theorem

3.37])

lim inf
n→∞

xn+1

xn
≤ lim inf

n→∞
n
√
xn ≤ lim sup

n→∞
n
√
xn ≤ lim sup

n→∞

xn+1

xn
.

The proof is done. �

In particular, the theorem above will be true for any increasing r-order linear recurrence

sequence xn (of initial conditions xi, 0 ≤ i ≤ r − 1) [4], under some natural conditions.

Assuming the characteristic equation of xn has real roots αi, 1 ≤ i ≤ s, of multiplicity mi,

then

xn = p1(n)αn1 + p2(n)αn2 + · · ·+ ps(n)αns ,

where pi’s are polynomials of degree mi−1. Next, we assume that α := α1 ≥ 1 is the dominant

root and so, there exist two nonzero polynomials G,H such that

G(n)αn ≤ xn ≤ H(n)αn,

which is needed to infer that lim
n→∞

n
√
xn = α.

Having achieved this level of generalization, we inquire whether we can weigh the involved

sequences differently. We are able to prove the following theorem (which has as a consequence

a solution to [2]).

Theorem 2.6. Let {un}n, {vn}n be two sequences such that lim
n→∞

un = β and lim
n→∞

n (un − vn) =

γ (consequently, lim
n→∞

(un − vn) = 0 and so, lim
n→∞

vn = β). Further, let {xn} be a sequence as

in the previous theorem with n
√
xn = α, and an = n

√
n!xn. Then,

lim
n→∞

(unan+1 − vnan) =
α(β + γ)

e
.
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Proof. We first write

unan+1 − vnan = unan+1 − unan + unan − vnan
= un(an+1 − an) + (un − vn)an

= un(an+1 − an) + n(un − vn)
an
n
.

By our assumptions, Theorem 2.5 along with (2.2) (for the general sequence xn), we infer that

lim
n→∞

un(an+1 − an) =
βα

e
,

lim
n→∞

an
n

=
α

e
,

lim
n→∞

n(un − vn) = γ,

from which the claim follows. �

We omit the (easy) details, but as an application, if we let en =
(
1 + 1

n

)n
, and apply our

theorem with un := e, vn := en, or un := en+1, vn = en (along with xn = Fn, respectively, xn =

Ln), we get the remaining Problem B-1160:(1) and (3) (we use the fact that lim
n→∞

n(e−en) =
e

2
,

an easy consequence of the convergence error of en to e)

lim
n→∞

(
e n+1
√

(n+ 1)!Fn+1 − en n
√
n!Fn

)
=
φ(e+ e/2)

e
=

3φ

2
,

lim
n→∞

(
e n+1
√

(n+ 1)!Ln+1 − en n
√
n!Ln

)
=

3φ

2
.
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